/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "environment.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__ANDROID__) #include #endif #include "event_type.h" #include "IOEventLoop.h" #include "read_elf.h" #include "thread_tree.h" #include "utils.h" #include "workload.h" class LineReader { public: explicit LineReader(FILE* fp) : fp_(fp), buf_(nullptr), bufsize_(0) { } ~LineReader() { free(buf_); fclose(fp_); } char* ReadLine() { if (getline(&buf_, &bufsize_, fp_) != -1) { return buf_; } return nullptr; } size_t MaxLineSize() { return bufsize_; } private: FILE* fp_; char* buf_; size_t bufsize_; }; std::vector GetOnlineCpus() { std::vector result; FILE* fp = fopen("/sys/devices/system/cpu/online", "re"); if (fp == nullptr) { PLOG(ERROR) << "can't open online cpu information"; return result; } LineReader reader(fp); char* line; if ((line = reader.ReadLine()) != nullptr) { result = GetCpusFromString(line); } CHECK(!result.empty()) << "can't get online cpu information"; return result; } std::vector GetCpusFromString(const std::string& s) { std::set cpu_set; bool have_dash = false; const char* p = s.c_str(); char* endp; int last_cpu; int cpu; // Parse line like: 0,1-3, 5, 7-8 while ((cpu = static_cast(strtol(p, &endp, 10))) != 0 || endp != p) { if (have_dash && !cpu_set.empty()) { for (int t = last_cpu + 1; t < cpu; ++t) { cpu_set.insert(t); } } have_dash = false; cpu_set.insert(cpu); last_cpu = cpu; p = endp; while (!isdigit(*p) && *p != '\0') { if (*p == '-') { have_dash = true; } ++p; } } return std::vector(cpu_set.begin(), cpu_set.end()); } static std::vector GetLoadedModules() { std::vector result; FILE* fp = fopen("/proc/modules", "re"); if (fp == nullptr) { // There is no /proc/modules on Android devices, so we don't print error if failed to open it. PLOG(DEBUG) << "failed to open file /proc/modules"; return result; } LineReader reader(fp); char* line; while ((line = reader.ReadLine()) != nullptr) { // Parse line like: nf_defrag_ipv6 34768 1 nf_conntrack_ipv6, Live 0xffffffffa0fe5000 char name[reader.MaxLineSize()]; uint64_t addr; if (sscanf(line, "%s%*lu%*u%*s%*s 0x%" PRIx64, name, &addr) == 2) { KernelMmap map; map.name = name; map.start_addr = addr; result.push_back(map); } } bool all_zero = true; for (const auto& map : result) { if (map.start_addr != 0) { all_zero = false; } } if (all_zero) { LOG(DEBUG) << "addresses in /proc/modules are all zero, so ignore kernel modules"; return std::vector(); } return result; } static void GetAllModuleFiles(const std::string& path, std::unordered_map* module_file_map) { for (const auto& name : GetEntriesInDir(path)) { std::string entry_path = path + "/" + name; if (IsRegularFile(entry_path) && android::base::EndsWith(name, ".ko")) { std::string module_name = name.substr(0, name.size() - 3); std::replace(module_name.begin(), module_name.end(), '-', '_'); module_file_map->insert(std::make_pair(module_name, entry_path)); } else if (IsDir(entry_path)) { GetAllModuleFiles(entry_path, module_file_map); } } } static std::vector GetModulesInUse() { utsname uname_buf; if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) { PLOG(ERROR) << "uname() failed"; return std::vector(); } std::string linux_version = uname_buf.release; std::string module_dirpath = "/lib/modules/" + linux_version + "/kernel"; std::unordered_map module_file_map; GetAllModuleFiles(module_dirpath, &module_file_map); // TODO: There is no /proc/modules or /lib/modules on Android, find methods work on it. std::vector module_mmaps = GetLoadedModules(); for (auto& module : module_mmaps) { auto it = module_file_map.find(module.name); if (it != module_file_map.end()) { module.filepath = it->second; } } return module_mmaps; } void GetKernelAndModuleMmaps(KernelMmap* kernel_mmap, std::vector* module_mmaps) { kernel_mmap->name = DEFAULT_KERNEL_MMAP_NAME; kernel_mmap->start_addr = 0; kernel_mmap->filepath = kernel_mmap->name; *module_mmaps = GetModulesInUse(); for (auto& map : *module_mmaps) { if (map.filepath.empty()) { map.filepath = "[" + map.name + "]"; } } if (module_mmaps->size() == 0) { kernel_mmap->len = std::numeric_limits::max() - kernel_mmap->start_addr; } else { std::sort( module_mmaps->begin(), module_mmaps->end(), [](const KernelMmap& m1, const KernelMmap& m2) { return m1.start_addr < m2.start_addr; }); // When not having enough privilege, all addresses are read as 0. if (kernel_mmap->start_addr == (*module_mmaps)[0].start_addr) { kernel_mmap->len = 0; } else { kernel_mmap->len = (*module_mmaps)[0].start_addr - kernel_mmap->start_addr - 1; } for (size_t i = 0; i + 1 < module_mmaps->size(); ++i) { if ((*module_mmaps)[i].start_addr == (*module_mmaps)[i + 1].start_addr) { (*module_mmaps)[i].len = 0; } else { (*module_mmaps)[i].len = (*module_mmaps)[i + 1].start_addr - (*module_mmaps)[i].start_addr - 1; } } module_mmaps->back().len = std::numeric_limits::max() - module_mmaps->back().start_addr; } } static bool ReadThreadNameAndPid(pid_t tid, std::string* comm, pid_t* pid) { android::procinfo::ProcessInfo procinfo; if (!android::procinfo::GetProcessInfo(tid, &procinfo)) { return false; } if (comm != nullptr) { *comm = procinfo.name; } if (pid != nullptr) { *pid = procinfo.pid; } return true; } std::vector GetThreadsInProcess(pid_t pid) { std::vector result; android::procinfo::GetProcessTids(pid, &result); return result; } bool IsThreadAlive(pid_t tid) { return IsDir(android::base::StringPrintf("/proc/%d", tid)); } bool GetProcessForThread(pid_t tid, pid_t* pid) { return ReadThreadNameAndPid(tid, nullptr, pid); } bool GetThreadName(pid_t tid, std::string* name) { return ReadThreadNameAndPid(tid, name, nullptr); } std::vector GetAllProcesses() { std::vector result; std::vector entries = GetEntriesInDir("/proc"); for (const auto& entry : entries) { pid_t pid; if (!android::base::ParseInt(entry.c_str(), &pid, 0)) { continue; } result.push_back(pid); } return result; } bool GetThreadMmapsInProcess(pid_t pid, std::vector* thread_mmaps) { std::string map_file = android::base::StringPrintf("/proc/%d/maps", pid); FILE* fp = fopen(map_file.c_str(), "re"); if (fp == nullptr) { PLOG(DEBUG) << "can't open file " << map_file; return false; } thread_mmaps->clear(); LineReader reader(fp); char* line; while ((line = reader.ReadLine()) != nullptr) { // Parse line like: 00400000-00409000 r-xp 00000000 fc:00 426998 /usr/lib/gvfs/gvfsd-http uint64_t start_addr, end_addr, pgoff; char type[reader.MaxLineSize()]; char execname[reader.MaxLineSize()]; strcpy(execname, ""); if (sscanf(line, "%" PRIx64 "-%" PRIx64 " %s %" PRIx64 " %*x:%*x %*u %s\n", &start_addr, &end_addr, type, &pgoff, execname) < 4) { continue; } if (strcmp(execname, "") == 0) { strcpy(execname, DEFAULT_EXECNAME_FOR_THREAD_MMAP); } ThreadMmap thread; thread.start_addr = start_addr; thread.len = end_addr - start_addr; thread.pgoff = pgoff; thread.name = execname; thread.executable = (type[2] == 'x'); thread_mmaps->push_back(thread); } return true; } bool GetKernelBuildId(BuildId* build_id) { ElfStatus result = GetBuildIdFromNoteFile("/sys/kernel/notes", build_id); if (result != ElfStatus::NO_ERROR) { LOG(DEBUG) << "failed to read /sys/kernel/notes: " << result; } return result == ElfStatus::NO_ERROR; } bool GetModuleBuildId(const std::string& module_name, BuildId* build_id) { std::string notefile = "/sys/module/" + module_name + "/notes/.note.gnu.build-id"; return GetBuildIdFromNoteFile(notefile, build_id); } bool GetValidThreadsFromThreadString(const std::string& tid_str, std::set* tid_set) { std::vector strs = android::base::Split(tid_str, ","); for (const auto& s : strs) { int tid; if (!android::base::ParseInt(s.c_str(), &tid, 0)) { LOG(ERROR) << "Invalid tid '" << s << "'"; return false; } if (!IsDir(android::base::StringPrintf("/proc/%d", tid))) { LOG(ERROR) << "Non existing thread '" << tid << "'"; return false; } tid_set->insert(tid); } return true; } /* * perf event paranoia level: * -1 - not paranoid at all * 0 - disallow raw tracepoint access for unpriv * 1 - disallow cpu events for unpriv * 2 - disallow kernel profiling for unpriv * 3 - disallow user profiling for unpriv */ static bool ReadPerfEventParanoid(int* value) { std::string s; if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_paranoid", &s)) { PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_paranoid"; return false; } s = android::base::Trim(s); if (!android::base::ParseInt(s.c_str(), value)) { PLOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_paranoid: " << s; return false; } return true; } bool CanRecordRawData() { int value; return IsRoot() || (ReadPerfEventParanoid(&value) && value == -1); } static const char* GetLimitLevelDescription(int limit_level) { switch (limit_level) { case -1: return "unlimited"; case 0: return "disallowing raw tracepoint access for unpriv"; case 1: return "disallowing cpu events for unpriv"; case 2: return "disallowing kernel profiling for unpriv"; case 3: return "disallowing user profiling for unpriv"; default: return "unknown level"; } } bool CheckPerfEventLimit() { // Root is not limited by /proc/sys/kernel/perf_event_paranoid. However, the monitored threads // may create child processes not running as root. To make sure the child processes have // enough permission to create inherited tracepoint events, write -1 to perf_event_paranoid. // See http://b/62230699. if (IsRoot() && android::base::WriteStringToFile("-1", "/proc/sys/kernel/perf_event_paranoid")) { return true; } int limit_level; bool can_read_paranoid = ReadPerfEventParanoid(&limit_level); if (can_read_paranoid && limit_level <= 1) { return true; } #if defined(__ANDROID__) const char* prop_name = "security.perf_harden"; char prop_value[PROP_VALUE_MAX]; if (__system_property_get(prop_name, prop_value) <= 0) { // can't do anything if there is no such property. return true; } if (strcmp(prop_value, "0") == 0) { return true; } // Try to enable perf_event_paranoid by setprop security.perf_harden=0. if (__system_property_set(prop_name, "0") == 0) { sleep(1); if (can_read_paranoid && ReadPerfEventParanoid(&limit_level) && limit_level <= 1) { return true; } if (__system_property_get(prop_name, prop_value) > 0 && strcmp(prop_value, "0") == 0) { return true; } } if (can_read_paranoid) { LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level << ", " << GetLimitLevelDescription(limit_level) << "."; } LOG(WARNING) << "Try using `adb shell setprop security.perf_harden 0` to allow profiling."; return false; #else if (can_read_paranoid) { LOG(WARNING) << "/proc/sys/kernel/perf_event_paranoid is " << limit_level << ", " << GetLimitLevelDescription(limit_level) << "."; return false; } #endif return true; } bool GetMaxSampleFrequency(uint64_t* max_sample_freq) { std::string s; if (!android::base::ReadFileToString("/proc/sys/kernel/perf_event_max_sample_rate", &s)) { PLOG(DEBUG) << "failed to read /proc/sys/kernel/perf_event_max_sample_rate"; return false; } s = android::base::Trim(s); if (!android::base::ParseUint(s.c_str(), max_sample_freq)) { LOG(ERROR) << "failed to parse /proc/sys/kernel/perf_event_max_sample_rate: " << s; return false; } return true; } bool CheckSampleFrequency(uint64_t sample_freq) { if (sample_freq == 0) { LOG(ERROR) << "Sample frequency can't be zero."; return false; } uint64_t max_sample_freq; if (!GetMaxSampleFrequency(&max_sample_freq)) { // Omit the check if can't read perf_event_max_sample_rate. return true; } if (sample_freq > max_sample_freq) { LOG(ERROR) << "Sample frequency " << sample_freq << " is out of range [1, " << max_sample_freq << "]"; return false; } return true; } bool CheckKernelSymbolAddresses() { const std::string kptr_restrict_file = "/proc/sys/kernel/kptr_restrict"; std::string s; if (!android::base::ReadFileToString(kptr_restrict_file, &s)) { PLOG(DEBUG) << "failed to read " << kptr_restrict_file; return false; } s = android::base::Trim(s); int value; if (!android::base::ParseInt(s.c_str(), &value)) { LOG(ERROR) << "failed to parse " << kptr_restrict_file << ": " << s; return false; } // Accessible to everyone? if (value == 0) { return true; } // Accessible to root? if (value == 1 && IsRoot()) { return true; } // Can we make it accessible to us? if (IsRoot() && android::base::WriteStringToFile("1", kptr_restrict_file)) { return true; } LOG(WARNING) << "Access to kernel symbol addresses is restricted. If " << "possible, please do `echo 0 >/proc/sys/kernel/kptr_restrict` " << "to fix this."; return false; } ArchType GetMachineArch() { utsname uname_buf; if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) { PLOG(WARNING) << "uname() failed"; return GetBuildArch(); } ArchType arch = GetArchType(uname_buf.machine); if (arch != ARCH_UNSUPPORTED) { return arch; } return GetBuildArch(); } void PrepareVdsoFile() { // vdso is an elf file in memory loaded in each process's user space by the kernel. To read // symbols from it and unwind through it, we need to dump it into a file in storage. // It doesn't affect much when failed to prepare vdso file, so there is no need to return values. std::vector thread_mmaps; if (!GetThreadMmapsInProcess(getpid(), &thread_mmaps)) { return; } const ThreadMmap* vdso_map = nullptr; for (const auto& map : thread_mmaps) { if (map.name == "[vdso]") { vdso_map = ↦ break; } } if (vdso_map == nullptr) { return; } std::string s(vdso_map->len, '\0'); memcpy(&s[0], reinterpret_cast(static_cast(vdso_map->start_addr)), vdso_map->len); std::unique_ptr tmpfile(new TemporaryFile); if (!android::base::WriteStringToFile(s, tmpfile->path)) { return; } Dso::SetVdsoFile(std::move(tmpfile), sizeof(size_t) == sizeof(uint64_t)); } int WaitForAppProcess(const std::string& package_name) { size_t loop_count = 0; while (true) { std::vector pids = GetAllProcesses(); for (pid_t pid : pids) { std::string cmdline; if (!android::base::ReadFileToString("/proc/" + std::to_string(pid) + "/cmdline", &cmdline)) { // Maybe we don't have permission to read it. continue; } cmdline = android::base::Basename(cmdline); if (cmdline == package_name) { if (loop_count > 0u) { LOG(INFO) << "Got process " << pid << " for package " << package_name; } return pid; } } if (++loop_count == 1u) { LOG(INFO) << "Waiting for process of app " << package_name; } usleep(1000); } } class ScopedFile { public: ScopedFile(const std::string& filepath, std::string app_package_name = "") : filepath_(filepath), app_package_name_(app_package_name) {} ~ScopedFile() { if (app_package_name_.empty()) { unlink(filepath_.c_str()); } else { Workload::RunCmd({"run-as", app_package_name_, "rm", "-rf", filepath_}); } } private: std::string filepath_; std::string app_package_name_; }; bool RunInAppContext(const std::string& app_package_name, const std::string& cmd, const std::vector& args, size_t workload_args_size, const std::string& output_filepath, bool need_tracepoint_events) { // 1. Test if the package exists. if (!Workload::RunCmd({"run-as", app_package_name, "echo", ">/dev/null"}, false)) { LOG(ERROR) << "Package " << app_package_name << "doesn't exist or isn't debuggable."; return false; } // 2. Copy simpleperf binary to the package. Create tracepoint_file if needed. std::string simpleperf_path; if (!android::base::Readlink("/proc/self/exe", &simpleperf_path)) { PLOG(ERROR) << "ReadLink failed"; return false; } if (!Workload::RunCmd({"run-as", app_package_name, "cp", simpleperf_path, "simpleperf"})) { return false; } ScopedFile scoped_simpleperf("simpleperf", app_package_name); std::unique_ptr scoped_tracepoint_file; const std::string tracepoint_file = "/data/local/tmp/tracepoint_events"; if (need_tracepoint_events) { // Since we can't read tracepoint events from tracefs in app's context, we need to prepare // them in tracepoint_file in shell's context, and pass the path of tracepoint_file to the // child process using --tracepoint-events option. if (!android::base::WriteStringToFile(GetTracepointEvents(), tracepoint_file)) { PLOG(ERROR) << "Failed to store tracepoint events"; return false; } scoped_tracepoint_file.reset(new ScopedFile(tracepoint_file)); } // 3. Prepare to start child process to profile. std::string output_basename = output_filepath.empty() ? "" : android::base::Basename(output_filepath); std::vector new_args = {"run-as", app_package_name, "./simpleperf", cmd, "--in-app"}; if (need_tracepoint_events) { new_args.push_back("--tracepoint-events"); new_args.push_back(tracepoint_file); } for (size_t i = 0; i < args.size(); ++i) { if (i >= args.size() - workload_args_size || args[i] != "-o") { new_args.push_back(args[i]); } else { new_args.push_back(args[i++]); new_args.push_back(output_basename); } } std::unique_ptr workload = Workload::CreateWorkload(new_args); if (!workload) { return false; } IOEventLoop loop; bool need_to_kill_child = false; if (!loop.AddSignalEvents({SIGINT, SIGTERM, SIGHUP}, [&]() { need_to_kill_child = true; return loop.ExitLoop(); })) { return false; } if (!loop.AddSignalEvent(SIGCHLD, [&]() { return loop.ExitLoop(); })) { return false; } // 4. Create child process to run run-as, and wait for the child process. if (!workload->Start()) { return false; } if (!loop.RunLoop()) { return false; } if (need_to_kill_child) { // The child process can exit before we kill it, so don't report kill errors. Workload::RunCmd({"run-as", app_package_name, "pkill", "simpleperf"}, false); } int exit_code; if (!workload->WaitChildProcess(&exit_code) || exit_code != 0) { return false; } // 5. If there is any output file, copy it from the app's directory. if (!output_filepath.empty()) { if (!Workload::RunCmd({"run-as", app_package_name, "cat", output_basename, ">" + output_filepath})) { return false; } if (!Workload::RunCmd({"run-as", app_package_name, "rm", output_basename})) { return false; } } return true; } static std::string default_package_name; void SetDefaultAppPackageName(const std::string& package_name) { default_package_name = package_name; } const std::string& GetDefaultAppPackageName() { return default_package_name; }