/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsCpuCore.h" #include "rsCpuScript.h" #include "rsCpuScriptGroup.h" #include "rsCpuScriptGroup2.h" #include #include "rsContext.h" #include #include #include #include #include #include #include #define REDUCE_ALOGV(mtls, level, ...) do { if ((mtls)->logReduce >= (level)) ALOGV(__VA_ARGS__); } while(0) static pthread_key_t gThreadTLSKey = 0; static uint32_t gThreadTLSKeyCount = 0; static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER; namespace android { namespace renderscript { bool gArchUseSIMD = false; RsdCpuReference::~RsdCpuReference() { } RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major, uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn , RSSelectRTCallback pSelectRTCallback, const char *pBccPluginName ) { RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc); if (!cpu) { return nullptr; } if (!cpu->init(version_major, version_minor, lfn, slfn)) { delete cpu; return nullptr; } cpu->setSelectRTCallback(pSelectRTCallback); if (pBccPluginName) { cpu->setBccPluginName(pBccPluginName); } return cpu; } Context * RsdCpuReference::getTlsContext() { ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); return tls->mContext; } const Script * RsdCpuReference::getTlsScript() { ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); return tls->mScript; } pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; } //////////////////////////////////////////////////////////// /// RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) { mRSC = rsc; version_major = 0; version_minor = 0; mInKernel = false; memset(&mWorkers, 0, sizeof(mWorkers)); memset(&mTlsStruct, 0, sizeof(mTlsStruct)); mExit = false; mSelectRTCallback = nullptr; mEmbedGlobalInfo = true; mEmbedGlobalInfoSkipConstant = true; } void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) { RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc; uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1); //ALOGV("RS helperThread starting %p idx=%i", dc, idx); dc->mWorkers.mLaunchSignals[idx].init(); dc->mWorkers.mNativeThreadId[idx] = gettid(); memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct)); int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct); if (status) { ALOGE("pthread_setspecific %i", status); } #if 0 typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t; cpu_set_t cpuset; memset(&cpuset, 0, sizeof(cpuset)); cpuset.bits[idx / 64] |= 1ULL << (idx % 64); int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx], sizeof(cpuset), &cpuset); ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret)); #endif while (!dc->mExit) { dc->mWorkers.mLaunchSignals[idx].wait(); if (dc->mWorkers.mLaunchCallback) { // idx +1 is used because the calling thread is always worker 0. dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1); } __sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1); dc->mWorkers.mCompleteSignal.set(); } //ALOGV("RS helperThread exited %p idx=%i", dc, idx); return nullptr; } // Launch a kernel. // The callback function is called to execute the kernel. void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) { mWorkers.mLaunchData = data; mWorkers.mLaunchCallback = cbk; // fast path for very small launches MTLaunchStructCommon *mtls = (MTLaunchStructCommon *)data; if (mtls && mtls->dimPtr->y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) { if (mWorkers.mLaunchCallback) { mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); } return; } mWorkers.mRunningCount = mWorkers.mCount; __sync_synchronize(); for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { mWorkers.mLaunchSignals[ct].set(); } // We use the calling thread as one of the workers so we can start without // the delay of the thread wakeup. if (mWorkers.mLaunchCallback) { mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0); } while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { