1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetMachine.h"
20 #include "AArch64TargetObjectFile.h"
21 #include "MCTargetDesc/AArch64AddressingModes.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/CallingConvLower.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GetElementPtrTypeIterator.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "aarch64-lower"
39
40 STATISTIC(NumTailCalls, "Number of tail calls");
41 STATISTIC(NumShiftInserts, "Number of vector shift inserts");
42
43 static cl::opt<bool>
44 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
45 cl::desc("Allow AArch64 SLI/SRI formation"),
46 cl::init(false));
47
48 // FIXME: The necessary dtprel relocations don't seem to be supported
49 // well in the GNU bfd and gold linkers at the moment. Therefore, by
50 // default, for now, fall back to GeneralDynamic code generation.
51 cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
52 "aarch64-elf-ldtls-generation", cl::Hidden,
53 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
54 cl::init(false));
55
56 /// Value type used for condition codes.
57 static const MVT MVT_CC = MVT::i32;
58
AArch64TargetLowering(const TargetMachine & TM,const AArch64Subtarget & STI)59 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
60 const AArch64Subtarget &STI)
61 : TargetLowering(TM), Subtarget(&STI) {
62
63 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
64 // we have to make something up. Arbitrarily, choose ZeroOrOne.
65 setBooleanContents(ZeroOrOneBooleanContent);
66 // When comparing vectors the result sets the different elements in the
67 // vector to all-one or all-zero.
68 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
69
70 // Set up the register classes.
71 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass);
72 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass);
73
74 if (Subtarget->hasFPARMv8()) {
75 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
76 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
77 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
78 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
79 }
80
81 if (Subtarget->hasNEON()) {
82 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass);
83 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass);
84 // Someone set us up the NEON.
85 addDRTypeForNEON(MVT::v2f32);
86 addDRTypeForNEON(MVT::v8i8);
87 addDRTypeForNEON(MVT::v4i16);
88 addDRTypeForNEON(MVT::v2i32);
89 addDRTypeForNEON(MVT::v1i64);
90 addDRTypeForNEON(MVT::v1f64);
91 addDRTypeForNEON(MVT::v4f16);
92
93 addQRTypeForNEON(MVT::v4f32);
94 addQRTypeForNEON(MVT::v2f64);
95 addQRTypeForNEON(MVT::v16i8);
96 addQRTypeForNEON(MVT::v8i16);
97 addQRTypeForNEON(MVT::v4i32);
98 addQRTypeForNEON(MVT::v2i64);
99 addQRTypeForNEON(MVT::v8f16);
100 }
101
102 // Compute derived properties from the register classes
103 computeRegisterProperties(Subtarget->getRegisterInfo());
104
105 // Provide all sorts of operation actions
106 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
107 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
108 setOperationAction(ISD::SETCC, MVT::i32, Custom);
109 setOperationAction(ISD::SETCC, MVT::i64, Custom);
110 setOperationAction(ISD::SETCC, MVT::f32, Custom);
111 setOperationAction(ISD::SETCC, MVT::f64, Custom);
112 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
113 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
114 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
115 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
116 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
117 setOperationAction(ISD::SELECT, MVT::i32, Custom);
118 setOperationAction(ISD::SELECT, MVT::i64, Custom);
119 setOperationAction(ISD::SELECT, MVT::f32, Custom);
120 setOperationAction(ISD::SELECT, MVT::f64, Custom);
121 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
122 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
123 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
124 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
125 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
126 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
127
128 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
129 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
130 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
131
132 setOperationAction(ISD::FREM, MVT::f32, Expand);
133 setOperationAction(ISD::FREM, MVT::f64, Expand);
134 setOperationAction(ISD::FREM, MVT::f80, Expand);
135
136 // Custom lowering hooks are needed for XOR
137 // to fold it into CSINC/CSINV.
138 setOperationAction(ISD::XOR, MVT::i32, Custom);
139 setOperationAction(ISD::XOR, MVT::i64, Custom);
140
141 // Virtually no operation on f128 is legal, but LLVM can't expand them when
142 // there's a valid register class, so we need custom operations in most cases.
143 setOperationAction(ISD::FABS, MVT::f128, Expand);
144 setOperationAction(ISD::FADD, MVT::f128, Custom);
145 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
146 setOperationAction(ISD::FCOS, MVT::f128, Expand);
147 setOperationAction(ISD::FDIV, MVT::f128, Custom);
148 setOperationAction(ISD::FMA, MVT::f128, Expand);
149 setOperationAction(ISD::FMUL, MVT::f128, Custom);
150 setOperationAction(ISD::FNEG, MVT::f128, Expand);
151 setOperationAction(ISD::FPOW, MVT::f128, Expand);
152 setOperationAction(ISD::FREM, MVT::f128, Expand);
153 setOperationAction(ISD::FRINT, MVT::f128, Expand);
154 setOperationAction(ISD::FSIN, MVT::f128, Expand);
155 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
156 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
157 setOperationAction(ISD::FSUB, MVT::f128, Custom);
158 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
159 setOperationAction(ISD::SETCC, MVT::f128, Custom);
160 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
161 setOperationAction(ISD::SELECT, MVT::f128, Custom);
162 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
163 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
164
165 // Lowering for many of the conversions is actually specified by the non-f128
166 // type. The LowerXXX function will be trivial when f128 isn't involved.
167 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
168 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
169 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
170 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
171 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
172 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
173 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
174 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
175 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
176 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
177 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
178 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
179 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
180 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
181
182 // Variable arguments.
183 setOperationAction(ISD::VASTART, MVT::Other, Custom);
184 setOperationAction(ISD::VAARG, MVT::Other, Custom);
185 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
186 setOperationAction(ISD::VAEND, MVT::Other, Expand);
187
188 // Variable-sized objects.
189 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
190 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
191 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
192
193 // Constant pool entries
194 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
195
196 // BlockAddress
197 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
198
199 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
200 setOperationAction(ISD::ADDC, MVT::i32, Custom);
201 setOperationAction(ISD::ADDE, MVT::i32, Custom);
202 setOperationAction(ISD::SUBC, MVT::i32, Custom);
203 setOperationAction(ISD::SUBE, MVT::i32, Custom);
204 setOperationAction(ISD::ADDC, MVT::i64, Custom);
205 setOperationAction(ISD::ADDE, MVT::i64, Custom);
206 setOperationAction(ISD::SUBC, MVT::i64, Custom);
207 setOperationAction(ISD::SUBE, MVT::i64, Custom);
208
209 // AArch64 lacks both left-rotate and popcount instructions.
210 setOperationAction(ISD::ROTL, MVT::i32, Expand);
211 setOperationAction(ISD::ROTL, MVT::i64, Expand);
212 for (MVT VT : MVT::vector_valuetypes()) {
213 setOperationAction(ISD::ROTL, VT, Expand);
214 setOperationAction(ISD::ROTR, VT, Expand);
215 }
216
217 // AArch64 doesn't have {U|S}MUL_LOHI.
218 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
219 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
220
221
222 setOperationAction(ISD::CTPOP, MVT::i32, Custom);
223 setOperationAction(ISD::CTPOP, MVT::i64, Custom);
224
225 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
226 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
227 for (MVT VT : MVT::vector_valuetypes()) {
228 setOperationAction(ISD::SDIVREM, VT, Expand);
229 setOperationAction(ISD::UDIVREM, VT, Expand);
230 }
231 setOperationAction(ISD::SREM, MVT::i32, Expand);
232 setOperationAction(ISD::SREM, MVT::i64, Expand);
233 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
234 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
235 setOperationAction(ISD::UREM, MVT::i32, Expand);
236 setOperationAction(ISD::UREM, MVT::i64, Expand);
237
238 // Custom lower Add/Sub/Mul with overflow.
239 setOperationAction(ISD::SADDO, MVT::i32, Custom);
240 setOperationAction(ISD::SADDO, MVT::i64, Custom);
241 setOperationAction(ISD::UADDO, MVT::i32, Custom);
242 setOperationAction(ISD::UADDO, MVT::i64, Custom);
243 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
244 setOperationAction(ISD::SSUBO, MVT::i64, Custom);
245 setOperationAction(ISD::USUBO, MVT::i32, Custom);
246 setOperationAction(ISD::USUBO, MVT::i64, Custom);
247 setOperationAction(ISD::SMULO, MVT::i32, Custom);
248 setOperationAction(ISD::SMULO, MVT::i64, Custom);
249 setOperationAction(ISD::UMULO, MVT::i32, Custom);
250 setOperationAction(ISD::UMULO, MVT::i64, Custom);
251
252 setOperationAction(ISD::FSIN, MVT::f32, Expand);
253 setOperationAction(ISD::FSIN, MVT::f64, Expand);
254 setOperationAction(ISD::FCOS, MVT::f32, Expand);
255 setOperationAction(ISD::FCOS, MVT::f64, Expand);
256 setOperationAction(ISD::FPOW, MVT::f32, Expand);
257 setOperationAction(ISD::FPOW, MVT::f64, Expand);
258 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
259 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
260
261 // f16 is a storage-only type, always promote it to f32.
262 setOperationAction(ISD::SETCC, MVT::f16, Promote);
263 setOperationAction(ISD::BR_CC, MVT::f16, Promote);
264 setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
265 setOperationAction(ISD::SELECT, MVT::f16, Promote);
266 setOperationAction(ISD::FADD, MVT::f16, Promote);
267 setOperationAction(ISD::FSUB, MVT::f16, Promote);
268 setOperationAction(ISD::FMUL, MVT::f16, Promote);
269 setOperationAction(ISD::FDIV, MVT::f16, Promote);
270 setOperationAction(ISD::FREM, MVT::f16, Promote);
271 setOperationAction(ISD::FMA, MVT::f16, Promote);
272 setOperationAction(ISD::FNEG, MVT::f16, Promote);
273 setOperationAction(ISD::FABS, MVT::f16, Promote);
274 setOperationAction(ISD::FCEIL, MVT::f16, Promote);
275 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
276 setOperationAction(ISD::FCOS, MVT::f16, Promote);
277 setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
278 setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
279 setOperationAction(ISD::FPOW, MVT::f16, Promote);
280 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
281 setOperationAction(ISD::FRINT, MVT::f16, Promote);
282 setOperationAction(ISD::FSIN, MVT::f16, Promote);
283 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
284 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
285 setOperationAction(ISD::FEXP, MVT::f16, Promote);
286 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
287 setOperationAction(ISD::FLOG, MVT::f16, Promote);
288 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
289 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
290 setOperationAction(ISD::FROUND, MVT::f16, Promote);
291 setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
292 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
293 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
294 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
295 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
296
297 // v4f16 is also a storage-only type, so promote it to v4f32 when that is
298 // known to be safe.
299 setOperationAction(ISD::FADD, MVT::v4f16, Promote);
300 setOperationAction(ISD::FSUB, MVT::v4f16, Promote);
301 setOperationAction(ISD::FMUL, MVT::v4f16, Promote);
302 setOperationAction(ISD::FDIV, MVT::v4f16, Promote);
303 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote);
304 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote);
305 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32);
306 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32);
307 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32);
308 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32);
309 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32);
310 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32);
311
312 // Expand all other v4f16 operations.
313 // FIXME: We could generate better code by promoting some operations to
314 // a pair of v4f32s
315 setOperationAction(ISD::FABS, MVT::v4f16, Expand);
316 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand);
317 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand);
318 setOperationAction(ISD::FCOS, MVT::v4f16, Expand);
319 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand);
320 setOperationAction(ISD::FMA, MVT::v4f16, Expand);
321 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand);
322 setOperationAction(ISD::FNEG, MVT::v4f16, Expand);
323 setOperationAction(ISD::FPOW, MVT::v4f16, Expand);
324 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand);
325 setOperationAction(ISD::FREM, MVT::v4f16, Expand);
326 setOperationAction(ISD::FROUND, MVT::v4f16, Expand);
327 setOperationAction(ISD::FRINT, MVT::v4f16, Expand);
328 setOperationAction(ISD::FSIN, MVT::v4f16, Expand);
329 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand);
330 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand);
331 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand);
332 setOperationAction(ISD::SETCC, MVT::v4f16, Expand);
333 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand);
334 setOperationAction(ISD::SELECT, MVT::v4f16, Expand);
335 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand);
336 setOperationAction(ISD::FEXP, MVT::v4f16, Expand);
337 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand);
338 setOperationAction(ISD::FLOG, MVT::v4f16, Expand);
339 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand);
340 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand);
341
342
343 // v8f16 is also a storage-only type, so expand it.
344 setOperationAction(ISD::FABS, MVT::v8f16, Expand);
345 setOperationAction(ISD::FADD, MVT::v8f16, Expand);
346 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand);
347 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand);
348 setOperationAction(ISD::FCOS, MVT::v8f16, Expand);
349 setOperationAction(ISD::FDIV, MVT::v8f16, Expand);
350 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand);
351 setOperationAction(ISD::FMA, MVT::v8f16, Expand);
352 setOperationAction(ISD::FMUL, MVT::v8f16, Expand);
353 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand);
354 setOperationAction(ISD::FNEG, MVT::v8f16, Expand);
355 setOperationAction(ISD::FPOW, MVT::v8f16, Expand);
356 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand);
357 setOperationAction(ISD::FREM, MVT::v8f16, Expand);
358 setOperationAction(ISD::FROUND, MVT::v8f16, Expand);
359 setOperationAction(ISD::FRINT, MVT::v8f16, Expand);
360 setOperationAction(ISD::FSIN, MVT::v8f16, Expand);
361 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand);
362 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand);
363 setOperationAction(ISD::FSUB, MVT::v8f16, Expand);
364 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand);
365 setOperationAction(ISD::SETCC, MVT::v8f16, Expand);
366 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand);
367 setOperationAction(ISD::SELECT, MVT::v8f16, Expand);
368 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand);
369 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand);
370 setOperationAction(ISD::FEXP, MVT::v8f16, Expand);
371 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand);
372 setOperationAction(ISD::FLOG, MVT::v8f16, Expand);
373 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand);
374 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand);
375
376 // AArch64 has implementations of a lot of rounding-like FP operations.
377 for (MVT Ty : {MVT::f32, MVT::f64}) {
378 setOperationAction(ISD::FFLOOR, Ty, Legal);
379 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
380 setOperationAction(ISD::FCEIL, Ty, Legal);
381 setOperationAction(ISD::FRINT, Ty, Legal);
382 setOperationAction(ISD::FTRUNC, Ty, Legal);
383 setOperationAction(ISD::FROUND, Ty, Legal);
384 setOperationAction(ISD::FMINNUM, Ty, Legal);
385 setOperationAction(ISD::FMAXNUM, Ty, Legal);
386 setOperationAction(ISD::FMINNAN, Ty, Legal);
387 setOperationAction(ISD::FMAXNAN, Ty, Legal);
388 }
389
390 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
391
392 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
393
394 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
395 // This requires the Performance Monitors extension.
396 if (Subtarget->hasPerfMon())
397 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
398
399 if (Subtarget->isTargetMachO()) {
400 // For iOS, we don't want to the normal expansion of a libcall to
401 // sincos. We want to issue a libcall to __sincos_stret to avoid memory
402 // traffic.
403 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
404 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
405 } else {
406 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
407 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
408 }
409
410 // Make floating-point constants legal for the large code model, so they don't
411 // become loads from the constant pool.
412 if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) {
413 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
414 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
415 }
416
417 // AArch64 does not have floating-point extending loads, i1 sign-extending
418 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
419 for (MVT VT : MVT::fp_valuetypes()) {
420 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
421 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
422 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand);
423 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
424 }
425 for (MVT VT : MVT::integer_valuetypes())
426 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
427
428 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
429 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
430 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
431 setTruncStoreAction(MVT::f128, MVT::f80, Expand);
432 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
433 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
434 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
435
436 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
437 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
438
439 // Indexed loads and stores are supported.
440 for (unsigned im = (unsigned)ISD::PRE_INC;
441 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
442 setIndexedLoadAction(im, MVT::i8, Legal);
443 setIndexedLoadAction(im, MVT::i16, Legal);
444 setIndexedLoadAction(im, MVT::i32, Legal);
445 setIndexedLoadAction(im, MVT::i64, Legal);
446 setIndexedLoadAction(im, MVT::f64, Legal);
447 setIndexedLoadAction(im, MVT::f32, Legal);
448 setIndexedLoadAction(im, MVT::f16, Legal);
449 setIndexedStoreAction(im, MVT::i8, Legal);
450 setIndexedStoreAction(im, MVT::i16, Legal);
451 setIndexedStoreAction(im, MVT::i32, Legal);
452 setIndexedStoreAction(im, MVT::i64, Legal);
453 setIndexedStoreAction(im, MVT::f64, Legal);
454 setIndexedStoreAction(im, MVT::f32, Legal);
455 setIndexedStoreAction(im, MVT::f16, Legal);
456 }
457
458 // Trap.
459 setOperationAction(ISD::TRAP, MVT::Other, Legal);
460
461 // We combine OR nodes for bitfield operations.
462 setTargetDAGCombine(ISD::OR);
463
464 // Vector add and sub nodes may conceal a high-half opportunity.
465 // Also, try to fold ADD into CSINC/CSINV..
466 setTargetDAGCombine(ISD::ADD);
467 setTargetDAGCombine(ISD::SUB);
468 setTargetDAGCombine(ISD::SRL);
469 setTargetDAGCombine(ISD::XOR);
470 setTargetDAGCombine(ISD::SINT_TO_FP);
471 setTargetDAGCombine(ISD::UINT_TO_FP);
472
473 setTargetDAGCombine(ISD::FP_TO_SINT);
474 setTargetDAGCombine(ISD::FP_TO_UINT);
475 setTargetDAGCombine(ISD::FDIV);
476
477 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
478
479 setTargetDAGCombine(ISD::ANY_EXTEND);
480 setTargetDAGCombine(ISD::ZERO_EXTEND);
481 setTargetDAGCombine(ISD::SIGN_EXTEND);
482 setTargetDAGCombine(ISD::BITCAST);
483 setTargetDAGCombine(ISD::CONCAT_VECTORS);
484 setTargetDAGCombine(ISD::STORE);
485 if (Subtarget->supportsAddressTopByteIgnored())
486 setTargetDAGCombine(ISD::LOAD);
487
488 setTargetDAGCombine(ISD::MUL);
489
490 setTargetDAGCombine(ISD::SELECT);
491 setTargetDAGCombine(ISD::VSELECT);
492
493 setTargetDAGCombine(ISD::INTRINSIC_VOID);
494 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
495 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
496 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
497
498 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8;
499 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4;
500 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4;
501
502 setStackPointerRegisterToSaveRestore(AArch64::SP);
503
504 setSchedulingPreference(Sched::Hybrid);
505
506 // Enable TBZ/TBNZ
507 MaskAndBranchFoldingIsLegal = true;
508 EnableExtLdPromotion = true;
509
510 // Set required alignment.
511 setMinFunctionAlignment(2);
512 // Set preferred alignments.
513 setPrefFunctionAlignment(STI.getPrefFunctionAlignment());
514 setPrefLoopAlignment(STI.getPrefLoopAlignment());
515
516 setHasExtractBitsInsn(true);
517
518 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
519
520 if (Subtarget->hasNEON()) {
521 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
522 // silliness like this:
523 setOperationAction(ISD::FABS, MVT::v1f64, Expand);
524 setOperationAction(ISD::FADD, MVT::v1f64, Expand);
525 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand);
526 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand);
527 setOperationAction(ISD::FCOS, MVT::v1f64, Expand);
528 setOperationAction(ISD::FDIV, MVT::v1f64, Expand);
529 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand);
530 setOperationAction(ISD::FMA, MVT::v1f64, Expand);
531 setOperationAction(ISD::FMUL, MVT::v1f64, Expand);
532 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand);
533 setOperationAction(ISD::FNEG, MVT::v1f64, Expand);
534 setOperationAction(ISD::FPOW, MVT::v1f64, Expand);
535 setOperationAction(ISD::FREM, MVT::v1f64, Expand);
536 setOperationAction(ISD::FROUND, MVT::v1f64, Expand);
537 setOperationAction(ISD::FRINT, MVT::v1f64, Expand);
538 setOperationAction(ISD::FSIN, MVT::v1f64, Expand);
539 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand);
540 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand);
541 setOperationAction(ISD::FSUB, MVT::v1f64, Expand);
542 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand);
543 setOperationAction(ISD::SETCC, MVT::v1f64, Expand);
544 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand);
545 setOperationAction(ISD::SELECT, MVT::v1f64, Expand);
546 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand);
547 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand);
548
549 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand);
550 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand);
551 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand);
552 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand);
553 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand);
554
555 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
556
557 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
558 // elements smaller than i32, so promote the input to i32 first.
559 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote);
560 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote);
561 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote);
562 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote);
563 // i8 and i16 vector elements also need promotion to i32 for v8i8 or v8i16
564 // -> v8f16 conversions.
565 setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Promote);
566 setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Promote);
567 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
568 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Promote);
569 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
570 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
571 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
572 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom);
573 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom);
574 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
575 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
576 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Custom);
577 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
578
579 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
580 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
581
582 setOperationAction(ISD::CTTZ, MVT::v2i8, Expand);
583 setOperationAction(ISD::CTTZ, MVT::v4i16, Expand);
584 setOperationAction(ISD::CTTZ, MVT::v2i32, Expand);
585 setOperationAction(ISD::CTTZ, MVT::v1i64, Expand);
586 setOperationAction(ISD::CTTZ, MVT::v16i8, Expand);
587 setOperationAction(ISD::CTTZ, MVT::v8i16, Expand);
588 setOperationAction(ISD::CTTZ, MVT::v4i32, Expand);
589 setOperationAction(ISD::CTTZ, MVT::v2i64, Expand);
590
591 // AArch64 doesn't have MUL.2d:
592 setOperationAction(ISD::MUL, MVT::v2i64, Expand);
593 // Custom handling for some quad-vector types to detect MULL.
594 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
595 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
596 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
597
598 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal);
599 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
600 // Likewise, narrowing and extending vector loads/stores aren't handled
601 // directly.
602 for (MVT VT : MVT::vector_valuetypes()) {
603 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
604
605 setOperationAction(ISD::MULHS, VT, Expand);
606 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
607 setOperationAction(ISD::MULHU, VT, Expand);
608 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
609
610 setOperationAction(ISD::BSWAP, VT, Expand);
611
612 for (MVT InnerVT : MVT::vector_valuetypes()) {
613 setTruncStoreAction(VT, InnerVT, Expand);
614 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
615 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
616 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
617 }
618 }
619
620 // AArch64 has implementations of a lot of rounding-like FP operations.
621 for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) {
622 setOperationAction(ISD::FFLOOR, Ty, Legal);
623 setOperationAction(ISD::FNEARBYINT, Ty, Legal);
624 setOperationAction(ISD::FCEIL, Ty, Legal);
625 setOperationAction(ISD::FRINT, Ty, Legal);
626 setOperationAction(ISD::FTRUNC, Ty, Legal);
627 setOperationAction(ISD::FROUND, Ty, Legal);
628 }
629 }
630
631 PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive();
632 }
633
addTypeForNEON(MVT VT,MVT PromotedBitwiseVT)634 void AArch64TargetLowering::addTypeForNEON(MVT VT, MVT PromotedBitwiseVT) {
635 if (VT == MVT::v2f32 || VT == MVT::v4f16) {
636 setOperationAction(ISD::LOAD, VT, Promote);
637 AddPromotedToType(ISD::LOAD, VT, MVT::v2i32);
638
639 setOperationAction(ISD::STORE, VT, Promote);
640 AddPromotedToType(ISD::STORE, VT, MVT::v2i32);
641 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) {
642 setOperationAction(ISD::LOAD, VT, Promote);
643 AddPromotedToType(ISD::LOAD, VT, MVT::v2i64);
644
645 setOperationAction(ISD::STORE, VT, Promote);
646 AddPromotedToType(ISD::STORE, VT, MVT::v2i64);
647 }
648
649 // Mark vector float intrinsics as expand.
650 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) {
651 setOperationAction(ISD::FSIN, VT, Expand);
652 setOperationAction(ISD::FCOS, VT, Expand);
653 setOperationAction(ISD::FPOWI, VT, Expand);
654 setOperationAction(ISD::FPOW, VT, Expand);
655 setOperationAction(ISD::FLOG, VT, Expand);
656 setOperationAction(ISD::FLOG2, VT, Expand);
657 setOperationAction(ISD::FLOG10, VT, Expand);
658 setOperationAction(ISD::FEXP, VT, Expand);
659 setOperationAction(ISD::FEXP2, VT, Expand);
660
661 // But we do support custom-lowering for FCOPYSIGN.
662 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
663 }
664
665 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
666 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
667 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
668 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
669 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
670 setOperationAction(ISD::SRA, VT, Custom);
671 setOperationAction(ISD::SRL, VT, Custom);
672 setOperationAction(ISD::SHL, VT, Custom);
673 setOperationAction(ISD::AND, VT, Custom);
674 setOperationAction(ISD::OR, VT, Custom);
675 setOperationAction(ISD::SETCC, VT, Custom);
676 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
677
678 setOperationAction(ISD::SELECT, VT, Expand);
679 setOperationAction(ISD::SELECT_CC, VT, Expand);
680 setOperationAction(ISD::VSELECT, VT, Expand);
681 for (MVT InnerVT : MVT::all_valuetypes())
682 setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
683
684 // CNT supports only B element sizes.
685 if (VT != MVT::v8i8 && VT != MVT::v16i8)
686 setOperationAction(ISD::CTPOP, VT, Expand);
687
688 setOperationAction(ISD::UDIV, VT, Expand);
689 setOperationAction(ISD::SDIV, VT, Expand);
690 setOperationAction(ISD::UREM, VT, Expand);
691 setOperationAction(ISD::SREM, VT, Expand);
692 setOperationAction(ISD::FREM, VT, Expand);
693
694 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
695 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
696
697 // [SU][MIN|MAX] are available for all NEON types apart from i64.
698 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
699 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
700 setOperationAction(Opcode, VT, Legal);
701
702 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types (not f16 though!).
703 if (VT.isFloatingPoint() && VT.getVectorElementType() != MVT::f16)
704 for (unsigned Opcode : {ISD::FMINNAN, ISD::FMAXNAN,
705 ISD::FMINNUM, ISD::FMAXNUM})
706 setOperationAction(Opcode, VT, Legal);
707
708 if (Subtarget->isLittleEndian()) {
709 for (unsigned im = (unsigned)ISD::PRE_INC;
710 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
711 setIndexedLoadAction(im, VT, Legal);
712 setIndexedStoreAction(im, VT, Legal);
713 }
714 }
715 }
716
addDRTypeForNEON(MVT VT)717 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) {
718 addRegisterClass(VT, &AArch64::FPR64RegClass);
719 addTypeForNEON(VT, MVT::v2i32);
720 }
721
addQRTypeForNEON(MVT VT)722 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) {
723 addRegisterClass(VT, &AArch64::FPR128RegClass);
724 addTypeForNEON(VT, MVT::v4i32);
725 }
726
getSetCCResultType(const DataLayout &,LLVMContext &,EVT VT) const727 EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
728 EVT VT) const {
729 if (!VT.isVector())
730 return MVT::i32;
731 return VT.changeVectorElementTypeToInteger();
732 }
733
734 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
735 /// Mask are known to be either zero or one and return them in the
736 /// KnownZero/KnownOne bitsets.
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const737 void AArch64TargetLowering::computeKnownBitsForTargetNode(
738 const SDValue Op, APInt &KnownZero, APInt &KnownOne,
739 const SelectionDAG &DAG, unsigned Depth) const {
740 switch (Op.getOpcode()) {
741 default:
742 break;
743 case AArch64ISD::CSEL: {
744 APInt KnownZero2, KnownOne2;
745 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1);
746 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1);
747 KnownZero &= KnownZero2;
748 KnownOne &= KnownOne2;
749 break;
750 }
751 case ISD::INTRINSIC_W_CHAIN: {
752 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
753 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
754 switch (IntID) {
755 default: return;
756 case Intrinsic::aarch64_ldaxr:
757 case Intrinsic::aarch64_ldxr: {
758 unsigned BitWidth = KnownOne.getBitWidth();
759 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
760 unsigned MemBits = VT.getScalarType().getSizeInBits();
761 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
762 return;
763 }
764 }
765 break;
766 }
767 case ISD::INTRINSIC_WO_CHAIN:
768 case ISD::INTRINSIC_VOID: {
769 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
770 switch (IntNo) {
771 default:
772 break;
773 case Intrinsic::aarch64_neon_umaxv:
774 case Intrinsic::aarch64_neon_uminv: {
775 // Figure out the datatype of the vector operand. The UMINV instruction
776 // will zero extend the result, so we can mark as known zero all the
777 // bits larger than the element datatype. 32-bit or larget doesn't need
778 // this as those are legal types and will be handled by isel directly.
779 MVT VT = Op.getOperand(1).getValueType().getSimpleVT();
780 unsigned BitWidth = KnownZero.getBitWidth();
781 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
782 assert(BitWidth >= 8 && "Unexpected width!");
783 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8);
784 KnownZero |= Mask;
785 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
786 assert(BitWidth >= 16 && "Unexpected width!");
787 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
788 KnownZero |= Mask;
789 }
790 break;
791 } break;
792 }
793 }
794 }
795 }
796
getScalarShiftAmountTy(const DataLayout & DL,EVT) const797 MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
798 EVT) const {
799 return MVT::i64;
800 }
801
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * Fast) const802 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
803 unsigned AddrSpace,
804 unsigned Align,
805 bool *Fast) const {
806 if (Subtarget->requiresStrictAlign())
807 return false;
808
809 if (Fast) {
810 // Some CPUs are fine with unaligned stores except for 128-bit ones.
811 *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 ||
812 // See comments in performSTORECombine() for more details about
813 // these conditions.
814
815 // Code that uses clang vector extensions can mark that it
816 // wants unaligned accesses to be treated as fast by
817 // underspecifying alignment to be 1 or 2.
818 Align <= 2 ||
819
820 // Disregard v2i64. Memcpy lowering produces those and splitting
821 // them regresses performance on micro-benchmarks and olden/bh.
822 VT == MVT::v2i64;
823 }
824 return true;
825 }
826
827 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const828 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
829 const TargetLibraryInfo *libInfo) const {
830 return AArch64::createFastISel(funcInfo, libInfo);
831 }
832
getTargetNodeName(unsigned Opcode) const833 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
834 switch ((AArch64ISD::NodeType)Opcode) {
835 case AArch64ISD::FIRST_NUMBER: break;
836 case AArch64ISD::CALL: return "AArch64ISD::CALL";
837 case AArch64ISD::ADRP: return "AArch64ISD::ADRP";
838 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow";
839 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot";
840 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG";
841 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND";
842 case AArch64ISD::CSEL: return "AArch64ISD::CSEL";
843 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL";
844 case AArch64ISD::CSINV: return "AArch64ISD::CSINV";
845 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG";
846 case AArch64ISD::CSINC: return "AArch64ISD::CSINC";
847 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
848 case AArch64ISD::TLSDESC_CALLSEQ: return "AArch64ISD::TLSDESC_CALLSEQ";
849 case AArch64ISD::ADC: return "AArch64ISD::ADC";
850 case AArch64ISD::SBC: return "AArch64ISD::SBC";
851 case AArch64ISD::ADDS: return "AArch64ISD::ADDS";
852 case AArch64ISD::SUBS: return "AArch64ISD::SUBS";
853 case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
854 case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
855 case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
856 case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
857 case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
858 case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
859 case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
860 case AArch64ISD::DUP: return "AArch64ISD::DUP";
861 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8";
862 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16";
863 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32";
864 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64";
865 case AArch64ISD::MOVI: return "AArch64ISD::MOVI";
866 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift";
867 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit";
868 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl";
869 case AArch64ISD::FMOV: return "AArch64ISD::FMOV";
870 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift";
871 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl";
872 case AArch64ISD::BICi: return "AArch64ISD::BICi";
873 case AArch64ISD::ORRi: return "AArch64ISD::ORRi";
874 case AArch64ISD::BSL: return "AArch64ISD::BSL";
875 case AArch64ISD::NEG: return "AArch64ISD::NEG";
876 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
877 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1";
878 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2";
879 case AArch64ISD::UZP1: return "AArch64ISD::UZP1";
880 case AArch64ISD::UZP2: return "AArch64ISD::UZP2";
881 case AArch64ISD::TRN1: return "AArch64ISD::TRN1";
882 case AArch64ISD::TRN2: return "AArch64ISD::TRN2";
883 case AArch64ISD::REV16: return "AArch64ISD::REV16";
884 case AArch64ISD::REV32: return "AArch64ISD::REV32";
885 case AArch64ISD::REV64: return "AArch64ISD::REV64";
886 case AArch64ISD::EXT: return "AArch64ISD::EXT";
887 case AArch64ISD::VSHL: return "AArch64ISD::VSHL";
888 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR";
889 case AArch64ISD::VASHR: return "AArch64ISD::VASHR";
890 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ";
891 case AArch64ISD::CMGE: return "AArch64ISD::CMGE";
892 case AArch64ISD::CMGT: return "AArch64ISD::CMGT";
893 case AArch64ISD::CMHI: return "AArch64ISD::CMHI";
894 case AArch64ISD::CMHS: return "AArch64ISD::CMHS";
895 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ";
896 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE";
897 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT";
898 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz";
899 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz";
900 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz";
901 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz";
902 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz";
903 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz";
904 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz";
905 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz";
906 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz";
907 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz";
908 case AArch64ISD::SADDV: return "AArch64ISD::SADDV";
909 case AArch64ISD::UADDV: return "AArch64ISD::UADDV";
910 case AArch64ISD::SMINV: return "AArch64ISD::SMINV";
911 case AArch64ISD::UMINV: return "AArch64ISD::UMINV";
912 case AArch64ISD::SMAXV: return "AArch64ISD::SMAXV";
913 case AArch64ISD::UMAXV: return "AArch64ISD::UMAXV";
914 case AArch64ISD::NOT: return "AArch64ISD::NOT";
915 case AArch64ISD::BIT: return "AArch64ISD::BIT";
916 case AArch64ISD::CBZ: return "AArch64ISD::CBZ";
917 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ";
918 case AArch64ISD::TBZ: return "AArch64ISD::TBZ";
919 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ";
920 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
921 case AArch64ISD::PREFETCH: return "AArch64ISD::PREFETCH";
922 case AArch64ISD::SITOF: return "AArch64ISD::SITOF";
923 case AArch64ISD::UITOF: return "AArch64ISD::UITOF";
924 case AArch64ISD::NVCAST: return "AArch64ISD::NVCAST";
925 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I";
926 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I";
927 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I";
928 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I";
929 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I";
930 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
931 case AArch64ISD::LD2post: return "AArch64ISD::LD2post";
932 case AArch64ISD::LD3post: return "AArch64ISD::LD3post";
933 case AArch64ISD::LD4post: return "AArch64ISD::LD4post";
934 case AArch64ISD::ST2post: return "AArch64ISD::ST2post";
935 case AArch64ISD::ST3post: return "AArch64ISD::ST3post";
936 case AArch64ISD::ST4post: return "AArch64ISD::ST4post";
937 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post";
938 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post";
939 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post";
940 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post";
941 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post";
942 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post";
943 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost";
944 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost";
945 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost";
946 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost";
947 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost";
948 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost";
949 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost";
950 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost";
951 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost";
952 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost";
953 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost";
954 case AArch64ISD::SMULL: return "AArch64ISD::SMULL";
955 case AArch64ISD::UMULL: return "AArch64ISD::UMULL";
956 case AArch64ISD::FRSQRTE: return "AArch64ISD::FRSQRTE";
957 case AArch64ISD::FRECPE: return "AArch64ISD::FRECPE";
958 }
959 return nullptr;
960 }
961
962 MachineBasicBlock *
EmitF128CSEL(MachineInstr & MI,MachineBasicBlock * MBB) const963 AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI,
964 MachineBasicBlock *MBB) const {
965 // We materialise the F128CSEL pseudo-instruction as some control flow and a
966 // phi node:
967
968 // OrigBB:
969 // [... previous instrs leading to comparison ...]
970 // b.ne TrueBB
971 // b EndBB
972 // TrueBB:
973 // ; Fallthrough
974 // EndBB:
975 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
976
977 MachineFunction *MF = MBB->getParent();
978 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
979 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
980 DebugLoc DL = MI.getDebugLoc();
981 MachineFunction::iterator It = ++MBB->getIterator();
982
983 unsigned DestReg = MI.getOperand(0).getReg();
984 unsigned IfTrueReg = MI.getOperand(1).getReg();
985 unsigned IfFalseReg = MI.getOperand(2).getReg();
986 unsigned CondCode = MI.getOperand(3).getImm();
987 bool NZCVKilled = MI.getOperand(4).isKill();
988
989 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
990 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
991 MF->insert(It, TrueBB);
992 MF->insert(It, EndBB);
993
994 // Transfer rest of current basic-block to EndBB
995 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)),
996 MBB->end());
997 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
998
999 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB);
1000 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB);
1001 MBB->addSuccessor(TrueBB);
1002 MBB->addSuccessor(EndBB);
1003
1004 // TrueBB falls through to the end.
1005 TrueBB->addSuccessor(EndBB);
1006
1007 if (!NZCVKilled) {
1008 TrueBB->addLiveIn(AArch64::NZCV);
1009 EndBB->addLiveIn(AArch64::NZCV);
1010 }
1011
1012 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg)
1013 .addReg(IfTrueReg)
1014 .addMBB(TrueBB)
1015 .addReg(IfFalseReg)
1016 .addMBB(MBB);
1017
1018 MI.eraseFromParent();
1019 return EndBB;
1020 }
1021
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1022 MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter(
1023 MachineInstr &MI, MachineBasicBlock *BB) const {
1024 switch (MI.getOpcode()) {
1025 default:
1026 #ifndef NDEBUG
1027 MI.dump();
1028 #endif
1029 llvm_unreachable("Unexpected instruction for custom inserter!");
1030
1031 case AArch64::F128CSEL:
1032 return EmitF128CSEL(MI, BB);
1033
1034 case TargetOpcode::STACKMAP:
1035 case TargetOpcode::PATCHPOINT:
1036 return emitPatchPoint(MI, BB);
1037 }
1038 }
1039
1040 //===----------------------------------------------------------------------===//
1041 // AArch64 Lowering private implementation.
1042 //===----------------------------------------------------------------------===//
1043
1044 //===----------------------------------------------------------------------===//
1045 // Lowering Code
1046 //===----------------------------------------------------------------------===//
1047
1048 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1049 /// CC
changeIntCCToAArch64CC(ISD::CondCode CC)1050 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) {
1051 switch (CC) {
1052 default:
1053 llvm_unreachable("Unknown condition code!");
1054 case ISD::SETNE:
1055 return AArch64CC::NE;
1056 case ISD::SETEQ:
1057 return AArch64CC::EQ;
1058 case ISD::SETGT:
1059 return AArch64CC::GT;
1060 case ISD::SETGE:
1061 return AArch64CC::GE;
1062 case ISD::SETLT:
1063 return AArch64CC::LT;
1064 case ISD::SETLE:
1065 return AArch64CC::LE;
1066 case ISD::SETUGT:
1067 return AArch64CC::HI;
1068 case ISD::SETUGE:
1069 return AArch64CC::HS;
1070 case ISD::SETULT:
1071 return AArch64CC::LO;
1072 case ISD::SETULE:
1073 return AArch64CC::LS;
1074 }
1075 }
1076
1077 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
changeFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1078 static void changeFPCCToAArch64CC(ISD::CondCode CC,
1079 AArch64CC::CondCode &CondCode,
1080 AArch64CC::CondCode &CondCode2) {
1081 CondCode2 = AArch64CC::AL;
1082 switch (CC) {
1083 default:
1084 llvm_unreachable("Unknown FP condition!");
1085 case ISD::SETEQ:
1086 case ISD::SETOEQ:
1087 CondCode = AArch64CC::EQ;
1088 break;
1089 case ISD::SETGT:
1090 case ISD::SETOGT:
1091 CondCode = AArch64CC::GT;
1092 break;
1093 case ISD::SETGE:
1094 case ISD::SETOGE:
1095 CondCode = AArch64CC::GE;
1096 break;
1097 case ISD::SETOLT:
1098 CondCode = AArch64CC::MI;
1099 break;
1100 case ISD::SETOLE:
1101 CondCode = AArch64CC::LS;
1102 break;
1103 case ISD::SETONE:
1104 CondCode = AArch64CC::MI;
1105 CondCode2 = AArch64CC::GT;
1106 break;
1107 case ISD::SETO:
1108 CondCode = AArch64CC::VC;
1109 break;
1110 case ISD::SETUO:
1111 CondCode = AArch64CC::VS;
1112 break;
1113 case ISD::SETUEQ:
1114 CondCode = AArch64CC::EQ;
1115 CondCode2 = AArch64CC::VS;
1116 break;
1117 case ISD::SETUGT:
1118 CondCode = AArch64CC::HI;
1119 break;
1120 case ISD::SETUGE:
1121 CondCode = AArch64CC::PL;
1122 break;
1123 case ISD::SETLT:
1124 case ISD::SETULT:
1125 CondCode = AArch64CC::LT;
1126 break;
1127 case ISD::SETLE:
1128 case ISD::SETULE:
1129 CondCode = AArch64CC::LE;
1130 break;
1131 case ISD::SETNE:
1132 case ISD::SETUNE:
1133 CondCode = AArch64CC::NE;
1134 break;
1135 }
1136 }
1137
1138 /// Convert a DAG fp condition code to an AArch64 CC.
1139 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1140 /// should be AND'ed instead of OR'ed.
changeFPCCToANDAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2)1141 static void changeFPCCToANDAArch64CC(ISD::CondCode CC,
1142 AArch64CC::CondCode &CondCode,
1143 AArch64CC::CondCode &CondCode2) {
1144 CondCode2 = AArch64CC::AL;
1145 switch (CC) {
1146 default:
1147 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1148 assert(CondCode2 == AArch64CC::AL);
1149 break;
1150 case ISD::SETONE:
1151 // (a one b)
1152 // == ((a olt b) || (a ogt b))
1153 // == ((a ord b) && (a une b))
1154 CondCode = AArch64CC::VC;
1155 CondCode2 = AArch64CC::NE;
1156 break;
1157 case ISD::SETUEQ:
1158 // (a ueq b)
1159 // == ((a uno b) || (a oeq b))
1160 // == ((a ule b) && (a uge b))
1161 CondCode = AArch64CC::PL;
1162 CondCode2 = AArch64CC::LE;
1163 break;
1164 }
1165 }
1166
1167 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1168 /// CC usable with the vector instructions. Fewer operations are available
1169 /// without a real NZCV register, so we have to use less efficient combinations
1170 /// to get the same effect.
changeVectorFPCCToAArch64CC(ISD::CondCode CC,AArch64CC::CondCode & CondCode,AArch64CC::CondCode & CondCode2,bool & Invert)1171 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC,
1172 AArch64CC::CondCode &CondCode,
1173 AArch64CC::CondCode &CondCode2,
1174 bool &Invert) {
1175 Invert = false;
1176 switch (CC) {
1177 default:
1178 // Mostly the scalar mappings work fine.
1179 changeFPCCToAArch64CC(CC, CondCode, CondCode2);
1180 break;
1181 case ISD::SETUO:
1182 Invert = true; // Fallthrough
1183 case ISD::SETO:
1184 CondCode = AArch64CC::MI;
1185 CondCode2 = AArch64CC::GE;
1186 break;
1187 case ISD::SETUEQ:
1188 case ISD::SETULT:
1189 case ISD::SETULE:
1190 case ISD::SETUGT:
1191 case ISD::SETUGE:
1192 // All of the compare-mask comparisons are ordered, but we can switch
1193 // between the two by a double inversion. E.g. ULE == !OGT.
1194 Invert = true;
1195 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2);
1196 break;
1197 }
1198 }
1199
isLegalArithImmed(uint64_t C)1200 static bool isLegalArithImmed(uint64_t C) {
1201 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1202 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0);
1203 }
1204
emitComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,const SDLoc & dl,SelectionDAG & DAG)1205 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1206 const SDLoc &dl, SelectionDAG &DAG) {
1207 EVT VT = LHS.getValueType();
1208
1209 if (VT.isFloatingPoint()) {
1210 assert(VT != MVT::f128);
1211 if (VT == MVT::f16) {
1212 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
1213 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
1214 VT = MVT::f32;
1215 }
1216 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS);
1217 }
1218
1219 // The CMP instruction is just an alias for SUBS, and representing it as
1220 // SUBS means that it's possible to get CSE with subtract operations.
1221 // A later phase can perform the optimization of setting the destination
1222 // register to WZR/XZR if it ends up being unused.
1223 unsigned Opcode = AArch64ISD::SUBS;
1224
1225 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
1226 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1227 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on
1228 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags
1229 // can be set differently by this operation. It comes down to whether
1230 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1231 // everything is fine. If not then the optimization is wrong. Thus general
1232 // comparisons are only valid if op2 != 0.
1233
1234 // So, finally, the only LLVM-native comparisons that don't mention C and V
1235 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1236 // the absence of information about op2.
