1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/SemaDiagnostic.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallString.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/Support/ScopedPrinter.h"
32
33 using namespace clang;
34
35 //===----------------------------------------------------------------------===//
36 // C99 6.7: Declarations.
37 //===----------------------------------------------------------------------===//
38
39 /// ParseTypeName
40 /// type-name: [C99 6.7.6]
41 /// specifier-qualifier-list abstract-declarator[opt]
42 ///
43 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)44 TypeResult Parser::ParseTypeName(SourceRange *Range,
45 Declarator::TheContext Context,
46 AccessSpecifier AS,
47 Decl **OwnedType,
48 ParsedAttributes *Attrs) {
49 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50 if (DSC == DSC_normal)
51 DSC = DSC_type_specifier;
52
53 // Parse the common declaration-specifiers piece.
54 DeclSpec DS(AttrFactory);
55 if (Attrs)
56 DS.addAttributes(Attrs->getList());
57 ParseSpecifierQualifierList(DS, AS, DSC);
58 if (OwnedType)
59 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60
61 // Parse the abstract-declarator, if present.
62 Declarator DeclaratorInfo(DS, Context);
63 ParseDeclarator(DeclaratorInfo);
64 if (Range)
65 *Range = DeclaratorInfo.getSourceRange();
66
67 if (DeclaratorInfo.isInvalidType())
68 return true;
69
70 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
71 }
72
73 /// isAttributeLateParsed - Return true if the attribute has arguments that
74 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)75 static bool isAttributeLateParsed(const IdentifierInfo &II) {
76 #define CLANG_ATTR_LATE_PARSED_LIST
77 return llvm::StringSwitch<bool>(II.getName())
78 #include "clang/Parse/AttrParserStringSwitches.inc"
79 .Default(false);
80 #undef CLANG_ATTR_LATE_PARSED_LIST
81 }
82
83 /// ParseGNUAttributes - Parse a non-empty attributes list.
84 ///
85 /// [GNU] attributes:
86 /// attribute
87 /// attributes attribute
88 ///
89 /// [GNU] attribute:
90 /// '__attribute__' '(' '(' attribute-list ')' ')'
91 ///
92 /// [GNU] attribute-list:
93 /// attrib
94 /// attribute_list ',' attrib
95 ///
96 /// [GNU] attrib:
97 /// empty
98 /// attrib-name
99 /// attrib-name '(' identifier ')'
100 /// attrib-name '(' identifier ',' nonempty-expr-list ')'
101 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
102 ///
103 /// [GNU] attrib-name:
104 /// identifier
105 /// typespec
106 /// typequal
107 /// storageclass
108 ///
109 /// Whether an attribute takes an 'identifier' is determined by the
110 /// attrib-name. GCC's behavior here is not worth imitating:
111 ///
112 /// * In C mode, if the attribute argument list starts with an identifier
113 /// followed by a ',' or an ')', and the identifier doesn't resolve to
114 /// a type, it is parsed as an identifier. If the attribute actually
115 /// wanted an expression, it's out of luck (but it turns out that no
116 /// attributes work that way, because C constant expressions are very
117 /// limited).
118 /// * In C++ mode, if the attribute argument list starts with an identifier,
119 /// and the attribute *wants* an identifier, it is parsed as an identifier.
120 /// At block scope, any additional tokens between the identifier and the
121 /// ',' or ')' are ignored, otherwise they produce a parse error.
122 ///
123 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)124 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
125 SourceLocation *endLoc,
126 LateParsedAttrList *LateAttrs,
127 Declarator *D) {
128 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
129
130 while (Tok.is(tok::kw___attribute)) {
131 ConsumeToken();
132 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
133 "attribute")) {
134 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
135 return;
136 }
137 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
138 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
139 return;
140 }
141 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
142 while (true) {
143 // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
144 if (TryConsumeToken(tok::comma))
145 continue;
146
147 // Expect an identifier or declaration specifier (const, int, etc.)
148 if (Tok.isAnnotation())
149 break;
150 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
151 if (!AttrName)
152 break;
153
154 SourceLocation AttrNameLoc = ConsumeToken();
155
156 if (Tok.isNot(tok::l_paren)) {
157 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
158 AttributeList::AS_GNU);
159 continue;
160 }
161
162 // Handle "parameterized" attributes
163 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
164 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
165 SourceLocation(), AttributeList::AS_GNU, D);
166 continue;
167 }
168
169 // Handle attributes with arguments that require late parsing.
170 LateParsedAttribute *LA =
171 new LateParsedAttribute(this, *AttrName, AttrNameLoc);
172 LateAttrs->push_back(LA);
173
174 // Attributes in a class are parsed at the end of the class, along
175 // with other late-parsed declarations.
176 if (!ClassStack.empty() && !LateAttrs->parseSoon())
177 getCurrentClass().LateParsedDeclarations.push_back(LA);
178
179 // consume everything up to and including the matching right parens
180 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
181
182 Token Eof;
183 Eof.startToken();
184 Eof.setLocation(Tok.getLocation());
185 LA->Toks.push_back(Eof);
186 }
187
188 if (ExpectAndConsume(tok::r_paren))
189 SkipUntil(tok::r_paren, StopAtSemi);
190 SourceLocation Loc = Tok.getLocation();
191 if (ExpectAndConsume(tok::r_paren))
192 SkipUntil(tok::r_paren, StopAtSemi);
193 if (endLoc)
194 *endLoc = Loc;
195 }
196 }
197
198 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)199 static StringRef normalizeAttrName(StringRef Name) {
200 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
201 Name = Name.drop_front(2).drop_back(2);
202 return Name;
203 }
204
205 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)206 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
207 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
208 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
209 #include "clang/Parse/AttrParserStringSwitches.inc"
210 .Default(false);
211 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
212 }
213
214 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)215 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
216 #define CLANG_ATTR_TYPE_ARG_LIST
217 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
218 #include "clang/Parse/AttrParserStringSwitches.inc"
219 .Default(false);
220 #undef CLANG_ATTR_TYPE_ARG_LIST
221 }
222
223 /// \brief Determine whether the given attribute requires parsing its arguments
224 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)225 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
226 #define CLANG_ATTR_ARG_CONTEXT_LIST
227 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
228 #include "clang/Parse/AttrParserStringSwitches.inc"
229 .Default(false);
230 #undef CLANG_ATTR_ARG_CONTEXT_LIST
231 }
232
ParseIdentifierLoc()233 IdentifierLoc *Parser::ParseIdentifierLoc() {
234 assert(Tok.is(tok::identifier) && "expected an identifier");
235 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
236 Tok.getLocation(),
237 Tok.getIdentifierInfo());
238 ConsumeToken();
239 return IL;
240 }
241
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)242 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
243 SourceLocation AttrNameLoc,
244 ParsedAttributes &Attrs,
245 SourceLocation *EndLoc,
246 IdentifierInfo *ScopeName,
247 SourceLocation ScopeLoc,
248 AttributeList::Syntax Syntax) {
249 BalancedDelimiterTracker Parens(*this, tok::l_paren);
250 Parens.consumeOpen();
251
252 TypeResult T;
253 if (Tok.isNot(tok::r_paren))
254 T = ParseTypeName();
255
256 if (Parens.consumeClose())
257 return;
258
259 if (T.isInvalid())
260 return;
261
262 if (T.isUsable())
263 Attrs.addNewTypeAttr(&AttrName,
264 SourceRange(AttrNameLoc, Parens.getCloseLocation()),
265 ScopeName, ScopeLoc, T.get(), Syntax);
266 else
267 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
268 ScopeName, ScopeLoc, nullptr, 0, Syntax);
269 }
270
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)271 unsigned Parser::ParseAttributeArgsCommon(
272 IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
273 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
274 SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
275 // Ignore the left paren location for now.
276 ConsumeParen();
277
278 ArgsVector ArgExprs;
279 if (Tok.is(tok::identifier)) {
280 // If this attribute wants an 'identifier' argument, make it so.
281 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
282 AttributeList::Kind AttrKind =
283 AttributeList::getKind(AttrName, ScopeName, Syntax);
284
285 // If we don't know how to parse this attribute, but this is the only
286 // token in this argument, assume it's meant to be an identifier.
287 if (AttrKind == AttributeList::UnknownAttribute ||
288 AttrKind == AttributeList::IgnoredAttribute) {
289 const Token &Next = NextToken();
290 IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
291 }
292
293 if (IsIdentifierArg)
294 ArgExprs.push_back(ParseIdentifierLoc());
295 }
296
297 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
298 // Eat the comma.
299 if (!ArgExprs.empty())
300 ConsumeToken();
301
302 // Parse the non-empty comma-separated list of expressions.
303 do {
304 std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
305 if (attributeParsedArgsUnevaluated(*AttrName))
306 Unevaluated.reset(
307 new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
308
309 ExprResult ArgExpr(
310 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
311 if (ArgExpr.isInvalid()) {
312 SkipUntil(tok::r_paren, StopAtSemi);
313 return 0;
314 }
315 ArgExprs.push_back(ArgExpr.get());
316 // Eat the comma, move to the next argument
317 } while (TryConsumeToken(tok::comma));
318 }
319
320 SourceLocation RParen = Tok.getLocation();
321 if (!ExpectAndConsume(tok::r_paren)) {
322 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
323 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
324 ArgExprs.data(), ArgExprs.size(), Syntax);
325 }
326
327 if (EndLoc)
328 *EndLoc = RParen;
329
330 return static_cast<unsigned>(ArgExprs.size());
331 }
332
333 /// Parse the arguments to a parameterized GNU attribute or
334 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)335 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
336 SourceLocation AttrNameLoc,
337 ParsedAttributes &Attrs,
338 SourceLocation *EndLoc,
339 IdentifierInfo *ScopeName,
340 SourceLocation ScopeLoc,
341 AttributeList::Syntax Syntax,
342 Declarator *D) {
343
344 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
345
346 AttributeList::Kind AttrKind =
347 AttributeList::getKind(AttrName, ScopeName, Syntax);
348
349 if (AttrKind == AttributeList::AT_Availability) {
350 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
351 ScopeLoc, Syntax);
352 return;
353 } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
354 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
355 ScopeName, ScopeLoc, Syntax);
356 return;
357 } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
358 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
359 ScopeName, ScopeLoc, Syntax);
360 return;
361 } else if (attributeIsTypeArgAttr(*AttrName)) {
362 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
363 ScopeLoc, Syntax);
364 return;
365 }
366
367 // These may refer to the function arguments, but need to be parsed early to
368 // participate in determining whether it's a redeclaration.
369 std::unique_ptr<ParseScope> PrototypeScope;
370 if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
371 D && D->isFunctionDeclarator()) {
372 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
373 PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
374 Scope::FunctionDeclarationScope |
375 Scope::DeclScope));
376 for (unsigned i = 0; i != FTI.NumParams; ++i) {
377 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
378 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
379 }
380 }
381
382 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
383 ScopeLoc, Syntax);
384 }
385
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)386 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
387 SourceLocation AttrNameLoc,
388 ParsedAttributes &Attrs) {
389 // If the attribute isn't known, we will not attempt to parse any
390 // arguments.
391 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
392 getTargetInfo(), getLangOpts())) {
393 // Eat the left paren, then skip to the ending right paren.
394 ConsumeParen();
395 SkipUntil(tok::r_paren);
396 return false;
397 }
398
399 SourceLocation OpenParenLoc = Tok.getLocation();
400
401 if (AttrName->getName() == "property") {
402 // The property declspec is more complex in that it can take one or two
403 // assignment expressions as a parameter, but the lhs of the assignment
404 // must be named get or put.
405
406 BalancedDelimiterTracker T(*this, tok::l_paren);
407 T.expectAndConsume(diag::err_expected_lparen_after,
408 AttrName->getNameStart(), tok::r_paren);
409
410 enum AccessorKind {
411 AK_Invalid = -1,
412 AK_Put = 0,
413 AK_Get = 1 // indices into AccessorNames
414 };
415 IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
416 bool HasInvalidAccessor = false;
417
418 // Parse the accessor specifications.
419 while (true) {
420 // Stop if this doesn't look like an accessor spec.
421 if (!Tok.is(tok::identifier)) {
422 // If the user wrote a completely empty list, use a special diagnostic.
423 if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
424 AccessorNames[AK_Put] == nullptr &&
425 AccessorNames[AK_Get] == nullptr) {
426 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
427 break;
428 }
429
430 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
431 break;
432 }
433
434 AccessorKind Kind;
435 SourceLocation KindLoc = Tok.getLocation();
436 StringRef KindStr = Tok.getIdentifierInfo()->getName();
437 if (KindStr == "get") {
438 Kind = AK_Get;
439 } else if (KindStr == "put") {
440 Kind = AK_Put;
441
442 // Recover from the common mistake of using 'set' instead of 'put'.
443 } else if (KindStr == "set") {
444 Diag(KindLoc, diag::err_ms_property_has_set_accessor)
445 << FixItHint::CreateReplacement(KindLoc, "put");
446 Kind = AK_Put;
447
448 // Handle the mistake of forgetting the accessor kind by skipping
449 // this accessor.
450 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
451 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
452 ConsumeToken();
453 HasInvalidAccessor = true;
454 goto next_property_accessor;
455
456 // Otherwise, complain about the unknown accessor kind.
457 } else {
458 Diag(KindLoc, diag::err_ms_property_unknown_accessor);
459 HasInvalidAccessor = true;
460 Kind = AK_Invalid;
461
462 // Try to keep parsing unless it doesn't look like an accessor spec.
463 if (!NextToken().is(tok::equal))
464 break;
465 }
466
467 // Consume the identifier.
468 ConsumeToken();
469
470 // Consume the '='.
471 if (!TryConsumeToken(tok::equal)) {
472 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
473 << KindStr;
474 break;
475 }
476
477 // Expect the method name.
478 if (!Tok.is(tok::identifier)) {
479 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
480 break;
481 }
482
483 if (Kind == AK_Invalid) {
484 // Just drop invalid accessors.
485 } else if (AccessorNames[Kind] != nullptr) {
486 // Complain about the repeated accessor, ignore it, and keep parsing.
487 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
488 } else {
489 AccessorNames[Kind] = Tok.getIdentifierInfo();
490 }
491 ConsumeToken();
492
493 next_property_accessor:
494 // Keep processing accessors until we run out.
495 if (TryConsumeToken(tok::comma))
496 continue;
497
498 // If we run into the ')', stop without consuming it.
499 if (Tok.is(tok::r_paren))
500 break;
501
502 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
503 break;
504 }
505
506 // Only add the property attribute if it was well-formed.
507 if (!HasInvalidAccessor)
508 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
509 AccessorNames[AK_Get], AccessorNames[AK_Put],
510 AttributeList::AS_Declspec);
511 T.skipToEnd();
512 return !HasInvalidAccessor;
513 }
514
515 unsigned NumArgs =
516 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
517 SourceLocation(), AttributeList::AS_Declspec);
518
519 // If this attribute's args were parsed, and it was expected to have
520 // arguments but none were provided, emit a diagnostic.
521 const AttributeList *Attr = Attrs.getList();
522 if (Attr && Attr->getMaxArgs() && !NumArgs) {
523 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
524 return false;
525 }
526 return true;
527 }
528
529 /// [MS] decl-specifier:
530 /// __declspec ( extended-decl-modifier-seq )
531 ///
532 /// [MS] extended-decl-modifier-seq:
533 /// extended-decl-modifier[opt]
534 /// extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpecs(ParsedAttributes & Attrs,SourceLocation * End)535 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
536 SourceLocation *End) {
537 assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
538 assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
539
540 while (Tok.is(tok::kw___declspec)) {
541 ConsumeToken();
542 BalancedDelimiterTracker T(*this, tok::l_paren);
543 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
544 tok::r_paren))
545 return;
546
547 // An empty declspec is perfectly legal and should not warn. Additionally,
548 // you can specify multiple attributes per declspec.
549 while (Tok.isNot(tok::r_paren)) {
550 // Attribute not present.
551 if (TryConsumeToken(tok::comma))
552 continue;
553
554 // We expect either a well-known identifier or a generic string. Anything
555 // else is a malformed declspec.
