/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // The bootstat command provides options to persist boot events with the current // timestamp, dump the persisted events, and log all events to EventLog to be // uploaded to Android log storage via Tron. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "boot_event_record_store.h" namespace { // Scans the boot event record store for record files and logs each boot event // via EventLog. void LogBootEvents() { BootEventRecordStore boot_event_store; auto events = boot_event_store.GetAllBootEvents(); for (auto i = events.cbegin(); i != events.cend(); ++i) { android::metricslogger::LogHistogram(i->first, i->second); } } // Records the named boot |event| to the record store. If |value| is non-empty // and is a proper string representation of an integer value, the converted // integer value is associated with the boot event. void RecordBootEventFromCommandLine( const std::string& event, const std::string& value_str) { BootEventRecordStore boot_event_store; if (!value_str.empty()) { int32_t value = 0; if (android::base::ParseInt(value_str, &value)) { boot_event_store.AddBootEventWithValue(event, value); } } else { boot_event_store.AddBootEvent(event); } } void PrintBootEvents() { printf("Boot events:\n"); printf("------------\n"); BootEventRecordStore boot_event_store; auto events = boot_event_store.GetAllBootEvents(); for (auto i = events.cbegin(); i != events.cend(); ++i) { printf("%s\t%d\n", i->first.c_str(), i->second); } } void ShowHelp(const char *cmd) { fprintf(stderr, "Usage: %s [options]\n", cmd); fprintf(stderr, "options include:\n" " -h, --help Show this help\n" " -l, --log Log all metrics to logstorage\n" " -p, --print Dump the boot event records to the console\n" " -r, --record Record the timestamp of a named boot event\n" " --value Optional value to associate with the boot event\n" " --record_boot_complete Record metrics related to the time for the device boot\n" " --record_boot_reason Record the reason why the device booted\n" " --record_time_since_factory_reset Record the time since the device was reset\n"); } // Constructs a readable, printable string from the givencommand line // arguments. std::string GetCommandLine(int argc, char **argv) { std::string cmd; for (int i = 0; i < argc; ++i) { cmd += argv[i]; cmd += " "; } return cmd; } // Convenience wrapper over the property API that returns an // std::string. std::string GetProperty(const char* key) { std::vector temp(PROPERTY_VALUE_MAX); const int len = property_get(key, &temp[0], nullptr); if (len < 0) { return ""; } return std::string(&temp[0], len); } constexpr int32_t kUnknownBootReason = 1; // A mapping from boot reason string, as read from the ro.boot.bootreason // system property, to a unique integer ID. Viewers of log data dashboards for // the boot_reason metric may refer to this mapping to discern the histogram // values. const std::map kBootReasonMap = { {"unknown", kUnknownBootReason}, {"normal", 2}, {"recovery", 3}, {"reboot", 4}, {"PowerKey", 5}, {"hard_reset", 6}, {"kernel_panic", 7}, {"rpm_err", 8}, {"hw_reset", 9}, {"tz_err", 10}, {"adsp_err", 11}, {"modem_err", 12}, {"mba_err", 13}, {"Watchdog", 14}, {"Panic", 15}, {"power_key", 16}, {"power_on", 17}, {"Reboot", 18}, {"rtc", 19}, {"edl", 20}, {"oem_pon1", 21}, {"oem_powerkey", 22}, {"oem_unknown_reset", 23}, {"srto: HWWDT reset SC", 24}, {"srto: HWWDT reset platform", 25}, {"srto: bootloader", 26}, {"srto: kernel panic", 27}, {"srto: kernel watchdog reset", 28}, {"srto: normal", 29}, {"srto: reboot", 30}, {"srto: reboot-bootloader", 31}, {"srto: security watchdog reset", 32}, {"srto: wakesrc", 33}, {"srto: watchdog", 34}, {"srto:1-1", 35}, {"srto:omap_hsmm", 36}, {"srto:phy0", 37}, {"srto:rtc0", 38}, {"srto:touchpad", 39}, {"watchdog", 40}, {"watchdogr", 41}, {"wdog_bark", 42}, {"wdog_bite", 43}, {"wdog_reset", 44}, {"shutdown,", 