1237 Opcode = AArch64ISD::ADDS;
1238 RHS = RHS.getOperand(1);
1239 } else if (LHS.getOpcode() == ISD::AND && isNullConstant(RHS) &&
1240 !isUnsignedIntSetCC(CC)) {
1241 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1242 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1243 // of the signed comparisons.
1244 Opcode = AArch64ISD::ANDS;
1245 RHS = LHS.getOperand(1);
1246 LHS = LHS.getOperand(0);
1247 }
1248
1249 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
1250 .getValue(1);
1251 }
1252
1253 /// \defgroup AArch64CCMP CMP;CCMP matching
1254 ///
1255 /// These functions deal with the formation of CMP;CCMP;... sequences.
1256 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1257 /// a comparison. They set the NZCV flags to a predefined value if their
1258 /// predicate is false. This allows to express arbitrary conjunctions, for
1259 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))"
1260 /// expressed as:
1261 /// cmp A
1262 /// ccmp B, inv(CB), CA
1263 /// check for CB flags
1264 ///
1265 /// In general we can create code for arbitrary "... (and (and A B) C)"
1266 /// sequences. We can also implement some "or" expressions, because "(or A B)"
1267 /// is equivalent to "not (and (not A) (not B))" and we can implement some
1268 /// negation operations:
1269 /// We can negate the results of a single comparison by inverting the flags
1270 /// used when the predicate fails and inverting the flags tested in the next
1271 /// instruction; We can also negate the results of the whole previous
1272 /// conditional compare sequence by inverting the flags tested in the next
1273 /// instruction. However there is no way to negate the result of a partial
1274 /// sequence.
1275 ///
1276 /// Therefore on encountering an "or" expression we can negate the subtree on
1277 /// one side and have to be able to push the negate to the leafs of the subtree
1278 /// on the other side (see also the comments in code). As complete example:
1279 /// "or (or (setCA (cmp A)) (setCB (cmp B)))
1280 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1281 /// is transformed to
1282 /// "not (and (not (and (setCC (cmp C)) (setCC (cmp D))))
1283 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1284 /// and implemented as:
1285 /// cmp C
1286 /// ccmp D, inv(CD), CC
1287 /// ccmp A, CA, inv(CD)
1288 /// ccmp B, CB, inv(CA)
1289 /// check for CB flags
1290 /// A counterexample is "or (and A B) (and C D)" which cannot be implemented
1291 /// by conditional compare sequences.
1292 /// @{
1293
1294 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
emitConditionalComparison(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue CCOp,AArch64CC::CondCode Predicate,AArch64CC::CondCode OutCC,const SDLoc & DL,SelectionDAG & DAG)1295 static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
1296 ISD::CondCode CC, SDValue CCOp,
1297 AArch64CC::CondCode Predicate,
1298 AArch64CC::CondCode OutCC,
1299 const SDLoc &DL, SelectionDAG &DAG) {
1300 unsigned Opcode = 0;
1301 if (LHS.getValueType().isFloatingPoint()) {
1302 assert(LHS.getValueType() != MVT::f128);
1303 if (LHS.getValueType() == MVT::f16) {
1304 LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS);
1305 RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS);
1306 }
1307 Opcode = AArch64ISD::FCCMP;
1308 } else if (RHS.getOpcode() == ISD::SUB) {
1309 SDValue SubOp0 = RHS.getOperand(0);
1310 if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1311 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1312 Opcode = AArch64ISD::CCMN;
1313 RHS = RHS.getOperand(1);
1314 }
1315 }
1316 if (Opcode == 0)
1317 Opcode = AArch64ISD::CCMP;
1318
1319 SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC);
1320 AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
1321 unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
1322 SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
1323 return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
1324 }
1325
1326 /// Returns true if @p Val is a tree of AND/OR/SETCC operations.
1327 /// CanPushNegate is set to true if we can push a negate operation through
1328 /// the tree in a was that we are left with AND operations and negate operations
1329 /// at the leafs only. i.e. "not (or (or x y) z)" can be changed to
1330 /// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be
1331 /// brought into such a form.
isConjunctionDisjunctionTree(const SDValue Val,bool & CanNegate,unsigned Depth=0)1332 static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanNegate,
1333 unsigned Depth = 0) {
1334 if (!Val.hasOneUse())
1335 return false;
1336 unsigned Opcode = Val->getOpcode();
1337 if (Opcode == ISD::SETCC) {
1338 if (Val->getOperand(0).getValueType() == MVT::f128)
1339 return false;
1340 CanNegate = true;
1341 return true;
1342 }
1343 // Protect against exponential runtime and stack overflow.
1344 if (Depth > 6)
1345 return false;
1346 if (Opcode == ISD::AND || Opcode == ISD::OR) {
1347 SDValue O0 = Val->getOperand(0);
1348 SDValue O1 = Val->getOperand(1);
1349 bool CanNegateL;
1350 if (!isConjunctionDisjunctionTree(O0, CanNegateL, Depth+1))
1351 return false;
1352 bool CanNegateR;
1353 if (!isConjunctionDisjunctionTree(O1, CanNegateR, Depth+1))
1354 return false;
1355
1356 if (Opcode == ISD::OR) {
1357 // For an OR expression we need to be able to negate at least one side or
1358 // we cannot do the transformation at all.
1359 if (!CanNegateL && !CanNegateR)
1360 return false;
1361 // We can however change a (not (or x y)) to (and (not x) (not y)) if we
1362 // can negate the x and y subtrees.
1363 CanNegate = CanNegateL && CanNegateR;
1364 } else {
1365 // If the operands are OR expressions then we finally need to negate their
1366 // outputs, we can only do that for the operand with emitted last by
1367 // negating OutCC, not for both operands.
1368 bool NeedsNegOutL = O0->getOpcode() == ISD::OR;
1369 bool NeedsNegOutR = O1->getOpcode() == ISD::OR;
1370 if (NeedsNegOutL && NeedsNegOutR)
1371 return false;
1372 // We cannot negate an AND operation (it would become an OR),
1373 CanNegate = false;
1374 }
1375 return true;
1376 }
1377 return false;
1378 }
1379
1380 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1381 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1382 /// Tries to transform the given i1 producing node @p Val to a series compare
1383 /// and conditional compare operations. @returns an NZCV flags producing node
1384 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1385 /// transformation was not possible.
1386 /// On recursive invocations @p PushNegate may be set to true to have negation
1387 /// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate
1388 /// for the comparisons in the current subtree; @p Depth limits the search
1389 /// depth to avoid stack overflow.
emitConjunctionDisjunctionTreeRec(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC,bool Negate,SDValue CCOp,AArch64CC::CondCode Predicate)1390 static SDValue emitConjunctionDisjunctionTreeRec(SelectionDAG &DAG, SDValue Val,
1391 AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp,
1392 AArch64CC::CondCode Predicate) {
1393 // We're at a tree leaf, produce a conditional comparison operation.
1394 unsigned Opcode = Val->getOpcode();
1395 if (Opcode == ISD::SETCC) {
1396 SDValue LHS = Val->getOperand(0);
1397 SDValue RHS = Val->getOperand(1);
1398 ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
1399 bool isInteger = LHS.getValueType().isInteger();
1400 if (Negate)
1401 CC = getSetCCInverse(CC, isInteger);
1402 SDLoc DL(Val);
1403 // Determine OutCC and handle FP special case.
1404 if (isInteger) {
1405 OutCC = changeIntCCToAArch64CC(CC);
1406 } else {
1407 assert(LHS.getValueType().isFloatingPoint());
1408 AArch64CC::CondCode ExtraCC;
1409 changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC);
1410 // Some floating point conditions can't be tested with a single condition
1411 // code. Construct an additional comparison in this case.
1412 if (ExtraCC != AArch64CC::AL) {
1413 SDValue ExtraCmp;
1414 if (!CCOp.getNode())
1415 ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
1416 else
1417 ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate,
1418 ExtraCC, DL, DAG);
1419 CCOp = ExtraCmp;
1420 Predicate = ExtraCC;
1421 }
1422 }
1423
1424 // Produce a normal comparison if we are first in the chain
1425 if (!CCOp)
1426 return emitComparison(LHS, RHS, CC, DL, DAG);
1427 // Otherwise produce a ccmp.
1428 return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL,
1429 DAG);
1430 }
1431 assert((Opcode == ISD::AND || (Opcode == ISD::OR && Val->hasOneUse())) &&
1432 "Valid conjunction/disjunction tree");
1433
1434 // Check if both sides can be transformed.
1435 SDValue LHS = Val->getOperand(0);
1436 SDValue RHS = Val->getOperand(1);
1437
1438 // In case of an OR we need to negate our operands and the result.
1439 // (A v B) <=> not(not(A) ^ not(B))
1440 bool NegateOpsAndResult = Opcode == ISD::OR;
1441 // We can negate the results of all previous operations by inverting the
1442 // predicate flags giving us a free negation for one side. The other side
1443 // must be negatable by itself.
1444 if (NegateOpsAndResult) {
1445 // See which side we can negate.
1446 bool CanNegateL;
1447 bool isValidL = isConjunctionDisjunctionTree(LHS, CanNegateL);
1448 assert(isValidL && "Valid conjunction/disjunction tree");
1449 (void)isValidL;
1450
1451 #ifndef NDEBUG
1452 bool CanNegateR;
1453 bool isValidR = isConjunctionDisjunctionTree(RHS, CanNegateR);
1454 assert(isValidR && "Valid conjunction/disjunction tree");
1455 assert((CanNegateL || CanNegateR) && "Valid conjunction/disjunction tree");
1456 #endif
1457
1458 // Order the side which we cannot negate to RHS so we can emit it first.
1459 if (!CanNegateL)
1460 std::swap(LHS, RHS);
1461 } else {
1462 bool NeedsNegOutL = LHS->getOpcode() == ISD::OR;
1463 assert((!NeedsNegOutL || RHS->getOpcode() != ISD::OR) &&
1464 "Valid conjunction/disjunction tree");
1465 // Order the side where we need to negate the output flags to RHS so it
1466 // gets emitted first.
1467 if (NeedsNegOutL)
1468 std::swap(LHS, RHS);
1469 }
1470
1471 // Emit RHS. If we want to negate the tree we only need to push a negate
1472 // through if we are already in a PushNegate case, otherwise we can negate
1473 // the "flags to test" afterwards.
1474 AArch64CC::CondCode RHSCC;
1475 SDValue CmpR = emitConjunctionDisjunctionTreeRec(DAG, RHS, RHSCC, Negate,
1476 CCOp, Predicate);
1477 if (NegateOpsAndResult && !Negate)
1478 RHSCC = AArch64CC::getInvertedCondCode(RHSCC);
1479 // Emit LHS. We may need to negate it.
1480 SDValue CmpL = emitConjunctionDisjunctionTreeRec(DAG, LHS, OutCC,
1481 NegateOpsAndResult, CmpR,
1482 RHSCC);
1483 // If we transformed an OR to and AND then we have to negate the result
1484 // (or absorb the Negate parameter).
1485 if (NegateOpsAndResult && !Negate)
1486 OutCC = AArch64CC::getInvertedCondCode(OutCC);
1487 return CmpL;
1488 }
1489
1490 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1491 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1492 /// \see emitConjunctionDisjunctionTreeRec().
emitConjunctionDisjunctionTree(SelectionDAG & DAG,SDValue Val,AArch64CC::CondCode & OutCC)1493 static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val,
1494 AArch64CC::CondCode &OutCC) {
1495 bool CanNegate;
1496 if (!isConjunctionDisjunctionTree(Val, CanNegate))
1497 return SDValue();
1498
1499 return emitConjunctionDisjunctionTreeRec(DAG, Val, OutCC, false, SDValue(),
1500 AArch64CC::AL);
1501 }
1502
1503 /// @}
1504
getAArch64Cmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & AArch64cc,SelectionDAG & DAG,const SDLoc & dl)1505 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1506 SDValue &AArch64cc, SelectionDAG &DAG,
1507 const SDLoc &dl) {
1508 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1509 EVT VT = RHS.getValueType();
1510 uint64_t C = RHSC->getZExtValue();
1511 if (!isLegalArithImmed(C)) {
1512 // Constant does not fit, try adjusting it by one?
1513 switch (CC) {
1514 default:
1515 break;
1516 case ISD::SETLT:
1517 case ISD::SETGE:
1518 if ((VT == MVT::i32 && C != 0x80000000 &&
1519 isLegalArithImmed((uint32_t)(C - 1))) ||
1520 (VT == MVT::i64 && C != 0x80000000ULL &&
1521 isLegalArithImmed(C - 1ULL))) {
1522 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1523 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1524 RHS = DAG.getConstant(C, dl, VT);
1525 }
1526 break;
1527 case ISD::SETULT:
1528 case ISD::SETUGE:
1529 if ((VT == MVT::i32 && C != 0 &&
1530 isLegalArithImmed((uint32_t)(C - 1))) ||
1531 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) {
1532 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1533 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1;
1534 RHS = DAG.getConstant(C, dl, VT);
1535 }
1536 break;
1537 case ISD::SETLE:
1538 case ISD::SETGT:
1539 if ((VT == MVT::i32 && C != INT32_MAX &&
1540 isLegalArithImmed((uint32_t)(C + 1))) ||
1541 (VT == MVT::i64 && C != INT64_MAX &&
1542 isLegalArithImmed(C + 1ULL))) {
1543 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1544 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1545 RHS = DAG.getConstant(C, dl, VT);
1546 }
1547 break;
1548 case ISD::SETULE:
1549 case ISD::SETUGT:
1550 if ((VT == MVT::i32 && C != UINT32_MAX &&
1551 isLegalArithImmed((uint32_t)(C + 1))) ||
1552 (VT == MVT::i64 && C != UINT64_MAX &&
1553 isLegalArithImmed(C + 1ULL))) {
1554 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1555 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1;
1556 RHS = DAG.getConstant(C, dl, VT);
1557 }
1558 break;
1559 }
1560 }
1561 }
1562 SDValue Cmp;
1563 AArch64CC::CondCode AArch64CC;
1564 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
1565 const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
1566
1567 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
1568 // For the i8 operand, the largest immediate is 255, so this can be easily
1569 // encoded in the compare instruction. For the i16 operand, however, the
1570 // largest immediate cannot be encoded in the compare.
1571 // Therefore, use a sign extending load and cmn to avoid materializing the
1572 // -1 constant. For example,
1573 // movz w1, #65535
1574 // ldrh w0, [x0, #0]
1575 // cmp w0, w1
1576 // >
1577 // ldrsh w0, [x0, #0]
1578 // cmn w0, #1
1579 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
1580 // if and only if (sext LHS) == (sext RHS). The checks are in place to
1581 // ensure both the LHS and RHS are truly zero extended and to make sure the
1582 // transformation is profitable.
1583 if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
1584 cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
1585 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
1586 LHS.getNode()->hasNUsesOfValue(1, 0)) {
1587 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
1588 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
1589 SDValue SExt =
1590 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
1591 DAG.getValueType(MVT::i16));
1592 Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
1593 RHS.getValueType()),
1594 CC, dl, DAG);
1595 AArch64CC = changeIntCCToAArch64CC(CC);
1596 }
1597 }
1598
1599 if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) {
1600 if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) {
1601 if ((CC == ISD::SETNE) ^ RHSC->isNullValue())
1602 AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC);
1603 }
1604 }
1605 }
1606
1607 if (!Cmp) {
1608 Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
1609 AArch64CC = changeIntCCToAArch64CC(CC);
1610 }
1611 AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
1612 return Cmp;
1613 }
1614
1615 static std::pair<SDValue, SDValue>
getAArch64XALUOOp(AArch64CC::CondCode & CC,SDValue Op,SelectionDAG & DAG)1616 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) {
1617 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&
1618 "Unsupported value type");
1619 SDValue Value, Overflow;
1620 SDLoc DL(Op);
1621 SDValue LHS = Op.getOperand(0);
1622 SDValue RHS = Op.getOperand(1);
1623 unsigned Opc = 0;
1624 switch (Op.getOpcode()) {
1625 default:
1626 llvm_unreachable("Unknown overflow instruction!");
1627 case ISD::SADDO:
1628 Opc = AArch64ISD::ADDS;
1629 CC = AArch64CC::VS;
1630 break;
1631 case ISD::UADDO:
1632 Opc = AArch64ISD::ADDS;
1633 CC = AArch64CC::HS;
1634 break;
1635 case ISD::SSUBO:
1636 Opc = AArch64ISD::SUBS;
1637 CC = AArch64CC::VS;
1638 break;
1639 case ISD::USUBO:
1640 Opc = AArch64ISD::SUBS;
1641 CC = AArch64CC::LO;
1642 break;
1643 // Multiply needs a little bit extra work.
1644 case ISD::SMULO:
1645 case ISD::UMULO: {
1646 CC = AArch64CC::NE;
1647 bool IsSigned = Op.getOpcode() == ISD::SMULO;
1648 if (Op.getValueType() == MVT::i32) {
1649 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1650 // For a 32 bit multiply with overflow check we want the instruction
1651 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
1652 // need to generate the following pattern:
1653 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
1654 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS);
1655 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS);
1656 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1657 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul,
1658 DAG.getConstant(0, DL, MVT::i64));
1659 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
1660 // operation. We need to clear out the upper 32 bits, because we used a
1661 // widening multiply that wrote all 64 bits. In the end this should be a
1662 // noop.
1663 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add);
1664 if (IsSigned) {
1665 // The signed overflow check requires more than just a simple check for
1666 // any bit set in the upper 32 bits of the result. These bits could be
1667 // just the sign bits of a negative number. To perform the overflow
1668 // check we have to arithmetic shift right the 32nd bit of the result by
1669 // 31 bits. Then we compare the result to the upper 32 bits.
1670 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add,
1671 DAG.getConstant(32, DL, MVT::i64));
1672 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits);
1673 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value,
1674 DAG.getConstant(31, DL, MVT::i64));
1675 // It is important that LowerBits is last, otherwise the arithmetic
1676 // shift will not be folded into the compare (SUBS).
1677 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32);
1678 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1679 .getValue(1);
1680 } else {
1681 // The overflow check for unsigned multiply is easy. We only need to
1682 // check if any of the upper 32 bits are set. This can be done with a
1683 // CMP (shifted register). For that we need to generate the following
1684 // pattern:
1685 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
1686 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
1687 DAG.getConstant(32, DL, MVT::i64));
1688 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1689 Overflow =
1690 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1691 DAG.getConstant(0, DL, MVT::i64),
1692 UpperBits).getValue(1);
1693 }
1694 break;
1695 }
1696 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type");
1697 // For the 64 bit multiply
1698 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS);
1699 if (IsSigned) {
1700 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS);
1701 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value,
1702 DAG.getConstant(63, DL, MVT::i64));
1703 // It is important that LowerBits is last, otherwise the arithmetic
1704 // shift will not be folded into the compare (SUBS).
1705 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1706 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits)
1707 .getValue(1);
1708 } else {
1709 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS);
1710 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32);
1711 Overflow =
1712 DAG.getNode(AArch64ISD::SUBS, DL, VTs,
1713 DAG.getConstant(0, DL, MVT::i64),
1714 UpperBits).getValue(1);
1715 }
1716 break;
1717 }
1718 } // switch (...)
1719
1720 if (Opc) {
1721 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
1722
1723 // Emit the AArch64 operation with overflow check.
1724 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS);
1725 Overflow = Value.getValue(1);
1726 }
1727 return std::make_pair(Value, Overflow);
1728 }
1729
LowerF128Call(SDValue Op,SelectionDAG & DAG,RTLIB::Libcall Call) const1730 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
1731 RTLIB::Libcall Call) const {
1732 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1733 return makeLibCall(DAG, Call, MVT::f128, Ops, false, SDLoc(Op)).first;
1734 }
1735
LowerXOR(SDValue Op,SelectionDAG & DAG)1736 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) {
1737 SDValue Sel = Op.getOperand(0);
1738 SDValue Other = Op.getOperand(1);
1739
1740 // If neither operand is a SELECT_CC, give up.
1741 if (Sel.getOpcode() != ISD::SELECT_CC)
1742 std::swap(Sel, Other);
1743 if (Sel.getOpcode() != ISD::SELECT_CC)
1744 return Op;
1745
1746 // The folding we want to perform is:
1747 // (xor x, (select_cc a, b, cc, 0, -1) )
1748 // -->
1749 // (csel x, (xor x, -1), cc ...)
1750 //
1751 // The latter will get matched to a CSINV instruction.
1752
1753 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get();
1754 SDValue LHS = Sel.getOperand(0);
1755 SDValue RHS = Sel.getOperand(1);
1756 SDValue TVal = Sel.getOperand(2);
1757 SDValue FVal = Sel.getOperand(3);
1758 SDLoc dl(Sel);
1759
1760 // FIXME: This could be generalized to non-integer comparisons.
1761 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
1762 return Op;
1763
1764 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
1765 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
1766
1767 // The values aren't constants, this isn't the pattern we're looking for.
1768 if (!CFVal || !CTVal)
1769 return Op;
1770
1771 // We can commute the SELECT_CC by inverting the condition. This
1772 // might be needed to make this fit into a CSINV pattern.
1773 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) {
1774 std::swap(TVal, FVal);
1775 std::swap(CTVal, CFVal);
1776 CC = ISD::getSetCCInverse(CC, true);
1777 }
1778
1779 // If the constants line up, perform the transform!
1780 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) {
1781 SDValue CCVal;
1782 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
1783
1784 FVal = Other;
1785 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other,
1786 DAG.getConstant(-1ULL, dl, Other.getValueType()));
1787
1788 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal,
1789 CCVal, Cmp);
1790 }
1791
1792 return Op;
1793 }
1794
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)1795 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
1796 EVT VT = Op.getValueType();
1797
1798 // Let legalize expand this if it isn't a legal type yet.
1799 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
1800 return SDValue();
1801
1802 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
1803
1804 unsigned Opc;
1805 bool ExtraOp = false;
1806 switch (Op.getOpcode()) {
1807 default:
1808 llvm_unreachable("Invalid code");
1809 case ISD::ADDC:
1810 Opc = AArch64ISD::ADDS;
1811 break;
1812 case ISD::SUBC:
1813 Opc = AArch64ISD::SUBS;
1814 break;
1815 case ISD::ADDE:
1816 Opc = AArch64ISD::ADCS;
1817 ExtraOp = true;
1818 break;
1819 case ISD::SUBE:
1820 Opc = AArch64ISD::SBCS;
1821 ExtraOp = true;
1822 break;
1823 }
1824
1825 if (!ExtraOp)
1826 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1));
1827 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1),
1828 Op.getOperand(2));
1829 }
1830
LowerXALUO(SDValue Op,SelectionDAG & DAG)1831 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
1832 // Let legalize expand this if it isn't a legal type yet.
1833 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
1834 return SDValue();
1835
1836 SDLoc dl(Op);
1837 AArch64CC::CondCode CC;
1838 // The actual operation that sets the overflow or carry flag.
1839 SDValue Value, Overflow;
1840 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG);
1841
1842 // We use 0 and 1 as false and true values.
1843 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
1844 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
1845
1846 // We use an inverted condition, because the conditional select is inverted
1847 // too. This will allow it to be selected to a single instruction:
1848 // CSINC Wd, WZR, WZR, invert(cond).
1849 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32);
1850 Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal,
1851 CCVal, Overflow);
1852
1853 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
1854 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
1855 }
1856
1857 // Prefetch operands are:
1858 // 1: Address to prefetch
1859 // 2: bool isWrite
1860 // 3: int locality (0 = no locality ... 3 = extreme locality)
1861 // 4: bool isDataCache
LowerPREFETCH(SDValue Op,SelectionDAG & DAG)1862 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) {
1863 SDLoc DL(Op);
1864 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
1865 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
1866 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
1867
1868 bool IsStream = !Locality;
1869 // When the locality number is set
1870 if (Locality) {
1871 // The front-end should have filtered out the out-of-range values
1872 assert(Locality <= 3 && "Prefetch locality out-of-range");
1873 // The locality degree is the opposite of the cache speed.
1874 // Put the number the other way around.
1875 // The encoding starts at 0 for level 1
1876 Locality = 3 - Locality;
1877 }
1878
1879 // built the mask value encoding the expected behavior.
1880 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit
1881 (!IsData << 3) | // IsDataCache bit
1882 (Locality << 1) | // Cache level bits
1883 (unsigned)IsStream; // Stream bit
1884 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0),
1885 DAG.getConstant(PrfOp, DL, MVT::i32), Op.getOperand(1));
1886 }
1887
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const1888 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op,
1889 SelectionDAG &DAG) const {
1890 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1891
1892 RTLIB::Libcall LC;
1893 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1894
1895 return LowerF128Call(Op, DAG, LC);
1896 }
1897
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const1898 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op,
1899 SelectionDAG &DAG) const {
1900 if (Op.getOperand(0).getValueType() != MVT::f128) {
1901 // It's legal except when f128 is involved
1902 return Op;
1903 }
1904
1905 RTLIB::Libcall LC;
1906 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1907
1908 // FP_ROUND node has a second operand indicating whether it is known to be
1909 // precise. That doesn't take part in the LibCall so we can't directly use
1910 // LowerF128Call.
1911 SDValue SrcVal = Op.getOperand(0);
1912 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
1913 SDLoc(Op)).first;
1914 }
1915
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)1916 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1917 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1918 // Any additional optimization in this function should be recorded
1919 // in the cost tables.
1920 EVT InVT = Op.getOperand(0).getValueType();
1921 EVT VT = Op.getValueType();
1922 unsigned NumElts = InVT.getVectorNumElements();
1923
1924 // f16 vectors are promoted to f32 before a conversion.
1925 if (InVT.getVectorElementType() == MVT::f16) {
1926 MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts);
1927 SDLoc dl(Op);
1928 return DAG.getNode(
1929 Op.getOpcode(), dl, Op.getValueType(),
1930 DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0)));
1931 }
1932
1933 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1934 SDLoc dl(Op);
1935 SDValue Cv =
1936 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(),
1937 Op.getOperand(0));
1938 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv);
1939 }
1940
1941 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
1942 SDLoc dl(Op);
1943 MVT ExtVT =
1944 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()),
1945 VT.getVectorNumElements());
1946 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0));
1947 return DAG.getNode(Op.getOpcode(), dl, VT, Ext);
1948 }
1949
1950 // Type changing conversions are illegal.
1951 return Op;
1952 }
1953
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const1954 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op,
1955 SelectionDAG &DAG) const {
1956 if (Op.getOperand(0).getValueType().isVector())
1957 return LowerVectorFP_TO_INT(Op, DAG);
1958
1959 // f16 conversions are promoted to f32.
1960 if (Op.getOperand(0).getValueType() == MVT::f16) {
1961 SDLoc dl(Op);
1962 return DAG.getNode(
1963 Op.getOpcode(), dl, Op.getValueType(),
1964 DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Op.getOperand(0)));
1965 }
1966
1967 if (Op.getOperand(0).getValueType() != MVT::f128) {
1968 // It's legal except when f128 is involved
1969 return Op;
1970 }
1971
1972 RTLIB::Libcall LC;
1973 if (Op.getOpcode() == ISD::FP_TO_SINT)
1974 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1975 else
1976 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1977
1978 SmallVector<SDValue, 2> Ops(Op->op_begin(), Op->op_end());
1979 return makeLibCall(DAG, LC, Op.getValueType(), Ops, false, SDLoc(Op)).first;
1980 }
1981
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)1982 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1983 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
1984 // Any additional optimization in this function should be recorded
1985 // in the cost tables.
1986 EVT VT = Op.getValueType();
1987 SDLoc dl(Op);
1988 SDValue In = Op.getOperand(0);
1989 EVT InVT = In.getValueType();
1990
1991 if (VT.getSizeInBits() < InVT.getSizeInBits()) {
1992 MVT CastVT =
1993 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()),
1994 InVT.getVectorNumElements());
1995 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In);
1996 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0, dl));
1997 }
1998
1999 if (VT.getSizeInBits() > InVT.getSizeInBits()) {
2000 unsigned CastOpc =
2001 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2002 EVT CastVT = VT.changeVectorElementTypeToInteger();
2003 In = DAG.getNode(CastOpc, dl, CastVT, In);
2004 return DAG.getNode(Op.getOpcode(), dl, VT, In);
2005 }
2006
2007 return Op;
2008 }
2009
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const2010 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op,
2011 SelectionDAG &DAG) const {
2012 if (Op.getValueType().isVector())
2013 return LowerVectorINT_TO_FP(Op, DAG);
2014
2015 // f16 conversions are promoted to f32.
2016 if (Op.getValueType() == MVT::f16) {
2017 SDLoc dl(Op);
2018 return DAG.getNode(
2019 ISD::FP_ROUND, dl, MVT::f16,
2020 DAG.getNode(Op.getOpcode(), dl, MVT::f32, Op.getOperand(0)),
2021 DAG.getIntPtrConstant(0, dl));
2022 }
2023
2024 // i128 conversions are libcalls.
2025 if (Op.getOperand(0).getValueType() == MVT::i128)
2026 return SDValue();
2027
2028 // Other conversions are legal, unless it's to the completely software-based
2029 // fp128.
2030 if (Op.getValueType() != MVT::f128)
2031 return Op;
2032
2033 RTLIB::Libcall LC;
2034 if (Op.getOpcode() == ISD::SINT_TO_FP)
2035 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2036 else
2037 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2038
2039 return LowerF128Call(Op, DAG, LC);
2040 }
2041
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const2042 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op,
2043 SelectionDAG &DAG) const {
2044 // For iOS, we want to call an alternative entry point: __sincos_stret,
2045 // which returns the values in two S / D registers.
2046 SDLoc dl(Op);
2047 SDValue Arg = Op.getOperand(0);
2048 EVT ArgVT = Arg.getValueType();
2049 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2050
2051 ArgListTy Args;
2052 ArgListEntry Entry;
2053
2054 Entry.Node = Arg;
2055 Entry.Ty = ArgTy;
2056 Entry.isSExt = false;
2057 Entry.isZExt = false;
2058 Args.push_back(Entry);
2059
2060 const char *LibcallName =
2061 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
2062 SDValue Callee =
2063 DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout()));
2064
2065 StructType *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
2066 TargetLowering::CallLoweringInfo CLI(DAG);
2067 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
2068 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args));
2069
2070 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2071 return CallResult.first;
2072 }
2073
LowerBITCAST(SDValue Op,SelectionDAG & DAG)2074 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) {
2075 if (Op.getValueType() != MVT::f16)
2076 return SDValue();
2077
2078 assert(Op.getOperand(0).getValueType() == MVT::i16);
2079 SDLoc DL(Op);
2080
2081 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0));
2082 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op);
2083 return SDValue(
2084 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op,
2085 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
2086 0);
2087 }
2088
getExtensionTo64Bits(const EVT & OrigVT)2089 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
2090 if (OrigVT.getSizeInBits() >= 64)
2091 return OrigVT;
2092
2093 assert(OrigVT.isSimple() && "Expecting a simple value type");
2094
2095 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
2096 switch (OrigSimpleTy) {
2097 default: llvm_unreachable("Unexpected Vector Type");
2098 case MVT::v2i8:
2099 case MVT::v2i16:
2100 return MVT::v2i32;
2101 case MVT::v4i8:
2102 return MVT::v4i16;
2103 }
2104 }
2105
addRequiredExtensionForVectorMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)2106 static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG,
2107 const EVT &OrigTy,
2108 const EVT &ExtTy,
2109 unsigned ExtOpcode) {
2110 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2111 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2112 // 64-bits we need to insert a new extension so that it will be 64-bits.
2113 assert(ExtTy.is128BitVector() && "Unexpected extension size");
2114 if (OrigTy.getSizeInBits() >= 64)
2115 return N;
2116
2117 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2118 EVT NewVT = getExtensionTo64Bits(OrigTy);
2119
2120 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
2121 }
2122
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)2123 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
2124 bool isSigned) {
2125 EVT VT = N->getValueType(0);
2126
2127 if (N->getOpcode() != ISD::BUILD_VECTOR)
2128 return false;
2129
2130 for (const SDValue &Elt : N->op_values()) {
2131 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
2132 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
2133 unsigned HalfSize = EltSize / 2;
2134 if (isSigned) {
2135 if (!isIntN(HalfSize, C->getSExtValue()))
2136 return false;
2137 } else {
2138 if (!isUIntN(HalfSize, C->getZExtValue()))
2139 return false;
2140 }
2141 continue;
2142 }
2143 return false;
2144 }
2145
2146 return true;
2147 }
2148
skipExtensionForVectorMULL(SDNode * N,SelectionDAG & DAG)2149 static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) {
2150 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
2151 return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG,
2152 N->getOperand(0)->getValueType(0),
2153 N->getValueType(0),
2154 N->getOpcode());
2155
2156 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
2157 EVT VT = N->getValueType(0);
2158 SDLoc dl(N);
2159 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
2160 unsigned NumElts = VT.getVectorNumElements();
2161 MVT TruncVT = MVT::getIntegerVT(EltSize);
2162 SmallVector<SDValue, 8> Ops;
2163 for (unsigned i = 0; i != NumElts; ++i) {
2164 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
2165 const APInt &CInt = C->getAPIntValue();
2166 // Element types smaller than 32 bits are not legal, so use i32 elements.
2167 // The values are implicitly truncated so sext vs. zext doesn't matter.
2168 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
2169 }
2170 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
2171 }
2172
isSignExtended(SDNode * N,SelectionDAG & DAG)2173 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
2174 if (N->getOpcode() == ISD::SIGN_EXTEND)
2175 return true;
2176 if (isExtendedBUILD_VECTOR(N, DAG, true))
2177 return true;
2178 return false;
2179 }
2180
isZeroExtended(SDNode * N,SelectionDAG & DAG)2181 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
2182 if (N->getOpcode() == ISD::ZERO_EXTEND)
2183 return true;
2184 if (isExtendedBUILD_VECTOR(N, DAG, false))
2185 return true;
2186 return false;
2187 }
2188
isAddSubSExt(SDNode * N,SelectionDAG & DAG)2189 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
2190 unsigned Opcode = N->getOpcode();
2191 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2192 SDNode *N0 = N->getOperand(0).getNode();
2193 SDNode *N1 = N->getOperand(1).getNode();
2194 return N0->hasOneUse() && N1->hasOneUse() &&
2195 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
2196 }
2197 return false;
2198 }
2199
isAddSubZExt(SDNode * N,SelectionDAG & DAG)2200 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
2201 unsigned Opcode = N->getOpcode();
2202 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
2203 SDNode *N0 = N->getOperand(0).getNode();
2204 SDNode *N1 = N->getOperand(1).getNode();
2205 return N0->hasOneUse() && N1->hasOneUse() &&
2206 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
2207 }
2208 return false;
2209 }
2210
LowerMUL(SDValue Op,SelectionDAG & DAG)2211 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
2212 // Multiplications are only custom-lowered for 128-bit vectors so that
2213 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2214 EVT VT = Op.getValueType();
2215 assert(VT.is128BitVector() && VT.isInteger() &&
2216 "unexpected type for custom-lowering ISD::MUL");
2217 SDNode *N0 = Op.getOperand(0).getNode();
2218 SDNode *N1 = Op.getOperand(1).getNode();
2219 unsigned NewOpc = 0;
2220 bool isMLA = false;
2221 bool isN0SExt = isSignExtended(N0, DAG);
2222 bool isN1SExt = isSignExtended(N1, DAG);
2223 if (isN0SExt && isN1SExt)
2224 NewOpc = AArch64ISD::SMULL;
2225 else {
2226 bool isN0ZExt = isZeroExtended(N0, DAG);
2227 bool isN1ZExt = isZeroExtended(N1, DAG);
2228 if (isN0ZExt && isN1ZExt)
2229 NewOpc = AArch64ISD::UMULL;
2230 else if (isN1SExt || isN1ZExt) {
2231 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2232 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2233 if (isN1SExt && isAddSubSExt(N0, DAG)) {
2234 NewOpc = AArch64ISD::SMULL;
2235 isMLA = true;
2236 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
2237 NewOpc = AArch64ISD::UMULL;
2238 isMLA = true;
2239 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
2240 std::swap(N0, N1);
2241 NewOpc = AArch64ISD::UMULL;
2242 isMLA = true;
2243 }
2244 }
2245
2246 if (!NewOpc) {
2247 if (VT == MVT::v2i64)
2248 // Fall through to expand this. It is not legal.
2249 return SDValue();
2250 else
2251 // Other vector multiplications are legal.
2252 return Op;
2253 }
2254 }
2255
2256 // Legalize to a S/UMULL instruction
2257 SDLoc DL(Op);
2258 SDValue Op0;
2259 SDValue Op1 = skipExtensionForVectorMULL(N1, DAG);
2260 if (!isMLA) {
2261 Op0 = skipExtensionForVectorMULL(N0, DAG);
2262 assert(Op0.getValueType().is64BitVector() &&
2263 Op1.getValueType().is64BitVector() &&
2264 "unexpected types for extended operands to VMULL");
2265 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
2266 }
2267 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2268 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2269 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2270 SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG);
2271 SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG);
2272 EVT Op1VT = Op1.getValueType();
2273 return DAG.getNode(N0->getOpcode(), DL, VT,
2274 DAG.getNode(NewOpc, DL, VT,
2275 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
2276 DAG.getNode(NewOpc, DL, VT,
2277 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
2278 }
2279
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const2280 SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2281 SelectionDAG &DAG) const {
2282 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2283 SDLoc dl(Op);
2284 switch (IntNo) {
2285 default: return SDValue(); // Don't custom lower most intrinsics.
2286 case Intrinsic::thread_pointer: {
2287 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2288 return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT);
2289 }
2290 case Intrinsic::aarch64_neon_smax:
2291 return DAG.getNode(ISD::SMAX, dl, Op.getValueType(),
2292 Op.getOperand(1), Op.getOperand(2));
2293 case Intrinsic::aarch64_neon_umax:
2294 return DAG.getNode(ISD::UMAX, dl, Op.getValueType(),
2295 Op.getOperand(1), Op.getOperand(2));
2296 case Intrinsic::aarch64_neon_smin:
2297 return DAG.getNode(ISD::SMIN, dl, Op.getValueType(),
2298 Op.getOperand(1), Op.getOperand(2));
2299 case Intrinsic::aarch64_neon_umin:
2300 return DAG.getNode(ISD::UMIN, dl, Op.getValueType(),
2301 Op.getOperand(1), Op.getOperand(2));
2302 }
2303 }
2304
LowerOperation(SDValue Op,SelectionDAG & DAG) const2305 SDValue AArch64TargetLowering::LowerOperation(SDValue Op,
2306 SelectionDAG &DAG) const {
2307 switch (Op.getOpcode()) {
2308 default:
2309 llvm_unreachable("unimplemented operand");
2310 return SDValue();
2311 case ISD::BITCAST:
2312 return LowerBITCAST(Op, DAG);
2313 case ISD::GlobalAddress:
2314 return LowerGlobalAddress(Op, DAG);
2315 case ISD::GlobalTLSAddress:
2316 return LowerGlobalTLSAddress(Op, DAG);
2317 case ISD::SETCC:
2318 return LowerSETCC(Op, DAG);
2319 case ISD::BR_CC:
2320 return LowerBR_CC(Op, DAG);
2321 case ISD::SELECT:
2322 return LowerSELECT(Op, DAG);
2323 case ISD::SELECT_CC:
2324 return LowerSELECT_CC(Op, DAG);
2325 case ISD::JumpTable:
2326 return LowerJumpTable(Op, DAG);
2327 case ISD::ConstantPool:
2328 return LowerConstantPool(Op, DAG);
2329 case ISD::BlockAddress:
2330 return LowerBlockAddress(Op, DAG);
2331 case ISD::VASTART:
2332 return LowerVASTART(Op, DAG);
2333 case ISD::VACOPY:
2334 return LowerVACOPY(Op, DAG);
2335 case ISD::VAARG:
2336 return LowerVAARG(Op, DAG);
2337 case ISD::ADDC:
2338 case ISD::ADDE:
2339 case ISD::SUBC:
2340 case ISD::SUBE:
2341 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
2342 case ISD::SADDO:
2343 case ISD::UADDO:
2344 case ISD::SSUBO:
2345 case ISD::USUBO:
2346 case ISD::SMULO:
2347 case ISD::UMULO:
2348 return LowerXALUO(Op, DAG);
2349 case ISD::FADD:
2350 return LowerF128Call(Op, DAG, RTLIB::ADD_F128);
2351 case ISD::FSUB:
2352 return LowerF128Call(Op, DAG, RTLIB::SUB_F128);
2353 case ISD::FMUL:
2354 return LowerF128Call(Op, DAG, RTLIB::MUL_F128);
2355 case ISD::FDIV:
2356 return LowerF128Call(Op, DAG, RTLIB::DIV_F128);
2357 case ISD::FP_ROUND:
2358 return LowerFP_ROUND(Op, DAG);
2359 case ISD::FP_EXTEND:
2360 return LowerFP_EXTEND(Op, DAG);
2361 case ISD::FRAMEADDR:
2362 return LowerFRAMEADDR(Op, DAG);
2363 case ISD::RETURNADDR:
2364 return LowerRETURNADDR(Op, DAG);
2365 case ISD::INSERT_VECTOR_ELT:
2366 return LowerINSERT_VECTOR_ELT(Op, DAG);
2367 case ISD::EXTRACT_VECTOR_ELT:
2368 return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2369 case ISD::BUILD_VECTOR:
2370 return LowerBUILD_VECTOR(Op, DAG);
2371 case ISD::VECTOR_SHUFFLE:
2372 return LowerVECTOR_SHUFFLE(Op, DAG);
2373 case ISD::EXTRACT_SUBVECTOR:
2374 return LowerEXTRACT_SUBVECTOR(Op, DAG);
2375 case ISD::SRA:
2376 case ISD::SRL:
2377 case ISD::SHL:
2378 return LowerVectorSRA_SRL_SHL(Op, DAG);
2379 case ISD::SHL_PARTS:
2380 return LowerShiftLeftParts(Op, DAG);
2381 case ISD::SRL_PARTS:
2382 case ISD::SRA_PARTS:
2383 return LowerShiftRightParts(Op, DAG);
2384 case ISD::CTPOP:
2385 return LowerCTPOP(Op, DAG);
2386 case ISD::FCOPYSIGN:
2387 return LowerFCOPYSIGN(Op, DAG);
2388 case ISD::AND:
2389 return LowerVectorAND(Op, DAG);
2390 case ISD::OR:
2391 return LowerVectorOR(Op, DAG);
2392 case ISD::XOR:
2393 return LowerXOR(Op, DAG);
2394 case ISD::PREFETCH:
2395 return LowerPREFETCH(Op, DAG);
2396 case ISD::SINT_TO_FP:
2397 case ISD::UINT_TO_FP:
2398 return LowerINT_TO_FP(Op, DAG);
2399 case ISD::FP_TO_SINT:
2400 case ISD::FP_TO_UINT:
2401 return LowerFP_TO_INT(Op, DAG);
2402 case ISD::FSINCOS:
2403 return LowerFSINCOS(Op, DAG);
2404 case ISD::MUL:
2405 return LowerMUL(Op, DAG);
2406 case ISD::INTRINSIC_WO_CHAIN:
2407 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2408 }
2409 }
2410
2411 //===----------------------------------------------------------------------===//
2412 // Calling Convention Implementation
2413 //===----------------------------------------------------------------------===//
2414
2415 #include "AArch64GenCallingConv.inc"
2416
2417 /// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const2418 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2419 bool IsVarArg) const {
2420 switch (CC) {
2421 default:
2422 llvm_unreachable("Unsupported calling convention.");
2423 case CallingConv::WebKit_JS:
2424 return CC_AArch64_WebKit_JS;
2425 case CallingConv::GHC:
2426 return CC_AArch64_GHC;
2427 case CallingConv::C:
2428 case CallingConv::Fast:
2429 case CallingConv::PreserveMost:
2430 case CallingConv::CXX_FAST_TLS:
2431 if (!Subtarget->isTargetDarwin())
2432 return CC_AArch64_AAPCS;
2433 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS;
2434 }
2435 }
2436
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2437 SDValue AArch64TargetLowering::LowerFormalArguments(
2438 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2439 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2440 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2441 MachineFunction &MF = DAG.getMachineFunction();
2442 MachineFrameInfo *MFI = MF.getFrameInfo();
2443
2444 // Assign locations to all of the incoming arguments.
2445 SmallVector<CCValAssign, 16> ArgLocs;
2446 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2447 *DAG.getContext());
2448
2449 // At this point, Ins[].VT may already be promoted to i32. To correctly
2450 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2451 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2452 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
2453 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
2454 // LocVT.
2455 unsigned NumArgs = Ins.size();
2456 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2457 unsigned CurArgIdx = 0;
2458 for (unsigned i = 0; i != NumArgs; ++i) {
2459 MVT ValVT = Ins[i].VT;
2460 if (Ins[i].isOrigArg()) {
2461 std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx);
2462 CurArgIdx = Ins[i].getOrigArgIndex();
2463
2464 // Get type of the original argument.
2465 EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(),
2466 /*AllowUnknown*/ true);
2467 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other;
2468 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2469 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2470 ValVT = MVT::i8;
2471 else if (ActualMVT == MVT::i16)
2472 ValVT = MVT::i16;
2473 }
2474 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2475 bool Res =
2476 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo);
2477 assert(!Res && "Call operand has unhandled type");
2478 (void)Res;
2479 }
2480 assert(ArgLocs.size() == Ins.size());
2481 SmallVector<SDValue, 16> ArgValues;
2482 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2483 CCValAssign &VA = ArgLocs[i];
2484
2485 if (Ins[i].Flags.isByVal()) {
2486 // Byval is used for HFAs in the PCS, but the system should work in a
2487 // non-compliant manner for larger structs.