556 bool IsString = Tok.getKind() == tok::string_literal;
557 if (!IsString && Tok.getKind() != tok::identifier &&
558 Tok.getKind() != tok::kw_restrict) {
559 Diag(Tok, diag::err_ms_declspec_type);
560 T.skipToEnd();
561 return;
562 }
563
564 IdentifierInfo *AttrName;
565 SourceLocation AttrNameLoc;
566 if (IsString) {
567 SmallString<8> StrBuffer;
568 bool Invalid = false;
569 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
570 if (Invalid) {
571 T.skipToEnd();
572 return;
573 }
574 AttrName = PP.getIdentifierInfo(Str);
575 AttrNameLoc = ConsumeStringToken();
576 } else {
577 AttrName = Tok.getIdentifierInfo();
578 AttrNameLoc = ConsumeToken();
579 }
580
581 bool AttrHandled = false;
582
583 // Parse attribute arguments.
584 if (Tok.is(tok::l_paren))
585 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
586 else if (AttrName->getName() == "property")
587 // The property attribute must have an argument list.
588 Diag(Tok.getLocation(), diag::err_expected_lparen_after)
589 << AttrName->getName();
590
591 if (!AttrHandled)
592 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
593 AttributeList::AS_Declspec);
594 }
595 T.consumeClose();
596 if (End)
597 *End = T.getCloseLocation();
598 }
599 }
600
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)601 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
602 // Treat these like attributes
603 while (true) {
604 switch (Tok.getKind()) {
605 case tok::kw___fastcall:
606 case tok::kw___stdcall:
607 case tok::kw___thiscall:
608 case tok::kw___cdecl:
609 case tok::kw___vectorcall:
610 case tok::kw___ptr64:
611 case tok::kw___w64:
612 case tok::kw___ptr32:
613 case tok::kw___sptr:
614 case tok::kw___uptr: {
615 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
616 SourceLocation AttrNameLoc = ConsumeToken();
617 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
618 AttributeList::AS_Keyword);
619 break;
620 }
621 default:
622 return;
623 }
624 }
625 }
626
DiagnoseAndSkipExtendedMicrosoftTypeAttributes()627 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
628 SourceLocation StartLoc = Tok.getLocation();
629 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
630
631 if (EndLoc.isValid()) {
632 SourceRange Range(StartLoc, EndLoc);
633 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
634 }
635 }
636
SkipExtendedMicrosoftTypeAttributes()637 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
638 SourceLocation EndLoc;
639
640 while (true) {
641 switch (Tok.getKind()) {
642 case tok::kw_const:
643 case tok::kw_volatile:
644 case tok::kw___fastcall:
645 case tok::kw___stdcall:
646 case tok::kw___thiscall:
647 case tok::kw___cdecl:
648 case tok::kw___vectorcall:
649 case tok::kw___ptr32:
650 case tok::kw___ptr64:
651 case tok::kw___w64:
652 case tok::kw___unaligned:
653 case tok::kw___sptr:
654 case tok::kw___uptr:
655 EndLoc = ConsumeToken();
656 break;
657 default:
658 return EndLoc;
659 }
660 }
661 }
662
ParseBorlandTypeAttributes(ParsedAttributes & attrs)663 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
664 // Treat these like attributes
665 while (Tok.is(tok::kw___pascal)) {
666 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
667 SourceLocation AttrNameLoc = ConsumeToken();
668 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
669 AttributeList::AS_Keyword);
670 }
671 }
672
ParseOpenCLKernelAttributes(ParsedAttributes & attrs)673 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
674 // Treat these like attributes
675 while (Tok.is(tok::kw___kernel)) {
676 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677 SourceLocation AttrNameLoc = ConsumeToken();
678 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679 AttributeList::AS_Keyword);
680 }
681 }
682
ParseOpenCLQualifiers(ParsedAttributes & Attrs)683 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
684 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
685 SourceLocation AttrNameLoc = Tok.getLocation();
686 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
687 AttributeList::AS_Keyword);
688 }
689
ParseNullabilityTypeSpecifiers(ParsedAttributes & attrs)690 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
691 // Treat these like attributes, even though they're type specifiers.
692 while (true) {
693 switch (Tok.getKind()) {
694 case tok::kw__Nonnull:
695 case tok::kw__Nullable:
696 case tok::kw__Null_unspecified: {
697 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
698 SourceLocation AttrNameLoc = ConsumeToken();
699 if (!getLangOpts().ObjC1)
700 Diag(AttrNameLoc, diag::ext_nullability)
701 << AttrName;
702 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
703 AttributeList::AS_Keyword);
704 break;
705 }
706 default:
707 return;
708 }
709 }
710 }
711
VersionNumberSeparator(const char Separator)712 static bool VersionNumberSeparator(const char Separator) {
713 return (Separator == '.' || Separator == '_');
714 }
715
716 /// \brief Parse a version number.
717 ///
718 /// version:
719 /// simple-integer
720 /// simple-integer ',' simple-integer
721 /// simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)722 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
723 Range = Tok.getLocation();
724
725 if (!Tok.is(tok::numeric_constant)) {
726 Diag(Tok, diag::err_expected_version);
727 SkipUntil(tok::comma, tok::r_paren,
728 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
729 return VersionTuple();
730 }
731
732 // Parse the major (and possibly minor and subminor) versions, which
733 // are stored in the numeric constant. We utilize a quirk of the
734 // lexer, which is that it handles something like 1.2.3 as a single
735 // numeric constant, rather than two separate tokens.
736 SmallString<512> Buffer;
737 Buffer.resize(Tok.getLength()+1);
738 const char *ThisTokBegin = &Buffer[0];
739
740 // Get the spelling of the token, which eliminates trigraphs, etc.
741 bool Invalid = false;
742 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
743 if (Invalid)
744 return VersionTuple();
745
746 // Parse the major version.
747 unsigned AfterMajor = 0;
748 unsigned Major = 0;
749 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
750 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
751 ++AfterMajor;
752 }
753
754 if (AfterMajor == 0) {
755 Diag(Tok, diag::err_expected_version);
756 SkipUntil(tok::comma, tok::r_paren,
757 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
758 return VersionTuple();
759 }
760
761 if (AfterMajor == ActualLength) {
762 ConsumeToken();
763
764 // We only had a single version component.
765 if (Major == 0) {
766 Diag(Tok, diag::err_zero_version);
767 return VersionTuple();
768 }
769
770 return VersionTuple(Major);
771 }
772
773 const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
774 if (!VersionNumberSeparator(AfterMajorSeparator)
775 || (AfterMajor + 1 == ActualLength)) {
776 Diag(Tok, diag::err_expected_version);
777 SkipUntil(tok::comma, tok::r_paren,
778 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
779 return VersionTuple();
780 }
781
782 // Parse the minor version.
783 unsigned AfterMinor = AfterMajor + 1;
784 unsigned Minor = 0;
785 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
786 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
787 ++AfterMinor;
788 }
789
790 if (AfterMinor == ActualLength) {
791 ConsumeToken();
792
793 // We had major.minor.
794 if (Major == 0 && Minor == 0) {
795 Diag(Tok, diag::err_zero_version);
796 return VersionTuple();
797 }
798
799 return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
800 }
801
802 const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
803 // If what follows is not a '.' or '_', we have a problem.
804 if (!VersionNumberSeparator(AfterMinorSeparator)) {
805 Diag(Tok, diag::err_expected_version);
806 SkipUntil(tok::comma, tok::r_paren,
807 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
808 return VersionTuple();
809 }
810
811 // Warn if separators, be it '.' or '_', do not match.
812 if (AfterMajorSeparator != AfterMinorSeparator)
813 Diag(Tok, diag::warn_expected_consistent_version_separator);
814
815 // Parse the subminor version.
816 unsigned AfterSubminor = AfterMinor + 1;
817 unsigned Subminor = 0;
818 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
819 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
820 ++AfterSubminor;
821 }
822
823 if (AfterSubminor != ActualLength) {
824 Diag(Tok, diag::err_expected_version);
825 SkipUntil(tok::comma, tok::r_paren,
826 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
827 return VersionTuple();
828 }
829 ConsumeToken();
830 return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
831 }
832
833 /// \brief Parse the contents of the "availability" attribute.
834 ///
835 /// availability-attribute:
836 /// 'availability' '(' platform ',' opt-strict version-arg-list,
837 /// opt-replacement, opt-message')'
838 ///
839 /// platform:
840 /// identifier
841 ///
842 /// opt-strict:
843 /// 'strict' ','
844 ///
845 /// version-arg-list:
846 /// version-arg
847 /// version-arg ',' version-arg-list
848 ///
849 /// version-arg:
850 /// 'introduced' '=' version
851 /// 'deprecated' '=' version
852 /// 'obsoleted' = version
853 /// 'unavailable'
854 /// opt-replacement:
855 /// 'replacement' '=' <string>
856 /// opt-message:
857 /// 'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)858 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
859 SourceLocation AvailabilityLoc,
860 ParsedAttributes &attrs,
861 SourceLocation *endLoc,
862 IdentifierInfo *ScopeName,
863 SourceLocation ScopeLoc,
864 AttributeList::Syntax Syntax) {
865 enum { Introduced, Deprecated, Obsoleted, Unknown };
866 AvailabilityChange Changes[Unknown];
867 ExprResult MessageExpr, ReplacementExpr;
868
869 // Opening '('.
870 BalancedDelimiterTracker T(*this, tok::l_paren);
871 if (T.consumeOpen()) {
872 Diag(Tok, diag::err_expected) << tok::l_paren;
873 return;
874 }
875
876 // Parse the platform name.
877 if (Tok.isNot(tok::identifier)) {
878 Diag(Tok, diag::err_availability_expected_platform);
879 SkipUntil(tok::r_paren, StopAtSemi);
880 return;
881 }
882 IdentifierLoc *Platform = ParseIdentifierLoc();
883 // Canonicalize platform name from "macosx" to "macos".
884 if (Platform->Ident && Platform->Ident->getName() == "macosx")
885 Platform->Ident = PP.getIdentifierInfo("macos");
886 // Canonicalize platform name from "macosx_app_extension" to
887 // "macos_app_extension".
888 if (Platform->Ident && Platform->Ident->getName() == "macosx_app_extension")
889 Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
890
891 // Parse the ',' following the platform name.
892 if (ExpectAndConsume(tok::comma)) {
893 SkipUntil(tok::r_paren, StopAtSemi);
894 return;
895 }
896
897 // If we haven't grabbed the pointers for the identifiers
898 // "introduced", "deprecated", and "obsoleted", do so now.
899 if (!Ident_introduced) {
900 Ident_introduced = PP.getIdentifierInfo("introduced");
901 Ident_deprecated = PP.getIdentifierInfo("deprecated");
902 Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
903 Ident_unavailable = PP.getIdentifierInfo("unavailable");
904 Ident_message = PP.getIdentifierInfo("message");
905 Ident_strict = PP.getIdentifierInfo("strict");
906 Ident_replacement = PP.getIdentifierInfo("replacement");
907 }
908
909 // Parse the optional "strict", the optional "replacement" and the set of
910 // introductions/deprecations/removals.
911 SourceLocation UnavailableLoc, StrictLoc;
912 do {
913 if (Tok.isNot(tok::identifier)) {
914 Diag(Tok, diag::err_availability_expected_change);
915 SkipUntil(tok::r_paren, StopAtSemi);
916 return;
917 }
918 IdentifierInfo *Keyword = Tok.getIdentifierInfo();
919 SourceLocation KeywordLoc = ConsumeToken();
920
921 if (Keyword == Ident_strict) {
922 if (StrictLoc.isValid()) {
923 Diag(KeywordLoc, diag::err_availability_redundant)
924 << Keyword << SourceRange(StrictLoc);
925 }
926 StrictLoc = KeywordLoc;
927 continue;
928 }
929
930 if (Keyword == Ident_unavailable) {
931 if (UnavailableLoc.isValid()) {
932 Diag(KeywordLoc, diag::err_availability_redundant)
933 << Keyword << SourceRange(UnavailableLoc);
934 }
935 UnavailableLoc = KeywordLoc;
936 continue;
937 }
938
939 if (Tok.isNot(tok::equal)) {
940 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
941 SkipUntil(tok::r_paren, StopAtSemi);
942 return;
943 }
944 ConsumeToken();
945 if (Keyword == Ident_message || Keyword == Ident_replacement) {
946 if (Tok.isNot(tok::string_literal)) {
947 Diag(Tok, diag::err_expected_string_literal)
948 << /*Source='availability attribute'*/2;
949 SkipUntil(tok::r_paren, StopAtSemi);
950 return;
951 }
952 if (Keyword == Ident_message)
953 MessageExpr = ParseStringLiteralExpression();
954 else
955 ReplacementExpr = ParseStringLiteralExpression();
956 // Also reject wide string literals.
957 if (StringLiteral *MessageStringLiteral =
958 cast_or_null<StringLiteral>(MessageExpr.get())) {
959 if (MessageStringLiteral->getCharByteWidth() != 1) {
960 Diag(MessageStringLiteral->getSourceRange().getBegin(),
961 diag::err_expected_string_literal)
962 << /*Source='availability attribute'*/ 2;
963 SkipUntil(tok::r_paren, StopAtSemi);
964 return;
965 }
966 }
967 if (Keyword == Ident_message)
968 break;
969 else
970 continue;
971 }
972
973 // Special handling of 'NA' only when applied to introduced or
974 // deprecated.
975 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
976 Tok.is(tok::identifier)) {
977 IdentifierInfo *NA = Tok.getIdentifierInfo();
978 if (NA->getName() == "NA") {
979 ConsumeToken();
980 if (Keyword == Ident_introduced)
981 UnavailableLoc = KeywordLoc;
982 continue;
983 }
984 }
985
986 SourceRange VersionRange;
987 VersionTuple Version = ParseVersionTuple(VersionRange);
988
989 if (Version.empty()) {
990 SkipUntil(tok::r_paren, StopAtSemi);
991 return;
992 }
993
994 unsigned Index;
995 if (Keyword == Ident_introduced)
996 Index = Introduced;
997 else if (Keyword == Ident_deprecated)
998 Index = Deprecated;
999 else if (Keyword == Ident_obsoleted)
1000 Index = Obsoleted;
1001 else
1002 Index = Unknown;
1003
1004 if (Index < Unknown) {
1005 if (!Changes[Index].KeywordLoc.isInvalid()) {
1006 Diag(KeywordLoc, diag::err_availability_redundant)
1007 << Keyword
1008 << SourceRange(Changes[Index].KeywordLoc,
1009 Changes[Index].VersionRange.getEnd());
1010 }
1011
1012 Changes[Index].KeywordLoc = KeywordLoc;
1013 Changes[Index].Version = Version;
1014 Changes[Index].VersionRange = VersionRange;
1015 } else {
1016 Diag(KeywordLoc, diag::err_availability_unknown_change)
1017 << Keyword << VersionRange;
1018 }
1019
1020 } while (TryConsumeToken(tok::comma));
1021
1022 // Closing ')'.
1023 if (T.consumeClose())
1024 return;
1025
1026 if (endLoc)
1027 *endLoc = T.getCloseLocation();
1028
1029 // The 'unavailable' availability cannot be combined with any other
1030 // availability changes. Make sure that hasn't happened.
1031 if (UnavailableLoc.isValid()) {
1032 bool Complained = false;
1033 for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1034 if (Changes[Index].KeywordLoc.isValid()) {
1035 if (!Complained) {
1036 Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1037 << SourceRange(Changes[Index].KeywordLoc,
1038 Changes[Index].VersionRange.getEnd());
1039 Complained = true;
1040 }
1041
1042 // Clear out the availability.
1043 Changes[Index] = AvailabilityChange();
1044 }
1045 }
1046 }
1047
1048 // Record this attribute
1049 attrs.addNew(&Availability,
1050 SourceRange(AvailabilityLoc, T.getCloseLocation()),
1051 ScopeName, ScopeLoc,
1052 Platform,
1053 Changes[Introduced],
1054 Changes[Deprecated],
1055 Changes[Obsoleted],
1056 UnavailableLoc, MessageExpr.get(),
1057 Syntax, StrictLoc, ReplacementExpr.get());
1058 }
1059
1060 /// \brief Parse the contents of the "objc_bridge_related" attribute.
