• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkPathMeasure.h"
10 #include "SkPathMeasurePriv.h"
11 #include "SkGeometry.h"
12 #include "SkPath.h"
13 #include "SkTSearch.h"
14 
15 #define kMaxTValue  0x3FFFFFFF
16 
tValue2Scalar(int t)17 static inline SkScalar tValue2Scalar(int t) {
18     SkASSERT((unsigned)t <= kMaxTValue);
19     const SkScalar kMaxTReciprocal = 1.0f / kMaxTValue;
20     return t * kMaxTReciprocal;
21 }
22 
getScalarT() const23 SkScalar SkPathMeasure::Segment::getScalarT() const {
24     return tValue2Scalar(fTValue);
25 }
26 
NextSegment(const Segment * seg)27 const SkPathMeasure::Segment* SkPathMeasure::NextSegment(const Segment* seg) {
28     unsigned ptIndex = seg->fPtIndex;
29 
30     do {
31         ++seg;
32     } while (seg->fPtIndex == ptIndex);
33     return seg;
34 }
35 
SkPathMeasure_segTo(const SkPoint pts[],unsigned segType,SkScalar startT,SkScalar stopT,SkPath * dst)36 void SkPathMeasure_segTo(const SkPoint pts[], unsigned segType,
37                    SkScalar startT, SkScalar stopT, SkPath* dst) {
38     SkASSERT(startT >= 0 && startT <= SK_Scalar1);
39     SkASSERT(stopT >= 0 && stopT <= SK_Scalar1);
40     SkASSERT(startT <= stopT);
41 
42     if (startT == stopT) {
43         /* if the dash as a zero-length on segment, add a corresponding zero-length line.
44            The stroke code will add end caps to zero length lines as appropriate */
45         SkPoint lastPt;
46         SkAssertResult(dst->getLastPt(&lastPt));
47         dst->lineTo(lastPt);
48         return;
49     }
50 
51     SkPoint tmp0[7], tmp1[7];
52 
53     switch (segType) {
54         case kLine_SegType:
55             if (SK_Scalar1 == stopT) {
56                 dst->lineTo(pts[1]);
57             } else {
58                 dst->lineTo(SkScalarInterp(pts[0].fX, pts[1].fX, stopT),
59                             SkScalarInterp(pts[0].fY, pts[1].fY, stopT));
60             }
61             break;
62         case kQuad_SegType:
63             if (0 == startT) {
64                 if (SK_Scalar1 == stopT) {
65                     dst->quadTo(pts[1], pts[2]);
66                 } else {
67                     SkChopQuadAt(pts, tmp0, stopT);
68                     dst->quadTo(tmp0[1], tmp0[2]);
69                 }
70             } else {
71                 SkChopQuadAt(pts, tmp0, startT);
72                 if (SK_Scalar1 == stopT) {
73                     dst->quadTo(tmp0[3], tmp0[4]);
74                 } else {
75                     SkChopQuadAt(&tmp0[2], tmp1, (stopT - startT) / (1 - startT));
76                     dst->quadTo(tmp1[1], tmp1[2]);
77                 }
78             }
79             break;
80         case kConic_SegType: {
81             SkConic conic(pts[0], pts[2], pts[3], pts[1].fX);
82 
83             if (0 == startT) {
84                 if (SK_Scalar1 == stopT) {
85                     dst->conicTo(conic.fPts[1], conic.fPts[2], conic.fW);
86                 } else {
87                     SkConic tmp[2];
88                     if (conic.chopAt(stopT, tmp)) {
89                         dst->conicTo(tmp[0].fPts[1], tmp[0].fPts[2], tmp[0].fW);
90                     }
91                 }
92             } else {
93                 if (SK_Scalar1 == stopT) {
94                     SkConic tmp1[2];
95                     if (conic.chopAt(startT, tmp1)) {
96                         dst->conicTo(tmp1[1].fPts[1], tmp1[1].fPts[2], tmp1[1].fW);
97                     }
98                 } else {
99                     SkConic tmp;
100                     conic.chopAt(startT, stopT, &tmp);
101                     dst->conicTo(tmp.fPts[1], tmp.fPts[2], tmp.fW);
102                 }
103             }
104         } break;
105         case kCubic_SegType:
106             if (0 == startT) {
107                 if (SK_Scalar1 == stopT) {