2488 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2489 int Size = Ins[i].Flags.getByValSize();
2490 unsigned NumRegs = (Size + 7) / 8;
2491
2492 // FIXME: This works on big-endian for composite byvals, which are the common
2493 // case. It should also work for fundamental types too.
2494 unsigned FrameIdx =
2495 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false);
2496 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT);
2497 InVals.push_back(FrameIdxN);
2498
2499 continue;
2500 }
2501
2502 if (VA.isRegLoc()) {
2503 // Arguments stored in registers.
2504 EVT RegVT = VA.getLocVT();
2505
2506 SDValue ArgValue;
2507 const TargetRegisterClass *RC;
2508
2509 if (RegVT == MVT::i32)
2510 RC = &AArch64::GPR32RegClass;
2511 else if (RegVT == MVT::i64)
2512 RC = &AArch64::GPR64RegClass;
2513 else if (RegVT == MVT::f16)
2514 RC = &AArch64::FPR16RegClass;
2515 else if (RegVT == MVT::f32)
2516 RC = &AArch64::FPR32RegClass;
2517 else if (RegVT == MVT::f64 || RegVT.is64BitVector())
2518 RC = &AArch64::FPR64RegClass;
2519 else if (RegVT == MVT::f128 || RegVT.is128BitVector())
2520 RC = &AArch64::FPR128RegClass;
2521 else
2522 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2523
2524 // Transform the arguments in physical registers into virtual ones.
2525 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2526 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
2527
2528 // If this is an 8, 16 or 32-bit value, it is really passed promoted
2529 // to 64 bits. Insert an assert[sz]ext to capture this, then
2530 // truncate to the right size.
2531 switch (VA.getLocInfo()) {
2532 default:
2533 llvm_unreachable("Unknown loc info!");
2534 case CCValAssign::Full:
2535 break;
2536 case CCValAssign::BCvt:
2537 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue);
2538 break;
2539 case CCValAssign::AExt:
2540 case CCValAssign::SExt:
2541 case CCValAssign::ZExt:
2542 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt
2543 // nodes after our lowering.
2544 assert(RegVT == Ins[i].VT && "incorrect register location selected");
2545 break;
2546 }
2547
2548 InVals.push_back(ArgValue);
2549
2550 } else { // VA.isRegLoc()
2551 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem");
2552 unsigned ArgOffset = VA.getLocMemOffset();
2553 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8;
2554
2555 uint32_t BEAlign = 0;
2556 if (!Subtarget->isLittleEndian() && ArgSize < 8 &&
2557 !Ins[i].Flags.isInConsecutiveRegs())
2558 BEAlign = 8 - ArgSize;
2559
2560 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true);
2561
2562 // Create load nodes to retrieve arguments from the stack.
2563 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
2564 SDValue ArgValue;
2565
2566 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2567 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2568 MVT MemVT = VA.getValVT();
2569
2570 switch (VA.getLocInfo()) {
2571 default:
2572 break;
2573 case CCValAssign::BCvt:
2574 MemVT = VA.getLocVT();
2575 break;
2576 case CCValAssign::SExt:
2577 ExtType = ISD::SEXTLOAD;
2578 break;
2579 case CCValAssign::ZExt:
2580 ExtType = ISD::ZEXTLOAD;
2581 break;
2582 case CCValAssign::AExt:
2583 ExtType = ISD::EXTLOAD;
2584 break;
2585 }
2586
2587 ArgValue = DAG.getExtLoad(
2588 ExtType, DL, VA.getLocVT(), Chain, FIN,
2589 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
2590 MemVT, false, false, false, 0);
2591
2592 InVals.push_back(ArgValue);
2593 }
2594 }
2595
2596 // varargs
2597 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2598 if (isVarArg) {
2599 if (!Subtarget->isTargetDarwin()) {
2600 // The AAPCS variadic function ABI is identical to the non-variadic
2601 // one. As a result there may be more arguments in registers and we should
2602 // save them for future reference.
2603 saveVarArgRegisters(CCInfo, DAG, DL, Chain);
2604 }
2605
2606 // This will point to the next argument passed via stack.
2607 unsigned StackOffset = CCInfo.getNextStackOffset();
2608 // We currently pass all varargs at 8-byte alignment.
2609 StackOffset = ((StackOffset + 7) & ~7);
2610 FuncInfo->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true));
2611 }
2612
2613 unsigned StackArgSize = CCInfo.getNextStackOffset();
2614 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2615 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
2616 // This is a non-standard ABI so by fiat I say we're allowed to make full
2617 // use of the stack area to be popped, which must be aligned to 16 bytes in
2618 // any case:
2619 StackArgSize = alignTo(StackArgSize, 16);
2620
2621 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
2622 // a multiple of 16.
2623 FuncInfo->setArgumentStackToRestore(StackArgSize);
2624
2625 // This realignment carries over to the available bytes below. Our own
2626 // callers will guarantee the space is free by giving an aligned value to
2627 // CALLSEQ_START.
2628 }
2629 // Even if we're not expected to free up the space, it's useful to know how
2630 // much is there while considering tail calls (because we can reuse it).
2631 FuncInfo->setBytesInStackArgArea(StackArgSize);
2632
2633 return Chain;
2634 }
2635
saveVarArgRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & DL,SDValue & Chain) const2636 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo,
2637 SelectionDAG &DAG,
2638 const SDLoc &DL,
2639 SDValue &Chain) const {
2640 MachineFunction &MF = DAG.getMachineFunction();
2641 MachineFrameInfo *MFI = MF.getFrameInfo();
2642 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2643 auto PtrVT = getPointerTy(DAG.getDataLayout());
2644
2645 SmallVector<SDValue, 8> MemOps;
2646
2647 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2,
2648 AArch64::X3, AArch64::X4, AArch64::X5,
2649 AArch64::X6, AArch64::X7 };
2650 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs);
2651 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs);
2652
2653 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR);
2654 int GPRIdx = 0;
2655 if (GPRSaveSize != 0) {
2656 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
2657
2658 SDValue FIN = DAG.getFrameIndex(GPRIdx, PtrVT);
2659
2660 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) {
2661 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass);
2662 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
2663 SDValue Store = DAG.getStore(
2664 Val.getValue(1), DL, Val, FIN,
2665 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 8), false,
2666 false, 0);
2667 MemOps.push_back(Store);
2668 FIN =
2669 DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT));
2670 }
2671 }
2672 FuncInfo->setVarArgsGPRIndex(GPRIdx);
2673 FuncInfo->setVarArgsGPRSize(GPRSaveSize);
2674
2675 if (Subtarget->hasFPARMv8()) {
2676 static const MCPhysReg FPRArgRegs[] = {
2677 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
2678 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7};
2679 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs);
2680 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs);
2681
2682 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
2683 int FPRIdx = 0;
2684 if (FPRSaveSize != 0) {
2685 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
2686
2687 SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT);
2688
2689 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
2690 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass);
2691 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
2692
2693 SDValue Store = DAG.getStore(
2694 Val.getValue(1), DL, Val, FIN,
2695 MachinePointerInfo::getStack(DAG.getMachineFunction(), i * 16),
2696 false, false, 0);
2697 MemOps.push_back(Store);
2698 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
2699 DAG.getConstant(16, DL, PtrVT));
2700 }
2701 }
2702 FuncInfo->setVarArgsFPRIndex(FPRIdx);
2703 FuncInfo->setVarArgsFPRSize(FPRSaveSize);
2704 }
2705
2706 if (!MemOps.empty()) {
2707 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2708 }
2709 }
2710
2711 /// LowerCallResult - Lower the result values of a call into the
2712 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const2713 SDValue AArch64TargetLowering::LowerCallResult(
2714 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2715 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2716 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2717 SDValue ThisVal) const {
2718 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
2719 ? RetCC_AArch64_WebKit_JS
2720 : RetCC_AArch64_AAPCS;
2721 // Assign locations to each value returned by this call.
2722 SmallVector<CCValAssign, 16> RVLocs;
2723 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2724 *DAG.getContext());
2725 CCInfo.AnalyzeCallResult(Ins, RetCC);
2726
2727 // Copy all of the result registers out of their specified physreg.
2728 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2729 CCValAssign VA = RVLocs[i];
2730
2731 // Pass 'this' value directly from the argument to return value, to avoid
2732 // reg unit interference
2733 if (i == 0 && isThisReturn) {
2734 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&
2735 "unexpected return calling convention register assignment");
2736 InVals.push_back(ThisVal);
2737 continue;
2738 }
2739
2740 SDValue Val =
2741 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2742 Chain = Val.getValue(1);
2743 InFlag = Val.getValue(2);
2744
2745 switch (VA.getLocInfo()) {
2746 default:
2747 llvm_unreachable("Unknown loc info!");
2748 case CCValAssign::Full:
2749 break;
2750 case CCValAssign::BCvt:
2751 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2752 break;
2753 }
2754
2755 InVals.push_back(Val);
2756 }
2757
2758 return Chain;
2759 }
2760
isEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2761 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
2762 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2763 const SmallVectorImpl<ISD::OutputArg> &Outs,
2764 const SmallVectorImpl<SDValue> &OutVals,
2765 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2766 // For CallingConv::C this function knows whether the ABI needs
2767 // changing. That's not true for other conventions so they will have to opt in
2768 // manually.
2769 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
2770 return false;
2771
2772 MachineFunction &MF = DAG.getMachineFunction();
2773 const Function *CallerF = MF.getFunction();
2774 CallingConv::ID CallerCC = CallerF->getCallingConv();
2775 bool CCMatch = CallerCC == CalleeCC;
2776
2777 // Byval parameters hand the function a pointer directly into the stack area
2778 // we want to reuse during a tail call. Working around this *is* possible (see
2779 // X86) but less efficient and uglier in LowerCall.
2780 for (Function::const_arg_iterator i = CallerF->arg_begin(),
2781 e = CallerF->arg_end();
2782 i != e; ++i)
2783 if (i->hasByValAttr())
2784 return false;
2785
2786 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2787 return IsTailCallConvention(CalleeCC) && CCMatch;
2788 }
2789
2790 // Externally-defined functions with weak linkage should not be
2791 // tail-called on AArch64 when the OS does not support dynamic
2792 // pre-emption of symbols, as the AAELF spec requires normal calls
2793 // to undefined weak functions to be replaced with a NOP or jump to the
2794 // next instruction. The behaviour of branch instructions in this
2795 // situation (as used for tail calls) is implementation-defined, so we
2796 // cannot rely on the linker replacing the tail call with a return.
2797 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2798 const GlobalValue *GV = G->getGlobal();
2799 const Triple &TT = getTargetMachine().getTargetTriple();
2800 if (GV->hasExternalWeakLinkage() &&
2801 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2802 return false;
2803 }
2804
2805 // Now we search for cases where we can use a tail call without changing the
2806 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
2807 // concept.
2808
2809 // I want anyone implementing a new calling convention to think long and hard
2810 // about this assert.
2811 assert((!isVarArg || CalleeCC == CallingConv::C) &&
2812 "Unexpected variadic calling convention");
2813
2814 LLVMContext &C = *DAG.getContext();
2815 if (isVarArg && !Outs.empty()) {
2816 // At least two cases here: if caller is fastcc then we can't have any
2817 // memory arguments (we'd be expected to clean up the stack afterwards). If
2818 // caller is C then we could potentially use its argument area.
2819
2820 // FIXME: for now we take the most conservative of these in both cases:
2821 // disallow all variadic memory operands.
2822 SmallVector<CCValAssign, 16> ArgLocs;
2823 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2824
2825 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true));
2826 for (const CCValAssign &ArgLoc : ArgLocs)
2827 if (!ArgLoc.isRegLoc())
2828 return false;
2829 }
2830
2831 // Check that the call results are passed in the same way.
2832 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2833 CCAssignFnForCall(CalleeCC, isVarArg),
2834 CCAssignFnForCall(CallerCC, isVarArg)))
2835 return false;
2836 // The callee has to preserve all registers the caller needs to preserve.
2837 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
2838 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2839 if (!CCMatch) {
2840 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2841 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2842 return false;
2843 }
2844
2845 // Nothing more to check if the callee is taking no arguments
2846 if (Outs.empty())
2847 return true;
2848
2849 SmallVector<CCValAssign, 16> ArgLocs;
2850 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2851
2852 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2853
2854 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2855
2856 // If the stack arguments for this call do not fit into our own save area then
2857 // the call cannot be made tail.
2858 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2859 return false;
2860
2861 const MachineRegisterInfo &MRI = MF.getRegInfo();
2862 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2863 return false;
2864
2865 return true;
2866 }
2867
addTokenForArgument(SDValue Chain,SelectionDAG & DAG,MachineFrameInfo * MFI,int ClobberedFI) const2868 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
2869 SelectionDAG &DAG,
2870 MachineFrameInfo *MFI,
2871 int ClobberedFI) const {
2872 SmallVector<SDValue, 8> ArgChains;
2873 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
2874 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
2875
2876 // Include the original chain at the beginning of the list. When this is
2877 // used by target LowerCall hooks, this helps legalize find the
2878 // CALLSEQ_BEGIN node.
2879 ArgChains.push_back(Chain);
2880
2881 // Add a chain value for each stack argument corresponding
2882 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
2883 UE = DAG.getEntryNode().getNode()->use_end();
2884 U != UE; ++U)
2885 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2886 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2887 if (FI->getIndex() < 0) {
2888 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
2889 int64_t InLastByte = InFirstByte;
2890 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
2891
2892 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
2893 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
2894 ArgChains.push_back(SDValue(L, 1));
2895 }
2896
2897 // Build a tokenfactor for all the chains.
2898 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
2899 }
2900
DoesCalleeRestoreStack(CallingConv::ID CallCC,bool TailCallOpt) const2901 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
2902 bool TailCallOpt) const {
2903 return CallCC == CallingConv::Fast && TailCallOpt;
2904 }
2905
IsTailCallConvention(CallingConv::ID CallCC) const2906 bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
2907 return CallCC == CallingConv::Fast ||
2908 CallCC == CallingConv::PreserveMost;
2909 }
2910
2911 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
2912 /// and add input and output parameter nodes.
2913 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2914 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
2915 SmallVectorImpl<SDValue> &InVals) const {
2916 SelectionDAG &DAG = CLI.DAG;
2917 SDLoc &DL = CLI.DL;
2918 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2919 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2920 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2921 SDValue Chain = CLI.Chain;
2922 SDValue Callee = CLI.Callee;
2923 bool &IsTailCall = CLI.IsTailCall;
2924 CallingConv::ID CallConv = CLI.CallConv;
2925 bool IsVarArg = CLI.IsVarArg;
2926
2927 MachineFunction &MF = DAG.getMachineFunction();
2928 bool IsThisReturn = false;
2929
2930 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
2931 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2932 bool IsSibCall = false;
2933
2934 if (IsTailCall) {
2935 // Check if it's really possible to do a tail call.
2936 IsTailCall = isEligibleForTailCallOptimization(
2937 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2938 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall())
2939 report_fatal_error("failed to perform tail call elimination on a call "
2940 "site marked musttail");
2941
2942 // A sibling call is one where we're under the usual C ABI and not planning
2943 // to change that but can still do a tail call:
2944 if (!TailCallOpt && IsTailCall)
2945 IsSibCall = true;
2946
2947 if (IsTailCall)
2948 ++NumTailCalls;
2949 }
2950
2951 // Analyze operands of the call, assigning locations to each operand.
2952 SmallVector<CCValAssign, 16> ArgLocs;
2953 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
2954 *DAG.getContext());
2955
2956 if (IsVarArg) {
2957 // Handle fixed and variable vector arguments differently.
2958 // Variable vector arguments always go into memory.
2959 unsigned NumArgs = Outs.size();
2960
2961 for (unsigned i = 0; i != NumArgs; ++i) {
2962 MVT ArgVT = Outs[i].VT;
2963 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2964 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv,
2965 /*IsVarArg=*/ !Outs[i].IsFixed);
2966 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
2967 assert(!Res && "Call operand has unhandled type");
2968 (void)Res;
2969 }
2970 } else {
2971 // At this point, Outs[].VT may already be promoted to i32. To correctly
2972 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
2973 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
2974 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
2975 // we use a special version of AnalyzeCallOperands to pass in ValVT and
2976 // LocVT.
2977 unsigned NumArgs = Outs.size();
2978 for (unsigned i = 0; i != NumArgs; ++i) {
2979 MVT ValVT = Outs[i].VT;
2980 // Get type of the original argument.
2981 EVT ActualVT = getValueType(DAG.getDataLayout(),
2982 CLI.getArgs()[Outs[i].OrigArgIndex].Ty,
2983 /*AllowUnknown*/ true);
2984 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT;
2985 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2986 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
2987 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8)
2988 ValVT = MVT::i8;
2989 else if (ActualMVT == MVT::i16)
2990 ValVT = MVT::i16;
2991
2992 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false);
2993 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo);
2994 assert(!Res && "Call operand has unhandled type");
2995 (void)Res;
2996 }
2997 }
2998
2999 // Get a count of how many bytes are to be pushed on the stack.
3000 unsigned NumBytes = CCInfo.getNextStackOffset();
3001
3002 if (IsSibCall) {
3003 // Since we're not changing the ABI to make this a tail call, the memory
3004 // operands are already available in the caller's incoming argument space.
3005 NumBytes = 0;
3006 }
3007
3008 // FPDiff is the byte offset of the call's argument area from the callee's.
3009 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3010 // by this amount for a tail call. In a sibling call it must be 0 because the
3011 // caller will deallocate the entire stack and the callee still expects its
3012 // arguments to begin at SP+0. Completely unused for non-tail calls.
3013 int FPDiff = 0;
3014
3015 if (IsTailCall && !IsSibCall) {
3016 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
3017
3018 // Since callee will pop argument stack as a tail call, we must keep the
3019 // popped size 16-byte aligned.
3020 NumBytes = alignTo(NumBytes, 16);
3021
3022 // FPDiff will be negative if this tail call requires more space than we
3023 // would automatically have in our incoming argument space. Positive if we
3024 // can actually shrink the stack.
3025 FPDiff = NumReusableBytes - NumBytes;
3026
3027 // The stack pointer must be 16-byte aligned at all times it's used for a
3028 // memory operation, which in practice means at *all* times and in
3029 // particular across call boundaries. Therefore our own arguments started at
3030 // a 16-byte aligned SP and the delta applied for the tail call should
3031 // satisfy the same constraint.
3032 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
3033 }
3034
3035 // Adjust the stack pointer for the new arguments...
3036 // These operations are automatically eliminated by the prolog/epilog pass
3037 if (!IsSibCall)
3038 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL,
3039 true),
3040 DL);
3041
3042 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP,
3043 getPointerTy(DAG.getDataLayout()));
3044
3045 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3046 SmallVector<SDValue, 8> MemOpChains;
3047 auto PtrVT = getPointerTy(DAG.getDataLayout());
3048
3049 // Walk the register/memloc assignments, inserting copies/loads.
3050 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
3051 ++i, ++realArgIdx) {
3052 CCValAssign &VA = ArgLocs[i];
3053 SDValue Arg = OutVals[realArgIdx];
3054 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3055
3056 // Promote the value if needed.
3057 switch (VA.getLocInfo()) {
3058 default:
3059 llvm_unreachable("Unknown loc info!");
3060 case CCValAssign::Full:
3061 break;
3062 case CCValAssign::SExt:
3063 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3064 break;
3065 case CCValAssign::ZExt:
3066 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3067 break;
3068 case CCValAssign::AExt:
3069 if (Outs[realArgIdx].ArgVT == MVT::i1) {
3070 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3071 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3072 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg);
3073 }
3074 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3075 break;
3076 case CCValAssign::BCvt:
3077 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3078 break;
3079 case CCValAssign::FPExt:
3080 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3081 break;
3082 }
3083
3084 if (VA.isRegLoc()) {
3085 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) {
3086 assert(VA.getLocVT() == MVT::i64 &&
3087 "unexpected calling convention register assignment");
3088 assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&
3089 "unexpected use of 'returned'");
3090 IsThisReturn = true;
3091 }
3092 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3093 } else {
3094 assert(VA.isMemLoc());
3095
3096 SDValue DstAddr;
3097 MachinePointerInfo DstInfo;
3098
3099 // FIXME: This works on big-endian for composite byvals, which are the
3100 // common case. It should also work for fundamental types too.
3101 uint32_t BEAlign = 0;
3102 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8
3103 : VA.getValVT().getSizeInBits();
3104 OpSize = (OpSize + 7) / 8;
3105 if (!Subtarget->isLittleEndian() && !Flags.isByVal() &&
3106 !Flags.isInConsecutiveRegs()) {
3107 if (OpSize < 8)
3108 BEAlign = 8 - OpSize;
3109 }
3110 unsigned LocMemOffset = VA.getLocMemOffset();
3111 int32_t Offset = LocMemOffset + BEAlign;
3112 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3113 PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3114
3115 if (IsTailCall) {
3116 Offset = Offset + FPDiff;
3117 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3118
3119 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3120 DstInfo =
3121 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
3122
3123 // Make sure any stack arguments overlapping with where we're storing
3124 // are loaded before this eventual operation. Otherwise they'll be
3125 // clobbered.
3126 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
3127 } else {
3128 SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL);
3129
3130 DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff);
3131 DstInfo = MachinePointerInfo::getStack(DAG.getMachineFunction(),
3132 LocMemOffset);
3133 }
3134
3135 if (Outs[i].Flags.isByVal()) {
3136 SDValue SizeNode =
3137 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64);
3138 SDValue Cpy = DAG.getMemcpy(
3139 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
3140 /*isVol = */ false, /*AlwaysInline = */ false,
3141 /*isTailCall = */ false,
3142 DstInfo, MachinePointerInfo());
3143
3144 MemOpChains.push_back(Cpy);
3145 } else {
3146 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3147 // promoted to a legal register type i32, we should truncate Arg back to
3148 // i1/i8/i16.
3149 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 ||
3150 VA.getValVT() == MVT::i16)
3151 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg);
3152
3153 SDValue Store =
3154 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0);
3155 MemOpChains.push_back(Store);
3156 }
3157 }
3158 }
3159
3160 if (!MemOpChains.empty())
3161 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3162
3163 // Build a sequence of copy-to-reg nodes chained together with token chain
3164 // and flag operands which copy the outgoing args into the appropriate regs.
3165 SDValue InFlag;
3166 for (auto &RegToPass : RegsToPass) {
3167 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3168 RegToPass.second, InFlag);
3169 InFlag = Chain.getValue(1);
3170 }
3171
3172 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3173 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3174 // node so that legalize doesn't hack it.
3175 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
3176 Subtarget->isTargetMachO()) {
3177 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3178 const GlobalValue *GV = G->getGlobal();
3179 bool InternalLinkage = GV->hasInternalLinkage();
3180 if (InternalLinkage)
3181 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3182 else {
3183 Callee =
3184 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_GOT);
3185 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3186 }
3187 } else if (ExternalSymbolSDNode *S =
3188 dyn_cast<ExternalSymbolSDNode>(Callee)) {
3189 const char *Sym = S->getSymbol();
3190 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT);
3191 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee);
3192 }
3193 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3194 const GlobalValue *GV = G->getGlobal();
3195 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0);
3196 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3197 const char *Sym = S->getSymbol();
3198 Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0);
3199 }
3200
3201 // We don't usually want to end the call-sequence here because we would tidy
3202 // the frame up *after* the call, however in the ABI-changing tail-call case
3203 // we've carefully laid out the parameters so that when sp is reset they'll be
3204 // in the correct location.
3205 if (IsTailCall && !IsSibCall) {
3206 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3207 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
3208 InFlag = Chain.getValue(1);
3209 }
3210
3211 std::vector<SDValue> Ops;
3212 Ops.push_back(Chain);
3213 Ops.push_back(Callee);
3214
3215 if (IsTailCall) {
3216 // Each tail call may have to adjust the stack by a different amount, so
3217 // this information must travel along with the operation for eventual
3218 // consumption by emitEpilogue.
3219 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3220 }
3221
3222 // Add argument registers to the end of the list so that they are known live
3223 // into the call.
3224 for (auto &RegToPass : RegsToPass)
3225 Ops.push_back(DAG.getRegister(RegToPass.first,
3226 RegToPass.second.getValueType()));
3227
3228 // Add a register mask operand representing the call-preserved registers.
3229 const uint32_t *Mask;
3230 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3231 if (IsThisReturn) {
3232 // For 'this' returns, use the X0-preserving mask if applicable
3233 Mask = TRI->getThisReturnPreservedMask(MF, CallConv);
3234 if (!Mask) {
3235 IsThisReturn = false;
3236 Mask = TRI->getCallPreservedMask(MF, CallConv);
3237 }
3238 } else
3239 Mask = TRI->getCallPreservedMask(MF, CallConv);
3240
3241 assert(Mask && "Missing call preserved mask for calling convention");
3242 Ops.push_back(DAG.getRegisterMask(Mask));
3243
3244 if (InFlag.getNode())
3245 Ops.push_back(InFlag);
3246
3247 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3248
3249 // If we're doing a tall call, use a TC_RETURN here rather than an
3250 // actual call instruction.
3251 if (IsTailCall) {
3252 MF.getFrameInfo()->setHasTailCall();
3253 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops);
3254 }
3255
3256 // Returns a chain and a flag for retval copy to use.
3257 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops);
3258 InFlag = Chain.getValue(1);
3259
3260 uint64_t CalleePopBytes =
3261 DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0;
3262
3263 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
3264 DAG.getIntPtrConstant(CalleePopBytes, DL, true),
3265 InFlag, DL);
3266 if (!Ins.empty())
3267 InFlag = Chain.getValue(1);
3268
3269 // Handle result values, copying them out of physregs into vregs that we
3270 // return.
3271 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3272 InVals, IsThisReturn,
3273 IsThisReturn ? OutVals[0] : SDValue());
3274 }
3275
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const3276 bool AArch64TargetLowering::CanLowerReturn(
3277 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
3278 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3279 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3280 ? RetCC_AArch64_WebKit_JS
3281 : RetCC_AArch64_AAPCS;
3282 SmallVector<CCValAssign, 16> RVLocs;
3283 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3284 return CCInfo.CheckReturn(Outs, RetCC);
3285 }
3286
3287 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const3288 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3289 bool isVarArg,
3290 const SmallVectorImpl<ISD::OutputArg> &Outs,
3291 const SmallVectorImpl<SDValue> &OutVals,
3292 const SDLoc &DL, SelectionDAG &DAG) const {
3293 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS
3294 ? RetCC_AArch64_WebKit_JS
3295 : RetCC_AArch64_AAPCS;
3296 SmallVector<CCValAssign, 16> RVLocs;
3297 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3298 *DAG.getContext());
3299 CCInfo.AnalyzeReturn(Outs, RetCC);
3300
3301 // Copy the result values into the output registers.
3302 SDValue Flag;
3303 SmallVector<SDValue, 4> RetOps(1, Chain);
3304 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size();
3305 ++i, ++realRVLocIdx) {
3306 CCValAssign &VA = RVLocs[i];
3307 assert(VA.isRegLoc() && "Can only return in registers!");
3308 SDValue Arg = OutVals[realRVLocIdx];
3309
3310 switch (VA.getLocInfo()) {
3311 default:
3312 llvm_unreachable("Unknown loc info!");
3313 case CCValAssign::Full:
3314 if (Outs[i].ArgVT == MVT::i1) {
3315 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
3316 // value. This is strictly redundant on Darwin (which uses "zeroext
3317 // i1"), but will be optimised out before ISel.
3318 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg);
3319 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3320 }
3321 break;
3322 case CCValAssign::BCvt:
3323 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3324 break;
3325 }
3326
3327 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
3328 Flag = Chain.getValue(1);
3329 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3330 }
3331 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
3332 const MCPhysReg *I =
3333 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3334 if (I) {
3335 for (; *I; ++I) {
3336 if (AArch64::GPR64RegClass.contains(*I))
3337 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3338 else if (AArch64::FPR64RegClass.contains(*I))
3339 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3340 else
3341 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3342 }
3343 }
3344
3345 RetOps[0] = Chain; // Update chain.
3346
3347 // Add the flag if we have it.
3348 if (Flag.getNode())
3349 RetOps.push_back(Flag);
3350
3351 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps);
3352 }
3353
3354 //===----------------------------------------------------------------------===//
3355 // Other Lowering Code
3356 //===----------------------------------------------------------------------===//
3357
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3358 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op,
3359 SelectionDAG &DAG) const {
3360 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361 SDLoc DL(Op);
3362 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
3363 const GlobalValue *GV = GN->getGlobal();
3364 unsigned char OpFlags =
3365 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
3366
3367 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&
3368 "unexpected offset in global node");
3369
3370 // This also catched the large code model case for Darwin.
3371 if ((OpFlags & AArch64II::MO_GOT) != 0) {
3372 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
3373 // FIXME: Once remat is capable of dealing with instructions with register
3374 // operands, expand this into two nodes instead of using a wrapper node.
3375 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
3376 }
3377
3378 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
3379 const unsigned char MO_NC = AArch64II::MO_NC;
3380 return DAG.getNode(
3381 AArch64ISD::WrapperLarge, DL, PtrVT,
3382 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3),
3383 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
3384 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
3385 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
3386 } else {
3387 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and
3388 // the only correct model on Darwin.
3389 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3390 OpFlags | AArch64II::MO_PAGE);
3391 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC;
3392 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags);
3393
3394 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
3395 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
3396 }
3397 }
3398
3399 /// \brief Convert a TLS address reference into the correct sequence of loads
3400 /// and calls to compute the variable's address (for Darwin, currently) and
3401 /// return an SDValue containing the final node.
3402
3403 /// Darwin only has one TLS scheme which must be capable of dealing with the
3404 /// fully general situation, in the worst case. This means:
3405 /// + "extern __thread" declaration.
3406 /// + Defined in a possibly unknown dynamic library.
3407 ///
3408 /// The general system is that each __thread variable has a [3 x i64] descriptor
3409 /// which contains information used by the runtime to calculate the address. The
3410 /// only part of this the compiler needs to know about is the first xword, which
3411 /// contains a function pointer that must be called with the address of the
3412 /// entire descriptor in "x0".
3413 ///
3414 /// Since this descriptor may be in a different unit, in general even the
3415 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
3416 /// is:
3417 /// adrp x0, _var@TLVPPAGE
3418 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
3419 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
3420 /// ; the function pointer
3421 /// blr x1 ; Uses descriptor address in x0
3422 /// ; Address of _var is now in x0.
3423 ///
3424 /// If the address of _var's descriptor *is* known to the linker, then it can
3425 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
3426 /// a slight efficiency gain.
3427 SDValue
LowerDarwinGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3428 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op,
3429 SelectionDAG &DAG) const {
3430 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
3431
3432 SDLoc DL(Op);
3433 MVT PtrVT = getPointerTy(DAG.getDataLayout());
3434 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3435
3436 SDValue TLVPAddr =
3437 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3438 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr);
3439
3440 // The first entry in the descriptor is a function pointer that we must call
3441 // to obtain the address of the variable.
3442 SDValue Chain = DAG.getEntryNode();
3443 SDValue FuncTLVGet =
3444 DAG.getLoad(MVT::i64, DL, Chain, DescAddr,
3445 MachinePointerInfo::getGOT(DAG.getMachineFunction()), false,
3446 true, true, 8);
3447 Chain = FuncTLVGet.getValue(1);
3448
3449 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3450 MFI->setAdjustsStack(true);
3451
3452 // TLS calls preserve all registers except those that absolutely must be
3453 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
3454 // silly).
3455 const uint32_t *Mask =
3456 Subtarget->getRegisterInfo()->getTLSCallPreservedMask();
3457
3458 // Finally, we can make the call. This is just a degenerate version of a
3459 // normal AArch64 call node: x0 takes the address of the descriptor, and
3460 // returns the address of the variable in this thread.
3461 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue());
3462 Chain =
3463 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3464 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64),
3465 DAG.getRegisterMask(Mask), Chain.getValue(1));
3466 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1));
3467 }
3468
3469 /// When accessing thread-local variables under either the general-dynamic or
3470 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
3471 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
3472 /// is a function pointer to carry out the resolution.
3473 ///
3474 /// The sequence is:
3475 /// adrp x0, :tlsdesc:var
3476 /// ldr x1, [x0, #:tlsdesc_lo12:var]
3477 /// add x0, x0, #:tlsdesc_lo12:var
3478 /// .tlsdesccall var
3479 /// blr x1
3480 /// (TPIDR_EL0 offset now in x0)
3481 ///
3482 /// The above sequence must be produced unscheduled, to enable the linker to
3483 /// optimize/relax this sequence.
3484 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
3485 /// above sequence, and expanded really late in the compilation flow, to ensure
3486 /// the sequence is produced as per above.
LowerELFTLSDescCallSeq(SDValue SymAddr,const SDLoc & DL,SelectionDAG & DAG) const3487 SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr,
3488 const SDLoc &DL,
3489 SelectionDAG &DAG) const {
3490 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3491
3492 SDValue Chain = DAG.getEntryNode();
3493 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3494
3495 Chain =
3496 DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr});
3497 SDValue Glue = Chain.getValue(1);
3498
3499 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
3500 }
3501
3502 SDValue
LowerELFGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3503 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op,
3504 SelectionDAG &DAG) const {
3505 assert(Subtarget->isTargetELF() && "This function expects an ELF target");
3506 assert(getTargetMachine().getCodeModel() == CodeModel::Small &&
3507 "ELF TLS only supported in small memory model");
3508 // Different choices can be made for the maximum size of the TLS area for a
3509 // module. For the small address model, the default TLS size is 16MiB and the
3510 // maximum TLS size is 4GiB.
3511 // FIXME: add -mtls-size command line option and make it control the 16MiB
3512 // vs. 4GiB code sequence generation.
3513 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3514
3515 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
3516
3517 if (DAG.getTarget().Options.EmulatedTLS)
3518 return LowerToTLSEmulatedModel(GA, DAG);
3519
3520 if (!EnableAArch64ELFLocalDynamicTLSGeneration) {
3521 if (Model == TLSModel::LocalDynamic)
3522 Model = TLSModel::GeneralDynamic;
3523 }
3524
3525 SDValue TPOff;
3526 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3527 SDLoc DL(Op);
3528 const GlobalValue *GV = GA->getGlobal();
3529
3530 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
3531
3532 if (Model == TLSModel::LocalExec) {
3533 SDValue HiVar = DAG.getTargetGlobalAddress(
3534 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3535 SDValue LoVar = DAG.getTargetGlobalAddress(
3536 GV, DL, PtrVT, 0,
3537 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3538
3539 SDValue TPWithOff_lo =
3540 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase,
3541 HiVar,
3542 DAG.getTargetConstant(0, DL, MVT::i32)),
3543 0);
3544 SDValue TPWithOff =
3545 SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPWithOff_lo,
3546 LoVar,
3547 DAG.getTargetConstant(0, DL, MVT::i32)),
3548 0);
3549 return TPWithOff;
3550 } else if (Model == TLSModel::InitialExec) {
3551 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3552 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff);
3553 } else if (Model == TLSModel::LocalDynamic) {
3554 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
3555 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
3556 // the beginning of the module's TLS region, followed by a DTPREL offset
3557 // calculation.
3558
3559 // These accesses will need deduplicating if there's more than one.
3560 AArch64FunctionInfo *MFI =
3561 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
3562 MFI->incNumLocalDynamicTLSAccesses();
3563
3564 // The call needs a relocation too for linker relaxation. It doesn't make
3565 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3566 // the address.
3567 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
3568 AArch64II::MO_TLS);
3569
3570 // Now we can calculate the offset from TPIDR_EL0 to this module's
3571 // thread-local area.
3572 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3573
3574 // Now use :dtprel_whatever: operations to calculate this variable's offset
3575 // in its thread-storage area.
3576 SDValue HiVar = DAG.getTargetGlobalAddress(
3577 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12);
3578 SDValue LoVar = DAG.getTargetGlobalAddress(
3579 GV, DL, MVT::i64, 0,
3580 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
3581
3582 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar,
3583 DAG.getTargetConstant(0, DL, MVT::i32)),
3584 0);
3585 TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar,
3586 DAG.getTargetConstant(0, DL, MVT::i32)),
3587 0);
3588 } else if (Model == TLSModel::GeneralDynamic) {
3589 // The call needs a relocation too for linker relaxation. It doesn't make
3590 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
3591 // the address.
3592 SDValue SymAddr =
3593 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS);
3594
3595 // Finally we can make a call to calculate the offset from tpidr_el0.
3596 TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG);
3597 } else
3598 llvm_unreachable("Unsupported ELF TLS access model");
3599
3600 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
3601 }
3602
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3603 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
3604 SelectionDAG &DAG) const {
3605 if (Subtarget->isTargetDarwin())
3606 return LowerDarwinGlobalTLSAddress(Op, DAG);
3607 else if (Subtarget->isTargetELF())
3608 return LowerELFGlobalTLSAddress(Op, DAG);
3609
3610 llvm_unreachable("Unexpected platform trying to use TLS");
3611 }
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const3612 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3613 SDValue Chain = Op.getOperand(0);
3614 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3615 SDValue LHS = Op.getOperand(2);
3616 SDValue RHS = Op.getOperand(3);
3617 SDValue Dest = Op.getOperand(4);
3618 SDLoc dl(Op);
3619
3620 // Handle f128 first, since lowering it will result in comparing the return
3621 // value of a libcall against zero, which is just what the rest of LowerBR_CC
3622 // is expecting to deal with.
3623 if (LHS.getValueType() == MVT::f128) {
3624 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3625
3626 // If softenSetCCOperands returned a scalar, we need to compare the result
3627 // against zero to select between true and false values.
3628 if (!RHS.getNode()) {
3629 RHS = DAG.getConstant(0, dl, LHS.getValueType());
3630 CC = ISD::SETNE;
3631 }
3632 }
3633
3634 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
3635 // instruction.
3636 unsigned Opc = LHS.getOpcode();
3637 if (LHS.getResNo() == 1 && isOneConstant(RHS) &&
3638 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3639 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
3640 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
3641 "Unexpected condition code.");
3642 // Only lower legal XALUO ops.
3643 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
3644 return SDValue();
3645
3646 // The actual operation with overflow check.
3647 AArch64CC::CondCode OFCC;
3648 SDValue Value, Overflow;
3649 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG);
3650
3651 if (CC == ISD::SETNE)
3652 OFCC = getInvertedCondCode(OFCC);
3653 SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32);
3654
3655 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3656 Overflow);
3657 }
3658
3659 if (LHS.getValueType().isInteger()) {
3660 assert((LHS.getValueType() == RHS.getValueType()) &&
3661 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3662
3663 // If the RHS of the comparison is zero, we can potentially fold this
3664 // to a specialized branch.
3665 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS);
3666 if (RHSC && RHSC->getZExtValue() == 0) {
3667 if (CC == ISD::SETEQ) {
3668 // See if we can use a TBZ to fold in an AND as well.
3669 // TBZ has a smaller branch displacement than CBZ. If the offset is
3670 // out of bounds, a late MI-layer pass rewrites branches.
3671 // 403.gcc is an example that hits this case.
3672 if (LHS.getOpcode() == ISD::AND &&
3673 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3674 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3675 SDValue Test = LHS.getOperand(0);
3676 uint64_t Mask = LHS.getConstantOperandVal(1);
3677 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test,
3678 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3679 Dest);
3680 }
3681
3682 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest);
3683 } else if (CC == ISD::SETNE) {
3684 // See if we can use a TBZ to fold in an AND as well.
3685 // TBZ has a smaller branch displacement than CBZ. If the offset is
3686 // out of bounds, a late MI-layer pass rewrites branches.
3687 // 403.gcc is an example that hits this case.
3688 if (LHS.getOpcode() == ISD::AND &&
3689 isa<ConstantSDNode>(LHS.getOperand(1)) &&
3690 isPowerOf2_64(LHS.getConstantOperandVal(1))) {
3691 SDValue Test = LHS.getOperand(0);
3692 uint64_t Mask = LHS.getConstantOperandVal(1);
3693 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test,
3694 DAG.getConstant(Log2_64(Mask), dl, MVT::i64),
3695 Dest);
3696 }
3697
3698 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest);
3699 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) {
3700 // Don't combine AND since emitComparison converts the AND to an ANDS
3701 // (a.k.a. TST) and the test in the test bit and branch instruction
3702 // becomes redundant. This would also increase register pressure.
3703 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3704 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS,
3705 DAG.getConstant(Mask, dl, MVT::i64), Dest);
3706 }
3707 }
3708 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT &&
3709 LHS.getOpcode() != ISD::AND) {
3710 // Don't combine AND since emitComparison converts the AND to an ANDS
3711 // (a.k.a. TST) and the test in the test bit and branch instruction
3712 // becomes redundant. This would also increase register pressure.
3713 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1;
3714 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS,
3715 DAG.getConstant(Mask, dl, MVT::i64), Dest);
3716 }
3717
3718 SDValue CCVal;
3719 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
3720 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal,
3721 Cmp);
3722 }
3723
3724 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3725
3726 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
3727 // clean. Some of them require two branches to implement.
3728 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3729 AArch64CC::CondCode CC1, CC2;
3730 changeFPCCToAArch64CC(CC, CC1, CC2);
3731 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3732 SDValue BR1 =
3733 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp);
3734 if (CC2 != AArch64CC::AL) {
3735 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3736 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val,
3737 Cmp);
3738 }
3739
3740 return BR1;
3741 }
3742
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const3743 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op,
3744 SelectionDAG &DAG) const {
3745 EVT VT = Op.getValueType();
3746 SDLoc DL(Op);
3747
3748 SDValue In1 = Op.getOperand(0);
3749 SDValue In2 = Op.getOperand(1);
3750 EVT SrcVT = In2.getValueType();
3751
3752 if (SrcVT.bitsLT(VT))
3753 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2);
3754 else if (SrcVT.bitsGT(VT))
3755 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0, DL));
3756
3757 EVT VecVT;
3758 EVT EltVT;
3759 uint64_t EltMask;
3760 SDValue VecVal1, VecVal2;
3761 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) {
3762 EltVT = MVT::i32;
3763 VecVT = (VT == MVT::v2f32 ? MVT::v2i32 : MVT::v4i32);
3764 EltMask = 0x80000000ULL;
3765
3766 if (!VT.isVector()) {
3767 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3768 DAG.getUNDEF(VecVT), In1);
3769 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT,
3770 DAG.getUNDEF(VecVT), In2);
3771 } else {
3772 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3773 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3774 }
3775 } else if (VT == MVT::f64 || VT == MVT::v2f64) {
3776 EltVT = MVT::i64;
3777 VecVT = MVT::v2i64;
3778
3779 // We want to materialize a mask with the high bit set, but the AdvSIMD
3780 // immediate moves cannot materialize that in a single instruction for
3781 // 64-bit elements. Instead, materialize zero and then negate it.
3782 EltMask = 0;
3783
3784 if (!VT.isVector()) {
3785 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3786 DAG.getUNDEF(VecVT), In1);
3787 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT,
3788 DAG.getUNDEF(VecVT), In2);
3789 } else {
3790 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1);
3791 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2);
3792 }
3793 } else {
3794 llvm_unreachable("Invalid type for copysign!");
3795 }
3796
3797 SDValue BuildVec = DAG.getConstant(EltMask, DL, VecVT);
3798
3799 // If we couldn't materialize the mask above, then the mask vector will be
3800 // the zero vector, and we need to negate it here.
3801 if (VT == MVT::f64 || VT == MVT::v2f64) {
3802 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec);
3803 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec);
3804 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec);
3805 }
3806
3807 SDValue Sel =
3808 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec);
3809
3810 if (VT == MVT::f32)
3811 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel);
3812 else if (VT == MVT::f64)
3813 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel);
3814 else
3815 return DAG.getNode(ISD::BITCAST, DL, VT, Sel);
3816 }
3817
LowerCTPOP(SDValue Op,SelectionDAG & DAG) const3818 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
3819 if (DAG.getMachineFunction().getFunction()->hasFnAttribute(
3820 Attribute::NoImplicitFloat))
3821 return SDValue();
3822
3823 if (!Subtarget->hasNEON())
3824 return SDValue();
3825
3826 // While there is no integer popcount instruction, it can
3827 // be more efficiently lowered to the following sequence that uses
3828 // AdvSIMD registers/instructions as long as the copies to/from
3829 // the AdvSIMD registers are cheap.
3830 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
3831 // CNT V0.8B, V0.8B // 8xbyte pop-counts
3832 // ADDV B0, V0.8B // sum 8xbyte pop-counts
3833 // UMOV X0, V0.B[0] // copy byte result back to integer reg
3834 SDValue Val = Op.getOperand(0);
3835 SDLoc DL(Op);
3836 EVT VT = Op.getValueType();
3837
3838 if (VT == MVT::i32)
3839 Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
3840 Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val);
3841
3842 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val);
3843 SDValue UaddLV = DAG.getNode(
3844 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32,
3845 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop);
3846
3847 if (VT == MVT::i64)
3848 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV);
3849 return UaddLV;
3850 }
3851
LowerSETCC(SDValue Op,SelectionDAG & DAG) const3852 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3853
3854 if (Op.getValueType().isVector())
3855 return LowerVSETCC(Op, DAG);
3856
3857 SDValue LHS = Op.getOperand(0);
3858 SDValue RHS = Op.getOperand(1);
3859 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3860 SDLoc dl(Op);
3861
3862 // We chose ZeroOrOneBooleanContents, so use zero and one.