1061 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1062 /// related_class:
1063 /// Identifier
1064 ///
1065 /// opt-class_method:
1066 /// Identifier: | <empty>
1067 ///
1068 /// opt-instance_method:
1069 /// Identifier | <empty>
1070 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1071 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1072 SourceLocation ObjCBridgeRelatedLoc,
1073 ParsedAttributes &attrs,
1074 SourceLocation *endLoc,
1075 IdentifierInfo *ScopeName,
1076 SourceLocation ScopeLoc,
1077 AttributeList::Syntax Syntax) {
1078 // Opening '('.
1079 BalancedDelimiterTracker T(*this, tok::l_paren);
1080 if (T.consumeOpen()) {
1081 Diag(Tok, diag::err_expected) << tok::l_paren;
1082 return;
1083 }
1084
1085 // Parse the related class name.
1086 if (Tok.isNot(tok::identifier)) {
1087 Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1088 SkipUntil(tok::r_paren, StopAtSemi);
1089 return;
1090 }
1091 IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1092 if (ExpectAndConsume(tok::comma)) {
1093 SkipUntil(tok::r_paren, StopAtSemi);
1094 return;
1095 }
1096
1097 // Parse optional class method name.
1098 IdentifierLoc *ClassMethod = nullptr;
1099 if (Tok.is(tok::identifier)) {
1100 ClassMethod = ParseIdentifierLoc();
1101 if (!TryConsumeToken(tok::colon)) {
1102 Diag(Tok, diag::err_objcbridge_related_selector_name);
1103 SkipUntil(tok::r_paren, StopAtSemi);
1104 return;
1105 }
1106 }
1107 if (!TryConsumeToken(tok::comma)) {
1108 if (Tok.is(tok::colon))
1109 Diag(Tok, diag::err_objcbridge_related_selector_name);
1110 else
1111 Diag(Tok, diag::err_expected) << tok::comma;
1112 SkipUntil(tok::r_paren, StopAtSemi);
1113 return;
1114 }
1115
1116 // Parse optional instance method name.
1117 IdentifierLoc *InstanceMethod = nullptr;
1118 if (Tok.is(tok::identifier))
1119 InstanceMethod = ParseIdentifierLoc();
1120 else if (Tok.isNot(tok::r_paren)) {
1121 Diag(Tok, diag::err_expected) << tok::r_paren;
1122 SkipUntil(tok::r_paren, StopAtSemi);
1123 return;
1124 }
1125
1126 // Closing ')'.
1127 if (T.consumeClose())
1128 return;
1129
1130 if (endLoc)
1131 *endLoc = T.getCloseLocation();
1132
1133 // Record this attribute
1134 attrs.addNew(&ObjCBridgeRelated,
1135 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1136 ScopeName, ScopeLoc,
1137 RelatedClass,
1138 ClassMethod,
1139 InstanceMethod,
1140 Syntax);
1141 }
1142
1143 // Late Parsed Attributes:
1144 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1145
ParseLexedAttributes()1146 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1147
ParseLexedAttributes()1148 void Parser::LateParsedClass::ParseLexedAttributes() {
1149 Self->ParseLexedAttributes(*Class);
1150 }
1151
ParseLexedAttributes()1152 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1153 Self->ParseLexedAttribute(*this, true, false);
1154 }
1155
1156 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1157 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1158 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1159 // Deal with templates
1160 // FIXME: Test cases to make sure this does the right thing for templates.
1161 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1162 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1163 HasTemplateScope);
1164 if (HasTemplateScope)
1165 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1166
1167 // Set or update the scope flags.
1168 bool AlreadyHasClassScope = Class.TopLevelClass;
1169 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1170 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1171 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1172
1173 // Enter the scope of nested classes
1174 if (!AlreadyHasClassScope)
1175 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1176 Class.TagOrTemplate);
1177 if (!Class.LateParsedDeclarations.empty()) {
1178 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1179 Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1180 }
1181 }
1182
1183 if (!AlreadyHasClassScope)
1184 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1185 Class.TagOrTemplate);
1186 }
1187
1188 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1189 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1190 bool EnterScope, bool OnDefinition) {
1191 assert(LAs.parseSoon() &&
1192 "Attribute list should be marked for immediate parsing.");
1193 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1194 if (D)
1195 LAs[i]->addDecl(D);
1196 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1197 delete LAs[i];
1198 }
1199 LAs.clear();
1200 }
1201
1202 /// \brief Finish parsing an attribute for which parsing was delayed.
1203 /// This will be called at the end of parsing a class declaration
1204 /// for each LateParsedAttribute. We consume the saved tokens and
1205 /// create an attribute with the arguments filled in. We add this
1206 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1207 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1208 bool EnterScope, bool OnDefinition) {
1209 // Create a fake EOF so that attribute parsing won't go off the end of the
1210 // attribute.
1211 Token AttrEnd;
1212 AttrEnd.startToken();
1213 AttrEnd.setKind(tok::eof);
1214 AttrEnd.setLocation(Tok.getLocation());
1215 AttrEnd.setEofData(LA.Toks.data());
1216 LA.Toks.push_back(AttrEnd);
1217
1218 // Append the current token at the end of the new token stream so that it
1219 // doesn't get lost.
1220 LA.Toks.push_back(Tok);
1221 PP.EnterTokenStream(LA.Toks, true);
1222 // Consume the previously pushed token.
1223 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1224
1225 ParsedAttributes Attrs(AttrFactory);
1226 SourceLocation endLoc;
1227
1228 if (LA.Decls.size() > 0) {
1229 Decl *D = LA.Decls[0];
1230 NamedDecl *ND = dyn_cast<NamedDecl>(D);
1231 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1232
1233 // Allow 'this' within late-parsed attributes.
1234 Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1235 ND && ND->isCXXInstanceMember());
1236
1237 if (LA.Decls.size() == 1) {
1238 // If the Decl is templatized, add template parameters to scope.
1239 bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1240 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1241 if (HasTemplateScope)
1242 Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1243
1244 // If the Decl is on a function, add function parameters to the scope.
1245 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1246 ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1247 if (HasFunScope)
1248 Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1249
1250 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1251 nullptr, SourceLocation(), AttributeList::AS_GNU,
1252 nullptr);
1253
1254 if (HasFunScope) {
1255 Actions.ActOnExitFunctionContext();
1256 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver
1257 }
1258 if (HasTemplateScope) {
1259 TempScope.Exit();
1260 }
1261 } else {
1262 // If there are multiple decls, then the decl cannot be within the
1263 // function scope.
1264 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1265 nullptr, SourceLocation(), AttributeList::AS_GNU,
1266 nullptr);
1267 }
1268 } else {
1269 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1270 }
1271
1272 const AttributeList *AL = Attrs.getList();
1273 if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1274 AL->isKnownToGCC())
1275 Diag(Tok, diag::warn_attribute_on_function_definition)
1276 << &LA.AttrName;
1277
1278 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1279 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1280
1281 // Due to a parsing error, we either went over the cached tokens or
1282 // there are still cached tokens left, so we skip the leftover tokens.
1283 while (Tok.isNot(tok::eof))
1284 ConsumeAnyToken();
1285
1286 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1287 ConsumeAnyToken();
1288 }
1289
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1290 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1291 SourceLocation AttrNameLoc,
1292 ParsedAttributes &Attrs,
1293 SourceLocation *EndLoc,
1294 IdentifierInfo *ScopeName,
1295 SourceLocation ScopeLoc,
1296 AttributeList::Syntax Syntax) {
1297 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1298
1299 BalancedDelimiterTracker T(*this, tok::l_paren);
1300 T.consumeOpen();
1301
1302 if (Tok.isNot(tok::identifier)) {
1303 Diag(Tok, diag::err_expected) << tok::identifier;
1304 T.skipToEnd();
1305 return;
1306 }
1307 IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1308
1309 if (ExpectAndConsume(tok::comma)) {
1310 T.skipToEnd();
1311 return;
1312 }
1313
1314 SourceRange MatchingCTypeRange;
1315 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1316 if (MatchingCType.isInvalid()) {
1317 T.skipToEnd();
1318 return;
1319 }
1320
1321 bool LayoutCompatible = false;
1322 bool MustBeNull = false;
1323 while (TryConsumeToken(tok::comma)) {
1324 if (Tok.isNot(tok::identifier)) {
1325 Diag(Tok, diag::err_expected) << tok::identifier;
1326 T.skipToEnd();
1327 return;
1328 }
1329 IdentifierInfo *Flag = Tok.getIdentifierInfo();
1330 if (Flag->isStr("layout_compatible"))
1331 LayoutCompatible = true;
1332 else if (Flag->isStr("must_be_null"))
1333 MustBeNull = true;
1334 else {
1335 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1336 T.skipToEnd();
1337 return;
1338 }
1339 ConsumeToken(); // consume flag
1340 }
1341
1342 if (!T.consumeClose()) {
1343 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1344 ArgumentKind, MatchingCType.get(),
1345 LayoutCompatible, MustBeNull, Syntax);
1346 }
1347
1348 if (EndLoc)
1349 *EndLoc = T.getCloseLocation();
1350 }
1351
1352 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1353 /// of a C++11 attribute-specifier in a location where an attribute is not
1354 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1355 /// situation.
1356 ///
1357 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1358 /// this doesn't appear to actually be an attribute-specifier, and the caller
1359 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1360 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1361 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1362
1363 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1364 case CAK_NotAttributeSpecifier:
1365 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1366 return false;
1367
1368 case CAK_InvalidAttributeSpecifier:
1369 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1370 return false;
1371
1372 case CAK_AttributeSpecifier:
1373 // Parse and discard the attributes.
1374 SourceLocation BeginLoc = ConsumeBracket();
1375 ConsumeBracket();
1376 SkipUntil(tok::r_square);
1377 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1378 SourceLocation EndLoc = ConsumeBracket();
1379 Diag(BeginLoc, diag::err_attributes_not_allowed)
1380 << SourceRange(BeginLoc, EndLoc);
1381 return true;
1382 }
1383 llvm_unreachable("All cases handled above.");
1384 }
1385
1386 /// \brief We have found the opening square brackets of a C++11
1387 /// attribute-specifier in a location where an attribute is not permitted, but
1388 /// we know where the attributes ought to be written. Parse them anyway, and
1389 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1390 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1391 SourceLocation CorrectLocation) {
1392 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1393 Tok.is(tok::kw_alignas));
1394
1395 // Consume the attributes.
1396 SourceLocation Loc = Tok.getLocation();
1397 ParseCXX11Attributes(Attrs);
1398 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1399
1400 Diag(Loc, diag::err_attributes_not_allowed)
1401 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1402 << FixItHint::CreateRemoval(AttrRange);
1403 }
1404
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1405 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1406 Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1407 << attrs.Range;
1408 }
1409
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1410 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1411 AttributeList *AttrList = attrs.getList();
1412 while (AttrList) {
1413 if (AttrList->isCXX11Attribute()) {
1414 Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1415 << AttrList->getName();
1416 AttrList->setInvalid();
1417 }
1418 AttrList = AttrList->getNext();
1419 }
1420 }
1421
1422 // As an exception to the rule, __declspec(align(...)) before the
1423 // class-key affects the type instead of the variable.
handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange & Attrs,DeclSpec & DS,Sema::TagUseKind TUK)1424 void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs,
1425 DeclSpec &DS,
1426 Sema::TagUseKind TUK) {
1427 if (TUK == Sema::TUK_Reference)
1428 return;
1429
1430 ParsedAttributes &PA = DS.getAttributes();
1431 AttributeList *AL = PA.getList();
1432 AttributeList *Prev = nullptr;
1433 while (AL) {
1434 AttributeList *Next = AL->getNext();
1435
1436 // We only consider attributes using the appropriate '__declspec' spelling.
1437 // This behavior doesn't extend to any other spellings.
1438 if (AL->getKind() == AttributeList::AT_Aligned &&
1439 AL->isDeclspecAttribute()) {
1440 // Stitch the attribute into the tag's attribute list.
1441 AL->setNext(nullptr);
1442 Attrs.add(AL);
1443
1444 // Remove the attribute from the variable's attribute list.
1445 if (Prev) {
1446 // Set the last variable attribute's next attribute to be the attribute
1447 // after the current one.
1448 Prev->setNext(Next);
1449 } else {
1450 // Removing the head of the list requires us to reset the head to the
1451 // next attribute.
1452 PA.set(Next);
1453 }
1454 } else {
1455 Prev = AL;
1456 }
1457
1458 AL = Next;
1459 }
1460 }
1461
1462 /// ParseDeclaration - Parse a full 'declaration', which consists of
1463 /// declaration-specifiers, some number of declarators, and a semicolon.
1464 /// 'Context' should be a Declarator::TheContext value. This returns the
1465 /// location of the semicolon in DeclEnd.
1466 ///
1467 /// declaration: [C99 6.7]
1468 /// block-declaration ->
1469 /// simple-declaration
1470 /// others [FIXME]
1471 /// [C++] template-declaration
1472 /// [C++] namespace-definition
1473 /// [C++] using-directive
1474 /// [C++] using-declaration
1475 /// [C++11/C11] static_assert-declaration
1476 /// others... [FIXME]
1477 ///
ParseDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1478 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1479 SourceLocation &DeclEnd,
1480 ParsedAttributesWithRange &attrs) {
1481 ParenBraceBracketBalancer BalancerRAIIObj(*this);
1482 // Must temporarily exit the objective-c container scope for
1483 // parsing c none objective-c decls.
1484 ObjCDeclContextSwitch ObjCDC(*this);
1485
1486 Decl *SingleDecl = nullptr;
1487 Decl *OwnedType = nullptr;
1488 switch (Tok.getKind()) {
1489 case tok::kw_template:
1490 case tok::kw_export:
1491 ProhibitAttributes(attrs);
1492 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1493 break;
1494 case tok::kw_inline:
1495 // Could be the start of an inline namespace. Allowed as an ext in C++03.
1496 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1497 ProhibitAttributes(attrs);
1498 SourceLocation InlineLoc = ConsumeToken();
1499 return ParseNamespace(Context, DeclEnd, InlineLoc);
1500 }
1501 return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1502 true);
1503 case tok::kw_namespace:
1504 ProhibitAttributes(attrs);
1505 return ParseNamespace(Context, DeclEnd);
1506 case tok::kw_using:
1507 SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1508 DeclEnd, attrs, &OwnedType);
1509 break;
1510 case tok::kw_static_assert:
1511 case tok::kw__Static_assert:
1512 ProhibitAttributes(attrs);
1513 SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1514 break;
1515 default:
1516 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1517 }
1518
1519 // This routine returns a DeclGroup, if the thing we parsed only contains a
1520 // single decl, convert it now. Alias declarations can also declare a type;
1521 // include that too if it is present.
1522 return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1523 }
1524
1525 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1526 /// declaration-specifiers init-declarator-list[opt] ';'
1527 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1528 /// init-declarator-list ';'
1529 ///[C90/C++]init-declarator-list ';' [TODO]
1530 /// [OMP] threadprivate-directive [TODO]
1531 ///
1532 /// for-range-declaration: [C++11 6.5p1: stmt.ranged]
1533 /// attribute-specifier-seq[opt] type-specifier-seq declarator
1534 ///
1535 /// If RequireSemi is false, this does not check for a ';' at the end of the
1536 /// declaration. If it is true, it checks for and eats it.
1537 ///
1538 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1539 /// of a simple-declaration. If we find that we are, we also parse the
1540 /// for-range-initializer, and place it here.
1541 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1542 Parser::ParseSimpleDeclaration(unsigned Context,
1543 SourceLocation &DeclEnd,
1544 ParsedAttributesWithRange &Attrs,
1545 bool RequireSemi, ForRangeInit *FRI) {
1546 // Parse the common declaration-specifiers piece.
1547 ParsingDeclSpec DS(*this);
1548
1549 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1550 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1551
1552 // If we had a free-standing type definition with a missing semicolon, we
1553 // may get this far before the problem becomes obvious.
