1 2 /*---------------------------------------------------------------*/ 3 /*--- begin guest_amd64_defs.h ---*/ 4 /*---------------------------------------------------------------*/ 5 6 /* 7 This file is part of Valgrind, a dynamic binary instrumentation 8 framework. 9 10 Copyright (C) 2004-2017 OpenWorks LLP 11 info@open-works.net 12 13 This program is free software; you can redistribute it and/or 14 modify it under the terms of the GNU General Public License as 15 published by the Free Software Foundation; either version 2 of the 16 License, or (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, but 19 WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 26 02110-1301, USA. 27 28 The GNU General Public License is contained in the file COPYING. 29 30 Neither the names of the U.S. Department of Energy nor the 31 University of California nor the names of its contributors may be 32 used to endorse or promote products derived from this software 33 without prior written permission. 34 */ 35 36 /* Only to be used within the guest-amd64 directory. */ 37 38 #ifndef __VEX_GUEST_AMD64_DEFS_H 39 #define __VEX_GUEST_AMD64_DEFS_H 40 41 #include "libvex_basictypes.h" 42 #include "libvex_emnote.h" // VexEmNote 43 #include "libvex_guest_amd64.h" // VexGuestAMD64State 44 #include "guest_generic_bb_to_IR.h" // DisResult 45 46 /*---------------------------------------------------------*/ 47 /*--- amd64 to IR conversion ---*/ 48 /*---------------------------------------------------------*/ 49 50 /* Convert one amd64 insn to IR. See the type DisOneInstrFn in 51 guest_generic_bb_to_IR.h. */ 52 extern 53 DisResult disInstr_AMD64 ( IRSB* irbb, 54 Bool (*resteerOkFn) ( void*, Addr ), 55 Bool resteerCisOk, 56 void* callback_opaque, 57 const UChar* guest_code, 58 Long delta, 59 Addr guest_IP, 60 VexArch guest_arch, 61 const VexArchInfo* archinfo, 62 const VexAbiInfo* abiinfo, 63 VexEndness host_endness, 64 Bool sigill_diag ); 65 66 /* Used by the optimiser to specialise calls to helpers. */ 67 extern 68 IRExpr* guest_amd64_spechelper ( const HChar* function_name, 69 IRExpr** args, 70 IRStmt** precedingStmts, 71 Int n_precedingStmts ); 72 73 /* Describes to the optimiser which part of the guest state require 74 precise memory exceptions. This is logically part of the guest 75 state description. */ 76 extern 77 Bool guest_amd64_state_requires_precise_mem_exns ( Int, Int, 78 VexRegisterUpdates ); 79 80 extern 81 VexGuestLayout amd64guest_layout; 82 83 84 /*---------------------------------------------------------*/ 85 /*--- amd64 guest helpers ---*/ 86 /*---------------------------------------------------------*/ 87 88 /* --- CLEAN HELPERS --- */ 89 90 extern ULong amd64g_calculate_rflags_all ( 91 ULong cc_op, 92 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep 93 ); 94 95 extern ULong amd64g_calculate_rflags_c ( 96 ULong cc_op, 97 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep 98 ); 99 100 extern ULong amd64g_calculate_condition ( 101 ULong/*AMD64Condcode*/ cond, 102 ULong cc_op, 103 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep 104 ); 105 106 extern ULong amd64g_calculate_FXAM ( ULong tag, ULong dbl ); 107 108 extern ULong amd64g_calculate_RCR ( 109 ULong arg, ULong rot_amt, ULong rflags_in, Long sz 110 ); 111 112 extern ULong amd64g_calculate_RCL ( 113 ULong arg, ULong rot_amt, ULong rflags_in, Long sz 114 ); 115 116 extern ULong amd64g_calculate_pclmul(ULong s1, ULong s2, ULong which); 117 118 extern ULong amd64g_check_fldcw ( ULong fpucw ); 119 120 extern ULong amd64g_create_fpucw ( ULong fpround ); 121 122 extern ULong amd64g_check_ldmxcsr ( ULong mxcsr ); 123 124 extern