3863 EVT VT = Op.getValueType();
3864 SDValue TVal = DAG.getConstant(1, dl, VT);
3865 SDValue FVal = DAG.getConstant(0, dl, VT);
3866
3867 // Handle f128 first, since one possible outcome is a normal integer
3868 // comparison which gets picked up by the next if statement.
3869 if (LHS.getValueType() == MVT::f128) {
3870 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3871
3872 // If softenSetCCOperands returned a scalar, use it.
3873 if (!RHS.getNode()) {
3874 assert(LHS.getValueType() == Op.getValueType() &&
3875 "Unexpected setcc expansion!");
3876 return LHS;
3877 }
3878 }
3879
3880 if (LHS.getValueType().isInteger()) {
3881 SDValue CCVal;
3882 SDValue Cmp =
3883 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl);
3884
3885 // Note that we inverted the condition above, so we reverse the order of
3886 // the true and false operands here. This will allow the setcc to be
3887 // matched to a single CSINC instruction.
3888 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp);
3889 }
3890
3891 // Now we know we're dealing with FP values.
3892 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3893
3894 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
3895 // and do the comparison.
3896 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
3897
3898 AArch64CC::CondCode CC1, CC2;
3899 changeFPCCToAArch64CC(CC, CC1, CC2);
3900 if (CC2 == AArch64CC::AL) {
3901 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2);
3902 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3903
3904 // Note that we inverted the condition above, so we reverse the order of
3905 // the true and false operands here. This will allow the setcc to be
3906 // matched to a single CSINC instruction.
3907 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp);
3908 } else {
3909 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
3910 // totally clean. Some of them require two CSELs to implement. As is in
3911 // this case, we emit the first CSEL and then emit a second using the output
3912 // of the first as the RHS. We're effectively OR'ing the two CC's together.
3913
3914 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
3915 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
3916 SDValue CS1 =
3917 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
3918
3919 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
3920 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
3921 }
3922 }
3923
LowerSELECT_CC(ISD::CondCode CC,SDValue LHS,SDValue RHS,SDValue TVal,SDValue FVal,const SDLoc & dl,SelectionDAG & DAG) const3924 SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS,
3925 SDValue RHS, SDValue TVal,
3926 SDValue FVal, const SDLoc &dl,
3927 SelectionDAG &DAG) const {
3928 // Handle f128 first, because it will result in a comparison of some RTLIB
3929 // call result against zero.
3930 if (LHS.getValueType() == MVT::f128) {
3931 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
3932
3933 // If softenSetCCOperands returned a scalar, we need to compare the result
3934 // against zero to select between true and false values.
3935 if (!RHS.getNode()) {
3936 RHS = DAG.getConstant(0, dl, LHS.getValueType());
3937 CC = ISD::SETNE;
3938 }
3939 }
3940
3941 // Also handle f16, for which we need to do a f32 comparison.
3942 if (LHS.getValueType() == MVT::f16) {
3943 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS);
3944 RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS);
3945 }
3946
3947 // Next, handle integers.
3948 if (LHS.getValueType().isInteger()) {
3949 assert((LHS.getValueType() == RHS.getValueType()) &&
3950 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64));
3951
3952 unsigned Opcode = AArch64ISD::CSEL;
3953
3954 // If both the TVal and the FVal are constants, see if we can swap them in
3955 // order to for a CSINV or CSINC out of them.
3956 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal);
3957 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal);
3958
3959 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) {
3960 std::swap(TVal, FVal);
3961 std::swap(CTVal, CFVal);
3962 CC = ISD::getSetCCInverse(CC, true);
3963 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) {
3964 std::swap(TVal, FVal);
3965 std::swap(CTVal, CFVal);
3966 CC = ISD::getSetCCInverse(CC, true);
3967 } else if (TVal.getOpcode() == ISD::XOR) {
3968 // If TVal is a NOT we want to swap TVal and FVal so that we can match
3969 // with a CSINV rather than a CSEL.
3970 if (isAllOnesConstant(TVal.getOperand(1))) {
3971 std::swap(TVal, FVal);
3972 std::swap(CTVal, CFVal);
3973 CC = ISD::getSetCCInverse(CC, true);
3974 }
3975 } else if (TVal.getOpcode() == ISD::SUB) {
3976 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
3977 // that we can match with a CSNEG rather than a CSEL.
3978 if (isNullConstant(TVal.getOperand(0))) {
3979 std::swap(TVal, FVal);
3980 std::swap(CTVal, CFVal);
3981 CC = ISD::getSetCCInverse(CC, true);
3982 }
3983 } else if (CTVal && CFVal) {
3984 const int64_t TrueVal = CTVal->getSExtValue();
3985 const int64_t FalseVal = CFVal->getSExtValue();
3986 bool Swap = false;
3987
3988 // If both TVal and FVal are constants, see if FVal is the
3989 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
3990 // instead of a CSEL in that case.
3991 if (TrueVal == ~FalseVal) {
3992 Opcode = AArch64ISD::CSINV;
3993 } else if (TrueVal == -FalseVal) {
3994 Opcode = AArch64ISD::CSNEG;
3995 } else if (TVal.getValueType() == MVT::i32) {
3996 // If our operands are only 32-bit wide, make sure we use 32-bit
3997 // arithmetic for the check whether we can use CSINC. This ensures that
3998 // the addition in the check will wrap around properly in case there is
3999 // an overflow (which would not be the case if we do the check with
4000 // 64-bit arithmetic).
4001 const uint32_t TrueVal32 = CTVal->getZExtValue();
4002 const uint32_t FalseVal32 = CFVal->getZExtValue();
4003
4004 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) {
4005 Opcode = AArch64ISD::CSINC;
4006
4007 if (TrueVal32 > FalseVal32) {
4008 Swap = true;
4009 }
4010 }
4011 // 64-bit check whether we can use CSINC.
4012 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) {
4013 Opcode = AArch64ISD::CSINC;
4014
4015 if (TrueVal > FalseVal) {
4016 Swap = true;
4017 }
4018 }
4019
4020 // Swap TVal and FVal if necessary.
4021 if (Swap) {
4022 std::swap(TVal, FVal);
4023 std::swap(CTVal, CFVal);
4024 CC = ISD::getSetCCInverse(CC, true);
4025 }
4026
4027 if (Opcode != AArch64ISD::CSEL) {
4028 // Drop FVal since we can get its value by simply inverting/negating
4029 // TVal.
4030 FVal = TVal;
4031 }
4032 }
4033
4034 SDValue CCVal;
4035 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl);
4036
4037 EVT VT = TVal.getValueType();
4038 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp);
4039 }
4040
4041 // Now we know we're dealing with FP values.
4042 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4043 assert(LHS.getValueType() == RHS.getValueType());
4044 EVT VT = TVal.getValueType();
4045 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
4046
4047 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4048 // clean. Some of them require two CSELs to implement.
4049 AArch64CC::CondCode CC1, CC2;
4050 changeFPCCToAArch64CC(CC, CC1, CC2);
4051 SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32);
4052 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp);
4053
4054 // If we need a second CSEL, emit it, using the output of the first as the
4055 // RHS. We're effectively OR'ing the two CC's together.
4056 if (CC2 != AArch64CC::AL) {
4057 SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32);
4058 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp);
4059 }
4060
4061 // Otherwise, return the output of the first CSEL.
4062 return CS1;
4063 }
4064
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4065 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op,
4066 SelectionDAG &DAG) const {
4067 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4068 SDValue LHS = Op.getOperand(0);
4069 SDValue RHS = Op.getOperand(1);
4070 SDValue TVal = Op.getOperand(2);
4071 SDValue FVal = Op.getOperand(3);
4072 SDLoc DL(Op);
4073 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4074 }
4075
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4076 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op,
4077 SelectionDAG &DAG) const {
4078 SDValue CCVal = Op->getOperand(0);
4079 SDValue TVal = Op->getOperand(1);
4080 SDValue FVal = Op->getOperand(2);
4081 SDLoc DL(Op);
4082
4083 unsigned Opc = CCVal.getOpcode();
4084 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
4085 // instruction.
4086 if (CCVal.getResNo() == 1 &&
4087 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4088 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) {
4089 // Only lower legal XALUO ops.
4090 if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0)))
4091 return SDValue();
4092
4093 AArch64CC::CondCode OFCC;
4094 SDValue Value, Overflow;
4095 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG);
4096 SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32);
4097
4098 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal,
4099 CCVal, Overflow);
4100 }
4101
4102 // Lower it the same way as we would lower a SELECT_CC node.
4103 ISD::CondCode CC;
4104 SDValue LHS, RHS;
4105 if (CCVal.getOpcode() == ISD::SETCC) {
4106 LHS = CCVal.getOperand(0);
4107 RHS = CCVal.getOperand(1);
4108 CC = cast<CondCodeSDNode>(CCVal->getOperand(2))->get();
4109 } else {
4110 LHS = CCVal;
4111 RHS = DAG.getConstant(0, DL, CCVal.getValueType());
4112 CC = ISD::SETNE;
4113 }
4114 return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG);
4115 }
4116
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const4117 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op,
4118 SelectionDAG &DAG) const {
4119 // Jump table entries as PC relative offsets. No additional tweaking
4120 // is necessary here. Just get the address of the jump table.
4121 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4122 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4123 SDLoc DL(Op);
4124
4125 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4126 !Subtarget->isTargetMachO()) {
4127 const unsigned char MO_NC = AArch64II::MO_NC;
4128 return DAG.getNode(
4129 AArch64ISD::WrapperLarge, DL, PtrVT,
4130 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3),
4131 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC),
4132 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC),
4133 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4134 AArch64II::MO_G0 | MO_NC));
4135 }
4136
4137 SDValue Hi =
4138 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE);
4139 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
4140 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4141 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4142 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4143 }
4144
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const4145 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op,
4146 SelectionDAG &DAG) const {
4147 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4148 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4149 SDLoc DL(Op);
4150
4151 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
4152 // Use the GOT for the large code model on iOS.
4153 if (Subtarget->isTargetMachO()) {
4154 SDValue GotAddr = DAG.getTargetConstantPool(
4155 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4156 AArch64II::MO_GOT);
4157 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr);
4158 }
4159
4160 const unsigned char MO_NC = AArch64II::MO_NC;
4161 return DAG.getNode(
4162 AArch64ISD::WrapperLarge, DL, PtrVT,
4163 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4164 CP->getOffset(), AArch64II::MO_G3),
4165 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4166 CP->getOffset(), AArch64II::MO_G2 | MO_NC),
4167 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4168 CP->getOffset(), AArch64II::MO_G1 | MO_NC),
4169 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4170 CP->getOffset(), AArch64II::MO_G0 | MO_NC));
4171 } else {
4172 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on
4173 // ELF, the only valid one on Darwin.
4174 SDValue Hi =
4175 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(),
4176 CP->getOffset(), AArch64II::MO_PAGE);
4177 SDValue Lo = DAG.getTargetConstantPool(
4178 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(),
4179 AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
4180
4181 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4182 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4183 }
4184 }
4185
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const4186 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op,
4187 SelectionDAG &DAG) const {
4188 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
4189 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4190 SDLoc DL(Op);
4191 if (getTargetMachine().getCodeModel() == CodeModel::Large &&
4192 !Subtarget->isTargetMachO()) {
4193 const unsigned char MO_NC = AArch64II::MO_NC;
4194 return DAG.getNode(
4195 AArch64ISD::WrapperLarge, DL, PtrVT,
4196 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3),
4197 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC),
4198 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC),
4199 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC));
4200 } else {
4201 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE);
4202 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF |
4203 AArch64II::MO_NC);
4204 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi);
4205 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo);
4206 }
4207 }
4208
LowerDarwin_VASTART(SDValue Op,SelectionDAG & DAG) const4209 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op,
4210 SelectionDAG &DAG) const {
4211 AArch64FunctionInfo *FuncInfo =
4212 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>();
4213
4214 SDLoc DL(Op);
4215 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(),
4216 getPointerTy(DAG.getDataLayout()));
4217 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4218 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
4219 MachinePointerInfo(SV), false, false, 0);
4220 }
4221
LowerAAPCS_VASTART(SDValue Op,SelectionDAG & DAG) const4222 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op,
4223 SelectionDAG &DAG) const {
4224 // The layout of the va_list struct is specified in the AArch64 Procedure Call
4225 // Standard, section B.3.
4226 MachineFunction &MF = DAG.getMachineFunction();
4227 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
4228 auto PtrVT = getPointerTy(DAG.getDataLayout());
4229 SDLoc DL(Op);
4230
4231 SDValue Chain = Op.getOperand(0);
4232 SDValue VAList = Op.getOperand(1);
4233 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4234 SmallVector<SDValue, 4> MemOps;
4235
4236 // void *__stack at offset 0
4237 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT);
4238 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
4239 MachinePointerInfo(SV), false, false, 8));
4240
4241 // void *__gr_top at offset 8
4242 int GPRSize = FuncInfo->getVarArgsGPRSize();
4243 if (GPRSize > 0) {
4244 SDValue GRTop, GRTopAddr;
4245
4246 GRTopAddr =
4247 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(8, DL, PtrVT));
4248
4249 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT);
4250 GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop,
4251 DAG.getConstant(GPRSize, DL, PtrVT));
4252
4253 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
4254 MachinePointerInfo(SV, 8), false, false, 8));
4255 }
4256
4257 // void *__vr_top at offset 16
4258 int FPRSize = FuncInfo->getVarArgsFPRSize();
4259 if (FPRSize > 0) {
4260 SDValue VRTop, VRTopAddr;
4261 VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4262 DAG.getConstant(16, DL, PtrVT));
4263
4264 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT);
4265 VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop,
4266 DAG.getConstant(FPRSize, DL, PtrVT));
4267
4268 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
4269 MachinePointerInfo(SV, 16), false, false, 8));
4270 }
4271
4272 // int __gr_offs at offset 24
4273 SDValue GROffsAddr =
4274 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(24, DL, PtrVT));
4275 MemOps.push_back(DAG.getStore(Chain, DL,
4276 DAG.getConstant(-GPRSize, DL, MVT::i32),
4277 GROffsAddr, MachinePointerInfo(SV, 24), false,
4278 false, 4));
4279
4280 // int __vr_offs at offset 28
4281 SDValue VROffsAddr =
4282 DAG.getNode(ISD::ADD, DL, PtrVT, VAList, DAG.getConstant(28, DL, PtrVT));
4283 MemOps.push_back(DAG.getStore(Chain, DL,
4284 DAG.getConstant(-FPRSize, DL, MVT::i32),
4285 VROffsAddr, MachinePointerInfo(SV, 28), false,
4286 false, 4));
4287
4288 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
4289 }
4290
LowerVASTART(SDValue Op,SelectionDAG & DAG) const4291 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op,
4292 SelectionDAG &DAG) const {
4293 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG)
4294 : LowerAAPCS_VASTART(Op, DAG);
4295 }
4296
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const4297 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op,
4298 SelectionDAG &DAG) const {
4299 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
4300 // pointer.
4301 SDLoc DL(Op);
4302 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32;
4303 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4304 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4305
4306 return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1),
4307 Op.getOperand(2),
4308 DAG.getConstant(VaListSize, DL, MVT::i32),
4309 8, false, false, false, MachinePointerInfo(DestSV),
4310 MachinePointerInfo(SrcSV));
4311 }
4312
LowerVAARG(SDValue Op,SelectionDAG & DAG) const4313 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
4314 assert(Subtarget->isTargetDarwin() &&
4315 "automatic va_arg instruction only works on Darwin");
4316
4317 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4318 EVT VT = Op.getValueType();
4319 SDLoc DL(Op);
4320 SDValue Chain = Op.getOperand(0);
4321 SDValue Addr = Op.getOperand(1);
4322 unsigned Align = Op.getConstantOperandVal(3);
4323 auto PtrVT = getPointerTy(DAG.getDataLayout());
4324
4325 SDValue VAList = DAG.getLoad(PtrVT, DL, Chain, Addr, MachinePointerInfo(V),
4326 false, false, false, 0);
4327 Chain = VAList.getValue(1);
4328
4329 if (Align > 8) {
4330 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2");
4331 VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4332 DAG.getConstant(Align - 1, DL, PtrVT));
4333 VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList,
4334 DAG.getConstant(-(int64_t)Align, DL, PtrVT));
4335 }
4336
4337 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
4338 uint64_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
4339
4340 // Scalar integer and FP values smaller than 64 bits are implicitly extended
4341 // up to 64 bits. At the very least, we have to increase the striding of the
4342 // vaargs list to match this, and for FP values we need to introduce
4343 // FP_ROUND nodes as well.
4344 if (VT.isInteger() && !VT.isVector())
4345 ArgSize = 8;
4346 bool NeedFPTrunc = false;
4347 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) {
4348 ArgSize = 8;
4349 NeedFPTrunc = true;
4350 }
4351
4352 // Increment the pointer, VAList, to the next vaarg
4353 SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList,
4354 DAG.getConstant(ArgSize, DL, PtrVT));
4355 // Store the incremented VAList to the legalized pointer
4356 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V),
4357 false, false, 0);
4358
4359 // Load the actual argument out of the pointer VAList
4360 if (NeedFPTrunc) {
4361 // Load the value as an f64.
4362 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList,
4363 MachinePointerInfo(), false, false, false, 0);
4364 // Round the value down to an f32.
4365 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0),
4366 DAG.getIntPtrConstant(1, DL));
4367 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) };
4368 // Merge the rounded value with the chain output of the load.
4369 return DAG.getMergeValues(Ops, DL);
4370 }
4371
4372 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false,
4373 false, false, 0);
4374 }
4375
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const4376 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op,
4377 SelectionDAG &DAG) const {
4378 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4379 MFI->setFrameAddressIsTaken(true);
4380
4381 EVT VT = Op.getValueType();
4382 SDLoc DL(Op);
4383 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4384 SDValue FrameAddr =
4385 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT);
4386 while (Depth--)
4387 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr,
4388 MachinePointerInfo(), false, false, false, 0);
4389 return FrameAddr;
4390 }
4391
4392 // FIXME? Maybe this could be a TableGen attribute on some registers and
4393 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const4394 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, EVT VT,
4395 SelectionDAG &DAG) const {
4396 unsigned Reg = StringSwitch<unsigned>(RegName)
4397 .Case("sp", AArch64::SP)
4398 .Default(0);
4399 if (Reg)
4400 return Reg;
4401 report_fatal_error(Twine("Invalid register name \""
4402 + StringRef(RegName) + "\"."));
4403 }
4404
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4405 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op,
4406 SelectionDAG &DAG) const {
4407 MachineFunction &MF = DAG.getMachineFunction();
4408 MachineFrameInfo *MFI = MF.getFrameInfo();
4409 MFI->setReturnAddressIsTaken(true);
4410
4411 EVT VT = Op.getValueType();
4412 SDLoc DL(Op);
4413 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4414 if (Depth) {
4415 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4416 SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout()));
4417 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4418 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4419 MachinePointerInfo(), false, false, false, 0);
4420 }
4421
4422 // Return LR, which contains the return address. Mark it an implicit live-in.
4423 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass);
4424 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4425 }
4426
4427 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4428 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const4429 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op,
4430 SelectionDAG &DAG) const {
4431 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4432 EVT VT = Op.getValueType();
4433 unsigned VTBits = VT.getSizeInBits();
4434 SDLoc dl(Op);
4435 SDValue ShOpLo = Op.getOperand(0);
4436 SDValue ShOpHi = Op.getOperand(1);
4437 SDValue ShAmt = Op.getOperand(2);
4438 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4439
4440 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4441
4442 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4443 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4444 SDValue HiBitsForLo = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4445
4446 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
4447 // is "undef". We wanted 0, so CSEL it directly.
4448 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4449 ISD::SETEQ, dl, DAG);
4450 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4451 HiBitsForLo =
4452 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4453 HiBitsForLo, CCVal, Cmp);
4454
4455 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4456 DAG.getConstant(VTBits, dl, MVT::i64));
4457
4458 SDValue LoBitsForLo = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4459 SDValue LoForNormalShift =
4460 DAG.getNode(ISD::OR, dl, VT, LoBitsForLo, HiBitsForLo);
4461
4462 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4463 dl, DAG);
4464 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4465 SDValue LoForBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4466 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4467 LoForNormalShift, CCVal, Cmp);
4468
4469 // AArch64 shifts larger than the register width are wrapped rather than
4470 // clamped, so we can't just emit "hi >> x".
4471 SDValue HiForNormalShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4472 SDValue HiForBigShift =
4473 Opc == ISD::SRA
4474 ? DAG.getNode(Opc, dl, VT, ShOpHi,
4475 DAG.getConstant(VTBits - 1, dl, MVT::i64))
4476 : DAG.getConstant(0, dl, VT);
4477 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4478 HiForNormalShift, CCVal, Cmp);
4479
4480 SDValue Ops[2] = { Lo, Hi };
4481 return DAG.getMergeValues(Ops, dl);
4482 }
4483
4484
4485 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4486 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const4487 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op,
4488 SelectionDAG &DAG) const {
4489 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4490 EVT VT = Op.getValueType();
4491 unsigned VTBits = VT.getSizeInBits();
4492 SDLoc dl(Op);
4493 SDValue ShOpLo = Op.getOperand(0);
4494 SDValue ShOpHi = Op.getOperand(1);
4495 SDValue ShAmt = Op.getOperand(2);
4496
4497 assert(Op.getOpcode() == ISD::SHL_PARTS);
4498 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64,
4499 DAG.getConstant(VTBits, dl, MVT::i64), ShAmt);
4500 SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4501
4502 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
4503 // is "undef". We wanted 0, so CSEL it directly.
4504 SDValue Cmp = emitComparison(ShAmt, DAG.getConstant(0, dl, MVT::i64),
4505 ISD::SETEQ, dl, DAG);
4506 SDValue CCVal = DAG.getConstant(AArch64CC::EQ, dl, MVT::i32);
4507 LoBitsForHi =
4508 DAG.getNode(AArch64ISD::CSEL, dl, VT, DAG.getConstant(0, dl, MVT::i64),
4509 LoBitsForHi, CCVal, Cmp);
4510
4511 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt,
4512 DAG.getConstant(VTBits, dl, MVT::i64));
4513 SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4514 SDValue HiForNormalShift =
4515 DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
4516
4517 SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4518
4519 Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, dl, MVT::i64), ISD::SETGE,
4520 dl, DAG);
4521 CCVal = DAG.getConstant(AArch64CC::GE, dl, MVT::i32);
4522 SDValue Hi = DAG.getNode(AArch64ISD::CSEL, dl, VT, HiForBigShift,
4523 HiForNormalShift, CCVal, Cmp);
4524
4525 // AArch64 shifts of larger than register sizes are wrapped rather than
4526 // clamped, so we can't just emit "lo << a" if a is too big.
4527 SDValue LoForBigShift = DAG.getConstant(0, dl, VT);
4528 SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4529 SDValue Lo = DAG.getNode(AArch64ISD::CSEL, dl, VT, LoForBigShift,
4530 LoForNormalShift, CCVal, Cmp);
4531
4532 SDValue Ops[2] = { Lo, Hi };
4533 return DAG.getMergeValues(Ops, dl);
4534 }
4535
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const4536 bool AArch64TargetLowering::isOffsetFoldingLegal(
4537 const GlobalAddressSDNode *GA) const {
4538 // The AArch64 target doesn't support folding offsets into global addresses.
4539 return false;
4540 }
4541
isFPImmLegal(const APFloat & Imm,EVT VT) const4542 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4543 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases.
4544 // FIXME: We should be able to handle f128 as well with a clever lowering.
4545 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32))
4546 return true;
4547
4548 if (VT == MVT::f64)
4549 return AArch64_AM::getFP64Imm(Imm) != -1;
4550 else if (VT == MVT::f32)
4551 return AArch64_AM::getFP32Imm(Imm) != -1;
4552 return false;
4553 }
4554
4555 //===----------------------------------------------------------------------===//
4556 // AArch64 Optimization Hooks
4557 //===----------------------------------------------------------------------===//
4558
4559 /// getEstimate - Return the appropriate estimate DAG for either the reciprocal
4560 /// or the reciprocal square root.
getEstimate(const AArch64Subtarget & ST,const AArch64TargetLowering::DAGCombinerInfo & DCI,unsigned Opcode,const SDValue & Operand,unsigned & ExtraSteps)4561 static SDValue getEstimate(const AArch64Subtarget &ST,
4562 const AArch64TargetLowering::DAGCombinerInfo &DCI, unsigned Opcode,
4563 const SDValue &Operand, unsigned &ExtraSteps) {
4564 if (!ST.hasNEON())
4565 return SDValue();
4566
4567 EVT VT = Operand.getValueType();
4568
4569 std::string RecipOp;
4570 RecipOp = Opcode == (AArch64ISD::FRECPE) ? "div": "sqrt";
4571 RecipOp = ((VT.isVector()) ? "vec-": "") + RecipOp;
4572 RecipOp += (VT.getScalarType() == MVT::f64) ? "d": "f";
4573
4574 TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
4575 if (!Recips.isEnabled(RecipOp))
4576 return SDValue();
4577
4578 ExtraSteps = Recips.getRefinementSteps(RecipOp);
4579 return DCI.DAG.getNode(Opcode, SDLoc(Operand), VT, Operand);
4580 }
4581
getRecipEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & ExtraSteps) const4582 SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand,
4583 DAGCombinerInfo &DCI, unsigned &ExtraSteps) const {
4584 return getEstimate(*Subtarget, DCI, AArch64ISD::FRECPE, Operand, ExtraSteps);
4585 }
4586
getRsqrtEstimate(SDValue Operand,DAGCombinerInfo & DCI,unsigned & ExtraSteps,bool & UseOneConst) const4587 SDValue AArch64TargetLowering::getRsqrtEstimate(SDValue Operand,
4588 DAGCombinerInfo &DCI, unsigned &ExtraSteps, bool &UseOneConst) const {
4589 UseOneConst = true;
4590 return getEstimate(*Subtarget, DCI, AArch64ISD::FRSQRTE, Operand, ExtraSteps);
4591 }
4592
4593 //===----------------------------------------------------------------------===//
4594 // AArch64 Inline Assembly Support
4595 //===----------------------------------------------------------------------===//
4596
4597 // Table of Constraints
4598 // TODO: This is the current set of constraints supported by ARM for the
4599 // compiler, not all of them may make sense, e.g. S may be difficult to support.
4600 //
4601 // r - A general register
4602 // w - An FP/SIMD register of some size in the range v0-v31
4603 // x - An FP/SIMD register of some size in the range v0-v15
4604 // I - Constant that can be used with an ADD instruction
4605 // J - Constant that can be used with a SUB instruction
4606 // K - Constant that can be used with a 32-bit logical instruction
4607 // L - Constant that can be used with a 64-bit logical instruction
4608 // M - Constant that can be used as a 32-bit MOV immediate
4609 // N - Constant that can be used as a 64-bit MOV immediate
4610 // Q - A memory reference with base register and no offset
4611 // S - A symbolic address
4612 // Y - Floating point constant zero
4613 // Z - Integer constant zero
4614 //
4615 // Note that general register operands will be output using their 64-bit x
4616 // register name, whatever the size of the variable, unless the asm operand
4617 // is prefixed by the %w modifier. Floating-point and SIMD register operands
4618 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
4619 // %q modifier.
LowerXConstraint(EVT ConstraintVT) const4620 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4621 // At this point, we have to lower this constraint to something else, so we
4622 // lower it to an "r" or "w". However, by doing this we will force the result
4623 // to be in register, while the X constraint is much more permissive.
4624 //
4625 // Although we are correct (we are free to emit anything, without
4626 // constraints), we might break use cases that would expect us to be more
4627 // efficient and emit something else.
4628 if (!Subtarget->hasFPARMv8())
4629 return "r";
4630
4631 if (ConstraintVT.isFloatingPoint())
4632 return "w";
4633
4634 if (ConstraintVT.isVector() &&
4635 (ConstraintVT.getSizeInBits() == 64 ||
4636 ConstraintVT.getSizeInBits() == 128))
4637 return "w";
4638
4639 return "r";
4640 }
4641
4642 /// getConstraintType - Given a constraint letter, return the type of
4643 /// constraint it is for this target.
4644 AArch64TargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const4645 AArch64TargetLowering::getConstraintType(StringRef Constraint) const {
4646 if (Constraint.size() == 1) {
4647 switch (Constraint[0]) {
4648 default:
4649 break;
4650 case 'z':
4651 return C_Other;
4652 case 'x':
4653 case 'w':
4654 return C_RegisterClass;
4655 // An address with a single base register. Due to the way we
4656 // currently handle addresses it is the same as 'r'.
4657 case 'Q':
4658 return C_Memory;
4659 }
4660 }
4661 return TargetLowering::getConstraintType(Constraint);
4662 }
4663
4664 /// Examine constraint type and operand type and determine a weight value.
4665 /// This object must already have been set up with the operand type
4666 /// and the current alternative constraint selected.
4667 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const4668 AArch64TargetLowering::getSingleConstraintMatchWeight(
4669 AsmOperandInfo &info, const char *constraint) const {
4670 ConstraintWeight weight = CW_Invalid;
4671 Value *CallOperandVal = info.CallOperandVal;
4672 // If we don't have a value, we can't do a match,
4673 // but allow it at the lowest weight.
4674 if (!CallOperandVal)
4675 return CW_Default;
4676 Type *type = CallOperandVal->getType();
4677 // Look at the constraint type.
4678 switch (*constraint) {
4679 default:
4680 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
4681 break;
4682 case 'x':
4683 case 'w':
4684 if (type->isFloatingPointTy() || type->isVectorTy())
4685 weight = CW_Register;
4686 break;
4687 case 'z':
4688 weight = CW_Constant;
4689 break;
4690 }
4691 return weight;
4692 }
4693
4694 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const4695 AArch64TargetLowering::getRegForInlineAsmConstraint(
4696 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
4697 if (Constraint.size() == 1) {
4698 switch (Constraint[0]) {
4699 case 'r':
4700 if (VT.getSizeInBits() == 64)
4701 return std::make_pair(0U, &AArch64::GPR64commonRegClass);
4702 return std::make_pair(0U, &AArch64::GPR32commonRegClass);
4703 case 'w':
4704 if (VT.getSizeInBits() == 32)
4705 return std::make_pair(0U, &AArch64::FPR32RegClass);
4706 if (VT.getSizeInBits() == 64)
4707 return std::make_pair(0U, &AArch64::FPR64RegClass);
4708 if (VT.getSizeInBits() == 128)
4709 return std::make_pair(0U, &AArch64::FPR128RegClass);
4710 break;
4711 // The instructions that this constraint is designed for can
4712 // only take 128-bit registers so just use that regclass.
4713 case 'x':
4714 if (VT.getSizeInBits() == 128)
4715 return std::make_pair(0U, &AArch64::FPR128_loRegClass);
4716 break;
4717 }
4718 }
4719 if (StringRef("{cc}").equals_lower(Constraint))
4720 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass);
4721
4722 // Use the default implementation in TargetLowering to convert the register
4723 // constraint into a member of a register class.
4724 std::pair<unsigned, const TargetRegisterClass *> Res;
4725 Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4726
4727 // Not found as a standard register?
4728 if (!Res.second) {
4729 unsigned Size = Constraint.size();
4730 if ((Size == 4 || Size == 5) && Constraint[0] == '{' &&
4731 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') {
4732 int RegNo;
4733 bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo);
4734 if (!Failed && RegNo >= 0 && RegNo <= 31) {
4735 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
4736 // By default we'll emit v0-v31 for this unless there's a modifier where
4737 // we'll emit the correct register as well.
4738 if (VT != MVT::Other && VT.getSizeInBits() == 64) {
4739 Res.first = AArch64::FPR64RegClass.getRegister(RegNo);
4740 Res.second = &AArch64::FPR64RegClass;
4741 } else {
4742 Res.first = AArch64::FPR128RegClass.getRegister(RegNo);
4743 Res.second = &AArch64::FPR128RegClass;
4744 }
4745 }
4746 }
4747 }
4748
4749 return Res;
4750 }
4751
4752 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4753 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const4754 void AArch64TargetLowering::LowerAsmOperandForConstraint(
4755 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
4756 SelectionDAG &DAG) const {
4757 SDValue Result;
4758
4759 // Currently only support length 1 constraints.
4760 if (Constraint.length() != 1)
4761 return;
4762
4763 char ConstraintLetter = Constraint[0];
4764 switch (ConstraintLetter) {
4765 default:
4766 break;
4767
4768 // This set of constraints deal with valid constants for various instructions.
4769 // Validate and return a target constant for them if we can.
4770 case 'z': {
4771 // 'z' maps to xzr or wzr so it needs an input of 0.
4772 if (!isNullConstant(Op))
4773 return;
4774
4775 if (Op.getValueType() == MVT::i64)
4776 Result = DAG.getRegister(AArch64::XZR, MVT::i64);
4777 else
4778 Result = DAG.getRegister(AArch64::WZR, MVT::i32);
4779 break;
4780 }
4781
4782 case 'I':
4783 case 'J':
4784 case 'K':
4785 case 'L':
4786 case 'M':
4787 case 'N':
4788 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4789 if (!C)
4790 return;
4791
4792 // Grab the value and do some validation.
4793 uint64_t CVal = C->getZExtValue();
4794 switch (ConstraintLetter) {
4795 // The I constraint applies only to simple ADD or SUB immediate operands:
4796 // i.e. 0 to 4095 with optional shift by 12
4797 // The J constraint applies only to ADD or SUB immediates that would be
4798 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
4799 // instruction [or vice versa], in other words -1 to -4095 with optional
4800 // left shift by 12.
4801 case 'I':
4802 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal))
4803 break;
4804 return;
4805 case 'J': {
4806 uint64_t NVal = -C->getSExtValue();
4807 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) {
4808 CVal = C->getSExtValue();
4809 break;
4810 }
4811 return;
4812 }
4813 // The K and L constraints apply *only* to logical immediates, including
4814 // what used to be the MOVI alias for ORR (though the MOVI alias has now
4815 // been removed and MOV should be used). So these constraints have to
4816 // distinguish between bit patterns that are valid 32-bit or 64-bit
4817 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
4818 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
4819 // versa.
4820 case 'K':
4821 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4822 break;
4823 return;
4824 case 'L':
4825 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4826 break;
4827 return;
4828 // The M and N constraints are a superset of K and L respectively, for use
4829 // with the MOV (immediate) alias. As well as the logical immediates they
4830 // also match 32 or 64-bit immediates that can be loaded either using a
4831 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
4832 // (M) or 64-bit 0x1234000000000000 (N) etc.
4833 // As a note some of this code is liberally stolen from the asm parser.
4834 case 'M': {
4835 if (!isUInt<32>(CVal))
4836 return;
4837 if (AArch64_AM::isLogicalImmediate(CVal, 32))
4838 break;
4839 if ((CVal & 0xFFFF) == CVal)
4840 break;
4841 if ((CVal & 0xFFFF0000ULL) == CVal)
4842 break;
4843 uint64_t NCVal = ~(uint32_t)CVal;
4844 if ((NCVal & 0xFFFFULL) == NCVal)
4845 break;
4846 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4847 break;
4848 return;
4849 }
4850 case 'N': {
4851 if (AArch64_AM::isLogicalImmediate(CVal, 64))
4852 break;
4853 if ((CVal & 0xFFFFULL) == CVal)
4854 break;
4855 if ((CVal & 0xFFFF0000ULL) == CVal)
4856 break;
4857 if ((CVal & 0xFFFF00000000ULL) == CVal)
4858 break;
4859 if ((CVal & 0xFFFF000000000000ULL) == CVal)
4860 break;
4861 uint64_t NCVal = ~CVal;
4862 if ((NCVal & 0xFFFFULL) == NCVal)
4863 break;
4864 if ((NCVal & 0xFFFF0000ULL) == NCVal)
4865 break;
4866 if ((NCVal & 0xFFFF00000000ULL) == NCVal)
4867 break;
4868 if ((NCVal & 0xFFFF000000000000ULL) == NCVal)
4869 break;
4870 return;
4871 }
4872 default:
4873 return;
4874 }
4875
4876 // All assembler immediates are 64-bit integers.
4877 Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64);
4878 break;
4879 }
4880
4881 if (Result.getNode()) {
4882 Ops.push_back(Result);
4883 return;
4884 }
4885
4886 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
4887 }
4888
4889 //===----------------------------------------------------------------------===//
4890 // AArch64 Advanced SIMD Support
4891 //===----------------------------------------------------------------------===//
4892
4893 /// WidenVector - Given a value in the V64 register class, produce the
4894 /// equivalent value in the V128 register class.
WidenVector(SDValue V64Reg,SelectionDAG & DAG)4895 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) {
4896 EVT VT = V64Reg.getValueType();
4897 unsigned NarrowSize = VT.getVectorNumElements();
4898 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4899 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
4900 SDLoc DL(V64Reg);
4901
4902 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy),
4903 V64Reg, DAG.getConstant(0, DL, MVT::i32));
4904 }
4905
4906 /// getExtFactor - Determine the adjustment factor for the position when
4907 /// generating an "extract from vector registers" instruction.
getExtFactor(SDValue & V)4908 static unsigned getExtFactor(SDValue &V) {
4909 EVT EltType = V.getValueType().getVectorElementType();
4910 return EltType.getSizeInBits() / 8;
4911 }
4912
4913 /// NarrowVector - Given a value in the V128 register class, produce the
4914 /// equivalent value in the V64 register class.
NarrowVector(SDValue V128Reg,SelectionDAG & DAG)4915 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
4916 EVT VT = V128Reg.getValueType();
4917 unsigned WideSize = VT.getVectorNumElements();
4918 MVT EltTy = VT.getVectorElementType().getSimpleVT();
4919 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
4920 SDLoc DL(V128Reg);
4921
4922 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg);
4923 }
4924
4925 // Gather data to see if the operation can be modelled as a
4926 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const4927 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op,
4928 SelectionDAG &DAG) const {
4929 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
4930 SDLoc dl(Op);
4931 EVT VT = Op.getValueType();
4932 unsigned NumElts = VT.getVectorNumElements();
4933
4934 struct ShuffleSourceInfo {
4935 SDValue Vec;
4936 unsigned MinElt;
4937 unsigned MaxElt;
4938
4939 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
4940 // be compatible with the shuffle we intend to construct. As a result
4941 // ShuffleVec will be some sliding window into the original Vec.
4942 SDValue ShuffleVec;
4943
4944 // Code should guarantee that element i in Vec starts at element "WindowBase
4945 // + i * WindowScale in ShuffleVec".
4946 int WindowBase;
4947 int WindowScale;
4948
4949 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
4950 ShuffleSourceInfo(SDValue Vec)
4951 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
4952 WindowScale(1) {}
4953 };
4954
4955 // First gather all vectors used as an immediate source for this BUILD_VECTOR
4956 // node.
4957 SmallVector<ShuffleSourceInfo, 2> Sources;
4958 for (unsigned i = 0; i < NumElts; ++i) {
4959 SDValue V = Op.getOperand(i);
4960 if (V.isUndef())
4961 continue;
4962 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4963 !isa<ConstantSDNode>(V.getOperand(1))) {
4964 // A shuffle can only come from building a vector from various
4965 // elements of other vectors, provided their indices are constant.
4966 return SDValue();
4967 }
4968
4969 // Add this element source to the list if it's not already there.
4970 SDValue SourceVec = V.getOperand(0);
4971 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
4972 if (Source == Sources.end())
4973 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
4974
4975 // Update the minimum and maximum lane number seen.
4976 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4977 Source->MinElt = std::min(Source->MinElt, EltNo);
4978 Source->MaxElt = std::max(Source->MaxElt, EltNo);
4979 }
4980
4981 // Currently only do something sane when at most two source vectors
4982 // are involved.
4983 if (Sources.size() > 2)
4984 return SDValue();
4985
4986 // Find out the smallest element size among result and two sources, and use
4987 // it as element size to build the shuffle_vector.
4988 EVT SmallestEltTy = VT.getVectorElementType();
4989 for (auto &Source : Sources) {
4990 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
4991 if (SrcEltTy.bitsLT(SmallestEltTy)) {
4992 SmallestEltTy = SrcEltTy;
4993 }
4994 }
4995 unsigned ResMultiplier =
4996 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
4997 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
4998 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
4999
5000 // If the source vector is too wide or too narrow, we may nevertheless be able
5001 // to construct a compatible shuffle either by concatenating it with UNDEF or
5002 // extracting a suitable range of elements.
5003 for (auto &Src : Sources) {
5004 EVT SrcVT = Src.ShuffleVec.getValueType();
5005
5006 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5007 continue;
5008
5009 // This stage of the search produces a source with the same element type as
5010 // the original, but with a total width matching the BUILD_VECTOR output.
5011 EVT EltVT = SrcVT.getVectorElementType();
5012 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5013 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5014
5015 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5016 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits());
5017 // We can pad out the smaller vector for free, so if it's part of a
5018 // shuffle...
5019 Src.ShuffleVec =
5020 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5021 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5022 continue;
5023 }
5024
5025 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits());
5026
5027 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5028 // Span too large for a VEXT to cope
5029 return SDValue();
5030 }
5031
5032 if (Src.MinElt >= NumSrcElts) {
5033 // The extraction can just take the second half
5034 Src.ShuffleVec =
5035 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5036 DAG.getConstant(NumSrcElts, dl, MVT::i64));
5037 Src.WindowBase = -NumSrcElts;
5038 } else if (Src.MaxElt < NumSrcElts) {
5039 // The extraction can just take the first half
5040 Src.ShuffleVec =
5041 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5042 DAG.getConstant(0, dl, MVT::i64));
5043 } else {
5044 // An actual VEXT is needed
5045 SDValue VEXTSrc1 =
5046 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5047 DAG.getConstant(0, dl, MVT::i64));
5048 SDValue VEXTSrc2 =
5049 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5050 DAG.getConstant(NumSrcElts, dl, MVT::i64));
5051 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1);
5052
5053 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1,
5054 VEXTSrc2,
5055 DAG.getConstant(Imm, dl, MVT::i32));
5056 Src.WindowBase = -Src.MinElt;
5057 }
5058 }
5059
5060 // Another possible incompatibility occurs from the vector element types. We
5061 // can fix this by bitcasting the source vectors to the same type we intend
5062 // for the shuffle.
5063 for (auto &Src : Sources) {
5064 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5065 if (SrcEltTy == SmallestEltTy)
5066 continue;
5067 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
5068 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
5069 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
5070 Src.WindowBase *= Src.WindowScale;
5071 }
5072
5073 // Final sanity check before we try to actually produce a shuffle.
5074 DEBUG(
5075 for (auto Src : Sources)
5076 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
5077 );
5078
5079 // The stars all align, our next step is to produce the mask for the shuffle.
5080 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
5081 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
5082 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
5083 SDValue Entry = Op.getOperand(i);
5084 if (Entry.isUndef())
5085 continue;
5086
5087 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
5088 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
5089
5090 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
5091 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
5092 // segment.
5093 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
5094 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
5095 VT.getVectorElementType().getSizeInBits());
5096 int LanesDefined = BitsDefined / BitsPerShuffleLane;
5097
5098 // This source is expected to fill ResMultiplier lanes of the final shuffle,
5099 // starting at the appropriate offset.
5100 int *LaneMask = &Mask[i * ResMultiplier];
5101
5102 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
5103 ExtractBase += NumElts * (Src - Sources.begin());
5104 for (int j = 0; j < LanesDefined; ++j)
5105 LaneMask[j] = ExtractBase + j;
5106 }
5107
5108 // Final check before we try to produce nonsense...
5109 if (!isShuffleMaskLegal(Mask, ShuffleVT))
5110 return SDValue();
5111
5112 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
5113 for (unsigned i = 0; i < Sources.size(); ++i)
5114 ShuffleOps[i] = Sources[i].ShuffleVec;
5115
5116 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
5117 ShuffleOps[1], Mask);
5118 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
5119 }
5120
5121 // check if an EXT instruction can handle the shuffle mask when the
5122 // vector sources of the shuffle are the same.
isSingletonEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5123 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5124 unsigned NumElts = VT.getVectorNumElements();
5125
5126 // Assume that the first shuffle index is not UNDEF. Fail if it is.
5127 if (M[0] < 0)
5128 return false;
5129
5130 Imm = M[0];
5131
5132 // If this is a VEXT shuffle, the immediate value is the index of the first
5133 // element. The other shuffle indices must be the successive elements after
5134 // the first one.
5135 unsigned ExpectedElt = Imm;
5136 for (unsigned i = 1; i < NumElts; ++i) {
5137 // Increment the expected index. If it wraps around, just follow it
5138 // back to index zero and keep going.
5139 ++ExpectedElt;
5140 if (ExpectedElt == NumElts)
5141 ExpectedElt = 0;
5142
5143 if (M[i] < 0)
5144 continue; // ignore UNDEF indices
5145 if (ExpectedElt != static_cast<unsigned>(M[i]))
5146 return false;
5147 }
5148
5149 return true;
5150 }
5151
5152 // check if an EXT instruction can handle the shuffle mask when the
5153 // vector sources of the shuffle are different.
isEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseEXT,unsigned & Imm)5154 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT,
5155 unsigned &Imm) {
5156 // Look for the first non-undef element.