1554 if (DS.hasTagDefinition() &&
1555 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1556 return nullptr;
1557
1558 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1559 // declaration-specifiers init-declarator-list[opt] ';'
1560 if (Tok.is(tok::semi)) {
1561 ProhibitAttributes(Attrs);
1562 DeclEnd = Tok.getLocation();
1563 if (RequireSemi) ConsumeToken();
1564 RecordDecl *AnonRecord = nullptr;
1565 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1566 DS, AnonRecord);
1567 DS.complete(TheDecl);
1568 if (AnonRecord) {
1569 Decl* decls[] = {AnonRecord, TheDecl};
1570 return Actions.BuildDeclaratorGroup(decls, /*TypeMayContainAuto=*/false);
1571 }
1572 return Actions.ConvertDeclToDeclGroup(TheDecl);
1573 }
1574
1575 DS.takeAttributesFrom(Attrs);
1576 return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1577 }
1578
1579 /// Returns true if this might be the start of a declarator, or a common typo
1580 /// for a declarator.
MightBeDeclarator(unsigned Context)1581 bool Parser::MightBeDeclarator(unsigned Context) {
1582 switch (Tok.getKind()) {
1583 case tok::annot_cxxscope:
1584 case tok::annot_template_id:
1585 case tok::caret:
1586 case tok::code_completion:
1587 case tok::coloncolon:
1588 case tok::ellipsis:
1589 case tok::kw___attribute:
1590 case tok::kw_operator:
1591 case tok::l_paren:
1592 case tok::star:
1593 return true;
1594
1595 case tok::amp:
1596 case tok::ampamp:
1597 return getLangOpts().CPlusPlus;
1598
1599 case tok::l_square: // Might be an attribute on an unnamed bit-field.
1600 return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1601 NextToken().is(tok::l_square);
1602
1603 case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1604 return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1605
1606 case tok::identifier:
1607 switch (NextToken().getKind()) {
1608 case tok::code_completion:
1609 case tok::coloncolon:
1610 case tok::comma:
1611 case tok::equal:
1612 case tok::equalequal: // Might be a typo for '='.
1613 case tok::kw_alignas:
1614 case tok::kw_asm:
1615 case tok::kw___attribute:
1616 case tok::l_brace:
1617 case tok::l_paren:
1618 case tok::l_square:
1619 case tok::less:
1620 case tok::r_brace:
1621 case tok::r_paren:
1622 case tok::r_square:
1623 case tok::semi:
1624 return true;
1625
1626 case tok::colon:
1627 // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1628 // and in block scope it's probably a label. Inside a class definition,
1629 // this is a bit-field.
1630 return Context == Declarator::MemberContext ||
1631 (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1632
1633 case tok::identifier: // Possible virt-specifier.
1634 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1635
1636 default:
1637 return false;
1638 }
1639
1640 default:
1641 return false;
1642 }
1643 }
1644
1645 /// Skip until we reach something which seems like a sensible place to pick
1646 /// up parsing after a malformed declaration. This will sometimes stop sooner
1647 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1648 void Parser::SkipMalformedDecl() {
1649 while (true) {
1650 switch (Tok.getKind()) {
1651 case tok::l_brace:
1652 // Skip until matching }, then stop. We've probably skipped over
1653 // a malformed class or function definition or similar.
1654 ConsumeBrace();
1655 SkipUntil(tok::r_brace);
1656 if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
1657 // This declaration isn't over yet. Keep skipping.
1658 continue;
1659 }
1660 TryConsumeToken(tok::semi);
1661 return;
1662
1663 case tok::l_square:
1664 ConsumeBracket();
1665 SkipUntil(tok::r_square);
1666 continue;
1667
1668 case tok::l_paren:
1669 ConsumeParen();
1670 SkipUntil(tok::r_paren);
1671 continue;
1672
1673 case tok::r_brace:
1674 return;
1675
1676 case tok::semi:
1677 ConsumeToken();
1678 return;
1679
1680 case tok::kw_inline:
1681 // 'inline namespace' at the start of a line is almost certainly
1682 // a good place to pick back up parsing, except in an Objective-C
1683 // @interface context.
1684 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1685 (!ParsingInObjCContainer || CurParsedObjCImpl))
1686 return;
1687 break;
1688
1689 case tok::kw_namespace:
1690 // 'namespace' at the start of a line is almost certainly a good
1691 // place to pick back up parsing, except in an Objective-C
1692 // @interface context.
1693 if (Tok.isAtStartOfLine() &&
1694 (!ParsingInObjCContainer || CurParsedObjCImpl))
1695 return;
1696 break;
1697
1698 case tok::at:
1699 // @end is very much like } in Objective-C contexts.
1700 if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1701 ParsingInObjCContainer)
1702 return;
1703 break;
1704
1705 case tok::minus:
1706 case tok::plus:
1707 // - and + probably start new method declarations in Objective-C contexts.
1708 if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1709 return;
1710 break;
1711
1712 case tok::eof:
1713 case tok::annot_module_begin:
1714 case tok::annot_module_end:
1715 case tok::annot_module_include:
1716 return;
1717
1718 default:
1719 break;
1720 }
1721
1722 ConsumeAnyToken();
1723 }
1724 }
1725
1726 /// ParseDeclGroup - Having concluded that this is either a function
1727 /// definition or a group of object declarations, actually parse the
1728 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,SourceLocation * DeclEnd,ForRangeInit * FRI)1729 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1730 unsigned Context,
1731 SourceLocation *DeclEnd,
1732 ForRangeInit *FRI) {
1733 // Parse the first declarator.
1734 ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1735 ParseDeclarator(D);
1736
1737 // Bail out if the first declarator didn't seem well-formed.
1738 if (!D.hasName() && !D.mayOmitIdentifier()) {
1739 SkipMalformedDecl();
1740 return nullptr;
1741 }
1742
1743 // Save late-parsed attributes for now; they need to be parsed in the
1744 // appropriate function scope after the function Decl has been constructed.
1745 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1746 LateParsedAttrList LateParsedAttrs(true);
1747 if (D.isFunctionDeclarator()) {
1748 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1749
1750 // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1751 // attribute. If we find the keyword here, tell the user to put it
1752 // at the start instead.
1753 if (Tok.is(tok::kw__Noreturn)) {
1754 SourceLocation Loc = ConsumeToken();
1755 const char *PrevSpec;
1756 unsigned DiagID;
1757
1758 // We can offer a fixit if it's valid to mark this function as _Noreturn
1759 // and we don't have any other declarators in this declaration.
1760 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1761 MaybeParseGNUAttributes(D, &LateParsedAttrs);
1762 Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
1763
1764 Diag(Loc, diag::err_c11_noreturn_misplaced)
1765 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1766 << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1767 : FixItHint());
1768 }
1769 }
1770
1771 // Check to see if we have a function *definition* which must have a body.
1772 if (D.isFunctionDeclarator() &&
1773 // Look at the next token to make sure that this isn't a function
1774 // declaration. We have to check this because __attribute__ might be the
1775 // start of a function definition in GCC-extended K&R C.
1776 !isDeclarationAfterDeclarator()) {
1777
1778 // Function definitions are only allowed at file scope and in C++ classes.
1779 // The C++ inline method definition case is handled elsewhere, so we only
1780 // need to handle the file scope definition case.
1781 if (Context == Declarator::FileContext) {
1782 if (isStartOfFunctionDefinition(D)) {
1783 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1784 Diag(Tok, diag::err_function_declared_typedef);
1785
1786 // Recover by treating the 'typedef' as spurious.
1787 DS.ClearStorageClassSpecs();
1788 }
1789
1790 Decl *TheDecl =
1791 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1792 return Actions.ConvertDeclToDeclGroup(TheDecl);
1793 }
1794
1795 if (isDeclarationSpecifier()) {
1796 // If there is an invalid declaration specifier right after the
1797 // function prototype, then we must be in a missing semicolon case
1798 // where this isn't actually a body. Just fall through into the code
1799 // that handles it as a prototype, and let the top-level code handle
1800 // the erroneous declspec where it would otherwise expect a comma or
1801 // semicolon.
1802 } else {
1803 Diag(Tok, diag::err_expected_fn_body);
1804 SkipUntil(tok::semi);
1805 return nullptr;
1806 }
1807 } else {
1808 if (Tok.is(tok::l_brace)) {
1809 Diag(Tok, diag::err_function_definition_not_allowed);
1810 SkipMalformedDecl();
1811 return nullptr;
1812 }
1813 }
1814 }
1815
1816 if (ParseAsmAttributesAfterDeclarator(D))
1817 return nullptr;
1818
1819 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1820 // must parse and analyze the for-range-initializer before the declaration is
1821 // analyzed.
1822 //
1823 // Handle the Objective-C for-in loop variable similarly, although we
1824 // don't need to parse the container in advance.
1825 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1826 bool IsForRangeLoop = false;
1827 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1828 IsForRangeLoop = true;
1829 if (Tok.is(tok::l_brace))
1830 FRI->RangeExpr = ParseBraceInitializer();
1831 else
1832 FRI->RangeExpr = ParseExpression();
1833 }
1834
1835 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1836 if (IsForRangeLoop)
1837 Actions.ActOnCXXForRangeDecl(ThisDecl);
1838 Actions.FinalizeDeclaration(ThisDecl);
1839 D.complete(ThisDecl);
1840 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1841 }
1842
1843 SmallVector<Decl *, 8> DeclsInGroup;
1844 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1845 D, ParsedTemplateInfo(), FRI);
1846 if (LateParsedAttrs.size() > 0)
1847 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1848 D.complete(FirstDecl);
1849 if (FirstDecl)
1850 DeclsInGroup.push_back(FirstDecl);
1851
1852 bool ExpectSemi = Context != Declarator::ForContext;
1853
1854 // If we don't have a comma, it is either the end of the list (a ';') or an
1855 // error, bail out.
1856 SourceLocation CommaLoc;
1857 while (TryConsumeToken(tok::comma, CommaLoc)) {
1858 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1859 // This comma was followed by a line-break and something which can't be
1860 // the start of a declarator. The comma was probably a typo for a
1861 // semicolon.
1862 Diag(CommaLoc, diag::err_expected_semi_declaration)
1863 << FixItHint::CreateReplacement(CommaLoc, ";");
1864 ExpectSemi = false;
1865 break;
1866 }
1867
1868 // Parse the next declarator.
1869 D.clear();
1870 D.setCommaLoc(CommaLoc);
1871
1872 // Accept attributes in an init-declarator. In the first declarator in a
1873 // declaration, these would be part of the declspec. In subsequent
1874 // declarators, they become part of the declarator itself, so that they
1875 // don't apply to declarators after *this* one. Examples:
1876 // short __attribute__((common)) var; -> declspec
1877 // short var __attribute__((common)); -> declarator
1878 // short x, __attribute__((common)) var; -> declarator
1879 MaybeParseGNUAttributes(D);
1880
1881 // MSVC parses but ignores qualifiers after the comma as an extension.
1882 if (getLangOpts().MicrosoftExt)
1883 DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1884
1885 ParseDeclarator(D);
1886 if (!D.isInvalidType()) {
1887 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1888 D.complete(ThisDecl);
1889 if (ThisDecl)
1890 DeclsInGroup.push_back(ThisDecl);
1891 }
1892 }
1893
1894 if (DeclEnd)
1895 *DeclEnd = Tok.getLocation();
1896
1897 if (ExpectSemi &&
1898 ExpectAndConsumeSemi(Context == Declarator::FileContext
1899 ? diag::err_invalid_token_after_toplevel_declarator
1900 : diag::err_expected_semi_declaration)) {
1901 // Okay, there was no semicolon and one was expected. If we see a
1902 // declaration specifier, just assume it was missing and continue parsing.
1903 // Otherwise things are very confused and we skip to recover.
1904 if (!isDeclarationSpecifier()) {
1905 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1906 TryConsumeToken(tok::semi);
1907 }
1908 }
1909
1910 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1911 }
1912
1913 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1914 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1915 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1916 // If a simple-asm-expr is present, parse it.
1917 if (Tok.is(tok::kw_asm)) {
1918 SourceLocation Loc;
1919 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1920 if (AsmLabel.isInvalid()) {
1921 SkipUntil(tok::semi, StopBeforeMatch);
1922 return true;
1923 }
1924
1925 D.setAsmLabel(AsmLabel.get());
1926 D.SetRangeEnd(Loc);
1927 }
1928
1929 MaybeParseGNUAttributes(D);
1930 return false;
1931 }
1932
1933 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1934 /// declarator'. This method parses the remainder of the declaration
1935 /// (including any attributes or initializer, among other things) and
1936 /// finalizes the declaration.
1937 ///
1938 /// init-declarator: [C99 6.7]
1939 /// declarator
1940 /// declarator '=' initializer
1941 /// [GNU] declarator simple-asm-expr[opt] attributes[opt]
1942 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1943 /// [C++] declarator initializer[opt]
1944 ///
1945 /// [C++] initializer:
1946 /// [C++] '=' initializer-clause
1947 /// [C++] '(' expression-list ')'
1948 /// [C++0x] '=' 'default' [TODO]
1949 /// [C++0x] '=' 'delete'
1950 /// [C++0x] braced-init-list
1951 ///
1952 /// According to the standard grammar, =default and =delete are function
1953 /// definitions, but that definitely doesn't fit with the parser here.
1954 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1955 Decl *Parser::ParseDeclarationAfterDeclarator(
1956 Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1957 if (ParseAsmAttributesAfterDeclarator(D))
1958 return nullptr;
1959
1960 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1961 }
1962
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1963 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1964 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1965 // Inform the current actions module that we just parsed this declarator.
1966 Decl *ThisDecl = nullptr;
1967 switch (TemplateInfo.Kind) {
1968 case ParsedTemplateInfo::NonTemplate:
1969 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1970 break;
1971
1972 case ParsedTemplateInfo::Template:
1973 case ParsedTemplateInfo::ExplicitSpecialization: {
1974 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1975 *TemplateInfo.TemplateParams,
1976 D);
1977 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1978 // Re-direct this decl to refer to the templated decl so that we can
1979 // initialize it.
1980 ThisDecl = VT->getTemplatedDecl();
1981 break;
1982 }
1983 case ParsedTemplateInfo::ExplicitInstantiation: {
1984 if (Tok.is(tok::semi)) {
1985 DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1986 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1987 if (ThisRes.isInvalid()) {
1988 SkipUntil(tok::semi, StopBeforeMatch);
1989 return nullptr;
1990 }
1991 ThisDecl = ThisRes.get();
1992 } else {
1993 // FIXME: This check should be for a variable template instantiation only.
1994
1995 // Check that this is a valid instantiation
1996 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1997 // If the declarator-id is not a template-id, issue a diagnostic and
1998 // recover by ignoring the 'template' keyword.
1999 Diag(Tok, diag::err_template_defn_explicit_instantiation)
2000 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2001 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2002 } else {
2003 SourceLocation LAngleLoc =
2004 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2005 Diag(D.getIdentifierLoc(),
2006 diag::err_explicit_instantiation_with_definition)
2007 << SourceRange(TemplateInfo.TemplateLoc)
2008 << FixItHint::CreateInsertion(LAngleLoc, "<>");
2009
2010 // Recover as if it were an explicit specialization.
2011 TemplateParameterLists FakedParamLists;
2012 FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2013 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
2014 LAngleLoc, nullptr));
2015
2016 ThisDecl =
2017 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2018 }
2019 }
2020 break;
2021 }
2022 }
2023
2024 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
2025
2026 // Parse declarator '=' initializer.
2027 // If a '==' or '+=' is found, suggest a fixit to '='.
2028 if (isTokenEqualOrEqualTypo()) {
2029 SourceLocation EqualLoc = ConsumeToken();
2030
2031 if (Tok.is(tok::kw_delete)) {
2032 if (D.isFunctionDeclarator())
2033 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2034 << 1 /* delete */;
2035 else
2036 Diag(ConsumeToken(), diag::err_deleted_non_function);
2037 } else if (Tok.is(tok::kw_default)) {
2038 if (D.isFunctionDeclarator())
2039 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2040 << 0 /* default */;
2041 else
2042 Diag(ConsumeToken(), diag::err_default_special_members);
2043 } else {
2044 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2045 EnterScope(0);
2046 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2047 }
2048
2049 if (Tok.is(tok::code_completion)) {
2050 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2051 Actions.FinalizeDeclaration(ThisDecl);
2052 cutOffParsing();
2053 return nullptr;
2054 }
2055
2056 ExprResult Init(ParseInitializer());
2057
2058 // If this is the only decl in (possibly) range based for statement,
2059 // our best guess is that the user meant ':' instead of '='.