ULong amd64g_create_mxcsr ( ULong sseround ); 125 126 extern VexEmNote amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord ); 127 extern VexEmNote amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord ); 128 extern VexEmNote amd64g_dirtyhelper_FRSTORS ( VexGuestAMD64State*, HWord ); 129 130 extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord ); 131 extern void amd64g_dirtyhelper_FNSAVE ( VexGuestAMD64State*, HWord ); 132 extern void amd64g_dirtyhelper_FNSAVES ( VexGuestAMD64State*, HWord ); 133 134 /* Translate a guest virtual_addr into a guest linear address by 135 consulting the supplied LDT/GDT structures. Their representation 136 must be as specified in pub/libvex_guest_amd64.h. To indicate a 137 translation failure, 1<<32 is returned. On success, the lower 32 138 bits of the returned result indicate the linear address. 139 */ 140 //extern 141 //ULong amd64g_use_seg_selector ( HWord ldt, HWord gdt, 142 // UInt seg_selector, UInt virtual_addr ); 143 144 extern ULong amd64g_calculate_mmx_pmaddwd ( ULong, ULong ); 145 extern ULong amd64g_calculate_mmx_psadbw ( ULong, ULong ); 146 147 extern ULong amd64g_calculate_sse_phminposuw ( ULong sLo, ULong sHi ); 148 149 extern ULong amd64g_calc_crc32b ( ULong crcIn, ULong b ); 150 extern ULong amd64g_calc_crc32w ( ULong crcIn, ULong w ); 151 extern ULong amd64g_calc_crc32l ( ULong crcIn, ULong l ); 152 extern ULong amd64g_calc_crc32q ( ULong crcIn, ULong q ); 153 154 extern ULong amd64g_calc_mpsadbw ( ULong sHi, ULong sLo, 155 ULong dHi, ULong dLo, 156 ULong imm_and_return_control_bit ); 157 158 extern ULong amd64g_calculate_pext ( ULong, ULong ); 159 extern ULong amd64g_calculate_pdep ( ULong, ULong ); 160 161 /* --- DIRTY HELPERS --- */ 162 163 extern ULong amd64g_dirtyhelper_loadF80le ( Addr/*addr*/ ); 164 165 extern void amd64g_dirtyhelper_storeF80le ( Addr/*addr*/, ULong/*data*/ ); 166 167 extern void amd64g_dirtyhelper_CPUID_baseline ( VexGuestAMD64State* st ); 168 extern void amd64g_dirtyhelper_CPUID_sse3_and_cx16 ( VexGuestAMD64State* st ); 169 extern void amd64g_dirtyhelper_CPUID_sse42_and_cx16 ( VexGuestAMD64State* st ); 170 extern void amd64g_dirtyhelper_CPUID_avx_and_cx16 ( VexGuestAMD64State* st ); 171 extern void amd64g_dirtyhelper_CPUID_avx2 ( VexGuestAMD64State* st ); 172 173 extern void amd64g_dirtyhelper_FINIT ( VexGuestAMD64State* ); 174 175 extern void amd64g_dirtyhelper_XSAVE_COMPONENT_0 176 ( VexGuestAMD64State* gst, HWord addr ); 177 extern void amd64g_dirtyhelper_XSAVE_COMPONENT_1_EXCLUDING_XMMREGS 178 ( VexGuestAMD64State* gst, HWord addr ); 179 180 extern VexEmNote amd64g_dirtyhelper_XRSTOR_COMPONENT_0 181 ( VexGuestAMD64State* gst, HWord addr ); 182 extern VexEmNote amd64g_dirtyhelper_XRSTOR_COMPONENT_1_EXCLUDING_XMMREGS 183 ( VexGuestAMD64State* gst, HWord addr ); 184 185 extern ULong amd64g_dirtyhelper_RDTSC ( void ); 186 extern void amd64g_dirtyhelper_RDTSCP ( VexGuestAMD64State* st ); 187 188 extern ULong amd64g_dirtyhelper_IN ( ULong portno, ULong sz/*1,2 or 4*/ ); 189 extern void amd64g_dirtyhelper_OUT ( ULong portno, ULong data, 190 ULong sz/*1,2 or 4*/ ); 191 192 extern void amd64g_dirtyhelper_SxDT ( void* address, 193 ULong op /* 0 or 1 */ ); 194 195 /* Helps with PCMP{I,E}STR{I,M}. 196 197 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really, 198 actually it could be a clean helper, but for the fact that we can't 199 pass by value 2 x V128 to a clean helper, nor have one returned.) 200 Reads guest state, writes to guest state for the xSTRM cases, no 201 accesses of memory, is a pure function. 