108                     dst->cubicTo(pts[1], pts[2], pts[3]);
109                 } else {
110                     SkChopCubicAt(pts, tmp0, stopT);
111                     dst->cubicTo(tmp0[1], tmp0[2], tmp0[3]);
112                 }
113             } else {
114                 SkChopCubicAt(pts, tmp0, startT);
115                 if (SK_Scalar1 == stopT) {
116                     dst->cubicTo(tmp0[4], tmp0[5], tmp0[6]);
117                 } else {
118                     SkChopCubicAt(&tmp0[3], tmp1, (stopT - startT) / (1 - startT));
119                     dst->cubicTo(tmp1[1], tmp1[2], tmp1[3]);
120                 }
121             }
122             break;
123         default:
124             SkDEBUGFAIL("unknown segType");
125             sk_throw();
126     }
127 }
128 
129 ///////////////////////////////////////////////////////////////////////////////
130 
tspan_big_enough(int tspan)131 static inline int tspan_big_enough(int tspan) {
132     SkASSERT((unsigned)tspan <= kMaxTValue);
133     return tspan >> 10;
134 }
135 
136 // can't use tangents, since we need [0..1..................2] to be seen
137 // as definitely not a line (it is when drawn, but not parametrically)
138 // so we compare midpoints
139 #define CHEAP_DIST_LIMIT    (SK_Scalar1/2)  // just made this value up
140 
quad_too_curvy(const SkPoint pts[3])141 bool SkPathMeasure::quad_too_curvy(const SkPoint pts[3]) {
142     // diff = (a/4 + b/2 + c/4) - (a/2 + c/2)
143     // diff = -a/4 + b/2 - c/4
144     SkScalar dx = SkScalarHalf(pts[1].fX) -
145                         SkScalarHalf(SkScalarHalf(pts[0].fX + pts[2].fX));
146     SkScalar dy = SkScalarHalf(pts[1].fY) -
147                         SkScalarHalf(SkScalarHalf(pts[0].fY + pts[2].fY));
148 
149     SkScalar dist = SkMaxScalar(SkScalarAbs(dx), SkScalarAbs(dy));
150     return dist > fTolerance;
151 }
152 
conic_too_curvy(const SkPoint & firstPt,const SkPoint & midTPt,const SkPoint & lastPt)153 bool SkPathMeasure::conic_too_curvy(const SkPoint& firstPt, const SkPoint& midTPt,
154                             const SkPoint& lastPt) {
155     SkPoint midEnds = firstPt + lastPt;
156     midEnds *= 0.5f;
157     SkVector dxy = midTPt - midEnds;
158     SkScalar dist = SkMaxScalar(SkScalarAbs(dxy.fX), SkScalarAbs(dxy.fY));
159     return dist > fTolerance;
160 }
161 
cheap_dist_exceeds_limit(const SkPoint & pt,SkScalar x,SkScalar y)162 bool SkPathMeasure::cheap_dist_exceeds_limit(const SkPoint& pt,
163                                      SkScalar x, SkScalar y) {
164     SkScalar dist = SkMaxScalar(SkScalarAbs(x - pt.fX), SkScalarAbs(y - pt.fY));
165     // just made up the 1/2
166     return dist > fTolerance;
167 }
168 
cubic_too_curvy(const SkPoint pts[4])169 bool SkPathMeasure::cubic_too_curvy(const SkPoint pts[4]) {
170     return  cheap_dist_exceeds_limit(pts[1],
171                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1/3),
172                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1/3))
173                          ||
174             cheap_dist_exceeds_limit(pts[2],
175                          SkScalarInterp(pts[0].fX, pts[3].fX, SK_Scalar1*2/3),
176                          SkScalarInterp(pts[0].fY, pts[3].fY, SK_Scalar1*2/3));
177 }
178 
quad_folded_len(const SkPoint pts[3])179 static SkScalar quad_folded_len(const SkPoint pts[3]) {
180     SkScalar t = SkFindQuadMaxCurvature(pts);
181     SkPoint pt = SkEvalQuadAt(pts, t);
182     SkVector a = pts[2] - pt;
183     SkScalar result = a.length();
184     if (0 != t) {
185         SkVector b = pts[0] - pt;
186         result += b.length();
187     }
188     SkASSERT(SkScalarIsFinite(result));
189     return result;
190 }
191 
192 /* from http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/ */
193 /* This works -- more needs to be done to see if it is performant on all platforms.
