• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 package org.bouncycastle.math.ec.custom.sec;
2 
3 import java.math.BigInteger;
4 
5 import org.bouncycastle.math.ec.ECFieldElement;
6 import org.bouncycastle.math.raw.Mod;
7 import org.bouncycastle.math.raw.Nat256;
8 import org.bouncycastle.util.Arrays;
9 
10 public class SecP256K1FieldElement extends ECFieldElement
11 {
12     public static final BigInteger Q = SecP256K1Curve.q;
13 
14     protected int[] x;
15 
SecP256K1FieldElement(BigInteger x)16     public SecP256K1FieldElement(BigInteger x)
17     {
18         if (x == null || x.signum() < 0 || x.compareTo(Q) >= 0)
19         {
20             throw new IllegalArgumentException("x value invalid for SecP256K1FieldElement");
21         }
22 
23         this.x = SecP256K1Field.fromBigInteger(x);
24     }
25 
SecP256K1FieldElement()26     public SecP256K1FieldElement()
27     {
28         this.x = Nat256.create();
29     }
30 
SecP256K1FieldElement(int[] x)31     protected SecP256K1FieldElement(int[] x)
32     {
33         this.x = x;
34     }
35 
isZero()36     public boolean isZero()
37     {
38         return Nat256.isZero(x);
39     }
40 
isOne()41     public boolean isOne()
42     {
43         return Nat256.isOne(x);
44     }
45 
testBitZero()46     public boolean testBitZero()
47     {
48         return Nat256.getBit(x, 0) == 1;
49     }
50 
toBigInteger()51     public BigInteger toBigInteger()
52     {
53         return Nat256.toBigInteger(x);
54     }
55 
getFieldName()56     public String getFieldName()
57     {
58         return "SecP256K1Field";
59     }
60 
getFieldSize()61     public int getFieldSize()
62     {
63         return Q.bitLength();
64     }
65 
add(ECFieldElement b)66     public ECFieldElement add(ECFieldElement b)
67     {
68         int[] z = Nat256.create();
69         SecP256K1Field.add(x, ((SecP256K1FieldElement)b).x, z);
70         return new SecP256K1FieldElement(z);
71     }
72 
addOne()73     public ECFieldElement addOne()
74     {
75         int[] z = Nat256.create();
76         SecP256K1Field.addOne(x, z);
77         return new SecP256K1FieldElement(z);
78     }
79 
subtract(ECFieldElement b)80     public ECFieldElement subtract(ECFieldElement b)
81     {
82         int[] z = Nat256.create();
83         SecP256K1Field.subtract(x, ((SecP256K1FieldElement)b).x, z);
84         return new SecP256K1FieldElement(z);
85     }
86 
multiply(ECFieldElement b)87     public ECFieldElement multiply(ECFieldElement b)
88     {
89         int[] z = Nat256.create();
90         SecP256K1Field.multiply(x, ((SecP256K1FieldElement)b).x, z);
91         return new SecP256K1FieldElement(z);
92     }
93 
divide(ECFieldElement b)94     public ECFieldElement divide(ECFieldElement b)
95     {
96 //        return multiply(b.invert());
97         int[] z = Nat256.create();
98         Mod.invert(SecP256K1Field.P, ((SecP256K1FieldElement)b).x, z);
99         SecP256K1Field.multiply(z, x, z);
100         return new SecP256K1FieldElement(z);
101     }
102 
negate()103     public ECFieldElement negate()
104     {
105         int[] z = Nat256.create();
106         SecP256K1Field.negate(x, z);
107         return new SecP256K1FieldElement(z);
108     }
109 
square()110     public ECFieldElement square()
111     {
112         int[] z = Nat256.create();
113         SecP256K1Field.square(x, z);
114         return new SecP256K1FieldElement(z);
115     }
116 
invert()117     public ECFieldElement invert()
118     {
119 //        return new SecP256K1FieldElement(toBigInteger().modInverse(Q));
120         int[] z = Nat256.create();
121         Mod.invert(SecP256K1Field.P, x, z);
122         return new SecP256K1FieldElement(z);
123     }
124 
125     // D.1.4 91
126     /**
127      * return a sqrt root - the routine verifies that the calculation returns the right value - if
128      * none exists it returns null.