202 203 opc_and_imm contains (4th byte of opcode << 8) | the-imm8-byte so 204 the callee knows which I/E and I/M variant it is dealing with and 205 what the specific operation is. 4th byte of opcode is in the range 206 0x60 to 0x63: 207 istri 66 0F 3A 63 208 istrm 66 0F 3A 62 209 estri 66 0F 3A 61 210 estrm 66 0F 3A 60 211 212 gstOffL and gstOffR are the guest state offsets for the two XMM 213 register inputs. We never have to deal with the memory case since 214 that is handled by pre-loading the relevant value into the fake 215 XMM16 register. 216 217 For ESTRx variants, edxIN and eaxIN hold the values of those two 218 registers. 219 220 In all cases, the bottom 16 bits of the result contain the new 221 OSZACP %rflags values. For xSTRI variants, bits[31:16] of the 222 result hold the new %ecx value. For xSTRM variants, the helper 223 writes the result directly to the guest XMM0. 224 225 Declarable side effects: in all cases, reads guest state at 226 [gstOffL, +16) and [gstOffR, +16). For xSTRM variants, also writes 227 guest_XMM0. 228 229 Is expected to be called with opc_and_imm combinations which have 230 actually been validated, and will assert if otherwise. The front 231 end should ensure we're only called with verified values. 232 */ 233 extern ULong amd64g_dirtyhelper_PCMPxSTRx ( 234 VexGuestAMD64State*, 235 HWord opc4_and_imm, 236 HWord gstOffL, HWord gstOffR, 237 HWord edxIN, HWord eaxIN 238 ); 239 240 /* Implementation of intel AES instructions as described in 241 Intel Advanced Vector Extensions 242 Programming Reference 243 MARCH 2008 244 319433-002. 245 246 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really, 247 actually it could be a clean helper, but for the fact that we can't 248 pass by value 2 x V128 to a clean helper, nor have one returned.) 249 Reads guest state, writes to guest state, no 250 accesses of memory, is a pure function. 251 252 opc4 contains the 4th byte of opcode. Front-end should only 253 give opcode corresponding to AESENC/AESENCLAST/AESDEC/AESDECLAST/AESIMC. 254 (will assert otherwise). 255 256 gstOffL and gstOffR are the guest state offsets for the two XMM 257 register inputs, gstOffD is the guest state offset for the XMM register 258 output. We never have to deal with the memory case since that is handled 259 by pre-loading the relevant value into the fake XMM16 register. 260 261 */ 262 extern void amd64g_dirtyhelper_AES ( 263 VexGuestAMD64State* gst, 264 HWord opc4, HWord gstOffD, 265 HWord gstOffL, HWord gstOffR 266 ); 267 268 /* Implementation of AESKEYGENASSIST. 269 270 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really, 271 actually it could be a clean helper, but for the fact that we can't 272 pass by value 1 x V128 to a clean helper, nor have one returned.) 273 Reads guest state, writes to guest state, no 274 accesses of memory, is a pure function. 275 276 imm8 is the Round Key constant. 277 278 gstOffL and gstOffR are the guest state offsets for the two XMM 279 register input and output. We never have to deal with the memory case since 280 that is handled by pre-loading the relevant value into the fake 281 XMM16 register. 282 283 */ 284 extern void amd64g_dirtyhelper_AESKEYGENASSIST ( 285 VexGuestAMD64State* gst, 286 HWord imm8, 287 HWord gstOffL, HWord gstOffR 288 ); 289 290 //extern void amd64g_dirtyhelper_CPUID_sse0 ( VexGuestAMD64State* ); 291 //extern void amd64g_dirtyhelper_CPUID_sse1 ( VexGuestAMD64State* ); 292 //extern void amd64g_dirtyhelper_CPUID_sse2 ( VexGuestAMD64State* ); 293 294 //extern void amd64g_dirtyhelper_FSAVE ( VexGuestAMD64State*, HWord ); 295 296 //extern VexEmNote 297 // amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord ); 298 299 //extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord ); 300 301 //extern VexEmNote 302 // amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord ); 303 304 305 306 /*---------------------------------------------------------*/ 307 /*--- Condition code stuff ---*/ 308 /*---------------------------------------------------------*/ 309 310 /* rflags masks */ 311 #define AMD64G_CC_SHIFT_O 11 312 #define AMD64G_CC_SHIFT_S 7 313 #define AMD64G_CC_SHIFT_Z 6 314 #define AMD64G_CC_SHIFT_A 4 315 #define AMD64G_CC_SHIFT_C 0 316 #define AMD64G_CC_SHIFT_P 2 317 318 #define AMD64G_CC_MASK_O (1ULL << AMD64G_CC_SHIFT_O) 319 #define AMD64G_CC_MASK_S (1ULL << AMD64G_CC_SHIFT_S) 320 #define AMD64G_CC_MASK_Z (1ULL << AMD64G_CC_SHIFT_Z) 321 #define AMD64G_CC_MASK_A (1ULL << AMD64G_CC_SHIFT_A) 322 #define AMD64G_CC_MASK_C (1ULL << AMD64G_CC_SHIFT_C) 323 #define AMD64G_CC_MASK_P (1ULL << AMD64G_CC_SHIFT_P) 324 325 /* additional rflags masks */ 326 #define AMD64G_CC_SHIFT_ID 21 327 #define AMD64G_CC_SHIFT_AC 18 328 #define AMD64G_CC_SHIFT_D 10 329 330 #define AMD64G_CC_MASK_ID (1ULL << AMD64G_CC_SHIFT_ID) 331 #define AMD64G_CC_MASK_AC (1ULL << AMD64G_CC_SHIFT_AC) 332 #define AMD64G_CC_MASK_D (1ULL << AMD64G_CC_SHIFT_D) 333 334 /* FPU flag masks */ 335 #define AMD64G_FC_SHIFT_C3 14 336 #define AMD64G_FC_SHIFT_C2 10 337 #define AMD64G_FC_SHIFT_C1 9 338 #define AMD64G_FC_SHIFT_C0 8 339 340 #define AMD64G_FC_MASK_C3 (1ULL << AMD64G_FC_SHIFT_C3) 341 #define AMD64G_FC_MASK_C2 (1ULL << AMD64G_FC_SHIFT_C2) 342 #define AMD64G_FC_MASK_C1 (1ULL << AMD64G_FC_SHIFT_C1) 343 #define AMD64G_FC_MASK_C0 (1ULL << AMD64G_FC_SHIFT_C0) 344 345 346 /* %RFLAGS thunk descriptors. A four-word thunk is used to record 347 details of the most recent flag-setting operation, so the flags can 348 be computed later if needed. It is possible to do this a little 349 more efficiently using a 3-word thunk, but that makes it impossible 350 to describe the flag data dependencies sufficiently accurately for 351 Memcheck. Hence 4 words are used, with minimal loss of efficiency. 352 353 The four words are: 354 355 CC_OP, which describes the operation. 356 357 CC_DEP1 and CC_DEP2. These are arguments to the operation. 358 We want Memcheck to believe that the resulting flags are 359 data-dependent on both CC_DEP1 and CC_DEP2, hence the 360 name DEP. 361 362 CC_NDEP. This is a 3rd argument to the operation which is 363 sometimes needed. We arrange things so that Memcheck does 364 not believe the resulting flags are data-dependent on CC_NDEP 365 ("not dependent"). 366 367 To make Memcheck believe that (the definedness of) the encoded 368 flags depends only on (the definedness of) CC_DEP1 and CC_DEP2 369 requires two things: 370 371 (1) In the guest state layout info (amd64guest_layout), CC_OP and 372 CC_NDEP are marked as always defined. 373 374 (2) When passing the thunk components to an evaluation function 375 (calculate_condition, calculate_eflags, calculate_eflags_c) the 376 IRCallee's mcx_mask must be set so as to exclude from 377 consideration all passed args except CC_DEP1 and CC_DEP2. 378 379 Strictly speaking only (2) is necessary for correctness. However, 380 (1) helps efficiency in that since (2) means we never ask about the 381 definedness of CC_OP or CC_NDEP, we may as well not even bother to 382 track their definedness. 383 384 When building the thunk, it is always necessary to write words into 385 CC_DEP1 and CC_DEP2, even if those args are not used given the 386 CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4). 