194    To use this to measure parts of quads requires recomputing everything -- perhaps
195    a chop-like interface can start from a larger measurement and get two new measurements
196    with one call here.
197  */
compute_quad_len(const SkPoint pts[3])198 static SkScalar compute_quad_len(const SkPoint pts[3]) {
199     SkPoint a,b;
200     a.fX = pts[0].fX - 2 * pts[1].fX + pts[2].fX;
201     a.fY = pts[0].fY - 2 * pts[1].fY + pts[2].fY;
202     SkScalar A = 4 * (a.fX * a.fX + a.fY * a.fY);
203     if (0 == A) {
204         a = pts[2] - pts[0];
205         return a.length();
206     }
207     b.fX = 2 * (pts[1].fX - pts[0].fX);
208     b.fY = 2 * (pts[1].fY - pts[0].fY);
209     SkScalar B = 4 * (a.fX * b.fX + a.fY * b.fY);
210     SkScalar C =      b.fX * b.fX + b.fY * b.fY;
211     SkScalar Sabc = 2 * SkScalarSqrt(A + B + C);
212     SkScalar A_2  = SkScalarSqrt(A);
213     SkScalar A_32 = 2 * A * A_2;
214     SkScalar C_2  = 2 * SkScalarSqrt(C);
215     SkScalar BA   = B / A_2;
216     if (0 == BA + C_2) {
217         return quad_folded_len(pts);
218     }
219     SkScalar J = A_32 * Sabc + A_2 * B * (Sabc - C_2);
220     SkScalar K = 4 * C * A - B * B;
221     SkScalar L = (2 * A_2 + BA + Sabc) / (BA + C_2);
222     if (L <= 0) {
223         return quad_folded_len(pts);
224     }
225     SkScalar M = SkScalarLog(L);
226     SkScalar result = (J + K * M) / (4 * A_32);
227     SkASSERT(SkScalarIsFinite(result));
228     return result;
229 }
230 
compute_quad_segs(const SkPoint pts[3],SkScalar distance,int mint,int maxt,int ptIndex)231 SkScalar SkPathMeasure::compute_quad_segs(const SkPoint pts[3],
232                           SkScalar distance, int mint, int maxt, int ptIndex) {
233     if (tspan_big_enough(maxt - mint) && quad_too_curvy(pts)) {
234         SkPoint tmp[5];
235         int     halft = (mint + maxt) >> 1;
236 
237         SkChopQuadAtHalf(pts, tmp);
238         distance = this->compute_quad_segs(tmp, distance, mint, halft, ptIndex);
239         distance = this->compute_quad_segs(&tmp[2], distance, halft, maxt, ptIndex);
240     } else {
241         SkScalar d = SkPoint::Distance(pts[0], pts[2]);
242         SkScalar prevD = distance;
243         distance += d;
244         if (distance > prevD) {
245             Segment* seg = fSegments.append();
246             seg->fDistance = distance;
247             seg->fPtIndex = ptIndex;
248             seg->fType = kQuad_SegType;
249             seg->fTValue = maxt;
250         }
251     }
252     return distance;
253 }
254 
compute_conic_segs(const SkConic & conic,SkScalar distance,int mint,const SkPoint & minPt,int maxt,const SkPoint & maxPt,int ptIndex)255 SkScalar SkPathMeasure::compute_conic_segs(const SkConic& conic, SkScalar distance,
256                                            int mint, const SkPoint& minPt,
257                                            int maxt, const SkPoint& maxPt, int ptIndex) {
258     int halft = (mint + maxt) >> 1;
259     SkPoint halfPt = conic.evalAt(tValue2Scalar(halft));
260     if (tspan_big_enough(maxt - mint) && conic_too_curvy(minPt, halfPt, maxPt)) {
261         distance = this->compute_conic_segs(conic, distance, mint, minPt, halft, halfPt, ptIndex);
262         distance = this->compute_conic_segs(conic, distance, halft, halfPt, maxt, maxPt, ptIndex);
263     } else {
264         SkScalar d = SkPoint::Distance(minPt, maxPt);
265         SkScalar prevD = distance;
266         distance += d;
267         if (distance > prevD) {
268             Segment* seg = fSegments.append();
269             seg->fDistance = distance;
270             seg->fPtIndex = ptIndex;
271             seg->fType = kConic_SegType;
272             seg->fTValue = maxt;
273         }
274     }
275     return distance;
276 }
277 
compute_cubic_segs(const SkPoint pts[4],SkScalar distance,int mint,int maxt,int ptIndex)278 SkScalar SkPathMeasure::compute_cubic_segs(const SkPoint pts[4],
279                            SkScalar distance, int mint, int maxt, int ptIndex) {
280     if (tspan_big_enough(maxt - mint) && cubic_too_curvy(pts)) {
281         SkPoint tmp[7];
282         int     halft = (mint + maxt) >> 1;