mWorkers.mCompleteSignal.wait(); } } void RsdCpuReferenceImpl::lockMutex() { pthread_mutex_lock(&gInitMutex); } void RsdCpuReferenceImpl::unlockMutex() { pthread_mutex_unlock(&gInitMutex); } // Determine if the CPU we're running on supports SIMD instructions. static void GetCpuInfo() { // Read the CPU flags from /proc/cpuinfo. FILE *cpuinfo = fopen("/proc/cpuinfo", "r"); if (!cpuinfo) { return; } char cpuinfostr[4096]; // fgets() ends with newline or EOF, need to check the whole // "cpuinfo" file to make sure we can use SIMD or not. while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) { #if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS) gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd"); #elif defined(ARCH_X86_HAVE_SSSE3) gArchUseSIMD = strstr(cpuinfostr, " ssse3"); #endif if (gArchUseSIMD) { break; } } fclose(cpuinfo); } bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn) { mSymLookupFn = lfn; mScriptLookupFn = slfn; lockMutex(); if (!gThreadTLSKeyCount) { int status = pthread_key_create(&gThreadTLSKey, nullptr); if (status) { ALOGE("Failed to init thread tls key."); unlockMutex(); return false; } } gThreadTLSKeyCount++; unlockMutex(); mTlsStruct.mContext = mRSC; mTlsStruct.mScript = nullptr; int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct); if (status) { ALOGE("pthread_setspecific %i", status); } mPageSize = sysconf(_SC_PAGE_SIZE); // ALOGV("page size = %ld", mPageSize); GetCpuInfo(); int cpu = sysconf(_SC_NPROCESSORS_CONF); if(mRSC->props.mDebugMaxThreads) { cpu = mRSC->props.mDebugMaxThreads; } if (cpu < 2) { mWorkers.mCount = 0; return true; } // Subtract one from the cpu count because we also use the command thread as a worker. mWorkers.mCount = (uint32_t)(cpu - 1); if (mRSC->props.mLogScripts) { ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1); } mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t)); mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t)); mWorkers.mLaunchSignals = new Signal[mWorkers.mCount]; mWorkers.mLaunchCallback = nullptr; mWorkers.mCompleteSignal.init(); mWorkers.mRunningCount = mWorkers.mCount; mWorkers.mLaunchCount = 0; __sync_synchronize(); pthread_attr_t threadAttr; status = pthread_attr_init(&threadAttr); if (status) { ALOGE("Failed to init thread attribute."); return false; } for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this); if (status) { mWorkers.mCount = ct; ALOGE("Created fewer than expected number of RS threads."); break; } } while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) { usleep(100); } pthread_attr_destroy(&threadAttr); return true; } void RsdCpuReferenceImpl::setPriority(int32_t priority) { for (uint32_t ct=0; ct < mWorkers.mCount; ct++) { setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority); } } RsdCpuReferenceImpl::~RsdCpuReferenceImpl() { mExit = true; mWorkers.mLaunchData = nullptr; mWorkers.mLaunchCallback = nullptr; mWorkers.mRunningCount = mWorkers.mCount; __sync_synchronize(); for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { mWorkers.mLaunchSignals[ct].set(); } void *res; for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) { pthread_join(mWorkers.mThreadId[ct], &res); } // b/23109602 // TODO: Refactor the implementation with threadpool to // fix the race condition in the destuctor. // rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0); free(mWorkers.mThreadId); free(mWorkers.mNativeThreadId); delete[] mWorkers.mLaunchSignals; // Global structure cleanup. lockMutex(); --gThreadTLSKeyCount; if (!gThreadTLSKeyCount) { pthread_key_delete(gThreadTLSKey); } unlockMutex(); } // Set up the appropriate input and output pointers to the kernel driver info structure. // Inputs: // mtls - The MTLaunchStruct holding information about the kernel launch // fep - The forEach parameters (driver info structure) // x, y, z, lod, face, a1, a2, a3, a4 - The start offsets into each dimension static inline void FepPtrSetup(const