45}, // Trailing comma is intentional. {"shutdown,userrequested", 46}, {"reboot,bootloader", 47}, {"reboot,cold", 48}, {"reboot,recovery", 49}, {"thermal_shutdown", 50}, {"s3_wakeup", 51} }; // Converts a string value representing the reason the system booted to an // integer representation. This is necessary for logging the boot_reason metric // via Tron, which does not accept non-integer buckets in histograms. int32_t BootReasonStrToEnum(const std::string& boot_reason) { auto mapping = kBootReasonMap.find(boot_reason); if (mapping != kBootReasonMap.end()) { return mapping->second; } LOG(INFO) << "Unknown boot reason: " << boot_reason; return kUnknownBootReason; } // Returns the appropriate metric key prefix for the boot_complete metric such // that boot metrics after a system update are labeled as ota_boot_complete; // otherwise, they are labeled as boot_complete. This method encapsulates the // bookkeeping required to track when a system update has occurred by storing // the UTC timestamp of the system build date and comparing against the current // system build date. std::string CalculateBootCompletePrefix() { static const std::string kBuildDateKey = "build_date"; std::string boot_complete_prefix = "boot_complete"; std::string build_date_str = GetProperty("ro.build.date.utc"); int32_t build_date; if (!android::base::ParseInt(build_date_str, &build_date)) { return std::string(); } BootEventRecordStore boot_event_store; BootEventRecordStore::BootEventRecord record; if (!boot_event_store.GetBootEvent(kBuildDateKey, &record)) { boot_complete_prefix = "factory_reset_" + boot_complete_prefix; boot_event_store.AddBootEventWithValue(kBuildDateKey, build_date); } else if (build_date != record.second) { boot_complete_prefix = "ota_" + boot_complete_prefix; boot_event_store.AddBootEventWithValue(kBuildDateKey, build_date); } return boot_complete_prefix; } // Records the value of a given ro.boottime.init property in milliseconds. void RecordInitBootTimeProp( BootEventRecordStore* boot_event_store, const char* property) { std::string value = GetProperty(property); int32_t time_in_ms; if (android::base::ParseInt(value, &time_in_ms)) { boot_event_store->AddBootEventWithValue(property, time_in_ms); } } // A map from bootloader timing stage to the time that stage took during boot. typedef std::map BootloaderTimingMap; // Returns a mapping from bootloader stage names to the time those stages // took to boot. const BootloaderTimingMap GetBootLoaderTimings() { BootloaderTimingMap timings; // |ro.boot.boottime| is of the form 'stage1:time1,...,stageN:timeN', // where timeN is in milliseconds. std::string value = GetProperty("ro.boot.boottime"); if (value.empty()) { // ro.boot.boottime is not reported on all devices. return BootloaderTimingMap(); } auto stages = android::base::Split(value, ","); for (const auto& stageTiming : stages) { // |stageTiming| is of the form 'stage:time'. auto stageTimingValues = android::base::Split(stageTiming, ":"); DCHECK_EQ(2U, stageTimingValues.size()); std::string stageName = stageTimingValues[0]; int32_t time_ms; if (android::base::ParseInt(stageTimingValues[1], &time_ms)) { timings[stageName] = time_ms; } } return timings; } // Parses and records the set of bootloader stages and associated boot times // from the ro.boot.boottime system property. void RecordBootloaderTimings(BootEventRecordStore* boot_event_store, const BootloaderTimingMap& bootloader_timings) { int32_t total_time = 0; for (const auto& timing : bootloader_timings) { total_time += timing.second; boot_event_store->AddBootEventWithValue("boottime.bootloader." + timing.first, timing.second); } boot_event_store->AddBootEventWithValue("boottime.bootloader.total", total_time); } // Records the closest estimation to the absolute device boot time, i.e., // from power on to boot_complete, including bootloader times. void