2060 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2061 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2062 << FixItHint::CreateReplacement(EqualLoc, ":");
2063 // We are trying to stop parser from looking for ';' in this for
2064 // statement, therefore preventing spurious errors to be issued.
2065 FRI->ColonLoc = EqualLoc;
2066 Init = ExprError();
2067 FRI->RangeExpr = Init;
2068 }
2069
2070 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2071 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2072 ExitScope();
2073 }
2074
2075 if (Init.isInvalid()) {
2076 SmallVector<tok::TokenKind, 2> StopTokens;
2077 StopTokens.push_back(tok::comma);
2078 if (D.getContext() == Declarator::ForContext ||
2079 D.getContext() == Declarator::InitStmtContext)
2080 StopTokens.push_back(tok::r_paren);
2081 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2082 Actions.ActOnInitializerError(ThisDecl);
2083 } else
2084 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2085 /*DirectInit=*/false, TypeContainsAuto);
2086 }
2087 } else if (Tok.is(tok::l_paren)) {
2088 // Parse C++ direct initializer: '(' expression-list ')'
2089 BalancedDelimiterTracker T(*this, tok::l_paren);
2090 T.consumeOpen();
2091
2092 ExprVector Exprs;
2093 CommaLocsTy CommaLocs;
2094
2095 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2096 EnterScope(0);
2097 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2098 }
2099
2100 if (ParseExpressionList(Exprs, CommaLocs, [&] {
2101 Actions.CodeCompleteConstructor(getCurScope(),
2102 cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
2103 ThisDecl->getLocation(), Exprs);
2104 })) {
2105 Actions.ActOnInitializerError(ThisDecl);
2106 SkipUntil(tok::r_paren, StopAtSemi);
2107
2108 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2109 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2110 ExitScope();
2111 }
2112 } else {
2113 // Match the ')'.
2114 T.consumeClose();
2115
2116 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2117 "Unexpected number of commas!");
2118
2119 if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2120 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2121 ExitScope();
2122 }
2123
2124 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2125 T.getCloseLocation(),
2126 Exprs);
2127 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2128 /*DirectInit=*/true, TypeContainsAuto);
2129 }
2130 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2131 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2132 // Parse C++0x braced-init-list.
2133 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2134
2135 if (D.getCXXScopeSpec().isSet()) {
2136 EnterScope(0);
2137 Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2138 }
2139
2140 ExprResult Init(ParseBraceInitializer());
2141
2142 if (D.getCXXScopeSpec().isSet()) {
2143 Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2144 ExitScope();
2145 }
2146
2147 if (Init.isInvalid()) {
2148 Actions.ActOnInitializerError(ThisDecl);
2149 } else
2150 Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2151 /*DirectInit=*/true, TypeContainsAuto);
2152
2153 } else {
2154 Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2155 }
2156
2157 Actions.FinalizeDeclaration(ThisDecl);
2158
2159 return ThisDecl;
2160 }
2161
2162 /// ParseSpecifierQualifierList
2163 /// specifier-qualifier-list:
2164 /// type-specifier specifier-qualifier-list[opt]
2165 /// type-qualifier specifier-qualifier-list[opt]
2166 /// [GNU] attributes specifier-qualifier-list[opt]
2167 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)2168 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2169 DeclSpecContext DSC) {
2170 /// specifier-qualifier-list is a subset of declaration-specifiers. Just
2171 /// parse declaration-specifiers and complain about extra stuff.
2172 /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2173 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2174
2175 // Validate declspec for type-name.
2176 unsigned Specs = DS.getParsedSpecifiers();
2177 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2178 Diag(Tok, diag::err_expected_type);
2179 DS.SetTypeSpecError();
2180 } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2181 Diag(Tok, diag::err_typename_requires_specqual);
2182 if (!DS.hasTypeSpecifier())
2183 DS.SetTypeSpecError();
2184 }
2185
2186 // Issue diagnostic and remove storage class if present.
2187 if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2188 if (DS.getStorageClassSpecLoc().isValid())
2189 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2190 else
2191 Diag(DS.getThreadStorageClassSpecLoc(),
2192 diag::err_typename_invalid_storageclass);
2193 DS.ClearStorageClassSpecs();
2194 }
2195
2196 // Issue diagnostic and remove function specifier if present.
2197 if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2198 if (DS.isInlineSpecified())
2199 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2200 if (DS.isVirtualSpecified())
2201 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2202 if (DS.isExplicitSpecified())
2203 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2204 DS.ClearFunctionSpecs();
2205 }
2206
2207 // Issue diagnostic and remove constexpr specfier if present.
2208 if (DS.isConstexprSpecified() && DSC != DSC_condition) {
2209 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2210 DS.ClearConstexprSpec();
2211 }
2212 }
2213
2214 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2215 /// specified token is valid after the identifier in a declarator which
2216 /// immediately follows the declspec. For example, these things are valid:
2217 ///
2218 /// int x [ 4]; // direct-declarator
2219 /// int x ( int y); // direct-declarator
2220 /// int(int x ) // direct-declarator
2221 /// int x ; // simple-declaration
2222 /// int x = 17; // init-declarator-list
2223 /// int x , y; // init-declarator-list
2224 /// int x __asm__ ("foo"); // init-declarator-list
2225 /// int x : 4; // struct-declarator
2226 /// int x { 5}; // C++'0x unified initializers
2227 ///
2228 /// This is not, because 'x' does not immediately follow the declspec (though
2229 /// ')' happens to be valid anyway).
2230 /// int (x)
2231 ///
isValidAfterIdentifierInDeclarator(const Token & T)2232 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2233 return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2234 tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2235 tok::colon);
2236 }
2237
2238 /// ParseImplicitInt - This method is called when we have an non-typename
2239 /// identifier in a declspec (which normally terminates the decl spec) when
2240 /// the declspec has no type specifier. In this case, the declspec is either
2241 /// malformed or is "implicit int" (in K&R and C89).
2242 ///
2243 /// This method handles diagnosing this prettily and returns false if the
2244 /// declspec is done being processed. If it recovers and thinks there may be
2245 /// other pieces of declspec after it, it returns true.
2246 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2247 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2248 const ParsedTemplateInfo &TemplateInfo,
2249 AccessSpecifier AS, DeclSpecContext DSC,
2250 ParsedAttributesWithRange &Attrs) {
2251 assert(Tok.is(tok::identifier) && "should have identifier");
2252
2253 SourceLocation Loc = Tok.getLocation();
2254 // If we see an identifier that is not a type name, we normally would
2255 // parse it as the identifer being declared. However, when a typename
2256 // is typo'd or the definition is not included, this will incorrectly
2257 // parse the typename as the identifier name and fall over misparsing
2258 // later parts of the diagnostic.
2259 //
2260 // As such, we try to do some look-ahead in cases where this would
2261 // otherwise be an "implicit-int" case to see if this is invalid. For
2262 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as
2263 // an identifier with implicit int, we'd get a parse error because the
2264 // next token is obviously invalid for a type. Parse these as a case
2265 // with an invalid type specifier.
2266 assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2267
2268 // Since we know that this either implicit int (which is rare) or an
2269 // error, do lookahead to try to do better recovery. This never applies
2270 // within a type specifier. Outside of C++, we allow this even if the
2271 // language doesn't "officially" support implicit int -- we support
2272 // implicit int as an extension in C99 and C11.
2273 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2274 isValidAfterIdentifierInDeclarator(NextToken())) {
2275 // If this token is valid for implicit int, e.g. "static x = 4", then
2276 // we just avoid eating the identifier, so it will be parsed as the
2277 // identifier in the declarator.
2278 return false;
2279 }
2280
2281 if (getLangOpts().CPlusPlus &&
2282 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2283 // Don't require a type specifier if we have the 'auto' storage class
2284 // specifier in C++98 -- we'll promote it to a type specifier.
2285 if (SS)
2286 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2287 return false;
2288 }
2289
2290 if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2291 getLangOpts().MSVCCompat) {
2292 // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2293 // Give Sema a chance to recover if we are in a template with dependent base
2294 // classes.
2295 if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2296 *Tok.getIdentifierInfo(), Tok.getLocation(),
2297 DSC == DSC_template_type_arg)) {
2298 const char *PrevSpec;
2299 unsigned DiagID;
2300 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2301 Actions.getASTContext().getPrintingPolicy());
2302 DS.SetRangeEnd(Tok.getLocation());
2303 ConsumeToken();
2304 return false;
2305 }
2306 }
2307
2308 // Otherwise, if we don't consume this token, we are going to emit an
2309 // error anyway. Try to recover from various common problems. Check
2310 // to see if this was a reference to a tag name without a tag specified.
2311 // This is a common problem in C (saying 'foo' instead of 'struct foo').
2312 //
2313 // C++ doesn't need this, and isTagName doesn't take SS.
2314 if (SS == nullptr) {
2315 const char *TagName = nullptr, *FixitTagName = nullptr;
2316 tok::TokenKind TagKind = tok::unknown;
2317
2318 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2319 default: break;
2320 case DeclSpec::TST_enum:
2321 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
2322 case DeclSpec::TST_union:
2323 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2324 case DeclSpec::TST_struct:
2325 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2326 case DeclSpec::TST_interface:
2327 TagName="__interface"; FixitTagName = "__interface ";
2328 TagKind=tok::kw___interface;break;
2329 case DeclSpec::TST_class:
2330 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2331 }
2332
2333 if (TagName) {
2334 IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2335 LookupResult R(Actions, TokenName, SourceLocation(),
2336 Sema::LookupOrdinaryName);
2337
2338 Diag(Loc, diag::err_use_of_tag_name_without_tag)
2339 << TokenName << TagName << getLangOpts().CPlusPlus
2340 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2341
2342 if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2343 for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2344 I != IEnd; ++I)
2345 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2346 << TokenName << TagName;
2347 }
2348
2349 // Parse this as a tag as if the missing tag were present.
2350 if (TagKind == tok::kw_enum)
2351 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2352 else
2353 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2354 /*EnteringContext*/ false, DSC_normal, Attrs);
2355 return true;
2356 }
2357 }
2358
2359 // Determine whether this identifier could plausibly be the name of something
2360 // being declared (with a missing type).
2361 if (!isTypeSpecifier(DSC) &&
2362 (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2363 // Look ahead to the next token to try to figure out what this declaration
2364 // was supposed to be.
2365 switch (NextToken().getKind()) {
2366 case tok::l_paren: {
2367 // static x(4); // 'x' is not a type
2368 // x(int n); // 'x' is not a type
2369 // x (*p)[]; // 'x' is a type
2370 //
2371 // Since we're in an error case, we can afford to perform a tentative
2372 // parse to determine which case we're in.
2373 TentativeParsingAction PA(*this);
2374 ConsumeToken();
2375 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2376 PA.Revert();
2377
2378 if (TPR != TPResult::False) {
2379 // The identifier is followed by a parenthesized declarator.
2380 // It's supposed to be a type.
2381 break;
2382 }
2383
2384 // If we're in a context where we could be declaring a constructor,
2385 // check whether this is a constructor declaration with a bogus name.
2386 if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2387 IdentifierInfo *II = Tok.getIdentifierInfo();
2388 if (Actions.isCurrentClassNameTypo(II, SS)) {
2389 Diag(Loc, diag::err_constructor_bad_name)
2390 << Tok.getIdentifierInfo() << II
2391 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2392 Tok.setIdentifierInfo(II);
2393 }
2394 }
2395 // Fall through.
2396 }
2397 case tok::comma:
2398 case tok::equal:
2399 case tok::kw_asm:
2400 case tok::l_brace:
2401 case tok::l_square:
2402 case tok::semi:
2403 // This looks like a variable or function declaration. The type is
2404 // probably missing. We're done parsing decl-specifiers.
2405 if (SS)
2406 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2407 return false;
2408
2409 default:
2410 // This is probably supposed to be a type. This includes cases like:
2411 // int f(itn);
2412 // struct S { unsinged : 4; };
2413 break;
2414 }
2415 }
2416
2417 // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2418 // and attempt to recover.
2419 ParsedType T;
2420 IdentifierInfo *II = Tok.getIdentifierInfo();
2421 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2422 getLangOpts().CPlusPlus &&
2423 NextToken().is(tok::less));
2424 if (T) {
2425 // The action has suggested that the type T could be used. Set that as
2426 // the type in the declaration specifiers, consume the would-be type
2427 // name token, and we're done.
2428 const char *PrevSpec;
2429 unsigned DiagID;
2430 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2431 Actions.getASTContext().getPrintingPolicy());
2432 DS.SetRangeEnd(Tok.getLocation());
2433 ConsumeToken();
2434 // There may be other declaration specifiers after this.
2435 return true;
2436 } else if (II != Tok.getIdentifierInfo()) {
2437 // If no type was suggested, the correction is to a keyword
2438 Tok.setKind(II->getTokenID());
2439 // There may be other declaration specifiers after this.
2440 return true;
2441 }
2442
2443 // Otherwise, the action had no suggestion for us. Mark this as an error.
2444 DS.SetTypeSpecError();
2445 DS.SetRangeEnd(Tok.getLocation());
2446 ConsumeToken();
2447
2448 // TODO: Could inject an invalid typedef decl in an enclosing scope to
2449 // avoid rippling error messages on subsequent uses of the same type,
2450 // could be useful if #include was forgotten.
2451 return false;
2452 }
2453
2454 /// \brief Determine the declaration specifier context from the declarator
2455 /// context.
2456 ///
2457 /// \param Context the declarator context, which is one of the
2458 /// Declarator::TheContext enumerator values.
2459 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2460 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2461 if (Context == Declarator::MemberContext)
2462 return DSC_class;
2463 if (Context == Declarator::FileContext)
2464 return DSC_top_level;
2465 if (Context == Declarator::TemplateTypeArgContext)
2466 return DSC_template_type_arg;
2467 if (Context == Declarator::TrailingReturnContext)
2468 return DSC_trailing;
2469 if (Context == Declarator::AliasDeclContext ||
2470 Context == Declarator::AliasTemplateContext)
2471 return DSC_alias_declaration;
2472 return DSC_normal;
2473 }
2474
2475 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2476 ///
2477 /// FIXME: Simply returns an alignof() expression if the argument is a
2478 /// type. Ideally, the type should be propagated directly into Sema.
2479 ///
2480 /// [C11] type-id
2481 /// [C11] constant-expression
2482 /// [C++0x] type-id ...[opt]
2483 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2484 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2485 SourceLocation &EllipsisLoc) {
2486 ExprResult ER;
2487 if (isTypeIdInParens()) {
2488 SourceLocation TypeLoc = Tok.getLocation();
2489 ParsedType Ty = ParseTypeName().get();
2490 SourceRange TypeRange(Start, Tok.getLocation());
2491 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2492 Ty.getAsOpaquePtr(), TypeRange);
2493 } else
2494 ER = ParseConstantExpression();
2495
2496 if (getLangOpts().CPlusPlus11)
2497 TryConsumeToken(tok::ellipsis, EllipsisLoc);
2498
2499 return ER;
2500 }
2501
2502 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2503 /// attribute to Attrs.
2504 ///
2505 /// alignment-specifier:
2506 /// [C11] '_Alignas' '(' type-id ')'
2507 /// [C11] '_Alignas' '(' constant-expression ')'
2508 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2509 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2510 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2511 SourceLocation *EndLoc) {
2512 assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
2513 "Not an alignment-specifier!");
2514
2515 IdentifierInfo *KWName = Tok.getIdentifierInfo();
2516 SourceLocation KWLoc = ConsumeToken();
2517
2518 BalancedDelimiterTracker T(*this, tok::l_paren);
2519 if (T.expectAndConsume())
2520 return;
2521
2522 SourceLocation EllipsisLoc;
2523 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2524 if (ArgExpr.isInvalid()) {
2525 T.skipToEnd();
2526 return;
2527 }
2528
2529 T.consumeClose();
2530 if (EndLoc)
2531 *EndLoc = T.getCloseLocation();
2532
2533 ArgsVector ArgExprs;
2534 ArgExprs.push_back(ArgExpr.get());
2535 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2536 AttributeList::AS_Keyword, EllipsisLoc);
2537 }
2538
2539 /// Determine whether we're looking at something that might be a declarator
2540 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2541 /// diagnose a missing semicolon after a prior tag definition in the decl
2542 /// specifier.