129      */
sqrt()130     public ECFieldElement sqrt()
131     {
132         /*
133          * Raise this element to the exponent 2^254 - 2^30 - 2^7 - 2^6 - 2^5 - 2^4 - 2^2
134          *
135          * Breaking up the exponent's binary representation into "repunits", we get:
136          * { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 2 1s } { 2 0s}
137          *
138          * Therefore we need an addition chain containing 2, 22, 223 (the lengths of the repunits)
139          * We use: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
140          */
141 
142         int[] x1 = this.x;
143         if (Nat256.isZero(x1) || Nat256.isOne(x1))
144         {
145             return this;
146         }
147 
148         int[] x2 = Nat256.create();
149         SecP256K1Field.square(x1, x2);
150         SecP256K1Field.multiply(x2, x1, x2);
151         int[] x3 = Nat256.create();
152         SecP256K1Field.square(x2, x3);
153         SecP256K1Field.multiply(x3, x1, x3);
154         int[] x6 = Nat256.create();
155         SecP256K1Field.squareN(x3, 3, x6);
156         SecP256K1Field.multiply(x6, x3, x6);
157         int[] x9 = x6;
158         SecP256K1Field.squareN(x6, 3, x9);
159         SecP256K1Field.multiply(x9, x3, x9);
160         int[] x11 = x9;
161         SecP256K1Field.squareN(x9, 2, x11);
162         SecP256K1Field.multiply(x11, x2, x11);
163         int[] x22 = Nat256.create();
164         SecP256K1Field.squareN(x11, 11, x22);
165         SecP256K1Field.multiply(x22, x11, x22);
166         int[] x44 = x11;
167         SecP256K1Field.squareN(x22, 22, x44);
168         SecP256K1Field.multiply(x44, x22, x44);
169         int[] x88 = Nat256.create();
170         SecP256K1Field.squareN(x44, 44, x88);
171         SecP256K1Field.multiply(x88, x44, x88);
172         int[] x176 = Nat256.create();
173         SecP256K1Field.squareN(x88, 88, x176);
174         SecP256K1Field.multiply(x176, x88, x176);
175         int[] x220 = x88;
176         SecP256K1Field.squareN(x176, 44, x220);
177         SecP256K1Field.multiply(x220, x44, x220);
178         int[] x223 = x44;
179         SecP256K1Field.squareN(x220, 3, x223);
180         SecP256K1Field.multiply(x223, x3, x223);
181 
182         int[] t1 = x223;
183         SecP256K1Field.squareN(t1, 23, t1);
184         SecP256K1Field.multiply(t1, x22, t1);
185         SecP256K1Field.squareN(t1, 6, t1);
186         SecP256K1Field.multiply(t1, x2, t1);
187         SecP256K1Field.squareN(t1, 2, t1);
188 
189         int[] t2 = x2;
190         SecP256K1Field.square(t1, t2);
191 
192         return Nat256.eq(x1, t2) ? new SecP256K1FieldElement(t1) : null;
193     }
194 
equals(Object other)195     public boolean equals(Object other)
196     {
197         if (other == this)
198         {
199             return true;
200         }
201 
202         if (!(other instanceof SecP256K1FieldElement))
203         {
204             return false;
205         }
206 
207         SecP256K1FieldElement o = (SecP256K1FieldElement)other;
208         return Nat256.eq(x, o.x);
209     }
210 
hashCode()211     public int hashCode()
212     {
213         return Q.hashCode() ^ Arrays.hashCode(x, 0, 8);
214     }
215 }
216