RecordAbsoluteBootTime(BootEventRecordStore* boot_event_store, const BootloaderTimingMap& bootloader_timings, std::chrono::milliseconds uptime) { int32_t bootloader_time_ms = 0; for (const auto& timing : bootloader_timings) { if (timing.first.compare("SW") != 0) { bootloader_time_ms += timing.second; } } auto bootloader_duration = std::chrono::milliseconds(bootloader_time_ms); auto absolute_total = std::chrono::duration_cast(bootloader_duration + uptime); boot_event_store->AddBootEventWithValue("absolute_boot_time", absolute_total.count()); } // Records several metrics related to the time it takes to boot the device, // including disambiguating boot time on encrypted or non-encrypted devices. void RecordBootComplete() { BootEventRecordStore boot_event_store; BootEventRecordStore::BootEventRecord record; auto time_since_epoch = android::base::boot_clock::now().time_since_epoch(); auto uptime = std::chrono::duration_cast(time_since_epoch); time_t current_time_utc = time(nullptr); if (boot_event_store.GetBootEvent("last_boot_time_utc", &record)) { time_t last_boot_time_utc = record.second; time_t time_since_last_boot = difftime(current_time_utc, last_boot_time_utc); boot_event_store.AddBootEventWithValue("time_since_last_boot", time_since_last_boot); } boot_event_store.AddBootEventWithValue("last_boot_time_utc", current_time_utc); // The boot_complete metric has two variants: boot_complete and // ota_boot_complete. The latter signifies that the device is booting after // a system update. std::string boot_complete_prefix = CalculateBootCompletePrefix(); if (boot_complete_prefix.empty()) { // The system is hosed because the build date property could not be read. return; } // post_decrypt_time_elapsed is only logged on encrypted devices. if (boot_event_store.GetBootEvent("post_decrypt_time_elapsed", &record)) { // Log the amount of time elapsed until the device is decrypted, which // includes the variable amount of time the user takes to enter the // decryption password. boot_event_store.AddBootEventWithValue("boot_decryption_complete", uptime.count()); // Subtract the decryption time to normalize the boot cycle timing. std::chrono::seconds boot_complete = std::chrono::seconds(uptime.count() - record.second); boot_event_store.AddBootEventWithValue(boot_complete_prefix + "_post_decrypt", boot_complete.count()); } else { boot_event_store.AddBootEventWithValue(boot_complete_prefix + "_no_encryption", uptime.count()); } // Record the total time from device startup to boot complete, regardless of // encryption state. boot_event_store.AddBootEventWithValue(boot_complete_prefix, uptime.count()); RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init"); RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init.selinux"); RecordInitBootTimeProp(&boot_event_store, "ro.boottime.init.cold_boot_wait"); const BootloaderTimingMap bootloader_timings = GetBootLoaderTimings(); RecordBootloaderTimings(&boot_event_store, bootloader_timings); auto uptime_ms = std::chrono::duration_cast(time_since_epoch); RecordAbsoluteBootTime(&boot_event_store, bootloader_timings, uptime_ms); } // Records the boot_reason metric by querying the ro.boot.bootreason system // property. void RecordBootReason() { std::string boot_reason_str = GetProperty("ro.boot.bootreason"); android::metricslogger::LogMultiAction(android::metricslogger::ACTION_BOOT, android::metricslogger::FIELD_PLATFORM_REASON, boot_reason_str); int32_t boot_reason = BootReasonStrToEnum(boot_reason_str); BootEventRecordStore boot_event_store; boot_event_store.AddBootEventWithValue("boot_reason", boot_reason); } // Records two metrics related to the user resetting a device: the time at // which the device is reset, and the time since the user last reset the // device. The former is only set once per-factory reset. void RecordFactoryReset() { BootEventRecordStore boot_event_store; BootEventRecordStore::BootEventRecord