MTLaunchStructForEach *mtls, RsExpandKernelDriverInfo *fep, uint32_t x, uint32_t y, uint32_t z = 0, uint32_t lod = 0, RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) { // When rsForEach passes a null input allocation (as opposed to no input), // fep->inLen can be 1 with mtls->ains[0] being null. // This should only happen on old style kernels. for (uint32_t i = 0; i < fep->inLen; i++) { if (mtls->ains[i] == nullptr) { rsAssert(fep->inLen == 1); continue; } fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); } if (mtls->aout[0] != nullptr) { fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4); } } // Set up the appropriate input and output pointers to the kernel driver info structure. // Inputs: // mtls - The MTLaunchStruct holding information about the kernel launch // redp - The reduce parameters (driver info structure) // x, y, z - The start offsets into each dimension static inline void RedpPtrSetup(const MTLaunchStructReduce *mtls, RsExpandKernelDriverInfo *redp, uint32_t x, uint32_t y, uint32_t z) { for (uint32_t i = 0; i < redp->inLen; i++) { redp->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z); } } static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) { if (start >= end) { *p = start; return val; } uint32_t div = end - start; uint32_t n = val / div; *p = (val - (n * div)) + start; return n; } static bool SelectOuterSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) { uint32_t r = sliceNum; r = sliceInt(&info->current.z, r, mtls->start.z, mtls->end.z); r = sliceInt(&info->current.lod, r, mtls->start.lod, mtls->end.lod); r = sliceInt(&info->current.face, r, mtls->start.face, mtls->end.face); r = sliceInt(&info->current.array[0], r, mtls->start.array[0], mtls->end.array[0]); r = sliceInt(&info->current.array[1], r, mtls->start.array[1], mtls->end.array[1]); r = sliceInt(&info->current.array[2], r, mtls->start.array[2], mtls->end.array[2]); r = sliceInt(&info->current.array[3], r, mtls->start.array[3], mtls->end.array[3]); return r == 0; } static bool SelectZSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) { return sliceInt(&info->current.z, sliceNum, mtls->start.z, mtls->end.z) == 0; } static void walk_general_foreach(void *usr, uint32_t idx) { MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; ForEachFunc_t fn = mtls->kernel; while(1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); if (!SelectOuterSlice(mtls, &fep, slice)) { return; } for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y; fep.current.y++) { FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y, fep.current.z, fep.current.lod, (RsAllocationCubemapFace)fep.current.face, fep.current.array[0], fep.current.array[1], fep.current.array[2], fep.current.array[3]); fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); } } } static void walk_2d_foreach(void *usr, uint32_t idx) { MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; ForEachFunc_t fn = mtls->kernel; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize; uint32_t yEnd = yStart + mtls->mSliceSize; yEnd = rsMin(yEnd, mtls->end.y); if (yEnd <= yStart) { return; } for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) { FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y); fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]); } } } static void walk_1d_foreach(void *usr, uint32_t idx) { MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr; RsExpandKernelDriverInfo fep = mtls->fep; fep.lid = idx; ForEachFunc_t fn = mtls->kernel; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize; uint32_t xEnd = xStart + mtls->mSliceSize; xEnd = rsMin(xEnd, mtls->end.x); if (xEnd <= xStart) { return; } FepPtrSetup(mtls, &fep, xStart, 0); fn(&fep, xStart, xEnd, fep.outStride[0]); } } // The function format_bytes() is an auxiliary function to assist in logging. // // Bytes are read from an input (inBuf) and written (as pairs of hex digits) // to an output (outBuf). // // Output format: // - starts with ": " // - each input byte is translated to a pair of hex digits // - bytes are separated by "." except that every fourth separator is "|" // - if the input is sufficiently long, the output is truncated and terminated with "..." // // Arguments: // - outBuf -- Pointer to buffer of type "FormatBuf" into which output is written // - inBuf -- Pointer to bytes which are to be formatted into outBuf // - inBytes -- Number of bytes in inBuf // // Constant: // - kFormatInBytesMax -- Only min(kFormatInBytesMax, inBytes) bytes will be read // from inBuf // // Return value: // - pointer (const char *) to output (which is part of outBuf) // static const int kFormatInBytesMax = 16; // ": " + 2 digits per byte + 1 separator between bytes + "..." + null typedef char FormatBuf[2 + kFormatInBytesMax*2 + (kFormatInBytesMax - 1) + 3 + 1]; static const char *format_bytes(FormatBuf *outBuf, const uint8_t *inBuf, const int inBytes) { strlcpy(*outBuf, ": ", sizeof(*outBuf)); int pos = 2; const int lim = std::min(kFormatInBytesMax, inBytes); for (int i = 0; i < lim; ++i) { if (i) { sprintf(*outBuf + pos, (i % 4 ? "." : "|")); ++pos; } sprintf(*outBuf + pos, "%02x", inBuf[i]); pos += 2; } if (kFormatInBytesMax < inBytes) strlcpy(*outBuf + pos, "...", sizeof(FormatBuf) - pos); return *outBuf; } static void reduce_get_accumulator(uint8_t *&accumPtr, const MTLaunchStructReduce *mtls, const char *walkerName, uint32_t threadIdx) { rsAssert(!accumPtr); uint32_t accumIdx = (uint32_t)__sync_fetch_and_add(&mtls->accumCount, 1); if (mtls->outFunc) { accumPtr = mtls->accumAlloc + mtls->accumStride * accumIdx; } else { if (accumIdx == 0) { accumPtr = mtls->redp.outPtr[0]; } else { accumPtr = mtls->accumAlloc + mtls->accumStride * (accumIdx - 1); } } REDUCE_ALOGV(mtls, 2, "%s(%p): idx = %u got accumCount %u and accumPtr %p", walkerName, mtls->accumFunc, threadIdx, accumIdx, accumPtr); // initialize accumulator if (mtls->initFunc) { mtls->initFunc(accumPtr); } else { memset(accumPtr, 0, mtls->accumSize); } } static void walk_1d_reduce(void *usr, uint32_t idx) { const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr; RsExpandKernelDriverInfo redp = mtls->redp; // find accumulator uint8_t *&accumPtr = mtls->accumPtr[idx]; if (!accumPtr) { reduce_get_accumulator(accumPtr, mtls, __func__, idx); } // accumulate const ReduceAccumulatorFunc_t fn = mtls->accumFunc; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize; uint32_t xEnd = xStart + mtls->mSliceSize; xEnd = rsMin(xEnd, mtls->end.x); if (xEnd <= xStart) { return; } RedpPtrSetup(mtls, &redp, xStart, 0, 0); fn(&redp, xStart, xEnd, accumPtr); // Emit log line after slice has been run, so that we can include // the results of the run on that line. FormatBuf fmt; if (mtls->logReduce >= 3) { format_bytes(&fmt, accumPtr, mtls->accumSize); } else { fmt[0] = 0; } REDUCE_ALOGV(mtls, 2, "walk_1d_reduce(%p): idx = %u, x in [%u, %u)%s", mtls->accumFunc, idx, xStart, xEnd, fmt); } } static void walk_2d_reduce(void *usr, uint32_t idx) { const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr; RsExpandKernelDriverInfo redp = mtls->redp; // find accumulator uint8_t *&accumPtr = mtls->accumPtr[idx]; if (!accumPtr) { reduce_get_accumulator(accumPtr, mtls, __func__, idx); } // accumulate const ReduceAccumulatorFunc_t fn = mtls->accumFunc; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize; uint32_t yEnd = yStart + mtls->mSliceSize; yEnd = rsMin(yEnd, mtls->end.y); if (yEnd <= yStart) { return; } for (redp.current.y = yStart; redp.current.y < yEnd; redp.current.y++) { RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, 0); fn(&redp, mtls->start.x, mtls->end.x, accumPtr); } FormatBuf fmt; if (mtls->logReduce >= 3) { format_bytes(&fmt, accumPtr, mtls->accumSize); } else { fmt[0] = 0; } REDUCE_ALOGV(mtls, 2, "walk_2d_reduce(%p): idx = %u, y in [%u, %u)%s", mtls->accumFunc, idx, yStart, yEnd, fmt); } } static