2543 ///
2544 /// \return \c true if an error occurred and this can't be any kind of
2545 /// declaration.
2546 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2547 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2548 DeclSpecContext DSContext,
2549 LateParsedAttrList *LateAttrs) {
2550 assert(DS.hasTagDefinition() && "shouldn't call this");
2551
2552 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2553
2554 if (getLangOpts().CPlusPlus &&
2555 Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
2556 tok::annot_template_id) &&
2557 TryAnnotateCXXScopeToken(EnteringContext)) {
2558 SkipMalformedDecl();
2559 return true;
2560 }
2561
2562 bool HasScope = Tok.is(tok::annot_cxxscope);
2563 // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2564 Token AfterScope = HasScope ? NextToken() : Tok;
2565
2566 // Determine whether the following tokens could possibly be a
2567 // declarator.
2568 bool MightBeDeclarator = true;
2569 if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
2570 // A declarator-id can't start with 'typename'.
2571 MightBeDeclarator = false;
2572 } else if (AfterScope.is(tok::annot_template_id)) {
2573 // If we have a type expressed as a template-id, this cannot be a
2574 // declarator-id (such a type cannot be redeclared in a simple-declaration).
2575 TemplateIdAnnotation *Annot =
2576 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2577 if (Annot->Kind == TNK_Type_template)
2578 MightBeDeclarator = false;
2579 } else if (AfterScope.is(tok::identifier)) {
2580 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2581
2582 // These tokens cannot come after the declarator-id in a
2583 // simple-declaration, and are likely to come after a type-specifier.
2584 if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
2585 tok::annot_cxxscope, tok::coloncolon)) {
2586 // Missing a semicolon.
2587 MightBeDeclarator = false;
2588 } else if (HasScope) {
2589 // If the declarator-id has a scope specifier, it must redeclare a
2590 // previously-declared entity. If that's a type (and this is not a
2591 // typedef), that's an error.
2592 CXXScopeSpec SS;
2593 Actions.RestoreNestedNameSpecifierAnnotation(
2594 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2595 IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2596 Sema::NameClassification Classification = Actions.ClassifyName(
2597 getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2598 /*IsAddressOfOperand*/false);
2599 switch (Classification.getKind()) {
2600 case Sema::NC_Error:
2601 SkipMalformedDecl();
2602 return true;
2603
2604 case Sema::NC_Keyword:
2605 case Sema::NC_NestedNameSpecifier:
2606 llvm_unreachable("typo correction and nested name specifiers not "
2607 "possible here");
2608
2609 case Sema::NC_Type:
2610 case Sema::NC_TypeTemplate:
2611 // Not a previously-declared non-type entity.
2612 MightBeDeclarator = false;
2613 break;
2614
2615 case Sema::NC_Unknown:
2616 case Sema::NC_Expression:
2617 case Sema::NC_VarTemplate:
2618 case Sema::NC_FunctionTemplate:
2619 // Might be a redeclaration of a prior entity.
2620 break;
2621 }
2622 }
2623 }
2624
2625 if (MightBeDeclarator)
2626 return false;
2627
2628 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2629 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2630 diag::err_expected_after)
2631 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2632
2633 // Try to recover from the typo, by dropping the tag definition and parsing
2634 // the problematic tokens as a type.
2635 //
2636 // FIXME: Split the DeclSpec into pieces for the standalone
2637 // declaration and pieces for the following declaration, instead
2638 // of assuming that all the other pieces attach to new declaration,
2639 // and call ParsedFreeStandingDeclSpec as appropriate.
2640 DS.ClearTypeSpecType();
2641 ParsedTemplateInfo NotATemplate;
2642 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2643 return false;
2644 }
2645
2646 /// ParseDeclarationSpecifiers
2647 /// declaration-specifiers: [C99 6.7]
2648 /// storage-class-specifier declaration-specifiers[opt]
2649 /// type-specifier declaration-specifiers[opt]
2650 /// [C99] function-specifier declaration-specifiers[opt]
2651 /// [C11] alignment-specifier declaration-specifiers[opt]
2652 /// [GNU] attributes declaration-specifiers[opt]
2653 /// [Clang] '__module_private__' declaration-specifiers[opt]
2654 /// [ObjC1] '__kindof' declaration-specifiers[opt]
2655 ///
2656 /// storage-class-specifier: [C99 6.7.1]
2657 /// 'typedef'
2658 /// 'extern'
2659 /// 'static'
2660 /// 'auto'
2661 /// 'register'
2662 /// [C++] 'mutable'
2663 /// [C++11] 'thread_local'
2664 /// [C11] '_Thread_local'
2665 /// [GNU] '__thread'
2666 /// function-specifier: [C99 6.7.4]
2667 /// [C99] 'inline'
2668 /// [C++] 'virtual'
2669 /// [C++] 'explicit'
2670 /// [OpenCL] '__kernel'
2671 /// 'friend': [C++ dcl.friend]
2672 /// 'constexpr': [C++0x dcl.constexpr]
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2673 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2674 const ParsedTemplateInfo &TemplateInfo,
2675 AccessSpecifier AS,
2676 DeclSpecContext DSContext,
2677 LateParsedAttrList *LateAttrs) {
2678 if (DS.getSourceRange().isInvalid()) {
2679 // Start the range at the current token but make the end of the range
2680 // invalid. This will make the entire range invalid unless we successfully
2681 // consume a token.
2682 DS.SetRangeStart(Tok.getLocation());
2683 DS.SetRangeEnd(SourceLocation());
2684 }
2685
2686 bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2687 bool AttrsLastTime = false;
2688 ParsedAttributesWithRange attrs(AttrFactory);
2689 // We use Sema's policy to get bool macros right.
2690 PrintingPolicy Policy = Actions.getPrintingPolicy();
2691 while (1) {
2692 bool isInvalid = false;
2693 bool isStorageClass = false;
2694 const char *PrevSpec = nullptr;
2695 unsigned DiagID = 0;
2696
2697 // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
2698 // implementation for VS2013 uses _Atomic as an identifier for one of the
2699 // classes in <atomic>.
2700 //
2701 // A typedef declaration containing _Atomic<...> is among the places where
2702 // the class is used. If we are currently parsing such a declaration, treat
2703 // the token as an identifier.
2704 if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
2705 DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
2706 !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
2707 Tok.setKind(tok::identifier);
2708
2709 SourceLocation Loc = Tok.getLocation();
2710
2711 switch (Tok.getKind()) {
2712 default:
2713 DoneWithDeclSpec:
2714 if (!AttrsLastTime)
2715 ProhibitAttributes(attrs);
2716 else {
2717 // Reject C++11 attributes that appertain to decl specifiers as
2718 // we don't support any C++11 attributes that appertain to decl
2719 // specifiers. This also conforms to what g++ 4.8 is doing.
2720 ProhibitCXX11Attributes(attrs);
2721
2722 DS.takeAttributesFrom(attrs);
2723 }
2724
2725 // If this is not a declaration specifier token, we're done reading decl
2726 // specifiers. First verify that DeclSpec's are consistent.
2727 DS.Finish(Actions, Policy);
2728 return;
2729
2730 case tok::l_square:
2731 case tok::kw_alignas:
2732 if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2733 goto DoneWithDeclSpec;
2734
2735 ProhibitAttributes(attrs);
2736 // FIXME: It would be good to recover by accepting the attributes,
2737 // but attempting to do that now would cause serious
2738 // madness in terms of diagnostics.
2739 attrs.clear();
2740 attrs.Range = SourceRange();
2741
2742 ParseCXX11Attributes(attrs);
2743 AttrsLastTime = true;
2744 continue;
2745
2746 case tok::code_completion: {
2747 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2748 if (DS.hasTypeSpecifier()) {
2749 bool AllowNonIdentifiers
2750 = (getCurScope()->getFlags() & (Scope::ControlScope |
2751 Scope::BlockScope |
2752 Scope::TemplateParamScope |
2753 Scope::FunctionPrototypeScope |
2754 Scope::AtCatchScope)) == 0;
2755 bool AllowNestedNameSpecifiers
2756 = DSContext == DSC_top_level ||
2757 (DSContext == DSC_class && DS.isFriendSpecified());
2758
2759 Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2760 AllowNonIdentifiers,
2761 AllowNestedNameSpecifiers);
2762 return cutOffParsing();
2763 }
2764
2765 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2766 CCC = Sema::PCC_LocalDeclarationSpecifiers;
2767 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2768 CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2769 : Sema::PCC_Template;
2770 else if (DSContext == DSC_class)
2771 CCC = Sema::PCC_Class;
2772 else if (CurParsedObjCImpl)
2773 CCC = Sema::PCC_ObjCImplementation;
2774
2775 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2776 return cutOffParsing();
2777 }
2778
2779 case tok::coloncolon: // ::foo::bar
2780 // C++ scope specifier. Annotate and loop, or bail out on error.
2781 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2782 if (!DS.hasTypeSpecifier())
2783 DS.SetTypeSpecError();
2784 goto DoneWithDeclSpec;
2785 }
2786 if (Tok.is(tok::coloncolon)) // ::new or ::delete
2787 goto DoneWithDeclSpec;
2788 continue;
2789
2790 case tok::annot_cxxscope: {
2791 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2792 goto DoneWithDeclSpec;
2793
2794 CXXScopeSpec SS;
2795 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2796 Tok.getAnnotationRange(),
2797 SS);
2798
2799 // We are looking for a qualified typename.
2800 Token Next = NextToken();
2801 if (Next.is(tok::annot_template_id) &&
2802 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2803 ->Kind == TNK_Type_template) {
2804 // We have a qualified template-id, e.g., N::A<int>
2805
2806 // C++ [class.qual]p2:
2807 // In a lookup in which the constructor is an acceptable lookup
2808 // result and the nested-name-specifier nominates a class C:
2809 //
2810 // - if the name specified after the
2811 // nested-name-specifier, when looked up in C, is the
2812 // injected-class-name of C (Clause 9), or
2813 //
2814 // - if the name specified after the nested-name-specifier
2815 // is the same as the identifier or the
2816 // simple-template-id's template-name in the last
2817 // component of the nested-name-specifier,
2818 //
2819 // the name is instead considered to name the constructor of
2820 // class C.
2821 //
2822 // Thus, if the template-name is actually the constructor
2823 // name, then the code is ill-formed; this interpretation is
2824 // reinforced by the NAD status of core issue 635.
2825 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2826 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2827 TemplateId->Name &&
2828 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2829 if (isConstructorDeclarator(/*Unqualified*/false)) {
2830 // The user meant this to be an out-of-line constructor
2831 // definition, but template arguments are not allowed
2832 // there. Just allow this as a constructor; we'll
2833 // complain about it later.
2834 goto DoneWithDeclSpec;
2835 }
2836
2837 // The user meant this to name a type, but it actually names
2838 // a constructor with some extraneous template
2839 // arguments. Complain, then parse it as a type as the user
2840 // intended.
2841 Diag(TemplateId->TemplateNameLoc,
2842 diag::err_out_of_line_template_id_type_names_constructor)
2843 << TemplateId->Name << 0 /* template name */;
2844 }
2845
2846 DS.getTypeSpecScope() = SS;
2847 ConsumeToken(); // The C++ scope.
2848 assert(Tok.is(tok::annot_template_id) &&
2849 "ParseOptionalCXXScopeSpecifier not working");
2850 AnnotateTemplateIdTokenAsType();
2851 continue;
2852 }
2853
2854 if (Next.is(tok::annot_typename)) {
2855 DS.getTypeSpecScope() = SS;
2856 ConsumeToken(); // The C++ scope.
2857 if (Tok.getAnnotationValue()) {
2858 ParsedType T = getTypeAnnotation(Tok);
2859 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2860 Tok.getAnnotationEndLoc(),
2861 PrevSpec, DiagID, T, Policy);
2862 if (isInvalid)
2863 break;
2864 }
2865 else
2866 DS.SetTypeSpecError();
2867 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2868 ConsumeToken(); // The typename
2869 }
2870
2871 if (Next.isNot(tok::identifier))
2872 goto DoneWithDeclSpec;
2873
2874 // If we're in a context where the identifier could be a class name,
2875 // check whether this is a constructor declaration.
2876 if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2877 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2878 &SS)) {
2879 if (isConstructorDeclarator(/*Unqualified*/false))
2880 goto DoneWithDeclSpec;
2881
2882 // As noted in C++ [class.qual]p2 (cited above), when the name
2883 // of the class is qualified in a context where it could name
2884 // a constructor, its a constructor name. However, we've
2885 // looked at the declarator, and the user probably meant this
2886 // to be a type. Complain that it isn't supposed to be treated
2887 // as a type, then proceed to parse it as a type.
2888 Diag(Next.getLocation(),
2889 diag::err_out_of_line_template_id_type_names_constructor)
2890 << Next.getIdentifierInfo() << 1 /* type */;
2891 }
2892
2893 ParsedType TypeRep =
2894 Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
2895 getCurScope(), &SS, false, false, nullptr,
2896 /*IsCtorOrDtorName=*/false,
2897 /*NonTrivialSourceInfo=*/true);
2898
2899 // If the referenced identifier is not a type, then this declspec is
2900 // erroneous: We already checked about that it has no type specifier, and
2901 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the
2902 // typename.
2903 if (!TypeRep) {
2904 ConsumeToken(); // Eat the scope spec so the identifier is current.
2905 ParsedAttributesWithRange Attrs(AttrFactory);
2906 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2907 if (!Attrs.empty()) {
2908 AttrsLastTime = true;
2909 attrs.takeAllFrom(Attrs);
2910 }
2911 continue;
2912 }
2913 goto DoneWithDeclSpec;
2914 }
2915
2916 DS.getTypeSpecScope() = SS;
2917 ConsumeToken(); // The C++ scope.
2918
2919 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2920 DiagID, TypeRep, Policy);
2921 if (isInvalid)
2922 break;
2923
2924 DS.SetRangeEnd(Tok.getLocation());
2925 ConsumeToken(); // The typename.
2926
2927 continue;
2928 }
2929
2930 case tok::annot_typename: {
2931 // If we've previously seen a tag definition, we were almost surely
2932 // missing a semicolon after it.
2933 if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2934 goto DoneWithDeclSpec;
2935
2936 if (Tok.getAnnotationValue()) {
2937 ParsedType T = getTypeAnnotation(Tok);
2938 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2939 DiagID, T, Policy);
2940 } else
2941 DS.SetTypeSpecError();
2942
2943 if (isInvalid)
2944 break;
2945
2946 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2947 ConsumeToken(); // The typename
2948
2949 continue;
2950 }
2951
2952 case tok::kw___is_signed:
2953 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2954 // typically treats it as a trait. If we see __is_signed as it appears
2955 // in libstdc++, e.g.,
2956 //
2957 // static const bool __is_signed;
2958 //
2959 // then treat __is_signed as an identifier rather than as a keyword.
2960 if (DS.getTypeSpecType() == TST_bool &&
2961 DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2962 DS.getStorageClassSpec() == DeclSpec::SCS_static)
2963 TryKeywordIdentFallback(true);
2964
2965 // We're done with the declaration-specifiers.
2966 goto DoneWithDeclSpec;
2967
2968 // typedef-name
2969 case tok::kw___super:
2970 case tok::kw_decltype:
2971 case tok::identifier: {
2972 // This identifier can only be a typedef name if we haven't already seen
2973 // a type-specifier. Without this check we misparse:
2974 // typedef int X; struct Y { short X; }; as 'short int'.
2975 if (DS.hasTypeSpecifier())
2976 goto DoneWithDeclSpec;
2977
2978 // In C++, check to see if this is a scope specifier like foo::bar::, if
2979 // so handle it as such. This is important for ctor parsing.