5157 const int *FirstRealElt = std::find_if(M.begin(), M.end(),
5158 [](int Elt) {return Elt >= 0;});
5159
5160 // Benefit form APInt to handle overflow when calculating expected element.
5161 unsigned NumElts = VT.getVectorNumElements();
5162 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
5163 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
5164 // The following shuffle indices must be the successive elements after the
5165 // first real element.
5166 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(),
5167 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;});
5168 if (FirstWrongElt != M.end())
5169 return false;
5170
5171 // The index of an EXT is the first element if it is not UNDEF.
5172 // Watch out for the beginning UNDEFs. The EXT index should be the expected
5173 // value of the first element. E.g.
5174 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
5175 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
5176 // ExpectedElt is the last mask index plus 1.
5177 Imm = ExpectedElt.getZExtValue();
5178
5179 // There are two difference cases requiring to reverse input vectors.
5180 // For example, for vector <4 x i32> we have the following cases,
5181 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
5182 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
5183 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
5184 // to reverse two input vectors.
5185 if (Imm < NumElts)
5186 ReverseEXT = true;
5187 else
5188 Imm -= NumElts;
5189
5190 return true;
5191 }
5192
5193 /// isREVMask - Check if a vector shuffle corresponds to a REV
5194 /// instruction with the specified blocksize. (The order of the elements
5195 /// within each block of the vector is reversed.)
isREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5196 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5197 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
5198 "Only possible block sizes for REV are: 16, 32, 64");
5199
5200 unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5201 if (EltSz == 64)
5202 return false;
5203
5204 unsigned NumElts = VT.getVectorNumElements();
5205 unsigned BlockElts = M[0] + 1;
5206 // If the first shuffle index is UNDEF, be optimistic.
5207 if (M[0] < 0)
5208 BlockElts = BlockSize / EltSz;
5209
5210 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5211 return false;
5212
5213 for (unsigned i = 0; i < NumElts; ++i) {
5214 if (M[i] < 0)
5215 continue; // ignore UNDEF indices
5216 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
5217 return false;
5218 }
5219
5220 return true;
5221 }
5222
isZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5223 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5224 unsigned NumElts = VT.getVectorNumElements();
5225 WhichResult = (M[0] == 0 ? 0 : 1);
5226 unsigned Idx = WhichResult * NumElts / 2;
5227 for (unsigned i = 0; i != NumElts; i += 2) {
5228 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5229 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts))
5230 return false;
5231 Idx += 1;
5232 }
5233
5234 return true;
5235 }
5236
isUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5237 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5238 unsigned NumElts = VT.getVectorNumElements();
5239 WhichResult = (M[0] == 0 ? 0 : 1);
5240 for (unsigned i = 0; i != NumElts; ++i) {
5241 if (M[i] < 0)
5242 continue; // ignore UNDEF indices
5243 if ((unsigned)M[i] != 2 * i + WhichResult)
5244 return false;
5245 }
5246
5247 return true;
5248 }
5249
isTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5250 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5251 unsigned NumElts = VT.getVectorNumElements();
5252 WhichResult = (M[0] == 0 ? 0 : 1);
5253 for (unsigned i = 0; i < NumElts; i += 2) {
5254 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5255 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult))
5256 return false;
5257 }
5258 return true;
5259 }
5260
5261 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
5262 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5263 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5264 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5265 unsigned NumElts = VT.getVectorNumElements();
5266 WhichResult = (M[0] == 0 ? 0 : 1);
5267 unsigned Idx = WhichResult * NumElts / 2;
5268 for (unsigned i = 0; i != NumElts; i += 2) {
5269 if ((M[i] >= 0 && (unsigned)M[i] != Idx) ||
5270 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx))
5271 return false;
5272 Idx += 1;
5273 }
5274
5275 return true;
5276 }
5277
5278 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
5279 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5280 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5281 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5282 unsigned Half = VT.getVectorNumElements() / 2;
5283 WhichResult = (M[0] == 0 ? 0 : 1);
5284 for (unsigned j = 0; j != 2; ++j) {
5285 unsigned Idx = WhichResult;
5286 for (unsigned i = 0; i != Half; ++i) {
5287 int MIdx = M[i + j * Half];
5288 if (MIdx >= 0 && (unsigned)MIdx != Idx)
5289 return false;
5290 Idx += 2;
5291 }
5292 }
5293
5294 return true;
5295 }
5296
5297 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
5298 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5299 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5300 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5301 unsigned NumElts = VT.getVectorNumElements();
5302 WhichResult = (M[0] == 0 ? 0 : 1);
5303 for (unsigned i = 0; i < NumElts; i += 2) {
5304 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) ||
5305 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult))
5306 return false;
5307 }
5308 return true;
5309 }
5310
isINSMask(ArrayRef<int> M,int NumInputElements,bool & DstIsLeft,int & Anomaly)5311 static bool isINSMask(ArrayRef<int> M, int NumInputElements,
5312 bool &DstIsLeft, int &Anomaly) {
5313 if (M.size() != static_cast<size_t>(NumInputElements))
5314 return false;
5315
5316 int NumLHSMatch = 0, NumRHSMatch = 0;
5317 int LastLHSMismatch = -1, LastRHSMismatch = -1;
5318
5319 for (int i = 0; i < NumInputElements; ++i) {
5320 if (M[i] == -1) {
5321 ++NumLHSMatch;
5322 ++NumRHSMatch;
5323 continue;
5324 }
5325
5326 if (M[i] == i)
5327 ++NumLHSMatch;
5328 else
5329 LastLHSMismatch = i;
5330
5331 if (M[i] == i + NumInputElements)
5332 ++NumRHSMatch;
5333 else
5334 LastRHSMismatch = i;
5335 }
5336
5337 if (NumLHSMatch == NumInputElements - 1) {
5338 DstIsLeft = true;
5339 Anomaly = LastLHSMismatch;
5340 return true;
5341 } else if (NumRHSMatch == NumInputElements - 1) {
5342 DstIsLeft = false;
5343 Anomaly = LastRHSMismatch;
5344 return true;
5345 }
5346
5347 return false;
5348 }
5349
isConcatMask(ArrayRef<int> Mask,EVT VT,bool SplitLHS)5350 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) {
5351 if (VT.getSizeInBits() != 128)
5352 return false;
5353
5354 unsigned NumElts = VT.getVectorNumElements();
5355
5356 for (int I = 0, E = NumElts / 2; I != E; I++) {
5357 if (Mask[I] != I)
5358 return false;
5359 }
5360
5361 int Offset = NumElts / 2;
5362 for (int I = NumElts / 2, E = NumElts; I != E; I++) {
5363 if (Mask[I] != I + SplitLHS * Offset)
5364 return false;
5365 }
5366
5367 return true;
5368 }
5369
tryFormConcatFromShuffle(SDValue Op,SelectionDAG & DAG)5370 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) {
5371 SDLoc DL(Op);
5372 EVT VT = Op.getValueType();
5373 SDValue V0 = Op.getOperand(0);
5374 SDValue V1 = Op.getOperand(1);
5375 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
5376
5377 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() ||
5378 VT.getVectorElementType() != V1.getValueType().getVectorElementType())
5379 return SDValue();
5380
5381 bool SplitV0 = V0.getValueType().getSizeInBits() == 128;
5382
5383 if (!isConcatMask(Mask, VT, SplitV0))
5384 return SDValue();
5385
5386 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
5387 VT.getVectorNumElements() / 2);
5388 if (SplitV0) {
5389 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0,
5390 DAG.getConstant(0, DL, MVT::i64));
5391 }
5392 if (V1.getValueType().getSizeInBits() == 128) {
5393 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1,
5394 DAG.getConstant(0, DL, MVT::i64));
5395 }
5396 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1);
5397 }
5398
5399 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5400 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)5401 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5402 SDValue RHS, SelectionDAG &DAG,
5403 const SDLoc &dl) {
5404 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5405 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1);
5406 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1);
5407
5408 enum {
5409 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5410 OP_VREV,
5411 OP_VDUP0,
5412 OP_VDUP1,
5413 OP_VDUP2,
5414 OP_VDUP3,
5415 OP_VEXT1,
5416 OP_VEXT2,
5417 OP_VEXT3,
5418 OP_VUZPL, // VUZP, left result
5419 OP_VUZPR, // VUZP, right result
5420 OP_VZIPL, // VZIP, left result
5421 OP_VZIPR, // VZIP, right result
5422 OP_VTRNL, // VTRN, left result
5423 OP_VTRNR // VTRN, right result
5424 };
5425
5426 if (OpNum == OP_COPY) {
5427 if (LHSID == (1 * 9 + 2) * 9 + 3)
5428 return LHS;
5429 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
5430 return RHS;
5431 }
5432
5433 SDValue OpLHS, OpRHS;
5434 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5435 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5436 EVT VT = OpLHS.getValueType();
5437
5438 switch (OpNum) {
5439 default:
5440 llvm_unreachable("Unknown shuffle opcode!");
5441 case OP_VREV:
5442 // VREV divides the vector in half and swaps within the half.
5443 if (VT.getVectorElementType() == MVT::i32 ||
5444 VT.getVectorElementType() == MVT::f32)
5445 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS);
5446 // vrev <4 x i16> -> REV32
5447 if (VT.getVectorElementType() == MVT::i16 ||
5448 VT.getVectorElementType() == MVT::f16)
5449 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS);
5450 // vrev <4 x i8> -> REV16
5451 assert(VT.getVectorElementType() == MVT::i8);
5452 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS);
5453 case OP_VDUP0:
5454 case OP_VDUP1:
5455 case OP_VDUP2:
5456 case OP_VDUP3: {
5457 EVT EltTy = VT.getVectorElementType();
5458 unsigned Opcode;
5459 if (EltTy == MVT::i8)
5460 Opcode = AArch64ISD::DUPLANE8;
5461 else if (EltTy == MVT::i16 || EltTy == MVT::f16)
5462 Opcode = AArch64ISD::DUPLANE16;
5463 else if (EltTy == MVT::i32 || EltTy == MVT::f32)
5464 Opcode = AArch64ISD::DUPLANE32;
5465 else if (EltTy == MVT::i64 || EltTy == MVT::f64)
5466 Opcode = AArch64ISD::DUPLANE64;
5467 else
5468 llvm_unreachable("Invalid vector element type?");
5469
5470 if (VT.getSizeInBits() == 64)
5471 OpLHS = WidenVector(OpLHS, DAG);
5472 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64);
5473 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane);
5474 }
5475 case OP_VEXT1:
5476 case OP_VEXT2:
5477 case OP_VEXT3: {
5478 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS);
5479 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS,
5480 DAG.getConstant(Imm, dl, MVT::i32));
5481 }
5482 case OP_VUZPL:
5483 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS,
5484 OpRHS);
5485 case OP_VUZPR:
5486 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS,
5487 OpRHS);
5488 case OP_VZIPL:
5489 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS,
5490 OpRHS);
5491 case OP_VZIPR:
5492 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS,
5493 OpRHS);
5494 case OP_VTRNL:
5495 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS,
5496 OpRHS);
5497 case OP_VTRNR:
5498 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS,
5499 OpRHS);
5500 }
5501 }
5502
GenerateTBL(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)5503 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask,
5504 SelectionDAG &DAG) {
5505 // Check to see if we can use the TBL instruction.
5506 SDValue V1 = Op.getOperand(0);
5507 SDValue V2 = Op.getOperand(1);
5508 SDLoc DL(Op);
5509
5510 EVT EltVT = Op.getValueType().getVectorElementType();
5511 unsigned BytesPerElt = EltVT.getSizeInBits() / 8;
5512
5513 SmallVector<SDValue, 8> TBLMask;
5514 for (int Val : ShuffleMask) {
5515 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) {
5516 unsigned Offset = Byte + Val * BytesPerElt;
5517 TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32));
5518 }
5519 }
5520
5521 MVT IndexVT = MVT::v8i8;
5522 unsigned IndexLen = 8;
5523 if (Op.getValueType().getSizeInBits() == 128) {
5524 IndexVT = MVT::v16i8;
5525 IndexLen = 16;
5526 }
5527
5528 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1);
5529 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2);
5530
5531 SDValue Shuffle;
5532 if (V2.getNode()->isUndef()) {
5533 if (IndexLen == 8)
5534 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst);
5535 Shuffle = DAG.getNode(
5536 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5537 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5538 DAG.getBuildVector(IndexVT, DL,
5539 makeArrayRef(TBLMask.data(), IndexLen)));
5540 } else {
5541 if (IndexLen == 8) {
5542 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst);
5543 Shuffle = DAG.getNode(
5544 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5545 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst,
5546 DAG.getBuildVector(IndexVT, DL,
5547 makeArrayRef(TBLMask.data(), IndexLen)));
5548 } else {
5549 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
5550 // cannot currently represent the register constraints on the input
5551 // table registers.
5552 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
5553 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
5554 // IndexLen));
5555 Shuffle = DAG.getNode(
5556 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT,
5557 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst,
5558 V2Cst, DAG.getBuildVector(IndexVT, DL,
5559 makeArrayRef(TBLMask.data(), IndexLen)));
5560 }
5561 }
5562 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle);
5563 }
5564
getDUPLANEOp(EVT EltType)5565 static unsigned getDUPLANEOp(EVT EltType) {
5566 if (EltType == MVT::i8)
5567 return AArch64ISD::DUPLANE8;
5568 if (EltType == MVT::i16 || EltType == MVT::f16)
5569 return AArch64ISD::DUPLANE16;
5570 if (EltType == MVT::i32 || EltType == MVT::f32)
5571 return AArch64ISD::DUPLANE32;
5572 if (EltType == MVT::i64 || EltType == MVT::f64)
5573 return AArch64ISD::DUPLANE64;
5574
5575 llvm_unreachable("Invalid vector element type?");
5576 }
5577
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const5578 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5579 SelectionDAG &DAG) const {
5580 SDLoc dl(Op);
5581 EVT VT = Op.getValueType();
5582
5583 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5584
5585 // Convert shuffles that are directly supported on NEON to target-specific
5586 // DAG nodes, instead of keeping them as shuffles and matching them again
5587 // during code selection. This is more efficient and avoids the possibility
5588 // of inconsistencies between legalization and selection.
5589 ArrayRef<int> ShuffleMask = SVN->getMask();
5590
5591 SDValue V1 = Op.getOperand(0);
5592 SDValue V2 = Op.getOperand(1);
5593
5594 if (SVN->isSplat()) {
5595 int Lane = SVN->getSplatIndex();
5596 // If this is undef splat, generate it via "just" vdup, if possible.
5597 if (Lane == -1)
5598 Lane = 0;
5599
5600 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
5601 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(),
5602 V1.getOperand(0));
5603 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
5604 // constant. If so, we can just reference the lane's definition directly.
5605 if (V1.getOpcode() == ISD::BUILD_VECTOR &&
5606 !isa<ConstantSDNode>(V1.getOperand(Lane)))
5607 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane));
5608
5609 // Otherwise, duplicate from the lane of the input vector.
5610 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType());
5611
5612 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
5613 // to make a vector of the same size as this SHUFFLE. We can ignore the
5614 // extract entirely, and canonicalise the concat using WidenVector.
5615 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
5616 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue();
5617 V1 = V1.getOperand(0);
5618 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) {
5619 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2;
5620 Lane -= Idx * VT.getVectorNumElements() / 2;
5621 V1 = WidenVector(V1.getOperand(Idx), DAG);
5622 } else if (VT.getSizeInBits() == 64)
5623 V1 = WidenVector(V1, DAG);
5624
5625 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, dl, MVT::i64));
5626 }
5627
5628 if (isREVMask(ShuffleMask, VT, 64))
5629 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2);
5630 if (isREVMask(ShuffleMask, VT, 32))
5631 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2);
5632 if (isREVMask(ShuffleMask, VT, 16))
5633 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2);
5634
5635 bool ReverseEXT = false;
5636 unsigned Imm;
5637 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) {
5638 if (ReverseEXT)
5639 std::swap(V1, V2);
5640 Imm *= getExtFactor(V1);
5641 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2,
5642 DAG.getConstant(Imm, dl, MVT::i32));
5643 } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) {
5644 Imm *= getExtFactor(V1);
5645 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1,
5646 DAG.getConstant(Imm, dl, MVT::i32));
5647 }
5648
5649 unsigned WhichResult;
5650 if (isZIPMask(ShuffleMask, VT, WhichResult)) {
5651 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5652 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5653 }
5654 if (isUZPMask(ShuffleMask, VT, WhichResult)) {
5655 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5656 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5657 }
5658 if (isTRNMask(ShuffleMask, VT, WhichResult)) {
5659 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5660 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2);
5661 }
5662
5663 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5664 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2;
5665 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5666 }
5667 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5668 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2;
5669 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5670 }
5671 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) {
5672 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2;
5673 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1);
5674 }
5675
5676 if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG))
5677 return Concat;
5678
5679 bool DstIsLeft;
5680 int Anomaly;
5681 int NumInputElements = V1.getValueType().getVectorNumElements();
5682 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) {
5683 SDValue DstVec = DstIsLeft ? V1 : V2;
5684 SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64);
5685
5686 SDValue SrcVec = V1;
5687 int SrcLane = ShuffleMask[Anomaly];
5688 if (SrcLane >= NumInputElements) {
5689 SrcVec = V2;
5690 SrcLane -= VT.getVectorNumElements();
5691 }
5692 SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64);
5693
5694 EVT ScalarVT = VT.getVectorElementType();
5695
5696 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger())
5697 ScalarVT = MVT::i32;
5698
5699 return DAG.getNode(
5700 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
5701 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV),
5702 DstLaneV);
5703 }
5704
5705 // If the shuffle is not directly supported and it has 4 elements, use
5706 // the PerfectShuffle-generated table to synthesize it from other shuffles.
5707 unsigned NumElts = VT.getVectorNumElements();
5708 if (NumElts == 4) {
5709 unsigned PFIndexes[4];
5710 for (unsigned i = 0; i != 4; ++i) {
5711 if (ShuffleMask[i] < 0)
5712 PFIndexes[i] = 8;
5713 else
5714 PFIndexes[i] = ShuffleMask[i];
5715 }
5716
5717 // Compute the index in the perfect shuffle table.
5718 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
5719 PFIndexes[2] * 9 + PFIndexes[3];
5720 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5721 unsigned Cost = (PFEntry >> 30);
5722
5723 if (Cost <= 4)
5724 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5725 }
5726
5727 return GenerateTBL(Op, ShuffleMask, DAG);
5728 }
5729
resolveBuildVector(BuildVectorSDNode * BVN,APInt & CnstBits,APInt & UndefBits)5730 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits,
5731 APInt &UndefBits) {
5732 EVT VT = BVN->getValueType(0);
5733 APInt SplatBits, SplatUndef;
5734 unsigned SplatBitSize;
5735 bool HasAnyUndefs;
5736 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5737 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize;
5738
5739 for (unsigned i = 0; i < NumSplats; ++i) {
5740 CnstBits <<= SplatBitSize;
5741 UndefBits <<= SplatBitSize;
5742 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits());
5743 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits());
5744 }
5745
5746 return true;
5747 }
5748
5749 return false;
5750 }
5751
LowerVectorAND(SDValue Op,SelectionDAG & DAG) const5752 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op,
5753 SelectionDAG &DAG) const {
5754 BuildVectorSDNode *BVN =
5755 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5756 SDValue LHS = Op.getOperand(0);
5757 SDLoc dl(Op);
5758 EVT VT = Op.getValueType();
5759
5760 if (!BVN)
5761 return Op;
5762
5763 APInt CnstBits(VT.getSizeInBits(), 0);
5764 APInt UndefBits(VT.getSizeInBits(), 0);
5765 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5766 // We only have BIC vector immediate instruction, which is and-not.
5767 CnstBits = ~CnstBits;
5768
5769 // We make use of a little bit of goto ickiness in order to avoid having to
5770 // duplicate the immediate matching logic for the undef toggled case.
5771 bool SecondTry = false;
5772 AttemptModImm:
5773
5774 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5775 CnstBits = CnstBits.zextOrTrunc(64);
5776 uint64_t CnstVal = CnstBits.getZExtValue();
5777
5778 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5779 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5780 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5781 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5782 DAG.getConstant(CnstVal, dl, MVT::i32),
5783 DAG.getConstant(0, dl, MVT::i32));
5784 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5785 }
5786
5787 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5788 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5789 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5790 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5791 DAG.getConstant(CnstVal, dl, MVT::i32),
5792 DAG.getConstant(8, dl, MVT::i32));
5793 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5794 }
5795
5796 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5797 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5798 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5799 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5800 DAG.getConstant(CnstVal, dl, MVT::i32),
5801 DAG.getConstant(16, dl, MVT::i32));
5802 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5803 }
5804
5805 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
5806 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
5807 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5808 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5809 DAG.getConstant(CnstVal, dl, MVT::i32),
5810 DAG.getConstant(24, dl, MVT::i32));
5811 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5812 }
5813
5814 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
5815 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
5816 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5817 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5818 DAG.getConstant(CnstVal, dl, MVT::i32),
5819 DAG.getConstant(0, dl, MVT::i32));
5820 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5821 }
5822
5823 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
5824 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
5825 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
5826 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS,
5827 DAG.getConstant(CnstVal, dl, MVT::i32),
5828 DAG.getConstant(8, dl, MVT::i32));
5829 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5830 }
5831 }
5832
5833 if (SecondTry)
5834 goto FailedModImm;
5835 SecondTry = true;
5836 CnstBits = ~UndefBits;
5837 goto AttemptModImm;
5838 }
5839
5840 // We can always fall back to a non-immediate AND.
5841 FailedModImm:
5842 return Op;
5843 }
5844
5845 // Specialized code to quickly find if PotentialBVec is a BuildVector that
5846 // consists of only the same constant int value, returned in reference arg
5847 // ConstVal
isAllConstantBuildVector(const SDValue & PotentialBVec,uint64_t & ConstVal)5848 static bool isAllConstantBuildVector(const SDValue &PotentialBVec,
5849 uint64_t &ConstVal) {
5850 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec);
5851 if (!Bvec)
5852 return false;
5853 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0));
5854 if (!FirstElt)
5855 return false;
5856 EVT VT = Bvec->getValueType(0);
5857 unsigned NumElts = VT.getVectorNumElements();
5858 for (unsigned i = 1; i < NumElts; ++i)
5859 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt)
5860 return false;
5861 ConstVal = FirstElt->getZExtValue();
5862 return true;
5863 }
5864
getIntrinsicID(const SDNode * N)5865 static unsigned getIntrinsicID(const SDNode *N) {
5866 unsigned Opcode = N->getOpcode();
5867 switch (Opcode) {
5868 default:
5869 return Intrinsic::not_intrinsic;
5870 case ISD::INTRINSIC_WO_CHAIN: {
5871 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5872 if (IID < Intrinsic::num_intrinsics)
5873 return IID;
5874 return Intrinsic::not_intrinsic;
5875 }
5876 }
5877 }
5878
5879 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
5880 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
5881 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
5882 // Also, logical shift right -> sri, with the same structure.
tryLowerToSLI(SDNode * N,SelectionDAG & DAG)5883 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) {
5884 EVT VT = N->getValueType(0);
5885
5886 if (!VT.isVector())
5887 return SDValue();
5888
5889 SDLoc DL(N);
5890
5891 // Is the first op an AND?
5892 const SDValue And = N->getOperand(0);
5893 if (And.getOpcode() != ISD::AND)
5894 return SDValue();
5895
5896 // Is the second op an shl or lshr?
5897 SDValue Shift = N->getOperand(1);
5898 // This will have been turned into: AArch64ISD::VSHL vector, #shift
5899 // or AArch64ISD::VLSHR vector, #shift
5900 unsigned ShiftOpc = Shift.getOpcode();
5901 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR))
5902 return SDValue();
5903 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR;
5904
5905 // Is the shift amount constant?
5906 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
5907 if (!C2node)
5908 return SDValue();
5909
5910 // Is the and mask vector all constant?
5911 uint64_t C1;
5912 if (!isAllConstantBuildVector(And.getOperand(1), C1))
5913 return SDValue();
5914
5915 // Is C1 == ~C2, taking into account how much one can shift elements of a
5916 // particular size?
5917 uint64_t C2 = C2node->getZExtValue();
5918 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits();
5919 if (C2 > ElemSizeInBits)
5920 return SDValue();
5921 unsigned ElemMask = (1 << ElemSizeInBits) - 1;
5922 if ((C1 & ElemMask) != (~C2 & ElemMask))
5923 return SDValue();
5924
5925 SDValue X = And.getOperand(0);
5926 SDValue Y = Shift.getOperand(0);
5927
5928 unsigned Intrin =
5929 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli;
5930 SDValue ResultSLI =
5931 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
5932 DAG.getConstant(Intrin, DL, MVT::i32), X, Y,
5933 Shift.getOperand(1));
5934
5935 DEBUG(dbgs() << "aarch64-lower: transformed: \n");
5936 DEBUG(N->dump(&DAG));
5937 DEBUG(dbgs() << "into: \n");
5938 DEBUG(ResultSLI->dump(&DAG));
5939
5940 ++NumShiftInserts;
5941 return ResultSLI;
5942 }
5943
LowerVectorOR(SDValue Op,SelectionDAG & DAG) const5944 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op,
5945 SelectionDAG &DAG) const {
5946 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
5947 if (EnableAArch64SlrGeneration) {
5948 if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG))
5949 return Res;
5950 }
5951
5952 BuildVectorSDNode *BVN =
5953 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode());
5954 SDValue LHS = Op.getOperand(1);
5955 SDLoc dl(Op);
5956 EVT VT = Op.getValueType();
5957
5958 // OR commutes, so try swapping the operands.
5959 if (!BVN) {
5960 LHS = Op.getOperand(0);
5961 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode());
5962 }
5963 if (!BVN)
5964 return Op;
5965
5966 APInt CnstBits(VT.getSizeInBits(), 0);
5967 APInt UndefBits(VT.getSizeInBits(), 0);
5968 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
5969 // We make use of a little bit of goto ickiness in order to avoid having to
5970 // duplicate the immediate matching logic for the undef toggled case.
5971 bool SecondTry = false;
5972 AttemptModImm:
5973
5974 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
5975 CnstBits = CnstBits.zextOrTrunc(64);
5976 uint64_t CnstVal = CnstBits.getZExtValue();
5977
5978 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
5979 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
5980 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5981 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5982 DAG.getConstant(CnstVal, dl, MVT::i32),
5983 DAG.getConstant(0, dl, MVT::i32));
5984 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5985 }
5986
5987 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
5988 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
5989 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5990 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
5991 DAG.getConstant(CnstVal, dl, MVT::i32),
5992 DAG.getConstant(8, dl, MVT::i32));
5993 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
5994 }
5995
5996 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
5997 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
5998 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
5999 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6000 DAG.getConstant(CnstVal, dl, MVT::i32),
6001 DAG.getConstant(16, dl, MVT::i32));
6002 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6003 }
6004
6005 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6006 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6007 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6008 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6009 DAG.getConstant(CnstVal, dl, MVT::i32),
6010 DAG.getConstant(24, dl, MVT::i32));
6011 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6012 }
6013
6014 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6015 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6016 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6017 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6018 DAG.getConstant(CnstVal, dl, MVT::i32),
6019 DAG.getConstant(0, dl, MVT::i32));
6020 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6021 }
6022
6023 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6024 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6025 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6026 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS,
6027 DAG.getConstant(CnstVal, dl, MVT::i32),
6028 DAG.getConstant(8, dl, MVT::i32));
6029 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6030 }
6031 }
6032
6033 if (SecondTry)
6034 goto FailedModImm;
6035 SecondTry = true;
6036 CnstBits = UndefBits;
6037 goto AttemptModImm;
6038 }
6039
6040 // We can always fall back to a non-immediate OR.
6041 FailedModImm:
6042 return Op;
6043 }
6044
6045 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
6046 // be truncated to fit element width.
NormalizeBuildVector(SDValue Op,SelectionDAG & DAG)6047 static SDValue NormalizeBuildVector(SDValue Op,
6048 SelectionDAG &DAG) {
6049 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6050 SDLoc dl(Op);
6051 EVT VT = Op.getValueType();
6052 EVT EltTy= VT.getVectorElementType();
6053
6054 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16)
6055 return Op;
6056
6057 SmallVector<SDValue, 16> Ops;
6058 for (SDValue Lane : Op->ops()) {
6059 if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) {
6060 APInt LowBits(EltTy.getSizeInBits(),
6061 CstLane->getZExtValue());
6062 Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32);
6063 }
6064 Ops.push_back(Lane);
6065 }
6066 return DAG.getBuildVector(VT, dl, Ops);
6067 }
6068
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const6069 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op,
6070 SelectionDAG &DAG) const {
6071 SDLoc dl(Op);
6072 EVT VT = Op.getValueType();
6073 Op = NormalizeBuildVector(Op, DAG);
6074 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6075
6076 APInt CnstBits(VT.getSizeInBits(), 0);
6077 APInt UndefBits(VT.getSizeInBits(), 0);
6078 if (resolveBuildVector(BVN, CnstBits, UndefBits)) {
6079 // We make use of a little bit of goto ickiness in order to avoid having to
6080 // duplicate the immediate matching logic for the undef toggled case.
6081 bool SecondTry = false;
6082 AttemptModImm:
6083
6084 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) {
6085 CnstBits = CnstBits.zextOrTrunc(64);
6086 uint64_t CnstVal = CnstBits.getZExtValue();
6087
6088 // Certain magic vector constants (used to express things like NOT
6089 // and NEG) are passed through unmodified. This allows codegen patterns
6090 // for these operations to match. Special-purpose patterns will lower
6091 // these immediates to MOVIs if it proves necessary.
6092 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL))
6093 return Op;
6094
6095 // The many faces of MOVI...
6096 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) {
6097 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal);
6098 if (VT.getSizeInBits() == 128) {
6099 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64,
6100 DAG.getConstant(CnstVal, dl, MVT::i32));
6101 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6102 }
6103
6104 // Support the V64 version via subregister insertion.
6105 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64,
6106 DAG.getConstant(CnstVal, dl, MVT::i32));
6107 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6108 }
6109
6110 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6111 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6112 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6113 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6114 DAG.getConstant(CnstVal, dl, MVT::i32),
6115 DAG.getConstant(0, dl, MVT::i32));
6116 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6117 }
6118
6119 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6120 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6121 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6122 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6123 DAG.getConstant(CnstVal, dl, MVT::i32),
6124 DAG.getConstant(8, dl, MVT::i32));
6125 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6126 }
6127
6128 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6129 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6130 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6131 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6132 DAG.getConstant(CnstVal, dl, MVT::i32),
6133 DAG.getConstant(16, dl, MVT::i32));
6134 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6135 }
6136
6137 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6138 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6139 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6140 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6141 DAG.getConstant(CnstVal, dl, MVT::i32),
6142 DAG.getConstant(24, dl, MVT::i32));
6143 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6144 }
6145
6146 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6147 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6148 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6149 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6150 DAG.getConstant(CnstVal, dl, MVT::i32),
6151 DAG.getConstant(0, dl, MVT::i32));
6152 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6153 }
6154
6155 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6156 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6157 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6158 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy,
6159 DAG.getConstant(CnstVal, dl, MVT::i32),
6160 DAG.getConstant(8, dl, MVT::i32));
6161 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6162 }
6163
6164 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6165 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6166 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6167 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6168 DAG.getConstant(CnstVal, dl, MVT::i32),
6169 DAG.getConstant(264, dl, MVT::i32));
6170 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6171 }
6172
6173 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6174 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6175 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6176 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy,
6177 DAG.getConstant(CnstVal, dl, MVT::i32),
6178 DAG.getConstant(272, dl, MVT::i32));
6179 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6180 }
6181
6182 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) {
6183 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal);
6184 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8;
6185 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy,
6186 DAG.getConstant(CnstVal, dl, MVT::i32));
6187 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6188 }
6189
6190 // The few faces of FMOV...
6191 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) {
6192 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal);
6193 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32;
6194 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy,
6195 DAG.getConstant(CnstVal, dl, MVT::i32));
6196 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6197 }
6198
6199 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) &&
6200 VT.getSizeInBits() == 128) {
6201 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal);
6202 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64,
6203 DAG.getConstant(CnstVal, dl, MVT::i32));
6204 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6205 }
6206
6207 // The many faces of MVNI...
6208 CnstVal = ~CnstVal;
6209 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) {
6210 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal);
6211 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6212 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6213 DAG.getConstant(CnstVal, dl, MVT::i32),
6214 DAG.getConstant(0, dl, MVT::i32));
6215 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6216 }
6217
6218 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) {
6219 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal);
6220 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6221 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6222 DAG.getConstant(CnstVal, dl, MVT::i32),
6223 DAG.getConstant(8, dl, MVT::i32));
6224 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6225 }
6226
6227 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) {
6228 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal);
6229 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6230 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6231 DAG.getConstant(CnstVal, dl, MVT::i32),
6232 DAG.getConstant(16, dl, MVT::i32));
6233 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6234 }
6235
6236 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) {
6237 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal);
6238 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6239 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6240 DAG.getConstant(CnstVal, dl, MVT::i32),
6241 DAG.getConstant(24, dl, MVT::i32));
6242 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6243 }
6244
6245 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) {
6246 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal);
6247 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6248 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6249 DAG.getConstant(CnstVal, dl, MVT::i32),
6250 DAG.getConstant(0, dl, MVT::i32));
6251 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6252 }
6253
6254 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) {
6255 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal);
6256 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16;
6257 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy,
6258 DAG.getConstant(CnstVal, dl, MVT::i32),
6259 DAG.getConstant(8, dl, MVT::i32));
6260 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6261 }
6262
6263 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) {
6264 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal);
6265 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6266 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6267 DAG.getConstant(CnstVal, dl, MVT::i32),
6268 DAG.getConstant(264, dl, MVT::i32));
6269 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6270 }
6271
6272 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) {
6273 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal);
6274 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32;
6275 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy,
6276 DAG.getConstant(CnstVal, dl, MVT::i32),
6277 DAG.getConstant(272, dl, MVT::i32));
6278 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov);
6279 }
6280 }
6281
6282 if (SecondTry)
6283 goto FailedModImm;
6284 SecondTry = true;
6285 CnstBits = UndefBits;
6286 goto AttemptModImm;
6287 }
6288 FailedModImm:
6289
6290 // Scan through the operands to find some interesting properties we can
6291 // exploit:
6292 // 1) If only one value is used, we can use a DUP, or
6293 // 2) if only the low element is not undef, we can just insert that, or
6294 // 3) if only one constant value is used (w/ some non-constant lanes),
6295 // we can splat the constant value into the whole vector then fill
6296 // in the non-constant lanes.
6297 // 4) FIXME: If different constant values are used, but we can intelligently
6298 // select the values we'll be overwriting for the non-constant
6299 // lanes such that we can directly materialize the vector
6300 // some other way (MOVI, e.g.), we can be sneaky.
6301 unsigned NumElts = VT.getVectorNumElements();
6302 bool isOnlyLowElement = true;
6303 bool usesOnlyOneValue = true;
6304 bool usesOnlyOneConstantValue = true;
6305 bool isConstant = true;
6306 unsigned NumConstantLanes = 0;
6307 SDValue Value;
6308 SDValue ConstantValue;
6309 for (unsigned i = 0; i < NumElts; ++i) {
6310 SDValue V = Op.getOperand(i);
6311 if (V.isUndef())
6312 continue;
6313 if (i > 0)
6314 isOnlyLowElement = false;
6315 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6316 isConstant = false;
6317
6318 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) {
6319 ++NumConstantLanes;
6320 if (!ConstantValue.getNode())
6321 ConstantValue = V;
6322 else if (ConstantValue != V)
6323 usesOnlyOneConstantValue = false;
6324 }
6325
6326 if (!Value.getNode())
6327 Value = V;
6328 else if (V != Value)
6329 usesOnlyOneValue = false;
6330 }
6331
6332 if (!Value.getNode())
6333 return DAG.getUNDEF(VT);
6334
6335 if (isOnlyLowElement)
6336 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6337
6338 // Use DUP for non-constant splats. For f32 constant splats, reduce to
6339 // i32 and try again.
6340 if (usesOnlyOneValue) {
6341 if (!isConstant) {
6342 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6343 Value.getValueType() != VT)
6344 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value);
6345
6346 // This is actually a DUPLANExx operation, which keeps everything vectory.
6347
6348 // DUPLANE works on 128-bit vectors, widen it if necessary.
6349 SDValue Lane = Value.getOperand(1);
6350 Value = Value.getOperand(0);
6351 if (Value.getValueType().getSizeInBits() == 64)
6352 Value = WidenVector(Value, DAG);
6353
6354 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType());
6355 return DAG.getNode(Opcode, dl, VT, Value, Lane);
6356 }
6357
6358 if (VT.getVectorElementType().isFloatingPoint()) {
6359 SmallVector<SDValue, 8> Ops;
6360 EVT EltTy = VT.getVectorElementType();
6361 assert ((EltTy == MVT::f16 || EltTy == MVT::f32 || EltTy == MVT::f64) &&
6362 "Unsupported floating-point vector type");
6363 MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits());
6364 for (unsigned i = 0; i < NumElts; ++i)
6365 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i)));
6366 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts);
6367 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6368 Val = LowerBUILD_VECTOR(Val, DAG);
6369 if (Val.getNode())
6370 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6371 }
6372 }
6373
6374 // If there was only one constant value used and for more than one lane,
6375 // start by splatting that value, then replace the non-constant lanes. This
6376 // is better than the default, which will perform a separate initialization
6377 // for each lane.
6378 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) {
6379 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue);
6380 // Now insert the non-constant lanes.
6381 for (unsigned i = 0; i < NumElts; ++i) {
6382 SDValue V = Op.getOperand(i);
6383 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6384 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) {
6385 // Note that type legalization likely mucked about with the VT of the
6386 // source operand, so we may have to convert it here before inserting.
6387 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx);
6388 }
6389 }
6390 return Val;
6391 }
6392
6393 // If all elements are constants and the case above didn't get hit, fall back
6394 // to the default expansion, which will generate a load from the constant
6395 // pool.
6396 if (isConstant)
6397 return SDValue();
6398
6399 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6400 if (NumElts >= 4) {
6401 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
6402 return shuffle;
6403 }
6404
6405 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6406 // know the default expansion would otherwise fall back on something even
6407 // worse. For a vector with one or two non-undef values, that's
6408 // scalar_to_vector for the elements followed by a shuffle (provided the
6409 // shuffle is valid for the target) and materialization element by element
6410 // on the stack followed by a load for everything else.
6411 if (!isConstant && !usesOnlyOneValue) {
6412 SDValue Vec = DAG.getUNDEF(VT);
6413 SDValue Op0 = Op.getOperand(0);
6414 unsigned ElemSize = VT.getVectorElementType().getSizeInBits();
6415 unsigned i = 0;
6416 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to
6417 // a) Avoid a RMW dependency on the full vector register, and
6418 // b) Allow the register coalescer to fold away the copy if the
6419 // value is already in an S or D register.
6420 // Do not do this for UNDEF/LOAD nodes because we have better patterns
6421 // for those avoiding the SCALAR_TO_VECTOR/BUILD_VECTOR.
6422 if (!Op0.isUndef() && Op0.getOpcode() != ISD::LOAD &&
6423 (ElemSize == 32 || ElemSize == 64)) {
6424 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub;
6425 MachineSDNode *N =
6426 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0,
6427 DAG.getTargetConstant(SubIdx, dl, MVT::i32));
6428 Vec = SDValue(N, 0);
6429 ++i;
6430 }
6431 for (; i < NumElts; ++i) {
6432 SDValue V = Op.getOperand(i);
6433 if (V.isUndef())
6434 continue;
6435 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64);
6436 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6437 }
6438 return Vec;
6439 }
6440
6441 // Just use the default expansion. We failed to find a better alternative.
6442 return SDValue();
6443 }
6444
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6445 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
6446 SelectionDAG &DAG) const {
6447 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!");
6448
6449 // Check for non-constant or out of range lane.
6450 EVT VT = Op.getOperand(0).getValueType();
6451 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2));
6452 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6453 return SDValue();
6454
6455
6456 // Insertion/extraction are legal for V128 types.
6457 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6458 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6459 VT == MVT::v8f16)
6460 return Op;
6461
6462 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6463 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6464 return SDValue();
6465
6466 // For V64 types, we perform insertion by expanding the value
6467 // to a V128 type and perform the insertion on that.
6468 SDLoc DL(Op);
6469 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6470 EVT WideTy = WideVec.getValueType();
6471
6472 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec,
6473 Op.getOperand(1), Op.getOperand(2));
6474 // Re-narrow the resultant vector.
6475 return NarrowVector(Node, DAG);
6476 }
6477
6478 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6479 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6480 SelectionDAG &DAG) const {
6481 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!");
6482
6483 // Check for non-constant or out of range lane.
6484 EVT VT = Op.getOperand(0).getValueType();
6485 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6486 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements())
6487 return SDValue();
6488
6489
6490 // Insertion/extraction are legal for V128 types.
6491 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
6492 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 ||
6493 VT == MVT::v8f16)
6494 return Op;
6495
6496 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 &&
6497 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16)
6498 return SDValue();
6499
6500 // For V64 types, we perform extraction by expanding the value
6501 // to a V128 type and perform the extraction on that.
6502 SDLoc DL(Op);
6503 SDValue WideVec = WidenVector(Op.getOperand(0), DAG);
6504 EVT WideTy = WideVec.getValueType();
6505
6506 EVT ExtrTy = WideTy.getVectorElementType();
6507 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8)
6508 ExtrTy = MVT::i32;
6509
6510 // For extractions, we just return the result directly.
6511 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec,
6512 Op.getOperand(1));
6513 }
6514
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const6515 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
6516 SelectionDAG &DAG) const {
6517 EVT VT = Op.getOperand(0).getValueType();
6518 SDLoc dl(Op);
6519 // Just in case...
6520 if (!VT.isVector())
6521 return SDValue();
6522
6523 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6524 if (!Cst)
6525 return SDValue();
6526 unsigned Val = Cst->getZExtValue();
6527
6528 unsigned Size = Op.getValueType().getSizeInBits();
6529
6530 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
6531 if (Val == 0)
6532 return Op;
6533
6534 // If this is extracting the upper 64-bits of a 128-bit vector, we match
6535 // that directly.
6536 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64)
6537 return Op;
6538
6539 return SDValue();
6540 }
6541
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const6542 bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6543 EVT VT) const {
6544 if (VT.getVectorNumElements() == 4 &&
6545 (VT.is128BitVector() || VT.is64BitVector())) {
6546 unsigned PFIndexes[4];
6547 for (unsigned i = 0; i != 4; ++i) {
6548 if (M[i] < 0)
6549 PFIndexes[i] = 8;
6550 else
6551 PFIndexes[i] = M[i];
6552 }
6553
6554 // Compute the index in the perfect shuffle table.
6555 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
6556 PFIndexes[2] * 9 + PFIndexes[3];
6557 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6558 unsigned Cost = (PFEntry >> 30);
6559
6560 if (Cost <= 4)
6561 return true;
6562 }
6563
6564 bool DummyBool;
6565 int DummyInt;
6566 unsigned DummyUnsigned;
6567
6568 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) ||
6569 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) ||
6570 isEXTMask(M, VT, DummyBool, DummyUnsigned) ||
6571 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
6572 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) ||
6573 isZIPMask(M, VT, DummyUnsigned) ||
6574 isTRN_v_undef_Mask(M, VT, DummyUnsigned) ||
6575 isUZP_v_undef_Mask(M, VT, DummyUnsigned) ||
6576 isZIP_v_undef_Mask(M, VT, DummyUnsigned) ||
6577 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) ||
6578 isConcatMask(M, VT, VT.getSizeInBits() == 128));
6579 }
6580
6581 /// getVShiftImm - Check if this is a valid build_vector for the immediate
6582 /// operand of a vector shift operation, where all the elements of the
6583 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6584 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6585 // Ignore bit_converts.