283 
284         SkChopCubicAtHalf(pts, tmp);
285         distance = this->compute_cubic_segs(tmp, distance, mint, halft, ptIndex);
286         distance = this->compute_cubic_segs(&tmp[3], distance, halft, maxt, ptIndex);
287     } else {
288         SkScalar d = SkPoint::Distance(pts[0], pts[3]);
289         SkScalar prevD = distance;
290         distance += d;
291         if (distance > prevD) {
292             Segment* seg = fSegments.append();
293             seg->fDistance = distance;
294             seg->fPtIndex = ptIndex;
295             seg->fType = kCubic_SegType;
296             seg->fTValue = maxt;
297         }
298     }
299     return distance;
300 }
301 
buildSegments()302 void SkPathMeasure::buildSegments() {
303     SkPoint         pts[4];
304     int             ptIndex = fFirstPtIndex;
305     SkScalar        distance = 0;
306     bool            isClosed = fForceClosed;
307     bool            firstMoveTo = ptIndex < 0;
308     Segment*        seg;
309 
310     /*  Note:
311      *  as we accumulate distance, we have to check that the result of +=
312      *  actually made it larger, since a very small delta might be > 0, but
313      *  still have no effect on distance (if distance >>> delta).
314      *
315      *  We do this check below, and in compute_quad_segs and compute_cubic_segs
316      */
317     fSegments.reset();
318     bool done = false;
319     do {
320         switch (fIter.next(pts)) {
321             case SkPath::kMove_Verb:
322                 ptIndex += 1;
323                 fPts.append(1, pts);
324                 if (!firstMoveTo) {
325                     done = true;
326                     break;
327                 }
328                 firstMoveTo = false;
329                 break;
330 
331             case SkPath::kLine_Verb: {
332                 SkScalar d = SkPoint::Distance(pts[0], pts[1]);
333                 SkASSERT(d >= 0);
334                 SkScalar prevD = distance;
335                 distance += d;
336                 if (distance > prevD) {
337                     seg = fSegments.append();
338                     seg->fDistance = distance;
339                     seg->fPtIndex = ptIndex;
340                     seg->fType = kLine_SegType;
341                     seg->fTValue = kMaxTValue;
342                     fPts.append(1, pts + 1);
343                     ptIndex++;
344                 }
345             } break;
346 
347             case SkPath::kQuad_Verb: {
348                 SkScalar prevD = distance;
349                 if (false) {
350                     SkScalar length = compute_quad_len(pts);
351                     if (length) {
352                         distance += length;
353                         Segment* seg = fSegments.append();
354                         seg->fDistance = distance;
355                         seg->fPtIndex = ptIndex;
356                         seg->fType = kQuad_SegType;
357                         seg->fTValue = kMaxTValue;
358                     }
359                 } else {
360                     distance = this->compute_quad_segs(pts, distance, 0, kMaxTValue, ptIndex);
361                 }
362                 if (distance > prevD) {
363                     fPts.append(2, pts + 1);
364                     ptIndex += 2;
365                 }
366             } break;
367 
368             case SkPath::kConic_Verb: {
369                 const SkConic conic(pts, fIter.conicWeight());
370                 SkScalar prevD = distance;
371                 distance = this->compute_conic_segs(conic, distance, 0, conic.fPts[0],
372                                                     kMaxTValue, conic.fPts[2], ptIndex);
373                 if (distance > prevD) {
374                     // we store the conic weight in our next point, followed by the last 2 pts
375                     // thus to reconstitue a conic, you'd need to say
376                     // SkConic(pts[0], pts[2], pts[3], weight = pts[1].fX)
377                     fPts.append()->set(conic.fW, 0);
378                     fPts.append(2, pts + 1);
379                     ptIndex += 3;
380                 }