2980 if (getLangOpts().CPlusPlus) {
2981 if (TryAnnotateCXXScopeToken(EnteringContext)) {
2982 DS.SetTypeSpecError();
2983 goto DoneWithDeclSpec;
2984 }
2985 if (!Tok.is(tok::identifier))
2986 continue;
2987 }
2988
2989 // Check for need to substitute AltiVec keyword tokens.
2990 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2991 break;
2992
2993 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2994 // allow the use of a typedef name as a type specifier.
2995 if (DS.isTypeAltiVecVector())
2996 goto DoneWithDeclSpec;
2997
2998 if (DSContext == DSC_objc_method_result && isObjCInstancetype()) {
2999 ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3000 assert(TypeRep);
3001 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3002 DiagID, TypeRep, Policy);
3003 if (isInvalid)
3004 break;
3005
3006 DS.SetRangeEnd(Loc);
3007 ConsumeToken();
3008 continue;
3009 }
3010
3011 ParsedType TypeRep =
3012 Actions.getTypeName(*Tok.getIdentifierInfo(),
3013 Tok.getLocation(), getCurScope());
3014
3015 // If this is not a typedef name, don't parse it as part of the declspec,
3016 // it must be an implicit int or an error.
3017 if (!TypeRep) {
3018 ParsedAttributesWithRange Attrs(AttrFactory);
3019 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3020 if (!Attrs.empty()) {
3021 AttrsLastTime = true;
3022 attrs.takeAllFrom(Attrs);
3023 }
3024 continue;
3025 }
3026 goto DoneWithDeclSpec;
3027 }
3028
3029 // If we're in a context where the identifier could be a class name,
3030 // check whether this is a constructor declaration.
3031 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
3032 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3033 isConstructorDeclarator(/*Unqualified*/true))
3034 goto DoneWithDeclSpec;
3035
3036 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3037 DiagID, TypeRep, Policy);
3038 if (isInvalid)
3039 break;
3040
3041 DS.SetRangeEnd(Tok.getLocation());
3042 ConsumeToken(); // The identifier
3043
3044 // Objective-C supports type arguments and protocol references
3045 // following an Objective-C object or object pointer
3046 // type. Handle either one of them.
3047 if (Tok.is(tok::less) && getLangOpts().ObjC1) {
3048 SourceLocation NewEndLoc;
3049 TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3050 Loc, TypeRep, /*consumeLastToken=*/true,
3051 NewEndLoc);
3052 if (NewTypeRep.isUsable()) {
3053 DS.UpdateTypeRep(NewTypeRep.get());
3054 DS.SetRangeEnd(NewEndLoc);
3055 }
3056 }
3057
3058 // Need to support trailing type qualifiers (e.g. "id<p> const").
3059 // If a type specifier follows, it will be diagnosed elsewhere.
3060 continue;
3061 }
3062
3063 // type-name
3064 case tok::annot_template_id: {
3065 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3066 if (TemplateId->Kind != TNK_Type_template) {
3067 // This template-id does not refer to a type name, so we're
3068 // done with the type-specifiers.
3069 goto DoneWithDeclSpec;
3070 }
3071
3072 // If we're in a context where the template-id could be a
3073 // constructor name or specialization, check whether this is a
3074 // constructor declaration.
3075 if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
3076 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3077 isConstructorDeclarator(TemplateId->SS.isEmpty()))
3078 goto DoneWithDeclSpec;
3079
3080 // Turn the template-id annotation token into a type annotation
3081 // token, then try again to parse it as a type-specifier.
3082 AnnotateTemplateIdTokenAsType();
3083 continue;
3084 }
3085
3086 // GNU attributes support.
3087 case tok::kw___attribute:
3088 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
3089 continue;
3090
3091 // Microsoft declspec support.
3092 case tok::kw___declspec:
3093 ParseMicrosoftDeclSpecs(DS.getAttributes());
3094 continue;
3095
3096 // Microsoft single token adornments.
3097 case tok::kw___forceinline: {
3098 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3099 IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3100 SourceLocation AttrNameLoc = Tok.getLocation();
3101 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3102 nullptr, 0, AttributeList::AS_Keyword);
3103 break;
3104 }
3105
3106 case tok::kw___unaligned:
3107 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3108 getLangOpts());
3109 break;
3110
3111 case tok::kw___sptr:
3112 case tok::kw___uptr:
3113 case tok::kw___ptr64:
3114 case tok::kw___ptr32:
3115 case tok::kw___w64:
3116 case tok::kw___cdecl:
3117 case tok::kw___stdcall:
3118 case tok::kw___fastcall:
3119 case tok::kw___thiscall:
3120 case tok::kw___vectorcall:
3121 ParseMicrosoftTypeAttributes(DS.getAttributes());
3122 continue;
3123
3124 // Borland single token adornments.
3125 case tok::kw___pascal:
3126 ParseBorlandTypeAttributes(DS.getAttributes());
3127 continue;
3128
3129 // OpenCL single token adornments.
3130 case tok::kw___kernel:
3131 ParseOpenCLKernelAttributes(DS.getAttributes());
3132 continue;
3133
3134 // Nullability type specifiers.
3135 case tok::kw__Nonnull:
3136 case tok::kw__Nullable:
3137 case tok::kw__Null_unspecified:
3138 ParseNullabilityTypeSpecifiers(DS.getAttributes());
3139 continue;
3140
3141 // Objective-C 'kindof' types.
3142 case tok::kw___kindof:
3143 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
3144 nullptr, 0, AttributeList::AS_Keyword);
3145 (void)ConsumeToken();
3146 continue;
3147
3148 // storage-class-specifier
3149 case tok::kw_typedef:
3150 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
3151 PrevSpec, DiagID, Policy);
3152 isStorageClass = true;
3153 break;
3154 case tok::kw_extern:
3155 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3156 Diag(Tok, diag::ext_thread_before) << "extern";
3157 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3158 PrevSpec, DiagID, Policy);
3159 isStorageClass = true;
3160 break;
3161 case tok::kw___private_extern__:
3162 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3163 Loc, PrevSpec, DiagID, Policy);
3164 isStorageClass = true;
3165 break;
3166 case tok::kw_static:
3167 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3168 Diag(Tok, diag::ext_thread_before) << "static";
3169 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3170 PrevSpec, DiagID, Policy);
3171 isStorageClass = true;
3172 break;
3173 case tok::kw_auto:
3174 if (getLangOpts().CPlusPlus11) {
3175 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3176 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3177 PrevSpec, DiagID, Policy);
3178 if (!isInvalid)
3179 Diag(Tok, diag::ext_auto_storage_class)
3180 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3181 } else
3182 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3183 DiagID, Policy);
3184 } else
3185 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3186 PrevSpec, DiagID, Policy);
3187 isStorageClass = true;
3188 break;
3189 case tok::kw___auto_type:
3190 Diag(Tok, diag::ext_auto_type);
3191 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
3192 DiagID, Policy);
3193 break;
3194 case tok::kw_register:
3195 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3196 PrevSpec, DiagID, Policy);
3197 isStorageClass = true;
3198 break;
3199 case tok::kw_mutable:
3200 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3201 PrevSpec, DiagID, Policy);
3202 isStorageClass = true;
3203 break;
3204 case tok::kw___thread:
3205 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3206 PrevSpec, DiagID);
3207 isStorageClass = true;
3208 break;
3209 case tok::kw_thread_local:
3210 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3211 PrevSpec, DiagID);
3212 break;
3213 case tok::kw__Thread_local:
3214 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3215 Loc, PrevSpec, DiagID);
3216 isStorageClass = true;
3217 break;
3218
3219 // function-specifier
3220 case tok::kw_inline:
3221 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3222 break;
3223 case tok::kw_virtual:
3224 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3225 break;
3226 case tok::kw_explicit:
3227 isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3228 break;
3229 case tok::kw__Noreturn:
3230 if (!getLangOpts().C11)
3231 Diag(Loc, diag::ext_c11_noreturn);
3232 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3233 break;
3234
3235 // alignment-specifier
3236 case tok::kw__Alignas:
3237 if (!getLangOpts().C11)
3238 Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3239 ParseAlignmentSpecifier(DS.getAttributes());
3240 continue;
3241
3242 // friend
3243 case tok::kw_friend:
3244 if (DSContext == DSC_class)
3245 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3246 else {
3247 PrevSpec = ""; // not actually used by the diagnostic
3248 DiagID = diag::err_friend_invalid_in_context;
3249 isInvalid = true;
3250 }
3251 break;
3252
3253 // Modules
3254 case tok::kw___module_private__:
3255 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3256 break;
3257
3258 // constexpr
3259 case tok::kw_constexpr:
3260 isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3261 break;
3262
3263 // concept
3264 case tok::kw_concept:
3265 isInvalid = DS.SetConceptSpec(Loc, PrevSpec, DiagID);
3266 break;
3267
3268 // type-specifier
3269 case tok::kw_short:
3270 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3271 DiagID, Policy);
3272 break;
3273 case tok::kw_long:
3274 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3275 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3276 DiagID, Policy);
3277 else
3278 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3279 DiagID, Policy);
3280 break;
3281 case tok::kw___int64:
3282 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3283 DiagID, Policy);
3284 break;
3285 case tok::kw_signed:
3286 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3287 DiagID);
3288 break;
3289 case tok::kw_unsigned:
3290 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3291 DiagID);
3292 break;
3293 case tok::kw__Complex:
3294 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3295 DiagID);
3296 break;
3297 case tok::kw__Imaginary:
3298 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3299 DiagID);
3300 break;
3301 case tok::kw_void:
3302 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3303 DiagID, Policy);
3304 break;
3305 case tok::kw_char:
3306 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3307 DiagID, Policy);
3308 break;
3309 case tok::kw_int:
3310 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3311 DiagID, Policy);
3312 break;
3313 case tok::kw___int128:
3314 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3315 DiagID, Policy);
3316 break;
3317 case tok::kw_half:
3318 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3319 DiagID, Policy);
3320 break;
3321 case tok::kw_float:
3322 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3323 DiagID, Policy);
3324 break;
3325 case tok::kw_double:
3326 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3327 DiagID, Policy);
3328 break;
3329 case tok::kw___float128:
3330 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
3331 DiagID, Policy);
3332 break;
3333 case tok::kw_wchar_t:
3334 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3335 DiagID, Policy);
3336 break;
3337 case tok::kw_char16_t:
3338 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3339 DiagID, Policy);
3340 break;
3341 case tok::kw_char32_t:
3342 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3343 DiagID, Policy);
3344 break;
3345 case tok::kw_bool:
3346 case tok::kw__Bool:
3347 if (Tok.is(tok::kw_bool) &&
3348 DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3349 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3350 PrevSpec = ""; // Not used by the diagnostic.
3351 DiagID = diag::err_bool_redeclaration;
3352 // For better error recovery.
3353 Tok.setKind(tok::identifier);
3354 isInvalid = true;
3355 } else {
3356 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3357 DiagID, Policy);
3358 }
3359 break;
3360 case tok::kw__Decimal32:
3361 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3362 DiagID, Policy);
3363 break;
3364 case tok::kw__Decimal64:
3365 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3366 DiagID, Policy);
3367 break;
3368 case tok::kw__Decimal128:
3369 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3370 DiagID, Policy);
3371 break;
3372 case tok::kw___vector:
3373 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3374 break;
3375 case tok::kw___pixel:
3376 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3377 break;
3378 case tok::kw___bool:
3379 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3380 break;
3381 case tok::kw_pipe:
3382 if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) {
3383 // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
3384 // support the "pipe" word as identifier.
3385 Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3386 goto DoneWithDeclSpec;
3387 }
3388 isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
3389 break;
3390 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
3391 case tok::kw_##ImgType##_t: \
3392 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
3393 DiagID, Policy); \
3394 break;
3395 #include "clang/Basic/OpenCLImageTypes.def"
3396 case tok::kw___unknown_anytype:
3397 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3398 PrevSpec, DiagID, Policy);
3399 break;
3400
3401 // class-specifier:
3402 case tok::kw_class:
3403 case tok::kw_struct:
3404 case tok::kw___interface:
3405 case tok::kw_union: {
3406 tok::TokenKind Kind = Tok.getKind();
3407 ConsumeToken();
3408
3409 // These are attributes following class specifiers.
3410 // To produce better diagnostic, we parse them when
3411 // parsing class specifier.
3412 ParsedAttributesWithRange Attributes(AttrFactory);
3413 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3414 EnteringContext, DSContext, Attributes);
3415
3416 // If there are attributes following class specifier,
3417 // take them over and handle them here.
3418 if (!Attributes.empty()) {
3419 AttrsLastTime = true;
3420 attrs.takeAllFrom(Attributes);
3421 }
3422 continue;
3423 }
3424
3425 // enum-specifier:
3426 case tok::kw_enum:
3427 ConsumeToken();
3428 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3429 continue;
3430
3431 // cv-qualifier:
3432 case tok::kw_const:
3433 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3434 getLangOpts());
3435 break;
3436 case tok::kw_volatile:
3437 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3438 getLangOpts());
3439 break;
3440 case tok::kw_restrict:
3441 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3442 getLangOpts());
3443 break;
3444
3445 // C++ typename-specifier:
3446 case tok::kw_typename:
3447 if (TryAnnotateTypeOrScopeToken()) {
3448 DS.SetTypeSpecError();
3449 goto DoneWithDeclSpec;
3450 }
3451 if (!Tok.is(tok::kw_typename))
3452 continue;
3453 break;
3454
3455 // GNU typeof support.
3456 case tok::kw_typeof:
3457 ParseTypeofSpecifier(DS);
3458 continue;
3459
3460 case tok::annot_decltype:
3461 ParseDecltypeSpecifier(DS);
3462 continue;
3463
3464 case tok::annot_pragma_pack:
3465 HandlePragmaPack();
3466 continue;
3467
3468 case tok::annot_pragma_ms_pragma:
3469 HandlePragmaMSPragma();
3470 continue;
3471
3472 case tok::annot_pragma_ms_vtordisp:
3473 HandlePragmaMSVtorDisp();
3474 continue;
3475
3476 case tok::annot_pragma_ms_pointers_to_members:
3477 HandlePragmaMSPointersToMembers();
3478 continue;
3479
3480 case tok::kw___underlying_type:
3481 ParseUnderlyingTypeSpecifier(DS);
3482 continue;
3483
3484 case tok::kw__Atomic:
3485 // C11 6.7.2.4/4:
3486 // If the _Atomic keyword is immediately followed by a left parenthesis,
3487 // it is interpreted as a type specifier (with a type name), not as a
3488 // type qualifier.
3489 if (NextToken().is(tok::l_paren)) {
3490 ParseAtomicSpecifier(DS);
3491 continue;
3492 }
3493 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3494 getLangOpts());
3495 break;
3496
3497 // OpenCL qualifiers:
3498 case tok::kw___generic:
3499 // generic address space is introduced only in OpenCL v2.0
3500 // see OpenCL C Spec v2.0 s6.5.5
3501 if (Actions.getLangOpts().OpenCLVersion < 200) {
3502 DiagID = diag::err_opencl_unknown_type_specifier;
3503 PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3504 isInvalid = true;
3505 break;
3506 };
3507 case tok::kw___private:
3508 case tok::kw___global:
3509 case tok::kw___local:
3510 case tok::kw___constant:
3511 case tok::kw___read_only:
3512 case tok::kw___write_only:
3513 case tok::kw___read_write:
3514 ParseOpenCLQualifiers(DS.getAttributes());
3515 break;
3516
3517 case tok::less:
3518 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3519 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous,
3520 // but we support it.
3521 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3522 goto DoneWithDeclSpec;
3523
3524 SourceLocation StartLoc = Tok.getLocation();
3525 SourceLocation EndLoc;
3526 TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
3527 if (Type.isUsable()) {
3528 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
3529 PrevSpec, DiagID, Type.get(),
3530 Actions.getASTContext().getPrintingPolicy()))
3531 Diag(StartLoc, DiagID) << PrevSpec;
3532
3533 DS.SetRangeEnd(EndLoc);
3534 } else {
3535 DS.SetTypeSpecError();
3536 }
3537
3538 // Need to support trailing type qualifiers (e.g. "id<p> const").
3539 // If a type specifier follows, it will be diagnosed elsewhere.