void walk_3d_reduce(void *usr, uint32_t idx) { const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr; RsExpandKernelDriverInfo redp = mtls->redp; // find accumulator uint8_t *&accumPtr = mtls->accumPtr[idx]; if (!accumPtr) { reduce_get_accumulator(accumPtr, mtls, __func__, idx); } // accumulate const ReduceAccumulatorFunc_t fn = mtls->accumFunc; while (1) { uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1); if (!SelectZSlice(mtls, &redp, slice)) { return; } for (redp.current.y = mtls->start.y; redp.current.y < mtls->end.y; redp.current.y++) { RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, redp.current.z); fn(&redp, mtls->start.x, mtls->end.x, accumPtr); } FormatBuf fmt; if (mtls->logReduce >= 3) { format_bytes(&fmt, accumPtr, mtls->accumSize); } else { fmt[0] = 0; } REDUCE_ALOGV(mtls, 2, "walk_3d_reduce(%p): idx = %u, z = %u%s", mtls->accumFunc, idx, redp.current.z, fmt); } } // Launch a general reduce-style kernel. // Inputs: // ains[0..inLen-1]: Array of allocations that contain the inputs // aout: The allocation that will hold the output // mtls: Holds launch parameters void RsdCpuReferenceImpl::launchReduce(const Allocation ** ains, uint32_t inLen, Allocation * aout, MTLaunchStructReduce *mtls) { mtls->logReduce = mRSC->props.mLogReduce; if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) { launchReduceParallel(ains, inLen, aout, mtls); } else { launchReduceSerial(ains, inLen, aout, mtls); } } // Launch a general reduce-style kernel, single-threaded. // Inputs: // ains[0..inLen-1]: Array of allocations that contain the inputs // aout: The allocation that will hold the output // mtls: Holds launch parameters void RsdCpuReferenceImpl::launchReduceSerial(const Allocation ** ains, uint32_t inLen, Allocation * aout, MTLaunchStructReduce *mtls) { REDUCE_ALOGV(mtls, 1, "launchReduceSerial(%p): %u x %u x %u", mtls->accumFunc, mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z); // In the presence of outconverter, we allocate temporary memory for // the accumulator. // // In the absence of outconverter, we use the output allocation as the // accumulator. uint8_t *const accumPtr = (mtls->outFunc ? static_cast(malloc(mtls->accumSize)) : mtls->redp.outPtr[0]); // initialize if (mtls->initFunc) { mtls->initFunc(accumPtr); } else { memset(accumPtr, 0, mtls->accumSize); } // accumulate const ReduceAccumulatorFunc_t fn = mtls->accumFunc; uint32_t slice = 0; while (SelectOuterSlice(mtls, &mtls->redp, slice++)) { for (mtls->redp.current.y = mtls->start.y; mtls->redp.current.y < mtls->end.y; mtls->redp.current.y++) { RedpPtrSetup(mtls, &mtls->redp, mtls->start.x, mtls->redp.current.y, mtls->redp.current.z); fn(&mtls->redp, mtls->start.x, mtls->end.x, accumPtr); } } // outconvert if (mtls->outFunc) { mtls->outFunc(mtls->redp.outPtr[0], accumPtr); free(accumPtr); } } // Launch a general reduce-style kernel, multi-threaded. // Inputs: // ains[0..inLen-1]: Array of allocations that contain the inputs // aout: The allocation that will hold the output // mtls: Holds launch parameters void RsdCpuReferenceImpl::launchReduceParallel(const Allocation ** ains, uint32_t inLen, Allocation * aout, MTLaunchStructReduce *mtls) { // For now, we don't know how to go parallel in the absence of a combiner. if (!mtls->combFunc) { launchReduceSerial(ains, inLen, aout, mtls); return; } // Number of threads = "main thread" + number of other (worker) threads const uint32_t numThreads = mWorkers.mCount + 1; // In the absence of outconverter, we use the output allocation as // an accumulator, and therefore need to allocate one fewer accumulator. const uint32_t numAllocAccum = numThreads - (mtls->outFunc == nullptr); // If mDebugReduceSplitAccum, then we want each accumulator to start // on a page boundary. (TODO: Would some unit smaller than a page // be sufficient to avoid false sharing?) if (mRSC->props.mDebugReduceSplitAccum) { // Round up accumulator