381             } break;
382 
383             case SkPath::kCubic_Verb: {
384                 SkScalar prevD = distance;
385                 distance = this->compute_cubic_segs(pts, distance, 0, kMaxTValue, ptIndex);
386                 if (distance > prevD) {
387                     fPts.append(3, pts + 1);
388                     ptIndex += 3;
389                 }
390             } break;
391 
392             case SkPath::kClose_Verb:
393                 isClosed = true;
394                 break;
395 
396             case SkPath::kDone_Verb:
397                 done = true;
398                 break;
399         }
400     } while (!done);
401 
402     fLength = distance;
403     fIsClosed = isClosed;
404     fFirstPtIndex = ptIndex;
405 
406 #ifdef SK_DEBUG
407     {
408         const Segment* seg = fSegments.begin();
409         const Segment* stop = fSegments.end();
410         unsigned        ptIndex = 0;
411         SkScalar        distance = 0;
412         // limit the loop to a reasonable number; pathological cases can run for minutes
413         int             maxChecks = 10000000;  // set to INT_MAX to defeat the check
414         while (seg < stop) {
415             SkASSERT(seg->fDistance > distance);
416             SkASSERT(seg->fPtIndex >= ptIndex);
417             SkASSERT(seg->fTValue > 0);
418 
419             const Segment* s = seg;
420             while (s < stop - 1 && s[0].fPtIndex == s[1].fPtIndex && --maxChecks > 0) {
421                 SkASSERT(s[0].fType == s[1].fType);
422                 SkASSERT(s[0].fTValue < s[1].fTValue);
423                 s += 1;
424             }
425 
426             distance = seg->fDistance;
427             ptIndex = seg->fPtIndex;
428             seg += 1;
429         }
430     //  SkDebugf("\n");
431     }
432 #endif
433 }
434 
compute_pos_tan(const SkPoint pts[],unsigned segType,SkScalar t,SkPoint * pos,SkVector * tangent)435 static void compute_pos_tan(const SkPoint pts[], unsigned segType,
436                             SkScalar t, SkPoint* pos, SkVector* tangent) {
437     switch (segType) {
438         case kLine_SegType:
439             if (pos) {
440                 pos->set(SkScalarInterp(pts[0].fX, pts[1].fX, t),
441                          SkScalarInterp(pts[0].fY, pts[1].fY, t));
442             }
443             if (tangent) {
444                 tangent->setNormalize(pts[1].fX - pts[0].fX, pts[1].fY - pts[0].fY);
445             }
446             break;
447         case kQuad_SegType:
448             SkEvalQuadAt(pts, t, pos, tangent);
449             if (tangent) {
450                 tangent->normalize();
451             }
452             break;
453         case kConic_SegType: {
454             SkConic(pts[0], pts[2], pts[3], pts[1].fX).evalAt(t, pos, tangent);
455             if (tangent) {
456                 tangent->normalize();
457             }
458         } break;
459         case kCubic_SegType:
460             SkEvalCubicAt(pts, t, pos, tangent, nullptr);
461             if (tangent) {
462                 tangent->normalize();
463             }
464             break;
465         default:
466             SkDEBUGFAIL("unknown segType");
467     }
468 }
469 
470 
471 ////////////////////////////////////////////////////////////////////////////////
472 ////////////////////////////////////////////////////////////////////////////////
473 
SkPathMeasure()474 SkPathMeasure::SkPathMeasure() {
475     fPath = nullptr;
476     fTolerance = CHEAP_DIST_LIMIT;
477     fLength = -1;   // signal we need to compute it
478     fForceClosed = false;
479     fFirstPtIndex = -1;
480 }
481 
SkPathMeasure(const SkPath & path,bool forceClosed,SkScalar resScale)482 SkPathMeasure::SkPathMeasure(const SkPath& path, bool forceClosed, SkScalar resScale) {
483     fPath = &path;
484     fTolerance = CHEAP_DIST_LIMIT * SkScalarInvert(resScale);
485     fLength = -1;   // signal we need to compute it
486     fForceClosed = forceClosed;
487     fFirstPtIndex = -1;
488 
489     fIter.setPath(path, forceClosed);
490 }
491 
~SkPathMeasure()492 SkPathMeasure::~SkPathMeasure() {}
493 
494 /** Assign a new path, or null to have none.