6586 while (Op.getOpcode() == ISD::BITCAST)
6587 Op = Op.getOperand(0);
6588 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6589 APInt SplatBits, SplatUndef;
6590 unsigned SplatBitSize;
6591 bool HasAnyUndefs;
6592 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
6593 HasAnyUndefs, ElementBits) ||
6594 SplatBitSize > ElementBits)
6595 return false;
6596 Cnt = SplatBits.getSExtValue();
6597 return true;
6598 }
6599
6600 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6601 /// operand of a vector shift left operation. That value must be in the range:
6602 /// 0 <= Value < ElementBits for a left shift; or
6603 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6604 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6605 assert(VT.isVector() && "vector shift count is not a vector type");
6606 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6607 if (!getVShiftImm(Op, ElementBits, Cnt))
6608 return false;
6609 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6610 }
6611
6612 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6613 /// operand of a vector shift right operation. The value must be in the range:
6614 /// 1 <= Value <= ElementBits for a right shift; or
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,int64_t & Cnt)6615 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) {
6616 assert(VT.isVector() && "vector shift count is not a vector type");
6617 int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
6618 if (!getVShiftImm(Op, ElementBits, Cnt))
6619 return false;
6620 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6621 }
6622
LowerVectorSRA_SRL_SHL(SDValue Op,SelectionDAG & DAG) const6623 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op,
6624 SelectionDAG &DAG) const {
6625 EVT VT = Op.getValueType();
6626 SDLoc DL(Op);
6627 int64_t Cnt;
6628
6629 if (!Op.getOperand(1).getValueType().isVector())
6630 return Op;
6631 unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6632
6633 switch (Op.getOpcode()) {
6634 default:
6635 llvm_unreachable("unexpected shift opcode");
6636
6637 case ISD::SHL:
6638 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize)
6639 return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0),
6640 DAG.getConstant(Cnt, DL, MVT::i32));
6641 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6642 DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL,
6643 MVT::i32),
6644 Op.getOperand(0), Op.getOperand(1));
6645 case ISD::SRA:
6646 case ISD::SRL:
6647 // Right shift immediate
6648 if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) {
6649 unsigned Opc =
6650 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR;
6651 return DAG.getNode(Opc, DL, VT, Op.getOperand(0),
6652 DAG.getConstant(Cnt, DL, MVT::i32));
6653 }
6654
6655 // Right shift register. Note, there is not a shift right register
6656 // instruction, but the shift left register instruction takes a signed
6657 // value, where negative numbers specify a right shift.
6658 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl
6659 : Intrinsic::aarch64_neon_ushl;
6660 // negate the shift amount
6661 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1));
6662 SDValue NegShiftLeft =
6663 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
6664 DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0),
6665 NegShift);
6666 return NegShiftLeft;
6667 }
6668
6669 return SDValue();
6670 }
6671
EmitVectorComparison(SDValue LHS,SDValue RHS,AArch64CC::CondCode CC,bool NoNans,EVT VT,const SDLoc & dl,SelectionDAG & DAG)6672 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS,
6673 AArch64CC::CondCode CC, bool NoNans, EVT VT,
6674 const SDLoc &dl, SelectionDAG &DAG) {
6675 EVT SrcVT = LHS.getValueType();
6676 assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&
6677 "function only supposed to emit natural comparisons");
6678
6679 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
6680 APInt CnstBits(VT.getSizeInBits(), 0);
6681 APInt UndefBits(VT.getSizeInBits(), 0);
6682 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits);
6683 bool IsZero = IsCnst && (CnstBits == 0);
6684
6685 if (SrcVT.getVectorElementType().isFloatingPoint()) {
6686 switch (CC) {
6687 default:
6688 return SDValue();
6689 case AArch64CC::NE: {
6690 SDValue Fcmeq;
6691 if (IsZero)
6692 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6693 else
6694 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6695 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq);
6696 }
6697 case AArch64CC::EQ:
6698 if (IsZero)
6699 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS);
6700 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS);
6701 case AArch64CC::GE:
6702 if (IsZero)
6703 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS);
6704 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS);
6705 case AArch64CC::GT:
6706 if (IsZero)
6707 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS);
6708 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS);
6709 case AArch64CC::LS:
6710 if (IsZero)
6711 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS);
6712 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS);
6713 case AArch64CC::LT:
6714 if (!NoNans)
6715 return SDValue();
6716 // If we ignore NaNs then we can use to the MI implementation.
6717 // Fallthrough.
6718 case AArch64CC::MI:
6719 if (IsZero)
6720 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS);
6721 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS);
6722 }
6723 }
6724
6725 switch (CC) {
6726 default:
6727 return SDValue();
6728 case AArch64CC::NE: {
6729 SDValue Cmeq;
6730 if (IsZero)
6731 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6732 else
6733 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6734 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq);
6735 }
6736 case AArch64CC::EQ:
6737 if (IsZero)
6738 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS);
6739 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS);
6740 case AArch64CC::GE:
6741 if (IsZero)
6742 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS);
6743 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS);
6744 case AArch64CC::GT:
6745 if (IsZero)
6746 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS);
6747 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS);
6748 case AArch64CC::LE:
6749 if (IsZero)
6750 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS);
6751 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS);
6752 case AArch64CC::LS:
6753 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS);
6754 case AArch64CC::LO:
6755 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS);
6756 case AArch64CC::LT:
6757 if (IsZero)
6758 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS);
6759 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS);
6760 case AArch64CC::HI:
6761 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS);
6762 case AArch64CC::HS:
6763 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS);
6764 }
6765 }
6766
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const6767 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op,
6768 SelectionDAG &DAG) const {
6769 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6770 SDValue LHS = Op.getOperand(0);
6771 SDValue RHS = Op.getOperand(1);
6772 EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger();
6773 SDLoc dl(Op);
6774
6775 if (LHS.getValueType().getVectorElementType().isInteger()) {
6776 assert(LHS.getValueType() == RHS.getValueType());
6777 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC);
6778 SDValue Cmp =
6779 EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG);
6780 return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6781 }
6782
6783 if (LHS.getValueType().getVectorElementType() == MVT::f16)
6784 return SDValue();
6785
6786 assert(LHS.getValueType().getVectorElementType() == MVT::f32 ||
6787 LHS.getValueType().getVectorElementType() == MVT::f64);
6788
6789 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
6790 // clean. Some of them require two branches to implement.
6791 AArch64CC::CondCode CC1, CC2;
6792 bool ShouldInvert;
6793 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert);
6794
6795 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath;
6796 SDValue Cmp =
6797 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG);
6798 if (!Cmp.getNode())
6799 return SDValue();
6800
6801 if (CC2 != AArch64CC::AL) {
6802 SDValue Cmp2 =
6803 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG);
6804 if (!Cmp2.getNode())
6805 return SDValue();
6806
6807 Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2);
6808 }
6809
6810 Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType());
6811
6812 if (ShouldInvert)
6813 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType());
6814
6815 return Cmp;
6816 }
6817
6818 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6819 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
6820 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const6821 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6822 const CallInst &I,
6823 unsigned Intrinsic) const {
6824 auto &DL = I.getModule()->getDataLayout();
6825 switch (Intrinsic) {
6826 case Intrinsic::aarch64_neon_ld2:
6827 case Intrinsic::aarch64_neon_ld3:
6828 case Intrinsic::aarch64_neon_ld4:
6829 case Intrinsic::aarch64_neon_ld1x2:
6830 case Intrinsic::aarch64_neon_ld1x3:
6831 case Intrinsic::aarch64_neon_ld1x4:
6832 case Intrinsic::aarch64_neon_ld2lane:
6833 case Intrinsic::aarch64_neon_ld3lane:
6834 case Intrinsic::aarch64_neon_ld4lane:
6835 case Intrinsic::aarch64_neon_ld2r:
6836 case Intrinsic::aarch64_neon_ld3r:
6837 case Intrinsic::aarch64_neon_ld4r: {
6838 Info.opc = ISD::INTRINSIC_W_CHAIN;
6839 // Conservatively set memVT to the entire set of vectors loaded.
6840 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
6841 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6842 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6843 Info.offset = 0;
6844 Info.align = 0;
6845 Info.vol = false; // volatile loads with NEON intrinsics not supported
6846 Info.readMem = true;
6847 Info.writeMem = false;
6848 return true;
6849 }
6850 case Intrinsic::aarch64_neon_st2:
6851 case Intrinsic::aarch64_neon_st3:
6852 case Intrinsic::aarch64_neon_st4:
6853 case Intrinsic::aarch64_neon_st1x2:
6854 case Intrinsic::aarch64_neon_st1x3:
6855 case Intrinsic::aarch64_neon_st1x4:
6856 case Intrinsic::aarch64_neon_st2lane:
6857 case Intrinsic::aarch64_neon_st3lane:
6858 case Intrinsic::aarch64_neon_st4lane: {
6859 Info.opc = ISD::INTRINSIC_VOID;
6860 // Conservatively set memVT to the entire set of vectors stored.
6861 unsigned NumElts = 0;
6862 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6863 Type *ArgTy = I.getArgOperand(ArgI)->getType();
6864 if (!ArgTy->isVectorTy())
6865 break;
6866 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
6867 }
6868 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6869 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
6870 Info.offset = 0;
6871 Info.align = 0;
6872 Info.vol = false; // volatile stores with NEON intrinsics not supported
6873 Info.readMem = false;
6874 Info.writeMem = true;
6875 return true;
6876 }
6877 case Intrinsic::aarch64_ldaxr:
6878 case Intrinsic::aarch64_ldxr: {
6879 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
6880 Info.opc = ISD::INTRINSIC_W_CHAIN;
6881 Info.memVT = MVT::getVT(PtrTy->getElementType());
6882 Info.ptrVal = I.getArgOperand(0);
6883 Info.offset = 0;
6884 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6885 Info.vol = true;
6886 Info.readMem = true;
6887 Info.writeMem = false;
6888 return true;
6889 }
6890 case Intrinsic::aarch64_stlxr:
6891 case Intrinsic::aarch64_stxr: {
6892 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
6893 Info.opc = ISD::INTRINSIC_W_CHAIN;
6894 Info.memVT = MVT::getVT(PtrTy->getElementType());
6895 Info.ptrVal = I.getArgOperand(1);
6896 Info.offset = 0;
6897 Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
6898 Info.vol = true;
6899 Info.readMem = false;
6900 Info.writeMem = true;
6901 return true;
6902 }
6903 case Intrinsic::aarch64_ldaxp:
6904 case Intrinsic::aarch64_ldxp: {
6905 Info.opc = ISD::INTRINSIC_W_CHAIN;
6906 Info.memVT = MVT::i128;
6907 Info.ptrVal = I.getArgOperand(0);
6908 Info.offset = 0;
6909 Info.align = 16;
6910 Info.vol = true;
6911 Info.readMem = true;
6912 Info.writeMem = false;
6913 return true;
6914 }
6915 case Intrinsic::aarch64_stlxp:
6916 case Intrinsic::aarch64_stxp: {
6917 Info.opc = ISD::INTRINSIC_W_CHAIN;
6918 Info.memVT = MVT::i128;
6919 Info.ptrVal = I.getArgOperand(2);
6920 Info.offset = 0;
6921 Info.align = 16;
6922 Info.vol = true;
6923 Info.readMem = false;
6924 Info.writeMem = true;
6925 return true;
6926 }
6927 default:
6928 break;
6929 }
6930
6931 return false;
6932 }
6933
6934 // Truncations from 64-bit GPR to 32-bit GPR is free.
isTruncateFree(Type * Ty1,Type * Ty2) const6935 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
6936 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6937 return false;
6938 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6939 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6940 return NumBits1 > NumBits2;
6941 }
isTruncateFree(EVT VT1,EVT VT2) const6942 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
6943 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6944 return false;
6945 unsigned NumBits1 = VT1.getSizeInBits();
6946 unsigned NumBits2 = VT2.getSizeInBits();
6947 return NumBits1 > NumBits2;
6948 }
6949
6950 /// Check if it is profitable to hoist instruction in then/else to if.
6951 /// Not profitable if I and it's user can form a FMA instruction
6952 /// because we prefer FMSUB/FMADD.
isProfitableToHoist(Instruction * I) const6953 bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const {
6954 if (I->getOpcode() != Instruction::FMul)
6955 return true;
6956
6957 if (I->getNumUses() != 1)
6958 return true;
6959
6960 Instruction *User = I->user_back();
6961
6962 if (User &&
6963 !(User->getOpcode() == Instruction::FSub ||
6964 User->getOpcode() == Instruction::FAdd))
6965 return true;
6966
6967 const TargetOptions &Options = getTargetMachine().Options;
6968 const DataLayout &DL = I->getModule()->getDataLayout();
6969 EVT VT = getValueType(DL, User->getOperand(0)->getType());
6970
6971 return !(isFMAFasterThanFMulAndFAdd(VT) &&
6972 isOperationLegalOrCustom(ISD::FMA, VT) &&
6973 (Options.AllowFPOpFusion == FPOpFusion::Fast ||
6974 Options.UnsafeFPMath));
6975 }
6976
6977 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
6978 // 64-bit GPR.
isZExtFree(Type * Ty1,Type * Ty2) const6979 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
6980 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
6981 return false;
6982 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6983 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6984 return NumBits1 == 32 && NumBits2 == 64;
6985 }
isZExtFree(EVT VT1,EVT VT2) const6986 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
6987 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger())
6988 return false;
6989 unsigned NumBits1 = VT1.getSizeInBits();
6990 unsigned NumBits2 = VT2.getSizeInBits();
6991 return NumBits1 == 32 && NumBits2 == 64;
6992 }
6993
isZExtFree(SDValue Val,EVT VT2) const6994 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
6995 EVT VT1 = Val.getValueType();
6996 if (isZExtFree(VT1, VT2)) {
6997 return true;
6998 }
6999
7000 if (Val.getOpcode() != ISD::LOAD)
7001 return false;
7002
7003 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
7004 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() &&
7005 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() &&
7006 VT1.getSizeInBits() <= 32);
7007 }
7008
isExtFreeImpl(const Instruction * Ext) const7009 bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const {
7010 if (isa<FPExtInst>(Ext))
7011 return false;
7012
7013 // Vector types are next free.
7014 if (Ext->getType()->isVectorTy())
7015 return false;
7016
7017 for (const Use &U : Ext->uses()) {
7018 // The extension is free if we can fold it with a left shift in an
7019 // addressing mode or an arithmetic operation: add, sub, and cmp.
7020
7021 // Is there a shift?
7022 const Instruction *Instr = cast<Instruction>(U.getUser());
7023
7024 // Is this a constant shift?
7025 switch (Instr->getOpcode()) {
7026 case Instruction::Shl:
7027 if (!isa<ConstantInt>(Instr->getOperand(1)))
7028 return false;
7029 break;
7030 case Instruction::GetElementPtr: {
7031 gep_type_iterator GTI = gep_type_begin(Instr);
7032 auto &DL = Ext->getModule()->getDataLayout();
7033 std::advance(GTI, U.getOperandNo());
7034 Type *IdxTy = *GTI;
7035 // This extension will end up with a shift because of the scaling factor.
7036 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
7037 // Get the shift amount based on the scaling factor:
7038 // log2(sizeof(IdxTy)) - log2(8).
7039 uint64_t ShiftAmt =
7040 countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy)) - 3;
7041 // Is the constant foldable in the shift of the addressing mode?
7042 // I.e., shift amount is between 1 and 4 inclusive.
7043 if (ShiftAmt == 0 || ShiftAmt > 4)
7044 return false;
7045 break;
7046 }
7047 case Instruction::Trunc:
7048 // Check if this is a noop.
7049 // trunc(sext ty1 to ty2) to ty1.
7050 if (Instr->getType() == Ext->getOperand(0)->getType())
7051 continue;
7052 // FALL THROUGH.
7053 default:
7054 return false;
7055 }
7056
7057 // At this point we can use the bfm family, so this extension is free
7058 // for that use.
7059 }
7060 return true;
7061 }
7062
hasPairedLoad(Type * LoadedType,unsigned & RequiredAligment) const7063 bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType,
7064 unsigned &RequiredAligment) const {
7065 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy())
7066 return false;
7067 // Cyclone supports unaligned accesses.
7068 RequiredAligment = 0;
7069 unsigned NumBits = LoadedType->getPrimitiveSizeInBits();
7070 return NumBits == 32 || NumBits == 64;
7071 }
7072
hasPairedLoad(EVT LoadedType,unsigned & RequiredAligment) const7073 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType,
7074 unsigned &RequiredAligment) const {
7075 if (!LoadedType.isSimple() ||
7076 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint()))
7077 return false;
7078 // Cyclone supports unaligned accesses.
7079 RequiredAligment = 0;
7080 unsigned NumBits = LoadedType.getSizeInBits();
7081 return NumBits == 32 || NumBits == 64;
7082 }
7083
7084 /// \brief Lower an interleaved load into a ldN intrinsic.
7085 ///
7086 /// E.g. Lower an interleaved load (Factor = 2):
7087 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
7088 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
7089 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
7090 ///
7091 /// Into:
7092 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
7093 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
7094 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const7095 bool AArch64TargetLowering::lowerInterleavedLoad(
7096 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
7097 ArrayRef<unsigned> Indices, unsigned Factor) const {
7098 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7099 "Invalid interleave factor");
7100 assert(!Shuffles.empty() && "Empty shufflevector input");
7101 assert(Shuffles.size() == Indices.size() &&
7102 "Unmatched number of shufflevectors and indices");
7103
7104 const DataLayout &DL = LI->getModule()->getDataLayout();
7105
7106 VectorType *VecTy = Shuffles[0]->getType();
7107 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
7108
7109 // Skip if we do not have NEON and skip illegal vector types.
7110 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128))
7111 return false;
7112
7113 // A pointer vector can not be the return type of the ldN intrinsics. Need to
7114 // load integer vectors first and then convert to pointer vectors.
7115 Type *EltTy = VecTy->getVectorElementType();
7116 if (EltTy->isPointerTy())
7117 VecTy =
7118 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
7119
7120 Type *PtrTy = VecTy->getPointerTo(LI->getPointerAddressSpace());
7121 Type *Tys[2] = {VecTy, PtrTy};
7122 static const Intrinsic::ID LoadInts[3] = {Intrinsic::aarch64_neon_ld2,
7123 Intrinsic::aarch64_neon_ld3,
7124 Intrinsic::aarch64_neon_ld4};
7125 Function *LdNFunc =
7126 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
7127
7128 IRBuilder<> Builder(LI);
7129 Value *Ptr = Builder.CreateBitCast(LI->getPointerOperand(), PtrTy);
7130
7131 CallInst *LdN = Builder.CreateCall(LdNFunc, Ptr, "ldN");
7132
7133 // Replace uses of each shufflevector with the corresponding vector loaded
7134 // by ldN.
7135 for (unsigned i = 0; i < Shuffles.size(); i++) {
7136 ShuffleVectorInst *SVI = Shuffles[i];
7137 unsigned Index = Indices[i];
7138
7139 Value *SubVec = Builder.CreateExtractValue(LdN, Index);
7140
7141 // Convert the integer vector to pointer vector if the element is pointer.
7142 if (EltTy->isPointerTy())
7143 SubVec = Builder.CreateIntToPtr(SubVec, SVI->getType());
7144
7145 SVI->replaceAllUsesWith(SubVec);
7146 }
7147
7148 return true;
7149 }
7150
7151 /// \brief Get a mask consisting of sequential integers starting from \p Start.
7152 ///
7153 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
getSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumElts)7154 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
7155 unsigned NumElts) {
7156 SmallVector<Constant *, 16> Mask;
7157 for (unsigned i = 0; i < NumElts; i++)
7158 Mask.push_back(Builder.getInt32(Start + i));
7159
7160 return ConstantVector::get(Mask);
7161 }
7162
7163 /// \brief Lower an interleaved store into a stN intrinsic.
7164 ///
7165 /// E.g. Lower an interleaved store (Factor = 3):
7166 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
7167 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
7168 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
7169 ///
7170 /// Into:
7171 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
7172 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
7173 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
7174 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
7175 ///
7176 /// Note that the new shufflevectors will be removed and we'll only generate one
7177 /// st3 instruction in CodeGen.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const7178 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI,
7179 ShuffleVectorInst *SVI,
7180 unsigned Factor) const {
7181 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
7182 "Invalid interleave factor");
7183
7184 VectorType *VecTy = SVI->getType();
7185 assert(VecTy->getVectorNumElements() % Factor == 0 &&
7186 "Invalid interleaved store");
7187
7188 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
7189 Type *EltTy = VecTy->getVectorElementType();
7190 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
7191
7192 const DataLayout &DL = SI->getModule()->getDataLayout();
7193 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
7194
7195 // Skip if we do not have NEON and skip illegal vector types.
7196 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128))
7197 return false;
7198
7199 Value *Op0 = SVI->getOperand(0);
7200 Value *Op1 = SVI->getOperand(1);
7201 IRBuilder<> Builder(SI);
7202
7203 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
7204 // vectors to integer vectors.
7205 if (EltTy->isPointerTy()) {
7206 Type *IntTy = DL.getIntPtrType(EltTy);
7207 unsigned NumOpElts =
7208 dyn_cast<VectorType>(Op0->getType())->getVectorNumElements();
7209
7210 // Convert to the corresponding integer vector.
7211 Type *IntVecTy = VectorType::get(IntTy, NumOpElts);
7212 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
7213 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
7214
7215 SubVecTy = VectorType::get(IntTy, NumSubElts);
7216 }
7217
7218 Type *PtrTy = SubVecTy->getPointerTo(SI->getPointerAddressSpace());
7219 Type *Tys[2] = {SubVecTy, PtrTy};
7220 static const Intrinsic::ID StoreInts[3] = {Intrinsic::aarch64_neon_st2,
7221 Intrinsic::aarch64_neon_st3,
7222 Intrinsic::aarch64_neon_st4};
7223 Function *StNFunc =
7224 Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
7225
7226 SmallVector<Value *, 5> Ops;
7227
7228 // Split the shufflevector operands into sub vectors for the new stN call.
7229 for (unsigned i = 0; i < Factor; i++)
7230 Ops.push_back(Builder.CreateShuffleVector(
7231 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
7232
7233 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), PtrTy));
7234 Builder.CreateCall(StNFunc, Ops);
7235 return true;
7236 }
7237
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)7238 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
7239 unsigned AlignCheck) {
7240 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
7241 (DstAlign == 0 || DstAlign % AlignCheck == 0));
7242 }
7243
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const7244 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
7245 unsigned SrcAlign, bool IsMemset,
7246 bool ZeroMemset,
7247 bool MemcpyStrSrc,
7248 MachineFunction &MF) const {
7249 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one
7250 // instruction to materialize the v2i64 zero and one store (with restrictive
7251 // addressing mode). Just do two i64 store of zero-registers.
7252 bool Fast;
7253 const Function *F = MF.getFunction();
7254 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 &&
7255 !F->hasFnAttribute(Attribute::NoImplicitFloat) &&
7256 (memOpAlign(SrcAlign, DstAlign, 16) ||
7257 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast)))
7258 return MVT::f128;
7259
7260 if (Size >= 8 &&
7261 (memOpAlign(SrcAlign, DstAlign, 8) ||
7262 (allowsMisalignedMemoryAccesses(MVT::i64, 0, 1, &Fast) && Fast)))
7263 return MVT::i64;
7264
7265 if (Size >= 4 &&
7266 (memOpAlign(SrcAlign, DstAlign, 4) ||
7267 (allowsMisalignedMemoryAccesses(MVT::i32, 0, 1, &Fast) && Fast)))
7268 return MVT::i32;
7269
7270 return MVT::Other;
7271 }
7272
7273 // 12-bit optionally shifted immediates are legal for adds.
isLegalAddImmediate(int64_t Immed) const7274 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const {
7275 // Avoid UB for INT64_MIN.
7276 if (Immed == std::numeric_limits<int64_t>::min())
7277 return false;
7278 // Same encoding for add/sub, just flip the sign.
7279 Immed = std::abs(Immed);
7280 return ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0));
7281 }
7282
7283 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
7284 // immediates is the same as for an add or a sub.
isLegalICmpImmediate(int64_t Immed) const7285 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
7286 return isLegalAddImmediate(Immed);
7287 }
7288
7289 /// isLegalAddressingMode - Return true if the addressing mode represented
7290 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7291 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL,
7292 const AddrMode &AM, Type *Ty,
7293 unsigned AS) const {
7294 // AArch64 has five basic addressing modes:
7295 // reg
7296 // reg + 9-bit signed offset
7297 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
7298 // reg1 + reg2
7299 // reg + SIZE_IN_BYTES * reg
7300
7301 // No global is ever allowed as a base.
7302 if (AM.BaseGV)
7303 return false;
7304
7305 // No reg+reg+imm addressing.
7306 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale)
7307 return false;
7308
7309 // check reg + imm case:
7310 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
7311 uint64_t NumBytes = 0;
7312 if (Ty->isSized()) {
7313 uint64_t NumBits = DL.getTypeSizeInBits(Ty);
7314 NumBytes = NumBits / 8;
7315 if (!isPowerOf2_64(NumBits))
7316 NumBytes = 0;
7317 }
7318
7319 if (!AM.Scale) {
7320 int64_t Offset = AM.BaseOffs;
7321
7322 // 9-bit signed offset
7323 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1)
7324 return true;
7325
7326 // 12-bit unsigned offset
7327 unsigned shift = Log2_64(NumBytes);
7328 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 &&
7329 // Must be a multiple of NumBytes (NumBytes is a power of 2)
7330 (Offset >> shift) << shift == Offset)
7331 return true;
7332 return false;
7333 }
7334
7335 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
7336
7337 return !AM.Scale || AM.Scale == 1 ||
7338 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes);
7339 }
7340
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const7341 int AArch64TargetLowering::getScalingFactorCost(const DataLayout &DL,
7342 const AddrMode &AM, Type *Ty,
7343 unsigned AS) const {
7344 // Scaling factors are not free at all.
7345 // Operands | Rt Latency
7346 // -------------------------------------------
7347 // Rt, [Xn, Xm] | 4
7348 // -------------------------------------------
7349 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
7350 // Rt, [Xn, Wm, <extend> #imm] |
7351 if (isLegalAddressingMode(DL, AM, Ty, AS))
7352 // Scale represents reg2 * scale, thus account for 1 if
7353 // it is not equal to 0 or 1.
7354 return AM.Scale != 0 && AM.Scale != 1;
7355 return -1;
7356 }
7357
isFMAFasterThanFMulAndFAdd(EVT VT) const7358 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
7359 VT = VT.getScalarType();
7360
7361 if (!VT.isSimple())
7362 return false;
7363
7364 switch (VT.getSimpleVT().SimpleTy) {
7365 case MVT::f32:
7366 case MVT::f64:
7367 return true;
7368 default:
7369 break;
7370 }
7371
7372 return false;
7373 }
7374
7375 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const7376 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const {
7377 // LR is a callee-save register, but we must treat it as clobbered by any call
7378 // site. Hence we include LR in the scratch registers, which are in turn added
7379 // as implicit-defs for stackmaps and patchpoints.
7380 static const MCPhysReg ScratchRegs[] = {
7381 AArch64::X16, AArch64::X17, AArch64::LR, 0
7382 };
7383 return ScratchRegs;
7384 }
7385
7386 bool
isDesirableToCommuteWithShift(const SDNode * N) const7387 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const {
7388 EVT VT = N->getValueType(0);
7389 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
7390 // it with shift to let it be lowered to UBFX.
7391 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) &&
7392 isa<ConstantSDNode>(N->getOperand(1))) {
7393 uint64_t TruncMask = N->getConstantOperandVal(1);
7394 if (isMask_64(TruncMask) &&
7395 N->getOperand(0).getOpcode() == ISD::SRL &&
7396 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1)))
7397 return false;
7398 }
7399 return true;
7400 }
7401
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const7402 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
7403 Type *Ty) const {
7404 assert(Ty->isIntegerTy());
7405
7406 unsigned BitSize = Ty->getPrimitiveSizeInBits();
7407 if (BitSize == 0)
7408 return false;
7409
7410 int64_t Val = Imm.getSExtValue();
7411 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize))
7412 return true;
7413
7414 if ((int64_t)Val < 0)
7415 Val = ~Val;
7416 if (BitSize == 32)
7417 Val &= (1LL << 32) - 1;
7418
7419 unsigned LZ = countLeadingZeros((uint64_t)Val);
7420 unsigned Shift = (63 - LZ) / 16;
7421 // MOVZ is free so return true for one or fewer MOVK.
7422 return Shift < 3;
7423 }
7424
7425 /// Turn vector tests of the signbit in the form of:
7426 /// xor (sra X, elt_size(X)-1), -1
7427 /// into:
7428 /// cmge X, X, #0
foldVectorXorShiftIntoCmp(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7429 static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
7430 const AArch64Subtarget *Subtarget) {
7431 EVT VT = N->getValueType(0);
7432 if (!Subtarget->hasNEON() || !VT.isVector())
7433 return SDValue();
7434
7435 // There must be a shift right algebraic before the xor, and the xor must be a
7436 // 'not' operation.
7437 SDValue Shift = N->getOperand(0);
7438 SDValue Ones = N->getOperand(1);
7439 if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() ||
7440 !ISD::isBuildVectorAllOnes(Ones.getNode()))
7441 return SDValue();
7442
7443 // The shift should be smearing the sign bit across each vector element.
7444 auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
7445 EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
7446 if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
7447 return SDValue();
7448
7449 return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0));
7450 }
7451
7452 // Generate SUBS and CSEL for integer abs.
performIntegerAbsCombine(SDNode * N,SelectionDAG & DAG)7453 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
7454 EVT VT = N->getValueType(0);
7455
7456 SDValue N0 = N->getOperand(0);
7457 SDValue N1 = N->getOperand(1);
7458 SDLoc DL(N);
7459
7460 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
7461 // and change it to SUB and CSEL.
7462 if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
7463 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 &&
7464 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0))
7465 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
7466 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) {
7467 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
7468 N0.getOperand(0));
7469 // Generate SUBS & CSEL.
7470 SDValue Cmp =
7471 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32),
7472 N0.getOperand(0), DAG.getConstant(0, DL, VT));
7473 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg,
7474 DAG.getConstant(AArch64CC::PL, DL, MVT::i32),
7475 SDValue(Cmp.getNode(), 1));
7476 }
7477 return SDValue();
7478 }
7479
performXorCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7480 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG,
7481 TargetLowering::DAGCombinerInfo &DCI,
7482 const AArch64Subtarget *Subtarget) {
7483 if (DCI.isBeforeLegalizeOps())
7484 return SDValue();
7485
7486 if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
7487 return Cmp;
7488
7489 return performIntegerAbsCombine(N, DAG);
7490 }
7491
7492 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,std::vector<SDNode * > * Created) const7493 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7494 SelectionDAG &DAG,
7495 std::vector<SDNode *> *Created) const {
7496 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
7497 if (isIntDivCheap(N->getValueType(0), Attr))
7498 return SDValue(N,0); // Lower SDIV as SDIV
7499
7500 // fold (sdiv X, pow2)
7501 EVT VT = N->getValueType(0);
7502 if ((VT != MVT::i32 && VT != MVT::i64) ||
7503 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
7504 return SDValue();
7505
7506 SDLoc DL(N);
7507 SDValue N0 = N->getOperand(0);
7508 unsigned Lg2 = Divisor.countTrailingZeros();
7509 SDValue Zero = DAG.getConstant(0, DL, VT);
7510 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
7511
7512 // Add (N0 < 0) ? Pow2 - 1 : 0;
7513 SDValue CCVal;
7514 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL);
7515 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
7516 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp);
7517
7518 if (Created) {
7519 Created->push_back(Cmp.getNode());
7520 Created->push_back(Add.getNode());
7521 Created->push_back(CSel.getNode());
7522 }
7523
7524 // Divide by pow2.
7525 SDValue SRA =
7526 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64));
7527
7528 // If we're dividing by a positive value, we're done. Otherwise, we must
7529 // negate the result.
7530 if (Divisor.isNonNegative())
7531 return SRA;
7532
7533 if (Created)
7534 Created->push_back(SRA.getNode());
7535 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
7536 }
7537
performMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7538 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG,
7539 TargetLowering::DAGCombinerInfo &DCI,
7540 const AArch64Subtarget *Subtarget) {
7541 if (DCI.isBeforeLegalizeOps())
7542 return SDValue();
7543
7544 // Multiplication of a power of two plus/minus one can be done more
7545 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
7546 // future CPUs have a cheaper MADD instruction, this may need to be
7547 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
7548 // 64-bit is 5 cycles, so this is always a win.
7549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
7550 const APInt &Value = C->getAPIntValue();
7551 EVT VT = N->getValueType(0);
7552 SDLoc DL(N);
7553 if (Value.isNonNegative()) {
7554 // (mul x, 2^N + 1) => (add (shl x, N), x)
7555 APInt VM1 = Value - 1;
7556 if (VM1.isPowerOf2()) {
7557 SDValue ShiftedVal =
7558 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7559 DAG.getConstant(VM1.logBase2(), DL, MVT::i64));
7560 return DAG.getNode(ISD::ADD, DL, VT, ShiftedVal,
7561 N->getOperand(0));
7562 }
7563 // (mul x, 2^N - 1) => (sub (shl x, N), x)
7564 APInt VP1 = Value + 1;
7565 if (VP1.isPowerOf2()) {
7566 SDValue ShiftedVal =
7567 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7568 DAG.getConstant(VP1.logBase2(), DL, MVT::i64));
7569 return DAG.getNode(ISD::SUB, DL, VT, ShiftedVal,
7570 N->getOperand(0));
7571 }
7572 } else {
7573 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7574 APInt VNP1 = -Value + 1;
7575 if (VNP1.isPowerOf2()) {
7576 SDValue ShiftedVal =
7577 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7578 DAG.getConstant(VNP1.logBase2(), DL, MVT::i64));
7579 return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0),
7580 ShiftedVal);
7581 }
7582 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7583 APInt VNM1 = -Value - 1;
7584 if (VNM1.isPowerOf2()) {
7585 SDValue ShiftedVal =
7586 DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
7587 DAG.getConstant(VNM1.logBase2(), DL, MVT::i64));
7588 SDValue Add =
7589 DAG.getNode(ISD::ADD, DL, VT, ShiftedVal, N->getOperand(0));
7590 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Add);
7591 }
7592 }
7593 }
7594 return SDValue();
7595 }
7596
performVectorCompareAndMaskUnaryOpCombine(SDNode * N,SelectionDAG & DAG)7597 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
7598 SelectionDAG &DAG) {
7599 // Take advantage of vector comparisons producing 0 or -1 in each lane to
7600 // optimize away operation when it's from a constant.
7601 //
7602 // The general transformation is:
7603 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
7604 // AND(VECTOR_CMP(x,y), constant2)
7605 // constant2 = UNARYOP(constant)
7606
7607 // Early exit if this isn't a vector operation, the operand of the
7608 // unary operation isn't a bitwise AND, or if the sizes of the operations
7609 // aren't the same.
7610 EVT VT = N->getValueType(0);
7611 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
7612 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
7613 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
7614 return SDValue();
7615
7616 // Now check that the other operand of the AND is a constant. We could
7617 // make the transformation for non-constant splats as well, but it's unclear
7618 // that would be a benefit as it would not eliminate any operations, just
7619 // perform one more step in scalar code before moving to the vector unit.
7620 if (BuildVectorSDNode *BV =
7621 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
7622 // Bail out if the vector isn't a constant.
7623 if (!BV->isConstant())
7624 return SDValue();
7625
7626 // Everything checks out. Build up the new and improved node.
7627 SDLoc DL(N);
7628 EVT IntVT = BV->getValueType(0);
7629 // Create a new constant of the appropriate type for the transformed
7630 // DAG.
7631 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
7632 // The AND node needs bitcasts to/from an integer vector type around it.
7633 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst);
7634 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
7635 N->getOperand(0)->getOperand(0), MaskConst);
7636 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd);
7637 return Res;
7638 }
7639
7640 return SDValue();
7641 }
7642
performIntToFpCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7643 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG,
7644 const AArch64Subtarget *Subtarget) {
7645 // First try to optimize away the conversion when it's conditionally from
7646 // a constant. Vectors only.
7647 if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
7648 return Res;
7649
7650 EVT VT = N->getValueType(0);
7651 if (VT != MVT::f32 && VT != MVT::f64)
7652 return SDValue();
7653
7654 // Only optimize when the source and destination types have the same width.
7655 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits())
7656 return SDValue();
7657
7658 // If the result of an integer load is only used by an integer-to-float
7659 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
7660 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
7661 SDValue N0 = N->getOperand(0);
7662 if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7663 // Do not change the width of a volatile load.
7664 !cast<LoadSDNode>(N0)->isVolatile()) {
7665 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7666 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
7667 LN0->getPointerInfo(), LN0->isVolatile(),
7668 LN0->isNonTemporal(), LN0->isInvariant(),
7669 LN0->getAlignment());
7670
7671 // Make sure successors of the original load stay after it by updating them
7672 // to use the new Chain.
7673 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1));
7674
7675 unsigned Opcode =
7676 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF;
7677 return DAG.getNode(Opcode, SDLoc(N), VT, Load);
7678 }
7679
7680 return SDValue();
7681 }
7682
7683 /// Fold a floating-point multiply by power of two into floating-point to
7684 /// fixed-point conversion.
performFpToIntCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7685 static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG,
7686 TargetLowering::DAGCombinerInfo &DCI,
7687 const AArch64Subtarget *Subtarget) {
7688 if (!Subtarget->hasNEON())
7689 return SDValue();
7690
7691 SDValue Op = N->getOperand(0);
7692 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
7693 Op.getOpcode() != ISD::FMUL)
7694 return SDValue();
7695
7696 SDValue ConstVec = Op->getOperand(1);
7697 if (!isa<BuildVectorSDNode>(ConstVec))
7698 return SDValue();
7699
7700 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
7701 uint32_t FloatBits = FloatTy.getSizeInBits();
7702 if (FloatBits != 32 && FloatBits != 64)
7703 return SDValue();
7704
7705 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
7706 uint32_t IntBits = IntTy.getSizeInBits();
7707 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7708 return SDValue();
7709
7710 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
7711 if (IntBits > FloatBits)
7712 return SDValue();
7713
7714 BitVector UndefElements;
7715 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7716 int32_t Bits = IntBits == 64 ? 64 : 32;
7717 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1);
7718 if (C == -1 || C == 0 || C > Bits)
7719 return SDValue();
7720
7721 MVT ResTy;
7722 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7723 switch (NumLanes) {
7724 default:
7725 return SDValue();
7726 case 2:
7727 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7728 break;
7729 case 4:
7730 ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64;
7731 break;
7732 }
7733
7734 if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps())
7735 return SDValue();
7736
7737 assert((ResTy != MVT::v4i64 || DCI.isBeforeLegalizeOps()) &&
7738 "Illegal vector type after legalization");
7739
7740 SDLoc DL(N);
7741 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
7742 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs
7743 : Intrinsic::aarch64_neon_vcvtfp2fxu;
7744 SDValue FixConv =
7745 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy,
7746 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32),
7747 Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32));
7748 // We can handle smaller integers by generating an extra trunc.
7749 if (IntBits < FloatBits)
7750 FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv);
7751
7752 return FixConv;
7753 }
7754
7755 /// Fold a floating-point divide by power of two into fixed-point to
7756 /// floating-point conversion.
performFDivCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)7757 static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG,
7758 const AArch64Subtarget *Subtarget) {
7759 if (!Subtarget->hasNEON())
7760 return SDValue();
7761
7762 SDValue Op = N->getOperand(0);
7763 unsigned Opc = Op->getOpcode();
7764 if (!Op.getValueType().isVector() ||
7765 (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP))
7766 return SDValue();
7767
7768 SDValue ConstVec = N->getOperand(1);
7769 if (!isa<BuildVectorSDNode>(ConstVec))
7770 return SDValue();
7771
7772 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
7773 int32_t IntBits = IntTy.getSizeInBits();
7774 if (IntBits != 16 && IntBits != 32 && IntBits != 64)
7775 return SDValue();
7776
7777 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
7778 int32_t FloatBits = FloatTy.getSizeInBits();
7779 if (FloatBits != 32 && FloatBits != 64)
7780 return SDValue();
7781
7782 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
7783 if (IntBits > FloatBits)
7784 return SDValue();
7785
7786 BitVector UndefElements;
7787 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
7788 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1);
7789 if (C == -1 || C == 0 || C > FloatBits)
7790 return SDValue();
7791
7792 MVT ResTy;
7793 unsigned NumLanes = Op.getValueType().getVectorNumElements();
7794 switch (NumLanes) {
7795 default:
7796 return SDValue();
7797 case 2:
7798 ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64;
7799 break;
7800 case 4:
7801 ResTy = MVT::v4i32;
7802 break;
7803 }
7804
7805 SDLoc DL(N);
7806 SDValue ConvInput = Op.getOperand(0);
7807 bool IsSigned = Opc == ISD::SINT_TO_FP;
7808 if (IntBits < FloatBits)
7809 ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
7810 ResTy, ConvInput);
7811
7812 unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp
7813 : Intrinsic::aarch64_neon_vcvtfxu2fp;
7814 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
7815 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
7816 DAG.getConstant(C, DL, MVT::i32));
7817 }
7818
7819 /// An EXTR instruction is made up of two shifts, ORed together. This helper
7820 /// searches for and classifies those shifts.
findEXTRHalf(SDValue N,SDValue & Src,uint32_t & ShiftAmount,bool & FromHi)7821 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
7822 bool &FromHi) {
7823 if (N.getOpcode() == ISD::SHL)
7824 FromHi = false;
7825 else if (N.getOpcode() == ISD::SRL)
7826 FromHi = true;
7827 else
7828 return false;
7829
7830 if (!isa<ConstantSDNode>(N.getOperand(1)))
7831 return false;
7832
7833 ShiftAmount = N->getConstantOperandVal(1);
7834 Src = N->getOperand(0);
7835 return true;
7836 }
7837
7838 /// EXTR instruction extracts a contiguous chunk of bits from two existing
7839 /// registers viewed as a high/low pair. This function looks for the pattern:
7840 /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
7841 /// EXTR. Can't quite be done in TableGen because the two immediates aren't
7842 /// independent.
tryCombineToEXTR(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7843 static SDValue tryCombineToEXTR(SDNode *N,
7844 TargetLowering::DAGCombinerInfo &DCI) {
7845 SelectionDAG &DAG = DCI.DAG;
7846 SDLoc DL(N);
7847 EVT VT = N->getValueType(0);
7848
7849 assert(N->getOpcode() == ISD::OR && "Unexpected root");
7850
7851 if (VT != MVT::i32 && VT != MVT::i64)
7852 return SDValue();
7853
7854 SDValue LHS;
7855 uint32_t ShiftLHS = 0;
7856 bool LHSFromHi = 0;
7857 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
7858 return SDValue();
7859
7860 SDValue RHS;
7861 uint32_t ShiftRHS = 0;
7862 bool RHSFromHi = 0;
7863 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
7864 return SDValue();
7865
7866 // If they're both trying to come from the high part of the register, they're
7867 // not really an EXTR.
7868 if (LHSFromHi == RHSFromHi)
7869 return SDValue();
7870
7871 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
7872 return SDValue();
7873
7874 if (LHSFromHi) {
7875 std::swap(LHS, RHS);
7876 std::swap(ShiftLHS, ShiftRHS);
7877 }
7878
7879 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS,
7880 DAG.getConstant(ShiftRHS, DL, MVT::i64));
7881 }
7882
tryCombineToBSL(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7883 static SDValue tryCombineToBSL(SDNode *N,
7884 TargetLowering::DAGCombinerInfo &DCI) {
7885 EVT VT = N->getValueType(0);
7886 SelectionDAG &DAG = DCI.DAG;
7887 SDLoc DL(N);
7888
7889 if (!VT.isVector())
7890 return SDValue();
7891
7892 SDValue N0 = N->getOperand(0);
7893 if (N0.getOpcode() != ISD::AND)
7894 return SDValue();
7895
7896 SDValue N1 = N->getOperand(1);
7897 if (N1.getOpcode() != ISD::AND)
7898 return SDValue();
7899
7900 // We only have to look for constant vectors here since the general, variable
7901 // case can be handled in TableGen.
7902 unsigned Bits = VT.getVectorElementType().getSizeInBits();
7903 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1);
7904 for (int i = 1; i >= 0; --i)
7905 for (int j = 1; j >= 0; --j) {
7906 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i));
7907 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j));
7908 if (!BVN0 || !BVN1)
7909 continue;
7910
7911 bool FoundMatch = true;
7912 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) {
7913 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k));
7914 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k));
7915 if (!CN0 || !CN1 ||
7916 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) {
7917 FoundMatch = false;
7918 break;
7919 }
7920 }
7921
7922 if (FoundMatch)
7923 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0),
7924 N0->getOperand(1 - i), N1->getOperand(1 - j));
7925 }
7926
7927 return SDValue();
7928 }
7929
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)7930 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
7931 const AArch64Subtarget *Subtarget) {
7932 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
7933 SelectionDAG &DAG = DCI.DAG;
7934 EVT VT = N->getValueType(0);
7935
7936 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7937 return SDValue();
7938
7939 if (SDValue Res = tryCombineToEXTR(N, DCI))
7940 return Res;
7941
7942 if (SDValue Res = tryCombineToBSL(N, DCI))
7943 return Res;
7944
7945 return SDValue();
7946 }
7947
performSRLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)7948 static SDValue performSRLCombine(SDNode *N,
7949 TargetLowering::DAGCombinerInfo &DCI) {
7950 SelectionDAG &DAG = DCI.DAG;
7951 EVT VT = N->getValueType(0);
7952 if (VT != MVT::i32 && VT != MVT::i64)
7953 return SDValue();
7954
7955 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
7956 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
7957 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
7958 SDValue N0 = N->getOperand(0);
7959 if (N0.getOpcode() == ISD::BSWAP) {
7960 SDLoc DL(N);
7961 SDValue N1 = N->getOperand(1);
7962 SDValue N00 = N0.getOperand(0);
7963 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
7964 uint64_t ShiftAmt = C->getZExtValue();
7965 if (VT == MVT::i32 && ShiftAmt == 16 &&
7966 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(32, 16)))
7967 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7968 if (VT == MVT::i64 && ShiftAmt == 32 &&
7969 DAG.MaskedValueIsZero(N00, APInt::getHighBitsSet(64, 32)))
7970 return DAG.getNode(ISD::ROTR, DL, VT, N0, N1);
7971 }
7972 }
7973 return SDValue();
7974 }
7975
performBitcastCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)7976 static SDValue performBitcastCombine(SDNode *N,
7977 TargetLowering::DAGCombinerInfo &DCI,
7978 SelectionDAG &DAG) {
7979 // Wait 'til after everything is legalized to try this. That way we have
7980 // legal vector types and such.