387 This is important because otherwise Memcheck could give false 388 positives as it does not understand the relationship between the 389 CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the 390 definedness of the stored flags always depends on both CC_DEP1 and 391 CC_DEP2. 392 393 However, it is only necessary to set CC_NDEP when the CC_OP value 394 requires it, because Memcheck ignores CC_NDEP, and the evaluation 395 functions do understand the CC_OP fields and will only examine 396 CC_NDEP for suitable values of CC_OP. 397 398 A summary of the field usages is: 399 400 Operation DEP1 DEP2 NDEP 401 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 402 403 add/sub/mul first arg second arg unused 404 405 adc/sbb first arg (second arg) 406 XOR old_carry old_carry 407 408 and/or/xor result zero unused 409 410 inc/dec result zero old_carry 411 412 shl/shr/sar result subshifted- unused 413 result 414 415 rol/ror result zero old_flags 416 417 copy old_flags zero unused. 418 419 420 Therefore Memcheck will believe the following: 421 422 * add/sub/mul -- definedness of result flags depends on definedness 423 of both args. 424 425 * adc/sbb -- definedness of result flags depends on definedness of 426 both args and definedness of the old C flag. Because only two 427 DEP fields are available, the old C flag is XOR'd into the second 428 arg so that Memcheck sees the data dependency on it. That means 429 the NDEP field must contain a second copy of the old C flag 430 so that the evaluation functions can correctly recover the second 431 arg. 432 433 * and/or/xor are straightforward -- definedness of result flags 434 depends on definedness of result value. 435 436 * inc/dec -- definedness of result flags depends only on 437 definedness of result. This isn't really true -- it also depends 438 on the old C flag. However, we don't want Memcheck to see that, 439 and so the old C flag must be passed in NDEP and not in DEP2. 440 It's inconceivable that a compiler would generate code that puts 441 the C flag in an undefined state, then does an inc/dec, which 442 leaves C unchanged, and then makes a conditional jump/move based 443 on C. So our fiction seems a good approximation. 444 445 * shl/shr/sar -- straightforward, again, definedness of result 446 flags depends on definedness of result value. The subshifted 447 value (value shifted one less) is also needed, but its 448 definedness is the same as the definedness of the shifted value. 449 450 * rol/ror -- these only set O and C, and leave A Z C P alone. 451 However it seems prudent (as per inc/dec) to say the definedness 452 of all resulting flags depends on the definedness of the result, 453 hence the old flags must go in as NDEP and not DEP2. 454 455 * rcl/rcr are too difficult to do in-line, and so are done by a 456 helper function. They are not part of this scheme. The helper 457 function takes the value to be rotated, the rotate amount and the 458 old flags, and returns the new flags and the rotated value. 459 Since the helper's mcx_mask does not have any set bits, Memcheck 460 will lazily propagate undefinedness from any of the 3 args into 461 both results (flags and actual value). 462 */ 463 enum { 464 AMD64G_CC_OP_COPY=0, /* DEP1 = current flags, DEP2 = 0, NDEP = unused */ 465 /* just copy DEP1 to output */ 466 467 AMD64G_CC_OP_ADDB, /* 1 */ 468 AMD64G_CC_OP_ADDW, /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */ 469 AMD64G_CC_OP_ADDL, /* 3 */ 470 AMD64G_CC_OP_ADDQ, /* 4 */ 471 472 AMD64G_CC_OP_SUBB, /* 5 */ 473 AMD64G_CC_OP_SUBW, /* 6 DEP1 = argL, DEP2 = argR, NDEP = unused */ 474 AMD64G_CC_OP_SUBL, /* 7 */ 475 AMD64G_CC_OP_SUBQ, /* 8 */ 476 477 AMD64G_CC_OP_ADCB, /* 9 */ 478 AMD64G_CC_OP_ADCW, /* 10 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */ 479 AMD64G_CC_OP_ADCL, /* 11 */ 480 AMD64G_CC_OP_ADCQ, /* 12 */ 481 482 AMD64G_CC_OP_SBBB, /* 13 */ 483 AMD64G_CC_OP_SBBW, /* 14 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */ 484 AMD64G_CC_OP_SBBL, /* 15 */ 485 AMD64G_CC_OP_SBBQ, /* 16 */ 486 487 AMD64G_CC_OP_LOGICB, /* 17 */ 488 AMD64G_CC_OP_LOGICW, /* 18 DEP1 = result, DEP2 = 0, NDEP = unused */ 489 AMD64G_CC_OP_LOGICL, /* 19 */ 490 AMD64G_CC_OP_LOGICQ, /* 20 */ 491 492 AMD64G_CC_OP_INCB, /* 21 */ 493 AMD64G_CC_OP_INCW, /* 22 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */ 494 AMD64G_CC_OP_INCL, /* 23 */ 495 AMD64G_CC_OP_INCQ, /* 24 */ 496 497 AMD64G_CC_OP_DECB, /* 25 */ 498 AMD64G_CC_OP_DECW, /* 26 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */ 499 AMD64G_CC_OP_DECL, /* 27 */ 500 AMD64G_CC_OP_DECQ, /* 28 */ 501 502 AMD64G_CC_OP_SHLB, /* 29 DEP1 = res, DEP2 = res', NDEP = unused */ 503 AMD64G_CC_OP_SHLW, /* 30 where res' is like res but shifted one bit less */ 504 AMD64G_CC_OP_SHLL, /* 31 */ 505 AMD64G_CC_OP_SHLQ, /* 32 */ 506 507 AMD64G_CC_OP_SHRB, /* 33 DEP1 = res, DEP2 = res', NDEP = unused */ 508 AMD64G_CC_OP_SHRW, /* 34 where res' is like res but shifted one bit less */ 509 AMD64G_CC_OP_SHRL, /* 35 */ 510 AMD64G_CC_OP_SHRQ, /* 36 */ 511 512 AMD64G_CC_OP_ROLB, /* 37 */ 513 AMD64G_CC_OP_ROLW, /* 38 DEP1 = res, DEP2 = 0, NDEP = old flags */ 514 AMD64G_CC_OP_ROLL, /* 39 */ 515 AMD64G_CC_OP_ROLQ, /* 40 */ 516 517 AMD64G_CC_OP_RORB, /* 41 */ 518 AMD64G_CC_OP_RORW, /* 42 DEP1 = res, DEP2 = 0, NDEP = old flags */ 519 AMD64G_CC_OP_RORL, /* 43 */ 520 AMD64G_CC_OP_RORQ, /* 44 */ 521 522 AMD64G_CC_OP_UMULB, /* 45 */ 523 AMD64G_CC_OP_UMULW, /* 46 DEP1 = argL, DEP2 = argR, NDEP = unused */ 524 AMD64G_CC_OP_UMULL, /* 47 */ 525 AMD64G_CC_OP_UMULQ, /* 48 */ 526 527 AMD64G_CC_OP_SMULB, /* 49 */ 528 AMD64G_CC_OP_SMULW, /* 50 DEP1 = argL, DEP2 = argR, NDEP = unused */ 529 AMD64G_CC_OP_SMULL, /* 51 */ 530 AMD64G_CC_OP_SMULQ, /* 52 */ 531 532 AMD64G_CC_OP_ANDN32, /* 53 */ 533 AMD64G_CC_OP_ANDN64, /* 54 DEP1 = res, DEP2 = 0, NDEP = unused */ 534 535 AMD64G_CC_OP_BLSI32, /* 55 */ 536 AMD64G_CC_OP_BLSI64, /* 56 DEP1 = res, DEP2 = arg, NDEP = unused */ 537 538 AMD64G_CC_OP_BLSMSK32,/* 57 */ 539 AMD64G_CC_OP_BLSMSK64,/* 58 DEP1 = res, DEP2 = arg, NDEP = unused */ 540 541 AMD64G_CC_OP_BLSR32, /* 59 */ 542 AMD64G_CC_OP_BLSR64, /* 60 DEP1 = res, DEP2 = arg, NDEP = unused */ 543 544 AMD64G_CC_OP_ADCX32, /* 61 DEP1 = argL, DEP2 = argR ^ oldCarry, .. */ 545 AMD64G_CC_OP_ADCX64, /* 62 .. NDEP = old flags */ 546 547 AMD64G_CC_OP_ADOX32, /* 63 DEP1 = argL, DEP2 = argR ^ oldOverflow, .. */ 548 AMD64G_CC_OP_ADOX64, /* 64 .. NDEP = old flags */ 549 550 AMD64G_CC_OP_NUMBER 551 }; 552 553 typedef 554 enum { 555 AMD64CondO = 0, /* overflow */ 556 AMD64CondNO = 1, /* no overflow */ 557 558 AMD64CondB = 2, /* below */ 559 AMD64CondNB = 3, /* not below */ 560 561 AMD64CondZ = 4, /* zero */ 562 AMD64CondNZ = 5, /* not zero */ 563 564 AMD64CondBE = 6, /* below or equal */ 565 AMD64CondNBE = 7, /* not below or equal */ 566 567 AMD64CondS = 8, /* negative */ 568 AMD64CondNS = 9, /* not negative */ 569 570 AMD64CondP = 10, /* parity even */ 571 AMD64CondNP = 11, /* not parity even */ 572 573 AMD64CondL = 12, /* less */ 574 AMD64CondNL = 13, /* not less */ 575 576 AMD64CondLE = 14, /* less or equal */ 577 AMD64CondNLE = 15, /* not less or equal */ 578 579 AMD64CondAlways = 16 /* HACK */ 580 } 581 AMD64Condcode; 582 583 #endif /* ndef __VEX_GUEST_AMD64_DEFS_H */ 584 585 /*---------------------------------------------------------------*/ 586 /*--- end guest_amd64_defs.h ---*/ 587 /*---------------------------------------------------------------*/ 588