size to an integral number of pages mtls->accumStride = (unsigned(mtls->accumSize) + unsigned(mPageSize)-1) & ~(unsigned(mPageSize)-1); // Each accumulator gets its own page. Alternatively, if we just // wanted to make sure no two accumulators are on the same page, // we could instead do // allocSize = mtls->accumStride * (numAllocation - 1) + mtls->accumSize const size_t allocSize = mtls->accumStride * numAllocAccum; mtls->accumAlloc = static_cast(memalign(mPageSize, allocSize)); } else { mtls->accumStride = mtls->accumSize; mtls->accumAlloc = static_cast(malloc(mtls->accumStride * numAllocAccum)); } const size_t accumPtrArrayBytes = sizeof(uint8_t *) * numThreads; mtls->accumPtr = static_cast(malloc(accumPtrArrayBytes)); memset(mtls->accumPtr, 0, accumPtrArrayBytes); mtls->accumCount = 0; rsAssert(!mInKernel); mInKernel = true; REDUCE_ALOGV(mtls, 1, "launchReduceParallel(%p): %u x %u x %u, %u threads, accumAlloc = %p", mtls->accumFunc, mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z, numThreads, mtls->accumAlloc); if (mtls->redp.dim.z > 1) { mtls->mSliceSize = 1; launchThreads(walk_3d_reduce, mtls); } else if (mtls->redp.dim.y > 1) { mtls->mSliceSize = rsMax(1U, mtls->redp.dim.y / (numThreads * 4)); launchThreads(walk_2d_reduce, mtls); } else { mtls->mSliceSize = rsMax(1U, mtls->redp.dim.x / (numThreads * 4)); launchThreads(walk_1d_reduce, mtls); } mInKernel = false; // Combine accumulators and identify final accumulator uint8_t *finalAccumPtr = (mtls->outFunc ? nullptr : mtls->redp.outPtr[0]); // Loop over accumulators, combining into finalAccumPtr. If finalAccumPtr // is null, then the first accumulator I find becomes finalAccumPtr. for (unsigned idx = 0; idx < mtls->accumCount; ++idx) { uint8_t *const thisAccumPtr = mtls->accumPtr[idx]; if (finalAccumPtr) { if (finalAccumPtr != thisAccumPtr) { if (mtls->combFunc) { if (mtls->logReduce >= 3) { FormatBuf fmt; REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulating into%s", mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize)); REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulator[%d]%s", mtls->accumFunc, idx, format_bytes(&fmt, thisAccumPtr, mtls->accumSize)); } mtls->combFunc(finalAccumPtr, thisAccumPtr); } else { rsAssert(!"expected combiner"); } } } else { finalAccumPtr = thisAccumPtr; } } rsAssert(finalAccumPtr != nullptr); if (mtls->logReduce >= 3) { FormatBuf fmt; REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final accumulator%s", mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize)); } // Outconvert if (mtls->outFunc) { mtls->outFunc(mtls->redp.outPtr[0], finalAccumPtr); if (mtls->logReduce >= 3) { FormatBuf fmt; REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final outconverted result%s", mtls->accumFunc, format_bytes(&fmt, mtls->redp.outPtr[0], mtls->redp.outStride[0])); } } // Clean up free(mtls->accumPtr); free(mtls->accumAlloc); } void RsdCpuReferenceImpl::launchForEach(const Allocation ** ains, uint32_t inLen, Allocation* aout, const RsScriptCall* sc, MTLaunchStructForEach* mtls) { //android::StopWatch kernel_time("kernel time"); bool outerDims = (mtls->start.z != mtls->end.z) || (mtls->start.face != mtls->end.face) || (mtls->start.lod != mtls->end.lod) || (mtls->start.array[0] != mtls->end.array[0]) || (mtls->start.array[1] != mtls->end.array[1]) || (mtls->start.array[2] != mtls->end.array[2]) || (mtls->start.array[3] != mtls->end.array[3]); if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) { const size_t targetByteChunk = 16 * 1024; mInKernel = true; // NOTE: The guard immediately above ensures this was !mInKernel if (outerDims) { // No fancy logic for chunk size mtls->mSliceSize = 1; launchThreads(walk_general_foreach, mtls); } else if (mtls->fep.dim.y > 1) { uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4); uint32_t s2 = 0; // This chooses our slice size to rate limit atomic ops to // one per 16k bytes of