record; time_t current_time_utc = time(nullptr); if (current_time_utc < 0) { // UMA does not display negative values in buckets, so convert to positive. android::metricslogger::LogHistogram( "factory_reset_current_time_failure", std::abs(current_time_utc)); // Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram // is losing records somehow. boot_event_store.AddBootEventWithValue( "factory_reset_current_time_failure", std::abs(current_time_utc)); return; } else { android::metricslogger::LogHistogram("factory_reset_current_time", current_time_utc); // Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram // is losing records somehow. boot_event_store.AddBootEventWithValue( "factory_reset_current_time", current_time_utc); } // The factory_reset boot event does not exist after the device is reset, so // use this signal to mark the time of the factory reset. if (!boot_event_store.GetBootEvent("factory_reset", &record)) { boot_event_store.AddBootEventWithValue("factory_reset", current_time_utc); // Don't log the time_since_factory_reset until some time has elapsed. // The data is not meaningful yet and skews the histogram buckets. return; } // Calculate and record the difference in time between now and the // factory_reset time. time_t factory_reset_utc = record.second; android::metricslogger::LogHistogram("factory_reset_record_value", factory_reset_utc); // Logging via BootEventRecordStore to see if using android::metricslogger::LogHistogram // is losing records somehow. boot_event_store.AddBootEventWithValue( "factory_reset_record_value", factory_reset_utc); time_t time_since_factory_reset = difftime(current_time_utc, factory_reset_utc); boot_event_store.AddBootEventWithValue("time_since_factory_reset", time_since_factory_reset); } } // namespace int main(int argc, char **argv) { android::base::InitLogging(argv); const std::string cmd_line = GetCommandLine(argc, argv); LOG(INFO) << "Service started: " << cmd_line; int option_index = 0; static const char value_str[] = "value"; static const char boot_complete_str[] = "record_boot_complete"; static const char boot_reason_str[] = "record_boot_reason"; static const char factory_reset_str[] = "record_time_since_factory_reset"; static const struct option long_options[] = { { "help", no_argument, NULL, 'h' }, { "log", no_argument, NULL, 'l' }, { "print", no_argument, NULL, 'p' }, { "record", required_argument, NULL, 'r' }, { value_str, required_argument, NULL, 0 }, { boot_complete_str, no_argument, NULL, 0 }, { boot_reason_str, no_argument, NULL, 0 }, { factory_reset_str, no_argument, NULL, 0 }, { NULL, 0, NULL, 0 } }; std::string boot_event; std::string value; int opt = 0; while ((opt = getopt_long(argc, argv, "hlpr:", long_options, &option_index)) != -1) { switch (opt) { // This case handles long options which have no single-character mapping. case 0: { const std::string option_name = long_options[option_index].name; if (option_name == value_str) { // |optarg| is an external variable set by getopt representing // the option argument. value = optarg; } else if (option_name == boot_complete_str) { RecordBootComplete(); } else if (option_name == boot_reason_str) { RecordBootReason(); } else if (option_name == factory_reset_str) { RecordFactoryReset(); } else { LOG(ERROR) << "Invalid option: " << option_name; } break; } case 'h': { ShowHelp(argv[0]); break; } case 'l': { LogBootEvents(); break; } case 'p': { PrintBootEvents(); break; } case 'r': { // |optarg| is an external variable set by getopt representing // the option argument. boot_event = optarg; break; } default: { DCHECK_EQ(opt, '?'); // |optopt| is an external variable set by getopt representing // the value of the invalid option. LOG(ERROR) << "Invalid option: " << optopt; ShowHelp(argv[0]); return EXIT_FAILURE; } } } if (!boot_event.empty()) { RecordBootEventFromCommandLine(boot_event, value); } return 0; }