495 */
setPath(const SkPath * path,bool forceClosed)496 void SkPathMeasure::setPath(const SkPath* path, bool forceClosed) {
497     fPath = path;
498     fLength = -1;   // signal we need to compute it
499     fForceClosed = forceClosed;
500     fFirstPtIndex = -1;
501 
502     if (path) {
503         fIter.setPath(*path, forceClosed);
504     }
505     fSegments.reset();
506     fPts.reset();
507 }
508 
getLength()509 SkScalar SkPathMeasure::getLength() {
510     if (fPath == nullptr) {
511         return 0;
512     }
513     if (fLength < 0) {
514         this->buildSegments();
515     }
516     if (SkScalarIsNaN(fLength)) {
517         fLength = 0;
518     }
519     SkASSERT(fLength >= 0);
520     return fLength;
521 }
522 
523 template <typename T, typename K>
SkTKSearch(const T base[],int count,const K & key)524 int SkTKSearch(const T base[], int count, const K& key) {
525     SkASSERT(count >= 0);
526     if (count <= 0) {
527         return ~0;
528     }
529 
530     SkASSERT(base != nullptr); // base may be nullptr if count is zero
531 
532     int lo = 0;
533     int hi = count - 1;
534 
535     while (lo < hi) {
536         int mid = (hi + lo) >> 1;
537         if (base[mid].fDistance < key) {
538             lo = mid + 1;
539         } else {
540             hi = mid;
541         }
542     }
543 
544     if (base[hi].fDistance < key) {
545         hi += 1;
546         hi = ~hi;
547     } else if (key < base[hi].fDistance) {
548         hi = ~hi;
549     }
550     return hi;
551 }
552 
distanceToSegment(SkScalar distance,SkScalar * t)553 const SkPathMeasure::Segment* SkPathMeasure::distanceToSegment(
554                                             SkScalar distance, SkScalar* t) {
555     SkDEBUGCODE(SkScalar length = ) this->getLength();
556     SkASSERT(distance >= 0 && distance <= length);
557 
558     const Segment*  seg = fSegments.begin();
559     int             count = fSegments.count();
560 
561     int index = SkTKSearch<Segment, SkScalar>(seg, count, distance);
562     // don't care if we hit an exact match or not, so we xor index if it is negative
563     index ^= (index >> 31);
564     seg = &seg[index];
565 
566     // now interpolate t-values with the prev segment (if possible)
567     SkScalar    startT = 0, startD = 0;
568     // check if the prev segment is legal, and references the same set of points
569     if (index > 0) {
570         startD = seg[-1].fDistance;
571         if (seg[-1].fPtIndex == seg->fPtIndex) {
572             SkASSERT(seg[-1].fType == seg->fType);
573             startT = seg[-1].getScalarT();
574         }
575     }
576 
577     SkASSERT(seg->getScalarT() > startT);
578     SkASSERT(distance >= startD);
579     SkASSERT(seg->fDistance > startD);
580 
581     *t = startT + (seg->getScalarT() - startT) * (distance - startD) / (seg->fDistance - startD);
582     return seg;
583 }
584 
getPosTan(SkScalar distance,SkPoint * pos,SkVector * tangent)585 bool SkPathMeasure::getPosTan(SkScalar distance, SkPoint* pos, SkVector* tangent) {
586     if (nullptr == fPath) {
587         return false;
588     }
589 
590     SkScalar    length = this->getLength(); // call this to force computing it
591     int         count = fSegments.count();
592 
593     if (count == 0 || length == 0) {
594         return false;
595     }
596 
597     // pin the distance to a legal range
598     if (distance < 0) {
599         distance = 0;
600     } else if (distance > length) {
601         distance = length;
602     }
603 
604     SkScalar        t;