reads/writes. if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) { s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride; } else if (mtls->ains[0]) { s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride; } else { // Launch option only case // Use s1 based only on the dimensions s2 = s1; } mtls->mSliceSize = rsMin(s1, s2); if(mtls->mSliceSize < 1) { mtls->mSliceSize = 1; } launchThreads(walk_2d_foreach, mtls); } else { uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4); uint32_t s2 = 0; // This chooses our slice size to rate limit atomic ops to // one per 16k bytes of reads/writes. if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) { s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes(); } else if (mtls->ains[0]) { s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes(); } else { // Launch option only case // Use s1 based only on the dimensions s2 = s1; } mtls->mSliceSize = rsMin(s1, s2); if (mtls->mSliceSize < 1) { mtls->mSliceSize = 1; } launchThreads(walk_1d_foreach, mtls); } mInKernel = false; } else { ForEachFunc_t fn = mtls->kernel; uint32_t slice = 0; while(SelectOuterSlice(mtls, &mtls->fep, slice++)) { for (mtls->fep.current.y = mtls->start.y; mtls->fep.current.y < mtls->end.y; mtls->fep.current.y++) { FepPtrSetup(mtls, &mtls->fep, mtls->start.x, mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod, (RsAllocationCubemapFace) mtls->fep.current.face, mtls->fep.current.array[0], mtls->fep.current.array[1], mtls->fep.current.array[2], mtls->fep.current.array[3]); fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]); } } } } RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) { //ALOGE("setTls %p", sc); ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey); rsAssert(tls); RsdCpuScriptImpl *old = tls->mImpl; tls->mImpl = sc; tls->mContext = mRSC; if (sc) { tls->mScript = sc->getScript(); } else { tls->mScript = nullptr; } return old; } const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) { return mSymLookupFn(mRSC, name); } RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s, char const *resName, char const *cacheDir, uint8_t const *bitcode, size_t bitcodeSize, uint32_t flags) { RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s); if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags , getBccPluginName() )) { delete i; return nullptr; } return i; } extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx, const Script *s, const Element *e); RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s, RsScriptIntrinsicID iid, Element *e) { RsdCpuScriptImpl *i = nullptr; switch (iid) { case RS_SCRIPT_INTRINSIC_ID_3DLUT: i = rsdIntrinsic_3DLUT(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3: i = rsdIntrinsic_Convolve3x3(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX: i = rsdIntrinsic_ColorMatrix(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_LUT: i = rsdIntrinsic_LUT(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5: i = rsdIntrinsic_Convolve5x5(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLUR: i = rsdIntrinsic_Blur(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB: i = rsdIntrinsic_YuvToRGB(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLEND: i = rsdIntrinsic_Blend(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM: i = rsdIntrinsic_Histogram(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_RESIZE: i = rsdIntrinsic_Resize(this, s, e); break; case RS_SCRIPT_INTRINSIC_ID_BLAS: i = rsdIntrinsic_BLAS(this, s, e); break; default: rsAssert(0); } return i; } void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) { switch (sg->getApiVersion()) { case ScriptGroupBase::SG_V1: { CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg); if (!sgi->init()) { delete sgi; return nullptr; } return sgi; } case ScriptGroupBase::SG_V2: { return new CpuScriptGroup2Impl(this, sg); } } return nullptr; } } // namespace renderscript } // namespace android