7981 if (DCI.isBeforeLegalizeOps())
7982 return SDValue();
7983
7984 // Remove extraneous bitcasts around an extract_subvector.
7985 // For example,
7986 // (v4i16 (bitconvert
7987 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
7988 // becomes
7989 // (extract_subvector ((v8i16 ...), (i64 4)))
7990
7991 // Only interested in 64-bit vectors as the ultimate result.
7992 EVT VT = N->getValueType(0);
7993 if (!VT.isVector())
7994 return SDValue();
7995 if (VT.getSimpleVT().getSizeInBits() != 64)
7996 return SDValue();
7997 // Is the operand an extract_subvector starting at the beginning or halfway
7998 // point of the vector? A low half may also come through as an
7999 // EXTRACT_SUBREG, so look for that, too.
8000 SDValue Op0 = N->getOperand(0);
8001 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR &&
8002 !(Op0->isMachineOpcode() &&
8003 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG))
8004 return SDValue();
8005 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue();
8006 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) {
8007 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0)
8008 return SDValue();
8009 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) {
8010 if (idx != AArch64::dsub)
8011 return SDValue();
8012 // The dsub reference is equivalent to a lane zero subvector reference.
8013 idx = 0;
8014 }
8015 // Look through the bitcast of the input to the extract.
8016 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST)
8017 return SDValue();
8018 SDValue Source = Op0->getOperand(0)->getOperand(0);
8019 // If the source type has twice the number of elements as our destination
8020 // type, we know this is an extract of the high or low half of the vector.
8021 EVT SVT = Source->getValueType(0);
8022 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2)
8023 return SDValue();
8024
8025 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
8026
8027 // Create the simplified form to just extract the low or high half of the
8028 // vector directly rather than bothering with the bitcasts.
8029 SDLoc dl(N);
8030 unsigned NumElements = VT.getVectorNumElements();
8031 if (idx) {
8032 SDValue HalfIdx = DAG.getConstant(NumElements, dl, MVT::i64);
8033 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx);
8034 } else {
8035 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, dl, MVT::i32);
8036 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT,
8037 Source, SubReg),
8038 0);
8039 }
8040 }
8041
performConcatVectorsCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8042 static SDValue performConcatVectorsCombine(SDNode *N,
8043 TargetLowering::DAGCombinerInfo &DCI,
8044 SelectionDAG &DAG) {
8045 SDLoc dl(N);
8046 EVT VT = N->getValueType(0);
8047 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
8048
8049 // Optimize concat_vectors of truncated vectors, where the intermediate
8050 // type is illegal, to avoid said illegality, e.g.,
8051 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
8052 // (v2i16 (truncate (v2i64)))))
8053 // ->
8054 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
8055 // (v4i32 (bitcast (v2i64))),
8056 // <0, 2, 4, 6>)))
8057 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
8058 // on both input and result type, so we might generate worse code.
8059 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
8060 if (N->getNumOperands() == 2 &&
8061 N0->getOpcode() == ISD::TRUNCATE &&
8062 N1->getOpcode() == ISD::TRUNCATE) {
8063 SDValue N00 = N0->getOperand(0);
8064 SDValue N10 = N1->getOperand(0);
8065 EVT N00VT = N00.getValueType();
8066
8067 if (N00VT == N10.getValueType() &&
8068 (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) &&
8069 N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) {
8070 MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16);
8071 SmallVector<int, 8> Mask(MidVT.getVectorNumElements());
8072 for (size_t i = 0; i < Mask.size(); ++i)
8073 Mask[i] = i * 2;
8074 return DAG.getNode(ISD::TRUNCATE, dl, VT,
8075 DAG.getVectorShuffle(
8076 MidVT, dl,
8077 DAG.getNode(ISD::BITCAST, dl, MidVT, N00),
8078 DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask));
8079 }
8080 }
8081
8082 // Wait 'til after everything is legalized to try this. That way we have
8083 // legal vector types and such.
8084 if (DCI.isBeforeLegalizeOps())
8085 return SDValue();
8086
8087 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
8088 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
8089 // canonicalise to that.
8090 if (N0 == N1 && VT.getVectorNumElements() == 2) {
8091 assert(VT.getVectorElementType().getSizeInBits() == 64);
8092 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG),
8093 DAG.getConstant(0, dl, MVT::i64));
8094 }
8095
8096 // Canonicalise concat_vectors so that the right-hand vector has as few
8097 // bit-casts as possible before its real operation. The primary matching
8098 // destination for these operations will be the narrowing "2" instructions,
8099 // which depend on the operation being performed on this right-hand vector.
8100 // For example,
8101 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
8102 // becomes
8103 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
8104
8105 if (N1->getOpcode() != ISD::BITCAST)
8106 return SDValue();
8107 SDValue RHS = N1->getOperand(0);
8108 MVT RHSTy = RHS.getValueType().getSimpleVT();
8109 // If the RHS is not a vector, this is not the pattern we're looking for.
8110 if (!RHSTy.isVector())
8111 return SDValue();
8112
8113 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
8114
8115 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(),
8116 RHSTy.getVectorNumElements() * 2);
8117 return DAG.getNode(ISD::BITCAST, dl, VT,
8118 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy,
8119 DAG.getNode(ISD::BITCAST, dl, RHSTy, N0),
8120 RHS));
8121 }
8122
tryCombineFixedPointConvert(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8123 static SDValue tryCombineFixedPointConvert(SDNode *N,
8124 TargetLowering::DAGCombinerInfo &DCI,
8125 SelectionDAG &DAG) {
8126 // Wait 'til after everything is legalized to try this. That way we have
8127 // legal vector types and such.
8128 if (DCI.isBeforeLegalizeOps())
8129 return SDValue();
8130 // Transform a scalar conversion of a value from a lane extract into a
8131 // lane extract of a vector conversion. E.g., from foo1 to foo2:
8132 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
8133 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
8134 //
8135 // The second form interacts better with instruction selection and the
8136 // register allocator to avoid cross-class register copies that aren't
8137 // coalescable due to a lane reference.
8138
8139 // Check the operand and see if it originates from a lane extract.
8140 SDValue Op1 = N->getOperand(1);
8141 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8142 // Yep, no additional predication needed. Perform the transform.
8143 SDValue IID = N->getOperand(0);
8144 SDValue Shift = N->getOperand(2);
8145 SDValue Vec = Op1.getOperand(0);
8146 SDValue Lane = Op1.getOperand(1);
8147 EVT ResTy = N->getValueType(0);
8148 EVT VecResTy;
8149 SDLoc DL(N);
8150
8151 // The vector width should be 128 bits by the time we get here, even
8152 // if it started as 64 bits (the extract_vector handling will have
8153 // done so).
8154 assert(Vec.getValueType().getSizeInBits() == 128 &&
8155 "unexpected vector size on extract_vector_elt!");
8156 if (Vec.getValueType() == MVT::v4i32)
8157 VecResTy = MVT::v4f32;
8158 else if (Vec.getValueType() == MVT::v2i64)
8159 VecResTy = MVT::v2f64;
8160 else
8161 llvm_unreachable("unexpected vector type!");
8162
8163 SDValue Convert =
8164 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift);
8165 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane);
8166 }
8167 return SDValue();
8168 }
8169
8170 // AArch64 high-vector "long" operations are formed by performing the non-high
8171 // version on an extract_subvector of each operand which gets the high half:
8172 //
8173 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
8174 //
8175 // However, there are cases which don't have an extract_high explicitly, but
8176 // have another operation that can be made compatible with one for free. For
8177 // example:
8178 //
8179 // (dupv64 scalar) --> (extract_high (dup128 scalar))
8180 //
8181 // This routine does the actual conversion of such DUPs, once outer routines
8182 // have determined that everything else is in order.
8183 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
8184 // similarly here.
tryExtendDUPToExtractHigh(SDValue N,SelectionDAG & DAG)8185 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) {
8186 switch (N.getOpcode()) {
8187 case AArch64ISD::DUP:
8188 case AArch64ISD::DUPLANE8:
8189 case AArch64ISD::DUPLANE16:
8190 case AArch64ISD::DUPLANE32:
8191 case AArch64ISD::DUPLANE64:
8192 case AArch64ISD::MOVI:
8193 case AArch64ISD::MOVIshift:
8194 case AArch64ISD::MOVIedit:
8195 case AArch64ISD::MOVImsl:
8196 case AArch64ISD::MVNIshift:
8197 case AArch64ISD::MVNImsl:
8198 break;
8199 default:
8200 // FMOV could be supported, but isn't very useful, as it would only occur
8201 // if you passed a bitcast' floating point immediate to an eligible long
8202 // integer op (addl, smull, ...).
8203 return SDValue();
8204 }
8205
8206 MVT NarrowTy = N.getSimpleValueType();
8207 if (!NarrowTy.is64BitVector())
8208 return SDValue();
8209
8210 MVT ElementTy = NarrowTy.getVectorElementType();
8211 unsigned NumElems = NarrowTy.getVectorNumElements();
8212 MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2);
8213
8214 SDLoc dl(N);
8215 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NarrowTy,
8216 DAG.getNode(N->getOpcode(), dl, NewVT, N->ops()),
8217 DAG.getConstant(NumElems, dl, MVT::i64));
8218 }
8219
isEssentiallyExtractSubvector(SDValue N)8220 static bool isEssentiallyExtractSubvector(SDValue N) {
8221 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR)
8222 return true;
8223
8224 return N.getOpcode() == ISD::BITCAST &&
8225 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR;
8226 }
8227
8228 /// \brief Helper structure to keep track of ISD::SET_CC operands.
8229 struct GenericSetCCInfo {
8230 const SDValue *Opnd0;
8231 const SDValue *Opnd1;
8232 ISD::CondCode CC;
8233 };
8234
8235 /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code.
8236 struct AArch64SetCCInfo {
8237 const SDValue *Cmp;
8238 AArch64CC::CondCode CC;
8239 };
8240
8241 /// \brief Helper structure to keep track of SetCC information.
8242 union SetCCInfo {
8243 GenericSetCCInfo Generic;
8244 AArch64SetCCInfo AArch64;
8245 };
8246
8247 /// \brief Helper structure to be able to read SetCC information. If set to
8248 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
8249 /// GenericSetCCInfo.
8250 struct SetCCInfoAndKind {
8251 SetCCInfo Info;
8252 bool IsAArch64;
8253 };
8254
8255 /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or
8256 /// an
8257 /// AArch64 lowered one.
8258 /// \p SetCCInfo is filled accordingly.
8259 /// \post SetCCInfo is meanginfull only when this function returns true.
8260 /// \return True when Op is a kind of SET_CC operation.
isSetCC(SDValue Op,SetCCInfoAndKind & SetCCInfo)8261 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) {
8262 // If this is a setcc, this is straight forward.
8263 if (Op.getOpcode() == ISD::SETCC) {
8264 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0);
8265 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1);
8266 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8267 SetCCInfo.IsAArch64 = false;
8268 return true;
8269 }
8270 // Otherwise, check if this is a matching csel instruction.
8271 // In other words:
8272 // - csel 1, 0, cc
8273 // - csel 0, 1, !cc
8274 if (Op.getOpcode() != AArch64ISD::CSEL)
8275 return false;
8276 // Set the information about the operands.
8277 // TODO: we want the operands of the Cmp not the csel
8278 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3);
8279 SetCCInfo.IsAArch64 = true;
8280 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>(
8281 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
8282
8283 // Check that the operands matches the constraints:
8284 // (1) Both operands must be constants.
8285 // (2) One must be 1 and the other must be 0.
8286 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0));
8287 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8288
8289 // Check (1).
8290 if (!TValue || !FValue)
8291 return false;
8292
8293 // Check (2).
8294 if (!TValue->isOne()) {
8295 // Update the comparison when we are interested in !cc.
8296 std::swap(TValue, FValue);
8297 SetCCInfo.Info.AArch64.CC =
8298 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC);
8299 }
8300 return TValue->isOne() && FValue->isNullValue();
8301 }
8302
8303 // Returns true if Op is setcc or zext of setcc.
isSetCCOrZExtSetCC(const SDValue & Op,SetCCInfoAndKind & Info)8304 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) {
8305 if (isSetCC(Op, Info))
8306 return true;
8307 return ((Op.getOpcode() == ISD::ZERO_EXTEND) &&
8308 isSetCC(Op->getOperand(0), Info));
8309 }
8310
8311 // The folding we want to perform is:
8312 // (add x, [zext] (setcc cc ...) )
8313 // -->
8314 // (csel x, (add x, 1), !cc ...)
8315 //
8316 // The latter will get matched to a CSINC instruction.
performSetccAddFolding(SDNode * Op,SelectionDAG & DAG)8317 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) {
8318 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!");
8319 SDValue LHS = Op->getOperand(0);
8320 SDValue RHS = Op->getOperand(1);
8321 SetCCInfoAndKind InfoAndKind;
8322
8323 // If neither operand is a SET_CC, give up.
8324 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) {
8325 std::swap(LHS, RHS);
8326 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind))
8327 return SDValue();
8328 }
8329
8330 // FIXME: This could be generatized to work for FP comparisons.
8331 EVT CmpVT = InfoAndKind.IsAArch64
8332 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType()
8333 : InfoAndKind.Info.Generic.Opnd0->getValueType();
8334 if (CmpVT != MVT::i32 && CmpVT != MVT::i64)
8335 return SDValue();
8336
8337 SDValue CCVal;
8338 SDValue Cmp;
8339 SDLoc dl(Op);
8340 if (InfoAndKind.IsAArch64) {
8341 CCVal = DAG.getConstant(
8342 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl,
8343 MVT::i32);
8344 Cmp = *InfoAndKind.Info.AArch64.Cmp;
8345 } else
8346 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0,
8347 *InfoAndKind.Info.Generic.Opnd1,
8348 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true),
8349 CCVal, DAG, dl);
8350
8351 EVT VT = Op->getValueType(0);
8352 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT));
8353 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp);
8354 }
8355
8356 // The basic add/sub long vector instructions have variants with "2" on the end
8357 // which act on the high-half of their inputs. They are normally matched by
8358 // patterns like:
8359 //
8360 // (add (zeroext (extract_high LHS)),
8361 // (zeroext (extract_high RHS)))
8362 // -> uaddl2 vD, vN, vM
8363 //
8364 // However, if one of the extracts is something like a duplicate, this
8365 // instruction can still be used profitably. This function puts the DAG into a
8366 // more appropriate form for those patterns to trigger.
performAddSubLongCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8367 static SDValue performAddSubLongCombine(SDNode *N,
8368 TargetLowering::DAGCombinerInfo &DCI,
8369 SelectionDAG &DAG) {
8370 if (DCI.isBeforeLegalizeOps())
8371 return SDValue();
8372
8373 MVT VT = N->getSimpleValueType(0);
8374 if (!VT.is128BitVector()) {
8375 if (N->getOpcode() == ISD::ADD)
8376 return performSetccAddFolding(N, DAG);
8377 return SDValue();
8378 }
8379
8380 // Make sure both branches are extended in the same way.
8381 SDValue LHS = N->getOperand(0);
8382 SDValue RHS = N->getOperand(1);
8383 if ((LHS.getOpcode() != ISD::ZERO_EXTEND &&
8384 LHS.getOpcode() != ISD::SIGN_EXTEND) ||
8385 LHS.getOpcode() != RHS.getOpcode())
8386 return SDValue();
8387
8388 unsigned ExtType = LHS.getOpcode();
8389
8390 // It's not worth doing if at least one of the inputs isn't already an
8391 // extract, but we don't know which it'll be so we have to try both.
8392 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) {
8393 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG);
8394 if (!RHS.getNode())
8395 return SDValue();
8396
8397 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS);
8398 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) {
8399 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG);
8400 if (!LHS.getNode())
8401 return SDValue();
8402
8403 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS);
8404 }
8405
8406 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS);
8407 }
8408
8409 // Massage DAGs which we can use the high-half "long" operations on into
8410 // something isel will recognize better. E.g.
8411 //
8412 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
8413 // (aarch64_neon_umull (extract_high (v2i64 vec)))
8414 // (extract_high (v2i64 (dup128 scalar)))))
8415 //
tryCombineLongOpWithDup(unsigned IID,SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8416 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N,
8417 TargetLowering::DAGCombinerInfo &DCI,
8418 SelectionDAG &DAG) {
8419 if (DCI.isBeforeLegalizeOps())
8420 return SDValue();
8421
8422 SDValue LHS = N->getOperand(1);
8423 SDValue RHS = N->getOperand(2);
8424 assert(LHS.getValueType().is64BitVector() &&
8425 RHS.getValueType().is64BitVector() &&
8426 "unexpected shape for long operation");
8427
8428 // Either node could be a DUP, but it's not worth doing both of them (you'd
8429 // just as well use the non-high version) so look for a corresponding extract
8430 // operation on the other "wing".
8431 if (isEssentiallyExtractSubvector(LHS)) {
8432 RHS = tryExtendDUPToExtractHigh(RHS, DAG);
8433 if (!RHS.getNode())
8434 return SDValue();
8435 } else if (isEssentiallyExtractSubvector(RHS)) {
8436 LHS = tryExtendDUPToExtractHigh(LHS, DAG);
8437 if (!LHS.getNode())
8438 return SDValue();
8439 }
8440
8441 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0),
8442 N->getOperand(0), LHS, RHS);
8443 }
8444
tryCombineShiftImm(unsigned IID,SDNode * N,SelectionDAG & DAG)8445 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) {
8446 MVT ElemTy = N->getSimpleValueType(0).getScalarType();
8447 unsigned ElemBits = ElemTy.getSizeInBits();
8448
8449 int64_t ShiftAmount;
8450 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) {
8451 APInt SplatValue, SplatUndef;
8452 unsigned SplatBitSize;
8453 bool HasAnyUndefs;
8454 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
8455 HasAnyUndefs, ElemBits) ||
8456 SplatBitSize != ElemBits)
8457 return SDValue();
8458
8459 ShiftAmount = SplatValue.getSExtValue();
8460 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
8461 ShiftAmount = CVN->getSExtValue();
8462 } else
8463 return SDValue();
8464
8465 unsigned Opcode;
8466 bool IsRightShift;
8467 switch (IID) {
8468 default:
8469 llvm_unreachable("Unknown shift intrinsic");
8470 case Intrinsic::aarch64_neon_sqshl:
8471 Opcode = AArch64ISD::SQSHL_I;
8472 IsRightShift = false;
8473 break;
8474 case Intrinsic::aarch64_neon_uqshl:
8475 Opcode = AArch64ISD::UQSHL_I;
8476 IsRightShift = false;
8477 break;
8478 case Intrinsic::aarch64_neon_srshl:
8479 Opcode = AArch64ISD::SRSHR_I;
8480 IsRightShift = true;
8481 break;
8482 case Intrinsic::aarch64_neon_urshl:
8483 Opcode = AArch64ISD::URSHR_I;
8484 IsRightShift = true;
8485 break;
8486 case Intrinsic::aarch64_neon_sqshlu:
8487 Opcode = AArch64ISD::SQSHLU_I;
8488 IsRightShift = false;
8489 break;
8490 }
8491
8492 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) {
8493 SDLoc dl(N);
8494 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8495 DAG.getConstant(-ShiftAmount, dl, MVT::i32));
8496 } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) {
8497 SDLoc dl(N);
8498 return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1),
8499 DAG.getConstant(ShiftAmount, dl, MVT::i32));
8500 }
8501
8502 return SDValue();
8503 }
8504
8505 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
8506 // the intrinsics must be legal and take an i32, this means there's almost
8507 // certainly going to be a zext in the DAG which we can eliminate.
tryCombineCRC32(unsigned Mask,SDNode * N,SelectionDAG & DAG)8508 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) {
8509 SDValue AndN = N->getOperand(2);
8510 if (AndN.getOpcode() != ISD::AND)
8511 return SDValue();
8512
8513 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1));
8514 if (!CMask || CMask->getZExtValue() != Mask)
8515 return SDValue();
8516
8517 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32,
8518 N->getOperand(0), N->getOperand(1), AndN.getOperand(0));
8519 }
8520
combineAcrossLanesIntrinsic(unsigned Opc,SDNode * N,SelectionDAG & DAG)8521 static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N,
8522 SelectionDAG &DAG) {
8523 SDLoc dl(N);
8524 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0),
8525 DAG.getNode(Opc, dl,
8526 N->getOperand(1).getSimpleValueType(),
8527 N->getOperand(1)),
8528 DAG.getConstant(0, dl, MVT::i64));
8529 }
8530
performIntrinsicCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const AArch64Subtarget * Subtarget)8531 static SDValue performIntrinsicCombine(SDNode *N,
8532 TargetLowering::DAGCombinerInfo &DCI,
8533 const AArch64Subtarget *Subtarget) {
8534 SelectionDAG &DAG = DCI.DAG;
8535 unsigned IID = getIntrinsicID(N);
8536 switch (IID) {
8537 default:
8538 break;
8539 case Intrinsic::aarch64_neon_vcvtfxs2fp:
8540 case Intrinsic::aarch64_neon_vcvtfxu2fp:
8541 return tryCombineFixedPointConvert(N, DCI, DAG);
8542 case Intrinsic::aarch64_neon_saddv:
8543 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG);
8544 case Intrinsic::aarch64_neon_uaddv:
8545 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG);
8546 case Intrinsic::aarch64_neon_sminv:
8547 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG);
8548 case Intrinsic::aarch64_neon_uminv:
8549 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG);
8550 case Intrinsic::aarch64_neon_smaxv:
8551 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG);
8552 case Intrinsic::aarch64_neon_umaxv:
8553 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG);
8554 case Intrinsic::aarch64_neon_fmax:
8555 return DAG.getNode(ISD::FMAXNAN, SDLoc(N), N->getValueType(0),
8556 N->getOperand(1), N->getOperand(2));
8557 case Intrinsic::aarch64_neon_fmin:
8558 return DAG.getNode(ISD::FMINNAN, SDLoc(N), N->getValueType(0),
8559 N->getOperand(1), N->getOperand(2));
8560 case Intrinsic::aarch64_neon_fmaxnm:
8561 return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0),
8562 N->getOperand(1), N->getOperand(2));
8563 case Intrinsic::aarch64_neon_fminnm:
8564 return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0),
8565 N->getOperand(1), N->getOperand(2));
8566 case Intrinsic::aarch64_neon_smull:
8567 case Intrinsic::aarch64_neon_umull:
8568 case Intrinsic::aarch64_neon_pmull:
8569 case Intrinsic::aarch64_neon_sqdmull:
8570 return tryCombineLongOpWithDup(IID, N, DCI, DAG);
8571 case Intrinsic::aarch64_neon_sqshl:
8572 case Intrinsic::aarch64_neon_uqshl:
8573 case Intrinsic::aarch64_neon_sqshlu:
8574 case Intrinsic::aarch64_neon_srshl:
8575 case Intrinsic::aarch64_neon_urshl:
8576 return tryCombineShiftImm(IID, N, DAG);
8577 case Intrinsic::aarch64_crc32b:
8578 case Intrinsic::aarch64_crc32cb:
8579 return tryCombineCRC32(0xff, N, DAG);
8580 case Intrinsic::aarch64_crc32h:
8581 case Intrinsic::aarch64_crc32ch:
8582 return tryCombineCRC32(0xffff, N, DAG);
8583 }
8584 return SDValue();
8585 }
8586
performExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8587 static SDValue performExtendCombine(SDNode *N,
8588 TargetLowering::DAGCombinerInfo &DCI,
8589 SelectionDAG &DAG) {
8590 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
8591 // we can convert that DUP into another extract_high (of a bigger DUP), which
8592 // helps the backend to decide that an sabdl2 would be useful, saving a real
8593 // extract_high operation.
8594 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND &&
8595 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
8596 SDNode *ABDNode = N->getOperand(0).getNode();
8597 unsigned IID = getIntrinsicID(ABDNode);
8598 if (IID == Intrinsic::aarch64_neon_sabd ||
8599 IID == Intrinsic::aarch64_neon_uabd) {
8600 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG);
8601 if (!NewABD.getNode())
8602 return SDValue();
8603
8604 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0),
8605 NewABD);
8606 }
8607 }
8608
8609 // This is effectively a custom type legalization for AArch64.
8610 //
8611 // Type legalization will split an extend of a small, legal, type to a larger
8612 // illegal type by first splitting the destination type, often creating
8613 // illegal source types, which then get legalized in isel-confusing ways,
8614 // leading to really terrible codegen. E.g.,
8615 // %result = v8i32 sext v8i8 %value
8616 // becomes
8617 // %losrc = extract_subreg %value, ...
8618 // %hisrc = extract_subreg %value, ...
8619 // %lo = v4i32 sext v4i8 %losrc
8620 // %hi = v4i32 sext v4i8 %hisrc
8621 // Things go rapidly downhill from there.
8622 //
8623 // For AArch64, the [sz]ext vector instructions can only go up one element
8624 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
8625 // take two instructions.
8626 //
8627 // This implies that the most efficient way to do the extend from v8i8
8628 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
8629 // the normal splitting to happen for the v8i16->v8i32.
8630
8631 // This is pre-legalization to catch some cases where the default
8632 // type legalization will create ill-tempered code.
8633 if (!DCI.isBeforeLegalizeOps())
8634 return SDValue();
8635
8636 // We're only interested in cleaning things up for non-legal vector types
8637 // here. If both the source and destination are legal, things will just
8638 // work naturally without any fiddling.
8639 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8640 EVT ResVT = N->getValueType(0);
8641 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT))
8642 return SDValue();
8643 // If the vector type isn't a simple VT, it's beyond the scope of what
8644 // we're worried about here. Let legalization do its thing and hope for
8645 // the best.
8646 SDValue Src = N->getOperand(0);
8647 EVT SrcVT = Src->getValueType(0);
8648 if (!ResVT.isSimple() || !SrcVT.isSimple())
8649 return SDValue();
8650
8651 // If the source VT is a 64-bit vector, we can play games and get the
8652 // better results we want.
8653 if (SrcVT.getSizeInBits() != 64)
8654 return SDValue();
8655
8656 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
8657 unsigned ElementCount = SrcVT.getVectorNumElements();
8658 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount);
8659 SDLoc DL(N);
8660 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src);
8661
8662 // Now split the rest of the operation into two halves, each with a 64
8663 // bit source.
8664 EVT LoVT, HiVT;
8665 SDValue Lo, Hi;
8666 unsigned NumElements = ResVT.getVectorNumElements();
8667 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
8668 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
8669 ResVT.getVectorElementType(), NumElements / 2);
8670
8671 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
8672 LoVT.getVectorNumElements());
8673 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8674 DAG.getConstant(0, DL, MVT::i64));
8675 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src,
8676 DAG.getConstant(InNVT.getVectorNumElements(), DL, MVT::i64));
8677 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo);
8678 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi);
8679
8680 // Now combine the parts back together so we still have a single result
8681 // like the combiner expects.
8682 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
8683 }
8684
8685 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
8686 /// value. The load store optimizer pass will merge them to store pair stores.
8687 /// This has better performance than a splat of the scalar followed by a split
8688 /// vector store. Even if the stores are not merged it is four stores vs a dup,
8689 /// followed by an ext.b and two stores.
replaceSplatVectorStore(SelectionDAG & DAG,StoreSDNode * St)8690 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) {
8691 SDValue StVal = St->getValue();
8692 EVT VT = StVal.getValueType();
8693
8694 // Don't replace floating point stores, they possibly won't be transformed to
8695 // stp because of the store pair suppress pass.
8696 if (VT.isFloatingPoint())
8697 return SDValue();
8698
8699 // Check for insert vector elements.
8700 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT)
8701 return SDValue();
8702
8703 // We can express a splat as store pair(s) for 2 or 4 elements.
8704 unsigned NumVecElts = VT.getVectorNumElements();
8705 if (NumVecElts != 4 && NumVecElts != 2)
8706 return SDValue();
8707 SDValue SplatVal = StVal.getOperand(1);
8708 unsigned RemainInsertElts = NumVecElts - 1;
8709
8710 // Check that this is a splat.
8711 while (--RemainInsertElts) {
8712 SDValue NextInsertElt = StVal.getOperand(0);
8713 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT)
8714 return SDValue();
8715 if (NextInsertElt.getOperand(1) != SplatVal)
8716 return SDValue();
8717 StVal = NextInsertElt;
8718 }
8719 unsigned OrigAlignment = St->getAlignment();
8720 unsigned EltOffset = NumVecElts == 4 ? 4 : 8;
8721 unsigned Alignment = std::min(OrigAlignment, EltOffset);
8722
8723 // Create scalar stores. This is at least as good as the code sequence for a
8724 // split unaligned store which is a dup.s, ext.b, and two stores.
8725 // Most of the time the three stores should be replaced by store pair
8726 // instructions (stp).
8727 SDLoc DL(St);
8728 SDValue BasePtr = St->getBasePtr();
8729 SDValue NewST1 =
8730 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(),
8731 St->isVolatile(), St->isNonTemporal(), St->getAlignment());
8732
8733 unsigned Offset = EltOffset;
8734 while (--NumVecElts) {
8735 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8736 DAG.getConstant(Offset, DL, MVT::i64));
8737 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr,
8738 St->getPointerInfo(), St->isVolatile(),
8739 St->isNonTemporal(), Alignment);
8740 Offset += EltOffset;
8741 }
8742 return NewST1;
8743 }
8744
split16BStores(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8745 static SDValue split16BStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
8746 SelectionDAG &DAG,
8747 const AArch64Subtarget *Subtarget) {
8748 if (!DCI.isBeforeLegalize())
8749 return SDValue();
8750
8751 StoreSDNode *S = cast<StoreSDNode>(N);
8752 if (S->isVolatile())
8753 return SDValue();
8754
8755 // FIXME: The logic for deciding if an unaligned store should be split should
8756 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
8757 // a call to that function here.
8758
8759 if (!Subtarget->isMisaligned128StoreSlow())
8760 return SDValue();
8761
8762 // Don't split at -Oz.
8763 if (DAG.getMachineFunction().getFunction()->optForMinSize())
8764 return SDValue();
8765
8766 SDValue StVal = S->getValue();
8767 EVT VT = StVal.getValueType();
8768
8769 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
8770 // those up regresses performance on micro-benchmarks and olden/bh.
8771 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64)
8772 return SDValue();
8773
8774 // Split unaligned 16B stores. They are terrible for performance.
8775 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
8776 // extensions can use this to mark that it does not want splitting to happen
8777 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
8778 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
8779 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 ||
8780 S->getAlignment() <= 2)
8781 return SDValue();
8782
8783 // If we get a splat of a scalar convert this vector store to a store of
8784 // scalars. They will be merged into store pairs thereby removing two
8785 // instructions.
8786 if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S))
8787 return ReplacedSplat;
8788
8789 SDLoc DL(S);
8790 unsigned NumElts = VT.getVectorNumElements() / 2;
8791 // Split VT into two.
8792 EVT HalfVT =
8793 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts);
8794 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8795 DAG.getConstant(0, DL, MVT::i64));
8796 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal,
8797 DAG.getConstant(NumElts, DL, MVT::i64));
8798 SDValue BasePtr = S->getBasePtr();
8799 SDValue NewST1 =
8800 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(),
8801 S->isVolatile(), S->isNonTemporal(), S->getAlignment());
8802 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
8803 DAG.getConstant(8, DL, MVT::i64));
8804 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr,
8805 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(),
8806 S->getAlignment());
8807 }
8808
8809 /// Target-specific DAG combine function for post-increment LD1 (lane) and
8810 /// post-increment LD1R.
performPostLD1Combine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,bool IsLaneOp)8811 static SDValue performPostLD1Combine(SDNode *N,
8812 TargetLowering::DAGCombinerInfo &DCI,
8813 bool IsLaneOp) {
8814 if (DCI.isBeforeLegalizeOps())
8815 return SDValue();
8816
8817 SelectionDAG &DAG = DCI.DAG;
8818 EVT VT = N->getValueType(0);
8819
8820 unsigned LoadIdx = IsLaneOp ? 1 : 0;
8821 SDNode *LD = N->getOperand(LoadIdx).getNode();
8822 // If it is not LOAD, can not do such combine.
8823 if (LD->getOpcode() != ISD::LOAD)
8824 return SDValue();
8825
8826 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD);
8827 EVT MemVT = LoadSDN->getMemoryVT();
8828 // Check if memory operand is the same type as the vector element.
8829 if (MemVT != VT.getVectorElementType())
8830 return SDValue();
8831
8832 // Check if there are other uses. If so, do not combine as it will introduce
8833 // an extra load.
8834 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE;
8835 ++UI) {
8836 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result.
8837 continue;
8838 if (*UI != N)
8839 return SDValue();
8840 }
8841
8842 SDValue Addr = LD->getOperand(1);
8843 SDValue Vector = N->getOperand(0);
8844 // Search for a use of the address operand that is an increment.
8845 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE =
8846 Addr.getNode()->use_end(); UI != UE; ++UI) {
8847 SDNode *User = *UI;
8848 if (User->getOpcode() != ISD::ADD
8849 || UI.getUse().getResNo() != Addr.getResNo())
8850 continue;
8851
8852 // Check that the add is independent of the load. Otherwise, folding it
8853 // would create a cycle.
8854 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User))
8855 continue;
8856 // Also check that add is not used in the vector operand. This would also
8857 // create a cycle.
8858 if (User->isPredecessorOf(Vector.getNode()))
8859 continue;
8860
8861 // If the increment is a constant, it must match the memory ref size.
8862 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8863 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8864 uint32_t IncVal = CInc->getZExtValue();
8865 unsigned NumBytes = VT.getScalarSizeInBits() / 8;
8866 if (IncVal != NumBytes)
8867 continue;
8868 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
8869 }
8870
8871 // Finally, check that the vector doesn't depend on the load.
8872 // Again, this would create a cycle.
8873 // The load depending on the vector is fine, as that's the case for the
8874 // LD1*post we'll eventually generate anyway.
8875 if (LoadSDN->isPredecessorOf(Vector.getNode()))
8876 continue;
8877
8878 SmallVector<SDValue, 8> Ops;
8879 Ops.push_back(LD->getOperand(0)); // Chain
8880 if (IsLaneOp) {
8881 Ops.push_back(Vector); // The vector to be inserted
8882 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector
8883 }
8884 Ops.push_back(Addr);
8885 Ops.push_back(Inc);
8886
8887 EVT Tys[3] = { VT, MVT::i64, MVT::Other };
8888 SDVTList SDTys = DAG.getVTList(Tys);
8889 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost;
8890 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops,
8891 MemVT,
8892 LoadSDN->getMemOperand());
8893
8894 // Update the uses.
8895 SDValue NewResults[] = {
8896 SDValue(LD, 0), // The result of load
8897 SDValue(UpdN.getNode(), 2) // Chain
8898 };
8899 DCI.CombineTo(LD, NewResults);
8900 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result
8901 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register
8902
8903 break;
8904 }
8905 return SDValue();
8906 }
8907
8908 /// Simplify \Addr given that the top byte of it is ignored by HW during
8909 /// address translation.
performTBISimplification(SDValue Addr,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)8910 static bool performTBISimplification(SDValue Addr,
8911 TargetLowering::DAGCombinerInfo &DCI,
8912 SelectionDAG &DAG) {
8913 APInt DemandedMask = APInt::getLowBitsSet(64, 56);
8914 APInt KnownZero, KnownOne;
8915 TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
8916 DCI.isBeforeLegalizeOps());
8917 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8918 if (TLI.SimplifyDemandedBits(Addr, DemandedMask, KnownZero, KnownOne, TLO)) {
8919 DCI.CommitTargetLoweringOpt(TLO);
8920 return true;
8921 }
8922 return false;
8923 }
8924
performSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)8925 static SDValue performSTORECombine(SDNode *N,
8926 TargetLowering::DAGCombinerInfo &DCI,
8927 SelectionDAG &DAG,
8928 const AArch64Subtarget *Subtarget) {
8929 if (SDValue Split = split16BStores(N, DCI, DAG, Subtarget))
8930 return Split;
8931
8932 if (Subtarget->supportsAddressTopByteIgnored() &&
8933 performTBISimplification(N->getOperand(2), DCI, DAG))
8934 return SDValue(N, 0);
8935
8936 return SDValue();
8937 }
8938
8939 /// This function handles the log2-shuffle pattern produced by the
8940 /// LoopVectorizer for the across vector reduction. It consists of
8941 /// log2(NumVectorElements) steps and, in each step, 2^(s) elements
8942 /// are reduced, where s is an induction variable from 0 to
8943 /// log2(NumVectorElements).
tryMatchAcrossLaneShuffleForReduction(SDNode * N,SDValue OpV,unsigned Op,SelectionDAG & DAG)8944 static SDValue tryMatchAcrossLaneShuffleForReduction(SDNode *N, SDValue OpV,
8945 unsigned Op,
8946 SelectionDAG &DAG) {
8947 EVT VTy = OpV->getOperand(0).getValueType();
8948 if (!VTy.isVector())
8949 return SDValue();
8950
8951 int NumVecElts = VTy.getVectorNumElements();
8952 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
8953 if (NumVecElts != 4)
8954 return SDValue();
8955 } else {
8956 if (NumVecElts != 4 && NumVecElts != 8 && NumVecElts != 16)
8957 return SDValue();
8958 }
8959
8960 int NumExpectedSteps = APInt(8, NumVecElts).logBase2();
8961 SDValue PreOp = OpV;
8962 // Iterate over each step of the across vector reduction.
8963 for (int CurStep = 0; CurStep != NumExpectedSteps; ++CurStep) {
8964 SDValue CurOp = PreOp.getOperand(0);
8965 SDValue Shuffle = PreOp.getOperand(1);
8966 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE) {
8967 // Try to swap the 1st and 2nd operand as add and min/max instructions
8968 // are commutative.
8969 CurOp = PreOp.getOperand(1);
8970 Shuffle = PreOp.getOperand(0);
8971 if (Shuffle.getOpcode() != ISD::VECTOR_SHUFFLE)
8972 return SDValue();
8973 }
8974
8975 // Check if the input vector is fed by the operator we want to handle,
8976 // except the last step; the very first input vector is not necessarily
8977 // the same operator we are handling.
8978 if (CurOp.getOpcode() != Op && (CurStep != (NumExpectedSteps - 1)))
8979 return SDValue();
8980
8981 // Check if it forms one step of the across vector reduction.
8982 // E.g.,
8983 // %cur = add %1, %0
8984 // %shuffle = vector_shuffle %cur, <2, 3, u, u>
8985 // %pre = add %cur, %shuffle
8986 if (Shuffle.getOperand(0) != CurOp)
8987 return SDValue();
8988
8989 int NumMaskElts = 1 << CurStep;
8990 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Shuffle)->getMask();
8991 // Check mask values in each step.
8992 // We expect the shuffle mask in each step follows a specific pattern
8993 // denoted here by the <M, U> form, where M is a sequence of integers
8994 // starting from NumMaskElts, increasing by 1, and the number integers
8995 // in M should be NumMaskElts. U is a sequence of UNDEFs and the number
8996 // of undef in U should be NumVecElts - NumMaskElts.
8997 // E.g., for <8 x i16>, mask values in each step should be :
8998 // step 0 : <1,u,u,u,u,u,u,u>
8999 // step 1 : <2,3,u,u,u,u,u,u>
9000 // step 2 : <4,5,6,7,u,u,u,u>
9001 for (int i = 0; i < NumVecElts; ++i)
9002 if ((i < NumMaskElts && Mask[i] != (NumMaskElts + i)) ||
9003 (i >= NumMaskElts && !(Mask[i] < 0)))
9004 return SDValue();
9005
9006 PreOp = CurOp;
9007 }
9008 unsigned Opcode;
9009 bool IsIntrinsic = false;
9010
9011 switch (Op) {
9012 default:
9013 llvm_unreachable("Unexpected operator for across vector reduction");
9014 case ISD::ADD:
9015 Opcode = AArch64ISD::UADDV;
9016 break;
9017 case ISD::SMAX:
9018 Opcode = AArch64ISD::SMAXV;
9019 break;
9020 case ISD::UMAX:
9021 Opcode = AArch64ISD::UMAXV;
9022 break;
9023 case ISD::SMIN:
9024 Opcode = AArch64ISD::SMINV;
9025 break;
9026 case ISD::UMIN:
9027 Opcode = AArch64ISD::UMINV;
9028 break;
9029 case ISD::FMAXNUM:
9030 Opcode = Intrinsic::aarch64_neon_fmaxnmv;
9031 IsIntrinsic = true;
9032 break;
9033 case ISD::FMINNUM:
9034 Opcode = Intrinsic::aarch64_neon_fminnmv;
9035 IsIntrinsic = true;
9036 break;
9037 }
9038 SDLoc DL(N);
9039
9040 return IsIntrinsic
9041 ? DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, N->getValueType(0),
9042 DAG.getConstant(Opcode, DL, MVT::i32), PreOp)
9043 : DAG.getNode(
9044 ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0),
9045 DAG.getNode(Opcode, DL, PreOp.getSimpleValueType(), PreOp),
9046 DAG.getConstant(0, DL, MVT::i64));
9047 }
9048
9049 /// Target-specific DAG combine for the across vector min/max reductions.
9050 /// This function specifically handles the final clean-up step of the vector
9051 /// min/max reductions produced by the LoopVectorizer. It is the log2-shuffle
9052 /// pattern, which narrows down and finds the final min/max value from all
9053 /// elements of the vector.
9054 /// For example, for a <16 x i8> vector :
9055 /// svn0 = vector_shuffle %0, undef<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u>
9056 /// %smax0 = smax %arr, svn0
9057 /// %svn1 = vector_shuffle %smax0, undef<4,5,6,7,u,u,u,u,u,u,u,u,u,u,u,u>
9058 /// %smax1 = smax %smax0, %svn1
9059 /// %svn2 = vector_shuffle %smax1, undef<2,3,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9060 /// %smax2 = smax %smax1, svn2
9061 /// %svn3 = vector_shuffle %smax2, undef<1,u,u,u,u,u,u,u,u,u,u,u,u,u,u,u>
9062 /// %sc = setcc %smax2, %svn3, gt
9063 /// %n0 = extract_vector_elt %sc, #0
9064 /// %n1 = extract_vector_elt %smax2, #0
9065 /// %n2 = extract_vector_elt $smax2, #1
9066 /// %result = select %n0, %n1, n2
9067 /// becomes :
9068 /// %1 = smaxv %0
9069 /// %result = extract_vector_elt %1, 0
9070 static SDValue
performAcrossLaneMinMaxReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9071 performAcrossLaneMinMaxReductionCombine(SDNode *N, SelectionDAG &DAG,
9072 const AArch64Subtarget *Subtarget) {
9073 if (!Subtarget->hasNEON())
9074 return SDValue();
9075
9076 SDValue N0 = N->getOperand(0);
9077 SDValue IfTrue = N->getOperand(1);
9078 SDValue IfFalse = N->getOperand(2);
9079
9080 // Check if the SELECT merges up the final result of the min/max
9081 // from a vector.
9082 if (N0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9083 IfTrue.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
9084 IfFalse.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9085 return SDValue();
9086
9087 // Expect N0 is fed by SETCC.
9088 SDValue SetCC = N0.getOperand(0);
9089 EVT SetCCVT = SetCC.getValueType();
9090 if (SetCC.getOpcode() != ISD::SETCC || !SetCCVT.isVector() ||
9091 SetCCVT.getVectorElementType() != MVT::i1)
9092 return SDValue();
9093
9094 SDValue VectorOp = SetCC.getOperand(0);
9095 unsigned Op = VectorOp->getOpcode();
9096 // Check if the input vector is fed by the operator we want to handle.
9097 if (Op != ISD::SMAX && Op != ISD::UMAX && Op != ISD::SMIN &&
9098 Op != ISD::UMIN && Op != ISD::FMAXNUM && Op != ISD::FMINNUM)
9099 return SDValue();
9100
9101 EVT VTy = VectorOp.getValueType();
9102 if (!VTy.isVector())
9103 return SDValue();
9104
9105 if (VTy.getSizeInBits() < 64)
9106 return SDValue();
9107
9108 EVT EltTy = VTy.getVectorElementType();
9109 if (Op == ISD::FMAXNUM || Op == ISD::FMINNUM) {
9110 if (EltTy != MVT::f32)
9111 return SDValue();
9112 } else {
9113 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9114 return SDValue();
9115 }
9116
9117 // Check if extracting from the same vector.
9118 // For example,
9119 // %sc = setcc %vector, %svn1, gt
9120 // %n0 = extract_vector_elt %sc, #0
9121 // %n1 = extract_vector_elt %vector, #0
9122 // %n2 = extract_vector_elt $vector, #1
9123 if (!(VectorOp == IfTrue->getOperand(0) &&
9124 VectorOp == IfFalse->getOperand(0)))
9125 return SDValue();
9126
9127 // Check if the condition code is matched with the operator type.