605     const Segment*  seg = this->distanceToSegment(distance, &t);
606 
607     compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, t, pos, tangent);
608     return true;
609 }
610 
getMatrix(SkScalar distance,SkMatrix * matrix,MatrixFlags flags)611 bool SkPathMeasure::getMatrix(SkScalar distance, SkMatrix* matrix,
612                               MatrixFlags flags) {
613     if (nullptr == fPath) {
614         return false;
615     }
616 
617     SkPoint     position;
618     SkVector    tangent;
619 
620     if (this->getPosTan(distance, &position, &tangent)) {
621         if (matrix) {
622             if (flags & kGetTangent_MatrixFlag) {
623                 matrix->setSinCos(tangent.fY, tangent.fX, 0, 0);
624             } else {
625                 matrix->reset();
626             }
627             if (flags & kGetPosition_MatrixFlag) {
628                 matrix->postTranslate(position.fX, position.fY);
629             }
630         }
631         return true;
632     }
633     return false;
634 }
635 
getSegment(SkScalar startD,SkScalar stopD,SkPath * dst,bool startWithMoveTo)636 bool SkPathMeasure::getSegment(SkScalar startD, SkScalar stopD, SkPath* dst,
637                                bool startWithMoveTo) {
638     SkASSERT(dst);
639 
640     SkScalar length = this->getLength();    // ensure we have built our segments
641 
642     if (startD < 0) {
643         startD = 0;
644     }
645     if (stopD > length) {
646         stopD = length;
647     }
648     if (startD > stopD) {
649         return false;
650     }
651     if (!fSegments.count()) {
652         return false;
653     }
654 
655     SkPoint  p;
656     SkScalar startT, stopT;
657     const Segment* seg = this->distanceToSegment(startD, &startT);
658     const Segment* stopSeg = this->distanceToSegment(stopD, &stopT);
659     SkASSERT(seg <= stopSeg);
660 
661     if (startWithMoveTo) {
662         compute_pos_tan(&fPts[seg->fPtIndex], seg->fType, startT, &p, nullptr);
663         dst->moveTo(p);
664     }
665 
666     if (seg->fPtIndex == stopSeg->fPtIndex) {
667         SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, stopT, dst);
668     } else {
669         do {
670             SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, startT, SK_Scalar1, dst);
671             seg = SkPathMeasure::NextSegment(seg);
672             startT = 0;
673         } while (seg->fPtIndex < stopSeg->fPtIndex);
674         SkPathMeasure_segTo(&fPts[seg->fPtIndex], seg->fType, 0, stopT, dst);
675     }
676     return true;
677 }
678 
isClosed()679 bool SkPathMeasure::isClosed() {
680     (void)this->getLength();
681     return fIsClosed;
682 }
683 
684 /** Move to the next contour in the path. Return true if one exists, or false if
685     we're done with the path.
686 */
nextContour()687 bool SkPathMeasure::nextContour() {
688     fLength = -1;
689     return this->getLength() > 0;
690 }
691 
692 ///////////////////////////////////////////////////////////////////////////////
693 ///////////////////////////////////////////////////////////////////////////////
694 
695 #ifdef SK_DEBUG
696 
dump()697 void SkPathMeasure::dump() {
698     SkDebugf("pathmeas: length=%g, segs=%d\n", fLength, fSegments.count());
699 
700     for (int i = 0; i < fSegments.count(); i++) {
701         const Segment* seg = &fSegments[i];
702         SkDebugf("pathmeas: seg[%d] distance=%g, point=%d, t=%g, type=%d\n",
703                 i, seg->fDistance, seg->fPtIndex, seg->getScalarT(),
704                  seg->fType);
705     }
706 }
707 
708 #endif
709