9128 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
9129 if ((Op == ISD::SMAX && CC != ISD::SETGT && CC != ISD::SETGE) ||
9130 (Op == ISD::UMAX && CC != ISD::SETUGT && CC != ISD::SETUGE) ||
9131 (Op == ISD::SMIN && CC != ISD::SETLT && CC != ISD::SETLE) ||
9132 (Op == ISD::UMIN && CC != ISD::SETULT && CC != ISD::SETULE) ||
9133 (Op == ISD::FMAXNUM && CC != ISD::SETOGT && CC != ISD::SETOGE &&
9134 CC != ISD::SETUGT && CC != ISD::SETUGE && CC != ISD::SETGT &&
9135 CC != ISD::SETGE) ||
9136 (Op == ISD::FMINNUM && CC != ISD::SETOLT && CC != ISD::SETOLE &&
9137 CC != ISD::SETULT && CC != ISD::SETULE && CC != ISD::SETLT &&
9138 CC != ISD::SETLE))
9139 return SDValue();
9140
9141 // Expect to check only lane 0 from the vector SETCC.
9142 if (!isNullConstant(N0.getOperand(1)))
9143 return SDValue();
9144
9145 // Expect to extract the true value from lane 0.
9146 if (!isNullConstant(IfTrue.getOperand(1)))
9147 return SDValue();
9148
9149 // Expect to extract the false value from lane 1.
9150 if (!isOneConstant(IfFalse.getOperand(1)))
9151 return SDValue();
9152
9153 return tryMatchAcrossLaneShuffleForReduction(N, SetCC, Op, DAG);
9154 }
9155
9156 /// Target-specific DAG combine for the across vector add reduction.
9157 /// This function specifically handles the final clean-up step of the vector
9158 /// add reduction produced by the LoopVectorizer. It is the log2-shuffle
9159 /// pattern, which adds all elements of a vector together.
9160 /// For example, for a <4 x i32> vector :
9161 /// %1 = vector_shuffle %0, <2,3,u,u>
9162 /// %2 = add %0, %1
9163 /// %3 = vector_shuffle %2, <1,u,u,u>
9164 /// %4 = add %2, %3
9165 /// %result = extract_vector_elt %4, 0
9166 /// becomes :
9167 /// %0 = uaddv %0
9168 /// %result = extract_vector_elt %0, 0
9169 static SDValue
performAcrossLaneAddReductionCombine(SDNode * N,SelectionDAG & DAG,const AArch64Subtarget * Subtarget)9170 performAcrossLaneAddReductionCombine(SDNode *N, SelectionDAG &DAG,
9171 const AArch64Subtarget *Subtarget) {
9172 if (!Subtarget->hasNEON())
9173 return SDValue();
9174 SDValue N0 = N->getOperand(0);
9175 SDValue N1 = N->getOperand(1);
9176
9177 // Check if the input vector is fed by the ADD.
9178 if (N0->getOpcode() != ISD::ADD)
9179 return SDValue();
9180
9181 // The vector extract idx must constant zero because we only expect the final
9182 // result of the reduction is placed in lane 0.
9183 if (!isNullConstant(N1))
9184 return SDValue();
9185
9186 EVT VTy = N0.getValueType();
9187 if (!VTy.isVector())
9188 return SDValue();
9189
9190 EVT EltTy = VTy.getVectorElementType();
9191 if (EltTy != MVT::i32 && EltTy != MVT::i16 && EltTy != MVT::i8)
9192 return SDValue();
9193
9194 if (VTy.getSizeInBits() < 64)
9195 return SDValue();
9196
9197 return tryMatchAcrossLaneShuffleForReduction(N, N0, ISD::ADD, DAG);
9198 }
9199
9200 /// Target-specific DAG combine function for NEON load/store intrinsics
9201 /// to merge base address updates.
performNEONPostLDSTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9202 static SDValue performNEONPostLDSTCombine(SDNode *N,
9203 TargetLowering::DAGCombinerInfo &DCI,
9204 SelectionDAG &DAG) {
9205 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9206 return SDValue();
9207
9208 unsigned AddrOpIdx = N->getNumOperands() - 1;
9209 SDValue Addr = N->getOperand(AddrOpIdx);
9210
9211 // Search for a use of the address operand that is an increment.
9212 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9213 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9214 SDNode *User = *UI;
9215 if (User->getOpcode() != ISD::ADD ||
9216 UI.getUse().getResNo() != Addr.getResNo())
9217 continue;
9218
9219 // Check that the add is independent of the load/store. Otherwise, folding
9220 // it would create a cycle.
9221 if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9222 continue;
9223
9224 // Find the new opcode for the updating load/store.
9225 bool IsStore = false;
9226 bool IsLaneOp = false;
9227 bool IsDupOp = false;
9228 unsigned NewOpc = 0;
9229 unsigned NumVecs = 0;
9230 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9231 switch (IntNo) {
9232 default: llvm_unreachable("unexpected intrinsic for Neon base update");
9233 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post;
9234 NumVecs = 2; break;
9235 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post;
9236 NumVecs = 3; break;
9237 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post;
9238 NumVecs = 4; break;
9239 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post;
9240 NumVecs = 2; IsStore = true; break;
9241 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post;
9242 NumVecs = 3; IsStore = true; break;
9243 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post;
9244 NumVecs = 4; IsStore = true; break;
9245 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post;
9246 NumVecs = 2; break;
9247 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post;
9248 NumVecs = 3; break;
9249 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post;
9250 NumVecs = 4; break;
9251 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post;
9252 NumVecs = 2; IsStore = true; break;
9253 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post;
9254 NumVecs = 3; IsStore = true; break;
9255 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post;
9256 NumVecs = 4; IsStore = true; break;
9257 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost;
9258 NumVecs = 2; IsDupOp = true; break;
9259 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost;
9260 NumVecs = 3; IsDupOp = true; break;
9261 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost;
9262 NumVecs = 4; IsDupOp = true; break;
9263 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost;
9264 NumVecs = 2; IsLaneOp = true; break;
9265 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost;
9266 NumVecs = 3; IsLaneOp = true; break;
9267 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost;
9268 NumVecs = 4; IsLaneOp = true; break;
9269 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost;
9270 NumVecs = 2; IsStore = true; IsLaneOp = true; break;
9271 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost;
9272 NumVecs = 3; IsStore = true; IsLaneOp = true; break;
9273 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost;
9274 NumVecs = 4; IsStore = true; IsLaneOp = true; break;
9275 }
9276
9277 EVT VecTy;
9278 if (IsStore)
9279 VecTy = N->getOperand(2).getValueType();
9280 else
9281 VecTy = N->getValueType(0);
9282
9283 // If the increment is a constant, it must match the memory ref size.
9284 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9285 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9286 uint32_t IncVal = CInc->getZExtValue();
9287 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9288 if (IsLaneOp || IsDupOp)
9289 NumBytes /= VecTy.getVectorNumElements();
9290 if (IncVal != NumBytes)
9291 continue;
9292 Inc = DAG.getRegister(AArch64::XZR, MVT::i64);
9293 }
9294 SmallVector<SDValue, 8> Ops;
9295 Ops.push_back(N->getOperand(0)); // Incoming chain
9296 // Load lane and store have vector list as input.
9297 if (IsLaneOp || IsStore)
9298 for (unsigned i = 2; i < AddrOpIdx; ++i)
9299 Ops.push_back(N->getOperand(i));
9300 Ops.push_back(Addr); // Base register
9301 Ops.push_back(Inc);
9302
9303 // Return Types.
9304 EVT Tys[6];
9305 unsigned NumResultVecs = (IsStore ? 0 : NumVecs);
9306 unsigned n;
9307 for (n = 0; n < NumResultVecs; ++n)
9308 Tys[n] = VecTy;
9309 Tys[n++] = MVT::i64; // Type of write back register
9310 Tys[n] = MVT::Other; // Type of the chain
9311 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
9312
9313 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9314 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops,
9315 MemInt->getMemoryVT(),
9316 MemInt->getMemOperand());
9317
9318 // Update the uses.
9319 std::vector<SDValue> NewResults;
9320 for (unsigned i = 0; i < NumResultVecs; ++i) {
9321 NewResults.push_back(SDValue(UpdN.getNode(), i));
9322 }
9323 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1));
9324 DCI.CombineTo(N, NewResults);
9325 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9326
9327 break;
9328 }
9329 return SDValue();
9330 }
9331
9332 // Checks to see if the value is the prescribed width and returns information
9333 // about its extension mode.
9334 static
checkValueWidth(SDValue V,unsigned width,ISD::LoadExtType & ExtType)9335 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) {
9336 ExtType = ISD::NON_EXTLOAD;
9337 switch(V.getNode()->getOpcode()) {
9338 default:
9339 return false;
9340 case ISD::LOAD: {
9341 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode());
9342 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8)
9343 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) {
9344 ExtType = LoadNode->getExtensionType();
9345 return true;
9346 }
9347 return false;
9348 }
9349 case ISD::AssertSext: {
9350 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9351 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9352 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9353 ExtType = ISD::SEXTLOAD;
9354 return true;
9355 }
9356 return false;
9357 }
9358 case ISD::AssertZext: {
9359 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1));
9360 if ((TypeNode->getVT() == MVT::i8 && width == 8)
9361 || (TypeNode->getVT() == MVT::i16 && width == 16)) {
9362 ExtType = ISD::ZEXTLOAD;
9363 return true;
9364 }
9365 return false;
9366 }
9367 case ISD::Constant:
9368 case ISD::TargetConstant: {
9369 return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) <
9370 1LL << (width - 1);
9371 }
9372 }
9373
9374 return true;
9375 }
9376
9377 // This function does a whole lot of voodoo to determine if the tests are
9378 // equivalent without and with a mask. Essentially what happens is that given a
9379 // DAG resembling:
9380 //
9381 // +-------------+ +-------------+ +-------------+ +-------------+
9382 // | Input | | AddConstant | | CompConstant| | CC |
9383 // +-------------+ +-------------+ +-------------+ +-------------+
9384 // | | | |
9385 // V V | +----------+
9386 // +-------------+ +----+ | |
9387 // | ADD | |0xff| | |
9388 // +-------------+ +----+ | |
9389 // | | | |
9390 // V V | |
9391 // +-------------+ | |
9392 // | AND | | |
9393 // +-------------+ | |
9394 // | | |
9395 // +-----+ | |
9396 // | | |
9397 // V V V
9398 // +-------------+
9399 // | CMP |
9400 // +-------------+
9401 //
9402 // The AND node may be safely removed for some combinations of inputs. In
9403 // particular we need to take into account the extension type of the Input,
9404 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
9405 // width of the input (this can work for any width inputs, the above graph is
9406 // specific to 8 bits.
9407 //
9408 // The specific equations were worked out by generating output tables for each
9409 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
9410 // problem was simplified by working with 4 bit inputs, which means we only
9411 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
9412 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
9413 // patterns present in both extensions (0,7). For every distinct set of
9414 // AddConstant and CompConstants bit patterns we can consider the masked and
9415 // unmasked versions to be equivalent if the result of this function is true for
9416 // all 16 distinct bit patterns of for the current extension type of Input (w0).
9417 //
9418 // sub w8, w0, w1
9419 // and w10, w8, #0x0f
9420 // cmp w8, w2
9421 // cset w9, AArch64CC
9422 // cmp w10, w2
9423 // cset w11, AArch64CC
9424 // cmp w9, w11
9425 // cset w0, eq
9426 // ret
9427 //
9428 // Since the above function shows when the outputs are equivalent it defines
9429 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
9430 // would be expensive to run during compiles. The equations below were written
9431 // in a test harness that confirmed they gave equivalent outputs to the above
9432 // for all inputs function, so they can be used determine if the removal is
9433 // legal instead.
9434 //
9435 // isEquivalentMaskless() is the code for testing if the AND can be removed
9436 // factored out of the DAG recognition as the DAG can take several forms.
9437
isEquivalentMaskless(unsigned CC,unsigned width,ISD::LoadExtType ExtType,int AddConstant,int CompConstant)9438 static bool isEquivalentMaskless(unsigned CC, unsigned width,
9439 ISD::LoadExtType ExtType, int AddConstant,
9440 int CompConstant) {
9441 // By being careful about our equations and only writing the in term
9442 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
9443 // make them generally applicable to all bit widths.
9444 int MaxUInt = (1 << width);
9445
9446 // For the purposes of these comparisons sign extending the type is
9447 // equivalent to zero extending the add and displacing it by half the integer
9448 // width. Provided we are careful and make sure our equations are valid over
9449 // the whole range we can just adjust the input and avoid writing equations
9450 // for sign extended inputs.
9451 if (ExtType == ISD::SEXTLOAD)
9452 AddConstant -= (1 << (width-1));
9453
9454 switch(CC) {
9455 case AArch64CC::LE:
9456 case AArch64CC::GT: {
9457 if ((AddConstant == 0) ||
9458 (CompConstant == MaxUInt - 1 && AddConstant < 0) ||
9459 (AddConstant >= 0 && CompConstant < 0) ||
9460 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant))
9461 return true;
9462 } break;
9463 case AArch64CC::LT:
9464 case AArch64CC::GE: {
9465 if ((AddConstant == 0) ||
9466 (AddConstant >= 0 && CompConstant <= 0) ||
9467 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant))
9468 return true;
9469 } break;
9470 case AArch64CC::HI:
9471 case AArch64CC::LS: {
9472 if ((AddConstant >= 0 && CompConstant < 0) ||
9473 (AddConstant <= 0 && CompConstant >= -1 &&
9474 CompConstant < AddConstant + MaxUInt))
9475 return true;
9476 } break;
9477 case AArch64CC::PL:
9478 case AArch64CC::MI: {
9479 if ((AddConstant == 0) ||
9480 (AddConstant > 0 && CompConstant <= 0) ||
9481 (AddConstant < 0 && CompConstant <= AddConstant))
9482 return true;
9483 } break;
9484 case AArch64CC::LO:
9485 case AArch64CC::HS: {
9486 if ((AddConstant >= 0 && CompConstant <= 0) ||
9487 (AddConstant <= 0 && CompConstant >= 0 &&
9488 CompConstant <= AddConstant + MaxUInt))
9489 return true;
9490 } break;
9491 case AArch64CC::EQ:
9492 case AArch64CC::NE: {
9493 if ((AddConstant > 0 && CompConstant < 0) ||
9494 (AddConstant < 0 && CompConstant >= 0 &&
9495 CompConstant < AddConstant + MaxUInt) ||
9496 (AddConstant >= 0 && CompConstant >= 0 &&
9497 CompConstant >= AddConstant) ||
9498 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant))
9499
9500 return true;
9501 } break;
9502 case AArch64CC::VS:
9503 case AArch64CC::VC:
9504 case AArch64CC::AL:
9505 case AArch64CC::NV:
9506 return true;
9507 case AArch64CC::Invalid:
9508 break;
9509 }
9510
9511 return false;
9512 }
9513
9514 static
performCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG,unsigned CCIndex,unsigned CmpIndex)9515 SDValue performCONDCombine(SDNode *N,
9516 TargetLowering::DAGCombinerInfo &DCI,
9517 SelectionDAG &DAG, unsigned CCIndex,
9518 unsigned CmpIndex) {
9519 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue();
9520 SDNode *SubsNode = N->getOperand(CmpIndex).getNode();
9521 unsigned CondOpcode = SubsNode->getOpcode();
9522
9523 if (CondOpcode != AArch64ISD::SUBS)
9524 return SDValue();
9525
9526 // There is a SUBS feeding this condition. Is it fed by a mask we can
9527 // use?
9528
9529 SDNode *AndNode = SubsNode->getOperand(0).getNode();
9530 unsigned MaskBits = 0;
9531
9532 if (AndNode->getOpcode() != ISD::AND)
9533 return SDValue();
9534
9535 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) {
9536 uint32_t CNV = CN->getZExtValue();
9537 if (CNV == 255)
9538 MaskBits = 8;
9539 else if (CNV == 65535)
9540 MaskBits = 16;
9541 }
9542
9543 if (!MaskBits)
9544 return SDValue();
9545
9546 SDValue AddValue = AndNode->getOperand(0);
9547
9548 if (AddValue.getOpcode() != ISD::ADD)
9549 return SDValue();
9550
9551 // The basic dag structure is correct, grab the inputs and validate them.
9552
9553 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0);
9554 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1);
9555 SDValue SubsInputValue = SubsNode->getOperand(1);
9556
9557 // The mask is present and the provenance of all the values is a smaller type,
9558 // lets see if the mask is superfluous.
9559
9560 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) ||
9561 !isa<ConstantSDNode>(SubsInputValue.getNode()))
9562 return SDValue();
9563
9564 ISD::LoadExtType ExtType;
9565
9566 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) ||
9567 !checkValueWidth(AddInputValue2, MaskBits, ExtType) ||
9568 !checkValueWidth(AddInputValue1, MaskBits, ExtType) )
9569 return SDValue();
9570
9571 if(!isEquivalentMaskless(CC, MaskBits, ExtType,
9572 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(),
9573 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue()))
9574 return SDValue();
9575
9576 // The AND is not necessary, remove it.
9577
9578 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0),
9579 SubsNode->getValueType(1));
9580 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) };
9581
9582 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops);
9583 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode());
9584
9585 return SDValue(N, 0);
9586 }
9587
9588 // Optimize compare with zero and branch.
performBRCONDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9589 static SDValue performBRCONDCombine(SDNode *N,
9590 TargetLowering::DAGCombinerInfo &DCI,
9591 SelectionDAG &DAG) {
9592 if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3))
9593 N = NV.getNode();
9594 SDValue Chain = N->getOperand(0);
9595 SDValue Dest = N->getOperand(1);
9596 SDValue CCVal = N->getOperand(2);
9597 SDValue Cmp = N->getOperand(3);
9598
9599 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!");
9600 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue();
9601 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
9602 return SDValue();
9603
9604 unsigned CmpOpc = Cmp.getOpcode();
9605 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS)
9606 return SDValue();
9607
9608 // Only attempt folding if there is only one use of the flag and no use of the
9609 // value.
9610 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1))
9611 return SDValue();
9612
9613 SDValue LHS = Cmp.getOperand(0);
9614 SDValue RHS = Cmp.getOperand(1);
9615
9616 assert(LHS.getValueType() == RHS.getValueType() &&
9617 "Expected the value type to be the same for both operands!");
9618 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64)
9619 return SDValue();
9620
9621 if (isNullConstant(LHS))
9622 std::swap(LHS, RHS);
9623
9624 if (!isNullConstant(RHS))
9625 return SDValue();
9626
9627 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA ||
9628 LHS.getOpcode() == ISD::SRL)
9629 return SDValue();
9630
9631 // Fold the compare into the branch instruction.
9632 SDValue BR;
9633 if (CC == AArch64CC::EQ)
9634 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9635 else
9636 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest);
9637
9638 // Do not add new nodes to DAG combiner worklist.
9639 DCI.CombineTo(N, BR, false);
9640
9641 return SDValue();
9642 }
9643
9644 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
9645 // as well as whether the test should be inverted. This code is required to
9646 // catch these cases (as opposed to standard dag combines) because
9647 // AArch64ISD::TBZ is matched during legalization.
getTestBitOperand(SDValue Op,unsigned & Bit,bool & Invert,SelectionDAG & DAG)9648 static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert,
9649 SelectionDAG &DAG) {
9650
9651 if (!Op->hasOneUse())
9652 return Op;
9653
9654 // We don't handle undef/constant-fold cases below, as they should have
9655 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
9656 // etc.)
9657
9658 // (tbz (trunc x), b) -> (tbz x, b)
9659 // This case is just here to enable more of the below cases to be caught.
9660 if (Op->getOpcode() == ISD::TRUNCATE &&
9661 Bit < Op->getValueType(0).getSizeInBits()) {
9662 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9663 }
9664
9665 if (Op->getNumOperands() != 2)
9666 return Op;
9667
9668 auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9669 if (!C)
9670 return Op;
9671
9672 switch (Op->getOpcode()) {
9673 default:
9674 return Op;
9675
9676 // (tbz (and x, m), b) -> (tbz x, b)
9677 case ISD::AND:
9678 if ((C->getZExtValue() >> Bit) & 1)
9679 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9680 return Op;
9681
9682 // (tbz (shl x, c), b) -> (tbz x, b-c)
9683 case ISD::SHL:
9684 if (C->getZExtValue() <= Bit &&
9685 (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9686 Bit = Bit - C->getZExtValue();
9687 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9688 }
9689 return Op;
9690
9691 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
9692 case ISD::SRA:
9693 Bit = Bit + C->getZExtValue();
9694 if (Bit >= Op->getValueType(0).getSizeInBits())
9695 Bit = Op->getValueType(0).getSizeInBits() - 1;
9696 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9697
9698 // (tbz (srl x, c), b) -> (tbz x, b+c)
9699 case ISD::SRL:
9700 if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) {
9701 Bit = Bit + C->getZExtValue();
9702 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9703 }
9704 return Op;
9705
9706 // (tbz (xor x, -1), b) -> (tbnz x, b)
9707 case ISD::XOR:
9708 if ((C->getZExtValue() >> Bit) & 1)
9709 Invert = !Invert;
9710 return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG);
9711 }
9712 }
9713
9714 // Optimize test single bit zero/non-zero and branch.
performTBZCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,SelectionDAG & DAG)9715 static SDValue performTBZCombine(SDNode *N,
9716 TargetLowering::DAGCombinerInfo &DCI,
9717 SelectionDAG &DAG) {
9718 unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9719 bool Invert = false;
9720 SDValue TestSrc = N->getOperand(1);
9721 SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG);
9722
9723 if (TestSrc == NewTestSrc)
9724 return SDValue();
9725
9726 unsigned NewOpc = N->getOpcode();
9727 if (Invert) {
9728 if (NewOpc == AArch64ISD::TBZ)
9729 NewOpc = AArch64ISD::TBNZ;
9730 else {
9731 assert(NewOpc == AArch64ISD::TBNZ);
9732 NewOpc = AArch64ISD::TBZ;
9733 }
9734 }
9735
9736 SDLoc DL(N);
9737 return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc,
9738 DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3));
9739 }
9740
9741 // vselect (v1i1 setcc) ->
9742 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
9743 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
9744 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
9745 // such VSELECT.
performVSelectCombine(SDNode * N,SelectionDAG & DAG)9746 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) {
9747 SDValue N0 = N->getOperand(0);
9748 EVT CCVT = N0.getValueType();
9749
9750 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 ||
9751 CCVT.getVectorElementType() != MVT::i1)
9752 return SDValue();
9753
9754 EVT ResVT = N->getValueType(0);
9755 EVT CmpVT = N0.getOperand(0).getValueType();
9756 // Only combine when the result type is of the same size as the compared
9757 // operands.
9758 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits())
9759 return SDValue();
9760
9761 SDValue IfTrue = N->getOperand(1);
9762 SDValue IfFalse = N->getOperand(2);
9763 SDValue SetCC =
9764 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(),
9765 N0.getOperand(0), N0.getOperand(1),
9766 cast<CondCodeSDNode>(N0.getOperand(2))->get());
9767 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC,
9768 IfTrue, IfFalse);
9769 }
9770
9771 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
9772 /// the compare-mask instructions rather than going via NZCV, even if LHS and
9773 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
9774 /// with a vector one followed by a DUP shuffle on the result.
performSelectCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9775 static SDValue performSelectCombine(SDNode *N,
9776 TargetLowering::DAGCombinerInfo &DCI) {
9777 SelectionDAG &DAG = DCI.DAG;
9778 SDValue N0 = N->getOperand(0);
9779 EVT ResVT = N->getValueType(0);
9780
9781 if (N0.getOpcode() != ISD::SETCC)
9782 return SDValue();
9783
9784 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
9785 // scalar SetCCResultType. We also don't expect vectors, because we assume
9786 // that selects fed by vector SETCCs are canonicalized to VSELECT.
9787 assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&
9788 "Scalar-SETCC feeding SELECT has unexpected result type!");
9789
9790 // If NumMaskElts == 0, the comparison is larger than select result. The
9791 // largest real NEON comparison is 64-bits per lane, which means the result is
9792 // at most 32-bits and an illegal vector. Just bail out for now.
9793 EVT SrcVT = N0.getOperand(0).getValueType();
9794
9795 // Don't try to do this optimization when the setcc itself has i1 operands.
9796 // There are no legal vectors of i1, so this would be pointless.
9797 if (SrcVT == MVT::i1)
9798 return SDValue();
9799
9800 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits();
9801 if (!ResVT.isVector() || NumMaskElts == 0)
9802 return SDValue();
9803
9804 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts);
9805 EVT CCVT = SrcVT.changeVectorElementTypeToInteger();
9806
9807 // Also bail out if the vector CCVT isn't the same size as ResVT.
9808 // This can happen if the SETCC operand size doesn't divide the ResVT size
9809 // (e.g., f64 vs v3f32).
9810 if (CCVT.getSizeInBits() != ResVT.getSizeInBits())
9811 return SDValue();
9812
9813 // Make sure we didn't create illegal types, if we're not supposed to.
9814 assert(DCI.isBeforeLegalize() ||
9815 DAG.getTargetLoweringInfo().isTypeLegal(SrcVT));
9816
9817 // First perform a vector comparison, where lane 0 is the one we're interested
9818 // in.
9819 SDLoc DL(N0);
9820 SDValue LHS =
9821 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0));
9822 SDValue RHS =
9823 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1));
9824 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2));
9825
9826 // Now duplicate the comparison mask we want across all other lanes.
9827 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0);
9828 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask);
9829 Mask = DAG.getNode(ISD::BITCAST, DL,
9830 ResVT.changeVectorElementTypeToInteger(), Mask);
9831
9832 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2));
9833 }
9834
9835 /// Get rid of unnecessary NVCASTs (that don't change the type).
performNVCASTCombine(SDNode * N)9836 static SDValue performNVCASTCombine(SDNode *N) {
9837 if (N->getValueType(0) == N->getOperand(0).getValueType())
9838 return N->getOperand(0);
9839
9840 return SDValue();
9841 }
9842
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const9843 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N,
9844 DAGCombinerInfo &DCI) const {
9845 SelectionDAG &DAG = DCI.DAG;
9846 switch (N->getOpcode()) {
9847 default:
9848 break;
9849 case ISD::ADD:
9850 case ISD::SUB:
9851 return performAddSubLongCombine(N, DCI, DAG);
9852 case ISD::XOR:
9853 return performXorCombine(N, DAG, DCI, Subtarget);
9854 case ISD::MUL:
9855 return performMulCombine(N, DAG, DCI, Subtarget);
9856 case ISD::SINT_TO_FP:
9857 case ISD::UINT_TO_FP:
9858 return performIntToFpCombine(N, DAG, Subtarget);
9859 case ISD::FP_TO_SINT:
9860 case ISD::FP_TO_UINT:
9861 return performFpToIntCombine(N, DAG, DCI, Subtarget);
9862 case ISD::FDIV:
9863 return performFDivCombine(N, DAG, Subtarget);
9864 case ISD::OR:
9865 return performORCombine(N, DCI, Subtarget);
9866 case ISD::SRL:
9867 return performSRLCombine(N, DCI);
9868 case ISD::INTRINSIC_WO_CHAIN:
9869 return performIntrinsicCombine(N, DCI, Subtarget);
9870 case ISD::ANY_EXTEND:
9871 case ISD::ZERO_EXTEND:
9872 case ISD::SIGN_EXTEND:
9873 return performExtendCombine(N, DCI, DAG);
9874 case ISD::BITCAST:
9875 return performBitcastCombine(N, DCI, DAG);
9876 case ISD::CONCAT_VECTORS:
9877 return performConcatVectorsCombine(N, DCI, DAG);
9878 case ISD::SELECT: {
9879 SDValue RV = performSelectCombine(N, DCI);
9880 if (!RV.getNode())
9881 RV = performAcrossLaneMinMaxReductionCombine(N, DAG, Subtarget);
9882 return RV;
9883 }
9884 case ISD::VSELECT:
9885 return performVSelectCombine(N, DCI.DAG);
9886 case ISD::LOAD:
9887 if (performTBISimplification(N->getOperand(1), DCI, DAG))
9888 return SDValue(N, 0);
9889 break;
9890 case ISD::STORE:
9891 return performSTORECombine(N, DCI, DAG, Subtarget);
9892 case AArch64ISD::BRCOND:
9893 return performBRCONDCombine(N, DCI, DAG);
9894 case AArch64ISD::TBNZ:
9895 case AArch64ISD::TBZ:
9896 return performTBZCombine(N, DCI, DAG);
9897 case AArch64ISD::CSEL:
9898 return performCONDCombine(N, DCI, DAG, 2, 3);
9899 case AArch64ISD::DUP:
9900 return performPostLD1Combine(N, DCI, false);
9901 case AArch64ISD::NVCAST:
9902 return performNVCASTCombine(N);
9903 case ISD::INSERT_VECTOR_ELT:
9904 return performPostLD1Combine(N, DCI, true);
9905 case ISD::EXTRACT_VECTOR_ELT:
9906 return performAcrossLaneAddReductionCombine(N, DAG, Subtarget);
9907 case ISD::INTRINSIC_VOID:
9908 case ISD::INTRINSIC_W_CHAIN:
9909 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9910 case Intrinsic::aarch64_neon_ld2:
9911 case Intrinsic::aarch64_neon_ld3:
9912 case Intrinsic::aarch64_neon_ld4:
9913 case Intrinsic::aarch64_neon_ld1x2:
9914 case Intrinsic::aarch64_neon_ld1x3:
9915 case Intrinsic::aarch64_neon_ld1x4:
9916 case Intrinsic::aarch64_neon_ld2lane:
9917 case Intrinsic::aarch64_neon_ld3lane:
9918 case Intrinsic::aarch64_neon_ld4lane:
9919 case Intrinsic::aarch64_neon_ld2r:
9920 case Intrinsic::aarch64_neon_ld3r:
9921 case Intrinsic::aarch64_neon_ld4r:
9922 case Intrinsic::aarch64_neon_st2:
9923 case Intrinsic::aarch64_neon_st3:
9924 case Intrinsic::aarch64_neon_st4:
9925 case Intrinsic::aarch64_neon_st1x2:
9926 case Intrinsic::aarch64_neon_st1x3:
9927 case Intrinsic::aarch64_neon_st1x4:
9928 case Intrinsic::aarch64_neon_st2lane:
9929 case Intrinsic::aarch64_neon_st3lane:
9930 case Intrinsic::aarch64_neon_st4lane:
9931 return performNEONPostLDSTCombine(N, DCI, DAG);
9932 default:
9933 break;
9934 }
9935 }
9936 return SDValue();
9937 }
9938
9939 // Check if the return value is used as only a return value, as otherwise
9940 // we can't perform a tail-call. In particular, we need to check for
9941 // target ISD nodes that are returns and any other "odd" constructs
9942 // that the generic analysis code won't necessarily catch.
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const9943 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N,
9944 SDValue &Chain) const {
9945 if (N->getNumValues() != 1)
9946 return false;
9947 if (!N->hasNUsesOfValue(1, 0))
9948 return false;
9949
9950 SDValue TCChain = Chain;
9951 SDNode *Copy = *N->use_begin();
9952 if (Copy->getOpcode() == ISD::CopyToReg) {
9953 // If the copy has a glue operand, we conservatively assume it isn't safe to
9954 // perform a tail call.
9955 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() ==
9956 MVT::Glue)
9957 return false;
9958 TCChain = Copy->getOperand(0);
9959 } else if (Copy->getOpcode() != ISD::FP_EXTEND)
9960 return false;
9961
9962 bool HasRet = false;
9963 for (SDNode *Node : Copy->uses()) {
9964 if (Node->getOpcode() != AArch64ISD::RET_FLAG)
9965 return false;
9966 HasRet = true;
9967 }
9968
9969 if (!HasRet)
9970 return false;
9971
9972 Chain = TCChain;
9973 return true;
9974 }
9975
9976 // Return whether the an instruction can potentially be optimized to a tail
9977 // call. This will cause the optimizers to attempt to move, or duplicate,
9978 // return instructions to help enable tail call optimizations for this
9979 // instruction.
mayBeEmittedAsTailCall(CallInst * CI) const9980 bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
9981 return CI->isTailCall();
9982 }
9983
getIndexedAddressParts(SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,bool & IsInc,SelectionDAG & DAG) const9984 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base,
9985 SDValue &Offset,
9986 ISD::MemIndexedMode &AM,
9987 bool &IsInc,
9988 SelectionDAG &DAG) const {
9989 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB)
9990 return false;
9991
9992 Base = Op->getOperand(0);
9993 // All of the indexed addressing mode instructions take a signed
9994 // 9 bit immediate offset.
9995 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
9996 int64_t RHSC = (int64_t)RHS->getZExtValue();
9997 if (RHSC >= 256 || RHSC <= -256)
9998 return false;
9999 IsInc = (Op->getOpcode() == ISD::ADD);
10000 Offset = Op->getOperand(1);
10001 return true;
10002 }
10003 return false;
10004 }
10005
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const10006 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10007 SDValue &Offset,
10008 ISD::MemIndexedMode &AM,
10009 SelectionDAG &DAG) const {
10010 EVT VT;
10011 SDValue Ptr;
10012 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10013 VT = LD->getMemoryVT();
10014 Ptr = LD->getBasePtr();
10015 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10016 VT = ST->getMemoryVT();
10017 Ptr = ST->getBasePtr();
10018 } else
10019 return false;
10020
10021 bool IsInc;
10022 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG))
10023 return false;
10024 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC;
10025 return true;
10026 }
10027
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const10028 bool AArch64TargetLowering::getPostIndexedAddressParts(
10029 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset,
10030 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const {
10031 EVT VT;
10032 SDValue Ptr;
10033 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10034 VT = LD->getMemoryVT();
10035 Ptr = LD->getBasePtr();
10036 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10037 VT = ST->getMemoryVT();
10038 Ptr = ST->getBasePtr();
10039 } else
10040 return false;
10041
10042 bool IsInc;
10043 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG))
10044 return false;
10045 // Post-indexing updates the base, so it's not a valid transform
10046 // if that's not the same as the load's pointer.
10047 if (Ptr != Base)
10048 return false;
10049 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC;
10050 return true;
10051 }
10052
ReplaceBITCASTResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10053 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
10054 SelectionDAG &DAG) {
10055 SDLoc DL(N);
10056 SDValue Op = N->getOperand(0);
10057
10058 if (N->getValueType(0) != MVT::i16 || Op.getValueType() != MVT::f16)
10059 return;
10060
10061 Op = SDValue(
10062 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32,
10063 DAG.getUNDEF(MVT::i32), Op,
10064 DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)),
10065 0);
10066 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op);
10067 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op));
10068 }
10069
ReplaceReductionResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned InterOp,unsigned AcrossOp)10070 static void ReplaceReductionResults(SDNode *N,
10071 SmallVectorImpl<SDValue> &Results,
10072 SelectionDAG &DAG, unsigned InterOp,
10073 unsigned AcrossOp) {
10074 EVT LoVT, HiVT;
10075 SDValue Lo, Hi;
10076 SDLoc dl(N);
10077 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
10078 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
10079 SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi);
10080 SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal);
10081 Results.push_back(SplitVal);
10082 }
10083
ReplaceCMP_SWAP_128Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10084 static void ReplaceCMP_SWAP_128Results(SDNode *N,
10085 SmallVectorImpl<SDValue> & Results,
10086 SelectionDAG &DAG) {
10087 assert(N->getValueType(0) == MVT::i128 &&
10088 "AtomicCmpSwap on types less than 128 should be legal");
10089 SDValue Ops[] = {N->getOperand(1),
10090 N->getOperand(2)->getOperand(0),
10091 N->getOperand(2)->getOperand(1),
10092 N->getOperand(3)->getOperand(0),
10093 N->getOperand(3)->getOperand(1),
10094 N->getOperand(0)};
10095 SDNode *CmpSwap = DAG.getMachineNode(
10096 AArch64::CMP_SWAP_128, SDLoc(N),
10097 DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), Ops);
10098
10099 MachineFunction &MF = DAG.getMachineFunction();
10100 MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
10101 MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
10102 cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
10103
10104 Results.push_back(SDValue(CmpSwap, 0));
10105 Results.push_back(SDValue(CmpSwap, 1));
10106 Results.push_back(SDValue(CmpSwap, 3));
10107 }
10108
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const10109 void AArch64TargetLowering::ReplaceNodeResults(
10110 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
10111 switch (N->getOpcode()) {
10112 default:
10113 llvm_unreachable("Don't know how to custom expand this");
10114 case ISD::BITCAST:
10115 ReplaceBITCASTResults(N, Results, DAG);
10116 return;
10117 case AArch64ISD::SADDV:
10118 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV);
10119 return;
10120 case AArch64ISD::UADDV:
10121 ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV);
10122 return;
10123 case AArch64ISD::SMINV:
10124 ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV);
10125 return;
10126 case AArch64ISD::UMINV:
10127 ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV);
10128 return;
10129 case AArch64ISD::SMAXV:
10130 ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV);
10131 return;
10132 case AArch64ISD::UMAXV:
10133 ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV);
10134 return;
10135 case ISD::FP_TO_UINT:
10136 case ISD::FP_TO_SINT:
10137 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion");
10138 // Let normal code take care of it by not adding anything to Results.
10139 return;
10140 case ISD::ATOMIC_CMP_SWAP:
10141 ReplaceCMP_SWAP_128Results(N, Results, DAG);
10142 return;
10143 }
10144 }
10145
useLoadStackGuardNode() const10146 bool AArch64TargetLowering::useLoadStackGuardNode() const {
10147 if (!Subtarget->isTargetAndroid())
10148 return true;
10149 return TargetLowering::useLoadStackGuardNode();
10150 }
10151
combineRepeatedFPDivisors() const10152 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
10153 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10154 // reciprocal if there are three or more FDIVs.
10155 return 3;
10156 }
10157
10158 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const10159 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const {
10160 MVT SVT = VT.getSimpleVT();
10161 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
10162 // v4i16, v2i32 instead of to promote.
10163 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32
10164 || SVT == MVT::v1f32)
10165 return TypeWidenVector;
10166
10167 return TargetLoweringBase::getPreferredVectorAction(VT);
10168 }
10169
10170 // Loads and stores less than 128-bits are already atomic; ones above that
10171 // are doomed anyway, so defer to the default libcall and blame the OS when
10172 // things go wrong.
shouldExpandAtomicStoreInIR(StoreInst * SI) const10173 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
10174 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
10175 return Size == 128;
10176 }
10177
10178 // Loads and stores less than 128-bits are already atomic; ones above that
10179 // are doomed anyway, so defer to the default libcall and blame the OS when
10180 // things go wrong.
10181 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const10182 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
10183 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
10184 return Size == 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10185 }
10186
10187 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
10188 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const10189 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
10190 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
10191 return Size <= 128 ? AtomicExpansionKind::LLSC : AtomicExpansionKind::None;
10192 }
10193
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const10194 bool AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
10195 AtomicCmpXchgInst *AI) const {
10196 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
10197 // implement cmpxchg without spilling. If the address being exchanged is also
10198 // on the stack and close enough to the spill slot, this can lead to a
10199 // situation where the monitor always gets cleared and the atomic operation
10200 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
10201 return getTargetMachine().getOptLevel() != 0;
10202 }
10203
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const10204 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
10205 AtomicOrdering Ord) const {
10206 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10207 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
10208 bool IsAcquire = isAcquireOrStronger(Ord);
10209
10210 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
10211 // intrinsic must return {i64, i64} and we have to recombine them into a
10212 // single i128 here.
10213 if (ValTy->getPrimitiveSizeInBits() == 128) {
10214 Intrinsic::ID Int =
10215 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp;
10216 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int);
10217
10218 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10219 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi");
10220
10221 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
10222 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
10223 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
10224 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
10225 return Builder.CreateOr(
10226 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
10227 }
10228
10229 Type *Tys[] = { Addr->getType() };
10230 Intrinsic::ID Int =
10231 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr;
10232 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys);
10233
10234 return Builder.CreateTruncOrBitCast(
10235 Builder.CreateCall(Ldxr, Addr),
10236 cast<PointerType>(Addr->getType())->getElementType());
10237 }
10238
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const10239 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
10240 IRBuilder<> &Builder) const {
10241 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10242 Builder.CreateCall(
10243 llvm::Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex));
10244 }
10245
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const10246 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder,
10247 Value *Val, Value *Addr,
10248 AtomicOrdering Ord) const {
10249 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10250 bool IsRelease = isReleaseOrStronger(Ord);
10251
10252 // Since the intrinsics must have legal type, the i128 intrinsics take two
10253 // parameters: "i64, i64". We must marshal Val into the appropriate form
10254 // before the call.
10255 if (Val->getType()->getPrimitiveSizeInBits() == 128) {
10256 Intrinsic::ID Int =
10257 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp;
10258 Function *Stxr = Intrinsic::getDeclaration(M, Int);
10259 Type *Int64Ty = Type::getInt64Ty(M->getContext());
10260
10261 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo");
10262 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi");
10263 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
10264 return Builder.CreateCall(Stxr, {Lo, Hi, Addr});
10265 }
10266
10267 Intrinsic::ID Int =
10268 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr;
10269 Type *Tys[] = { Addr->getType() };
10270 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys);
10271
10272 return Builder.CreateCall(Stxr,
10273 {Builder.CreateZExtOrBitCast(
10274 Val, Stxr->getFunctionType()->getParamType(0)),
10275 Addr});
10276 }
10277
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const10278 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
10279 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
10280 return Ty->isArrayTy();
10281 }
10282
shouldNormalizeToSelectSequence(LLVMContext &,EVT) const10283 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
10284 EVT) const {
10285 return false;
10286 }
10287
getIRStackGuard(IRBuilder<> & IRB) const10288 Value *AArch64TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
10289 if (!Subtarget->isTargetAndroid())
10290 return TargetLowering::getIRStackGuard(IRB);
10291
10292 // Android provides a fixed TLS slot for the stack cookie. See the definition
10293 // of TLS_SLOT_STACK_GUARD in
10294 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10295 const unsigned TlsOffset = 0x28;
10296 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10297 Function *ThreadPointerFunc =
10298 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10299 return IRB.CreatePointerCast(
10300 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10301 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10302 }
10303
getSafeStackPointerLocation(IRBuilder<> & IRB) const10304 Value *AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
10305 if (!Subtarget->isTargetAndroid())
10306 return TargetLowering::getSafeStackPointerLocation(IRB);
10307
10308 // Android provides a fixed TLS slot for the SafeStack pointer. See the
10309 // definition of TLS_SLOT_SAFESTACK in
10310 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
10311 const unsigned TlsOffset = 0x48;
10312 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
10313 Function *ThreadPointerFunc =
10314 Intrinsic::getDeclaration(M, Intrinsic::thread_pointer);
10315 return IRB.CreatePointerCast(
10316 IRB.CreateConstGEP1_32(IRB.CreateCall(ThreadPointerFunc), TlsOffset),
10317 Type::getInt8PtrTy(IRB.getContext())->getPointerTo(0));
10318 }
10319
initializeSplitCSR(MachineBasicBlock * Entry) const10320 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
10321 // Update IsSplitCSR in AArch64unctionInfo.
10322 AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>();
10323 AFI->setIsSplitCSR(true);
10324 }
10325
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const10326 void AArch64TargetLowering::insertCopiesSplitCSR(
10327 MachineBasicBlock *Entry,
10328 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
10329 const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo();
10330 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
10331 if (!IStart)
10332 return;
10333
10334 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10335 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
10336 MachineBasicBlock::iterator MBBI = Entry->begin();
10337 for (const MCPhysReg *I = IStart; *I; ++I) {
10338 const TargetRegisterClass *RC = nullptr;
10339 if (AArch64::GPR64RegClass.contains(*I))
10340 RC = &AArch64::GPR64RegClass;
10341 else if (AArch64::FPR64RegClass.contains(*I))
10342 RC = &AArch64::FPR64RegClass;
10343 else
10344 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
10345
10346 unsigned NewVR = MRI->createVirtualRegister(RC);
10347 // Create copy from CSR to a virtual register.
10348 // FIXME: this currently does not emit CFI pseudo-instructions, it works
10349 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
10350 // nounwind. If we want to generalize this later, we may need to emit
10351 // CFI pseudo-instructions.
10352 assert(Entry->getParent()->getFunction()->hasFnAttribute(
10353 Attribute::NoUnwind) &&
10354 "Function should be nounwind in insertCopiesSplitCSR!");
10355 Entry->addLiveIn(*I);
10356 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
10357 .addReg(*I);
10358
10359 // Insert the copy-back instructions right before the terminator.
10360 for (auto *Exit : Exits)
10361 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
10362 TII->get(TargetOpcode::COPY), *I)
10363 .addReg(NewVR);
10364 }
10365 }
10366
isIntDivCheap(EVT VT,AttributeSet Attr) const10367 bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
10368 // Integer division on AArch64 is expensive. However, when aggressively
10369 // optimizing for code size, we prefer to use a div instruction, as it is
10370 // usually smaller than the alternative sequence.
10371 // The exception to this is vector division. Since AArch64 doesn't have vector
10372 // integer division, leaving the division as-is is a loss even in terms of
10373 // size, because it will have to be scalarized, while the alternative code
10374 // sequence can be performed in vector form.
10375 bool OptSize =
10376 Attr.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
10377 return OptSize && !VT.isVector();
10378 }
10379