3540 continue;
3541 }
3542 // If the specifier wasn't legal, issue a diagnostic.
3543 if (isInvalid) {
3544 assert(PrevSpec && "Method did not return previous specifier!");
3545 assert(DiagID);
3546
3547 if (DiagID == diag::ext_duplicate_declspec)
3548 Diag(Tok, DiagID)
3549 << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3550 else if (DiagID == diag::err_opencl_unknown_type_specifier) {
3551 const int OpenCLVer = getLangOpts().OpenCLVersion;
3552 std::string VerSpec = llvm::to_string(OpenCLVer / 100) +
3553 std::string (".") +
3554 llvm::to_string((OpenCLVer % 100) / 10);
3555 Diag(Tok, DiagID) << VerSpec << PrevSpec << isStorageClass;
3556 } else
3557 Diag(Tok, DiagID) << PrevSpec;
3558 }
3559
3560 DS.SetRangeEnd(Tok.getLocation());
3561 if (DiagID != diag::err_bool_redeclaration)
3562 ConsumeToken();
3563
3564 AttrsLastTime = false;
3565 }
3566 }
3567
3568 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3569 /// semicolon.
3570 ///
3571 /// struct-declaration:
3572 /// specifier-qualifier-list struct-declarator-list
3573 /// [GNU] __extension__ struct-declaration
3574 /// [GNU] specifier-qualifier-list
3575 /// struct-declarator-list:
3576 /// struct-declarator
3577 /// struct-declarator-list ',' struct-declarator
3578 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator
3579 /// struct-declarator:
3580 /// declarator
3581 /// [GNU] declarator attributes[opt]
3582 /// declarator[opt] ':' constant-expression
3583 /// [GNU] declarator[opt] ':' constant-expression attributes[opt]
3584 ///
ParseStructDeclaration(ParsingDeclSpec & DS,llvm::function_ref<void (ParsingFieldDeclarator &)> FieldsCallback)3585 void Parser::ParseStructDeclaration(
3586 ParsingDeclSpec &DS,
3587 llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3588
3589 if (Tok.is(tok::kw___extension__)) {
3590 // __extension__ silences extension warnings in the subexpression.
3591 ExtensionRAIIObject O(Diags); // Use RAII to do this.
3592 ConsumeToken();
3593 return ParseStructDeclaration(DS, FieldsCallback);
3594 }
3595
3596 // Parse the common specifier-qualifiers-list piece.
3597 ParseSpecifierQualifierList(DS);
3598
3599 // If there are no declarators, this is a free-standing declaration
3600 // specifier. Let the actions module cope with it.
3601 if (Tok.is(tok::semi)) {
3602 RecordDecl *AnonRecord = nullptr;
3603 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3604 DS, AnonRecord);
3605 assert(!AnonRecord && "Did not expect anonymous struct or union here");
3606 DS.complete(TheDecl);
3607 return;
3608 }
3609
3610 // Read struct-declarators until we find the semicolon.
3611 bool FirstDeclarator = true;
3612 SourceLocation CommaLoc;
3613 while (1) {
3614 ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3615 DeclaratorInfo.D.setCommaLoc(CommaLoc);
3616
3617 // Attributes are only allowed here on successive declarators.
3618 if (!FirstDeclarator)
3619 MaybeParseGNUAttributes(DeclaratorInfo.D);
3620
3621 /// struct-declarator: declarator
3622 /// struct-declarator: declarator[opt] ':' constant-expression
3623 if (Tok.isNot(tok::colon)) {
3624 // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3625 ColonProtectionRAIIObject X(*this);
3626 ParseDeclarator(DeclaratorInfo.D);
3627 } else
3628 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3629
3630 if (TryConsumeToken(tok::colon)) {
3631 ExprResult Res(ParseConstantExpression());
3632 if (Res.isInvalid())
3633 SkipUntil(tok::semi, StopBeforeMatch);
3634 else
3635 DeclaratorInfo.BitfieldSize = Res.get();
3636 }
3637
3638 // If attributes exist after the declarator, parse them.
3639 MaybeParseGNUAttributes(DeclaratorInfo.D);
3640
3641 // We're done with this declarator; invoke the callback.
3642 FieldsCallback(DeclaratorInfo);
3643
3644 // If we don't have a comma, it is either the end of the list (a ';')
3645 // or an error, bail out.
3646 if (!TryConsumeToken(tok::comma, CommaLoc))
3647 return;
3648
3649 FirstDeclarator = false;
3650 }
3651 }
3652
3653 /// ParseStructUnionBody
3654 /// struct-contents:
3655 /// struct-declaration-list
3656 /// [EXT] empty
3657 /// [GNU] "struct-declaration-list" without terminatoring ';'
3658 /// struct-declaration-list:
3659 /// struct-declaration
3660 /// struct-declaration-list struct-declaration
3661 /// [OBC] '@' 'defs' '(' class-name ')'
3662 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3663 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3664 unsigned TagType, Decl *TagDecl) {
3665 PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3666 "parsing struct/union body");
3667 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3668
3669 BalancedDelimiterTracker T(*this, tok::l_brace);
3670 if (T.consumeOpen())
3671 return;
3672
3673 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3674 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3675
3676 SmallVector<Decl *, 32> FieldDecls;
3677
3678 // While we still have something to read, read the declarations in the struct.
3679 while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
3680 Tok.isNot(tok::eof)) {
3681 // Each iteration of this loop reads one struct-declaration.
3682
3683 // Check for extraneous top-level semicolon.
3684 if (Tok.is(tok::semi)) {
3685 ConsumeExtraSemi(InsideStruct, TagType);
3686 continue;
3687 }
3688
3689 // Parse _Static_assert declaration.
3690 if (Tok.is(tok::kw__Static_assert)) {
3691 SourceLocation DeclEnd;
3692 ParseStaticAssertDeclaration(DeclEnd);
3693 continue;
3694 }
3695
3696 if (Tok.is(tok::annot_pragma_pack)) {
3697 HandlePragmaPack();
3698 continue;
3699 }
3700
3701 if (Tok.is(tok::annot_pragma_align)) {
3702 HandlePragmaAlign();
3703 continue;
3704 }
3705
3706 if (Tok.is(tok::annot_pragma_openmp)) {
3707 // Result can be ignored, because it must be always empty.
3708 AccessSpecifier AS = AS_none;
3709 ParsedAttributesWithRange Attrs(AttrFactory);
3710 (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
3711 continue;
3712 }
3713
3714 if (!Tok.is(tok::at)) {
3715 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3716 // Install the declarator into the current TagDecl.
3717 Decl *Field =
3718 Actions.ActOnField(getCurScope(), TagDecl,
3719 FD.D.getDeclSpec().getSourceRange().getBegin(),
3720 FD.D, FD.BitfieldSize);
3721 FieldDecls.push_back(Field);
3722 FD.complete(Field);
3723 };
3724
3725 // Parse all the comma separated declarators.
3726 ParsingDeclSpec DS(*this);
3727 ParseStructDeclaration(DS, CFieldCallback);
3728 } else { // Handle @defs
3729 ConsumeToken();
3730 if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3731 Diag(Tok, diag::err_unexpected_at);
3732 SkipUntil(tok::semi);
3733 continue;
3734 }
3735 ConsumeToken();
3736 ExpectAndConsume(tok::l_paren);
3737 if (!Tok.is(tok::identifier)) {
3738 Diag(Tok, diag::err_expected) << tok::identifier;
3739 SkipUntil(tok::semi);
3740 continue;
3741 }
3742 SmallVector<Decl *, 16> Fields;
3743 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3744 Tok.getIdentifierInfo(), Fields);
3745 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3746 ConsumeToken();
3747 ExpectAndConsume(tok::r_paren);
3748 }
3749
3750 if (TryConsumeToken(tok::semi))
3751 continue;
3752
3753 if (Tok.is(tok::r_brace)) {
3754 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3755 break;
3756 }
3757
3758 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3759 // Skip to end of block or statement to avoid ext-warning on extra ';'.
3760 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3761 // If we stopped at a ';', eat it.
3762 TryConsumeToken(tok::semi);
3763 }
3764
3765 T.consumeClose();
3766
3767 ParsedAttributes attrs(AttrFactory);
3768 // If attributes exist after struct contents, parse them.
3769 MaybeParseGNUAttributes(attrs);
3770
3771 Actions.ActOnFields(getCurScope(),
3772 RecordLoc, TagDecl, FieldDecls,
3773 T.getOpenLocation(), T.getCloseLocation(),
3774 attrs.getList());
3775 StructScope.Exit();
3776 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3777 T.getCloseLocation());
3778 }
3779
3780 /// ParseEnumSpecifier
3781 /// enum-specifier: [C99 6.7.2.2]
3782 /// 'enum' identifier[opt] '{' enumerator-list '}'
3783 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3784 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3785 /// '}' attributes[opt]
3786 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3787 /// '}'
3788 /// 'enum' identifier
3789 /// [GNU] 'enum' attributes[opt] identifier
3790 ///
3791 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3792 /// [C++11] enum-head '{' enumerator-list ',' '}'
3793 ///
3794 /// enum-head: [C++11]
3795 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3796 /// enum-key attribute-specifier-seq[opt] nested-name-specifier
3797 /// identifier enum-base[opt]
3798 ///
3799 /// enum-key: [C++11]
3800 /// 'enum'
3801 /// 'enum' 'class'
3802 /// 'enum' 'struct'
3803 ///
3804 /// enum-base: [C++11]
3805 /// ':' type-specifier-seq
3806 ///
3807 /// [C++] elaborated-type-specifier:
3808 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier
3809 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3810 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3811 const ParsedTemplateInfo &TemplateInfo,
3812 AccessSpecifier AS, DeclSpecContext DSC) {
3813 // Parse the tag portion of this.
3814 if (Tok.is(tok::code_completion)) {
3815 // Code completion for an enum name.
3816 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3817 return cutOffParsing();
3818 }
3819
3820 // If attributes exist after tag, parse them.
3821 ParsedAttributesWithRange attrs(AttrFactory);
3822 MaybeParseGNUAttributes(attrs);
3823 MaybeParseCXX11Attributes(attrs);
3824 MaybeParseMicrosoftDeclSpecs(attrs);
3825
3826 SourceLocation ScopedEnumKWLoc;
3827 bool IsScopedUsingClassTag = false;
3828
3829 // In C++11, recognize 'enum class' and 'enum struct'.
3830 if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
3831 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3832 : diag::ext_scoped_enum);
3833 IsScopedUsingClassTag = Tok.is(tok::kw_class);
3834 ScopedEnumKWLoc = ConsumeToken();
3835
3836 // Attributes are not allowed between these keywords. Diagnose,
3837 // but then just treat them like they appeared in the right place.
3838 ProhibitAttributes(attrs);
3839
3840 // They are allowed afterwards, though.
3841 MaybeParseGNUAttributes(attrs);
3842 MaybeParseCXX11Attributes(attrs);
3843 MaybeParseMicrosoftDeclSpecs(attrs);
3844 }
3845
3846 // C++11 [temp.explicit]p12:
3847 // The usual access controls do not apply to names used to specify
3848 // explicit instantiations.
3849 // We extend this to also cover explicit specializations. Note that
3850 // we don't suppress if this turns out to be an elaborated type
3851 // specifier.
3852 bool shouldDelayDiagsInTag =
3853 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3854 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3855 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3856
3857 // Enum definitions should not be parsed in a trailing-return-type.
3858 bool AllowDeclaration = DSC != DSC_trailing;
3859
3860 bool AllowFixedUnderlyingType = AllowDeclaration &&
3861 (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3862 getLangOpts().ObjC2);
3863
3864 CXXScopeSpec &SS = DS.getTypeSpecScope();
3865 if (getLangOpts().CPlusPlus) {
3866 // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3867 // if a fixed underlying type is allowed.
3868 ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3869
3870 CXXScopeSpec Spec;
3871 if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
3872 /*EnteringContext=*/true))
3873 return;
3874
3875 if (Spec.isSet() && Tok.isNot(tok::identifier)) {
3876 Diag(Tok, diag::err_expected) << tok::identifier;
3877 if (Tok.isNot(tok::l_brace)) {
3878 // Has no name and is not a definition.
3879 // Skip the rest of this declarator, up until the comma or semicolon.
3880 SkipUntil(tok::comma, StopAtSemi);
3881 return;
3882 }
3883 }
3884
3885 SS = Spec;
3886 }
3887
3888 // Must have either 'enum name' or 'enum {...}'.
3889 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3890 !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3891 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3892
3893 // Skip the rest of this declarator, up until the comma or semicolon.
3894 SkipUntil(tok::comma, StopAtSemi);
3895 return;
3896 }
3897
3898 // If an identifier is present, consume and remember it.
3899 IdentifierInfo *Name = nullptr;
3900 SourceLocation NameLoc;
3901 if (Tok.is(tok::identifier)) {
3902 Name = Tok.getIdentifierInfo();
3903 NameLoc = ConsumeToken();
3904 }
3905
3906 if (!Name && ScopedEnumKWLoc.isValid()) {
3907 // C++0x 7.2p2: The optional identifier shall not be omitted in the
3908 // declaration of a scoped enumeration.
3909 Diag(Tok, diag::err_scoped_enum_missing_identifier);
3910 ScopedEnumKWLoc = SourceLocation();
3911 IsScopedUsingClassTag = false;
3912 }
3913
3914 // Okay, end the suppression area. We'll decide whether to emit the
3915 // diagnostics in a second.
3916 if (shouldDelayDiagsInTag)
3917 diagsFromTag.done();
3918
3919 TypeResult BaseType;
3920
3921 // Parse the fixed underlying type.
3922 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3923 if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3924 bool PossibleBitfield = false;
3925 if (CanBeBitfield) {
3926 // If we're in class scope, this can either be an enum declaration with
3927 // an underlying type, or a declaration of a bitfield member. We try to
3928 // use a simple disambiguation scheme first to catch the common cases
3929 // (integer literal, sizeof); if it's still ambiguous, we then consider
3930 // anything that's a simple-type-specifier followed by '(' as an
3931 // expression. This suffices because function types are not valid
3932 // underlying types anyway.
3933 EnterExpressionEvaluationContext Unevaluated(Actions,
3934 Sema::ConstantEvaluated);
3935 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3936 // If the next token starts an expression, we know we're parsing a
3937 // bit-field. This is the common case.
3938 if (TPR == TPResult::True)
3939 PossibleBitfield = true;
3940 // If the next token starts a type-specifier-seq, it may be either a
3941 // a fixed underlying type or the start of a function-style cast in C++;
3942 // lookahead one more token to see if it's obvious that we have a
3943 // fixed underlying type.
3944 else if (TPR == TPResult::False &&
3945 GetLookAheadToken(2).getKind() == tok::semi) {
3946 // Consume the ':'.
3947 ConsumeToken();
3948 } else {
3949 // We have the start of a type-specifier-seq, so we have to perform
3950 // tentative parsing to determine whether we have an expression or a
3951 // type.
3952 TentativeParsingAction TPA(*this);
3953
3954 // Consume the ':'.
3955 ConsumeToken();
3956
3957 // If we see a type specifier followed by an open-brace, we have an
3958 // ambiguity between an underlying type and a C++11 braced
3959 // function-style cast. Resolve this by always treating it as an
3960 // underlying type.
3961 // FIXME: The standard is not entirely clear on how to disambiguate in
3962 // this case.
3963 if ((getLangOpts().CPlusPlus &&
3964 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3965 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3966 // We'll parse this as a bitfield later.
3967 PossibleBitfield = true;
3968 TPA.Revert();
3969 } else {
3970 // We have a type-specifier-seq.
3971 TPA.Commit();
3972 }
3973 }
3974 } else {
3975 // Consume the ':'.
3976 ConsumeToken();
3977 }
3978
3979 if (!PossibleBitfield) {
3980 SourceRange Range;
3981 BaseType = ParseTypeName(&Range);
3982
3983 if (getLangOpts().CPlusPlus11) {
3984 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3985 } else if (!getLangOpts().ObjC2) {
3986 if (getLangOpts().CPlusPlus)
3987 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3988 else
3989 Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3990 }
3991 }
3992 }
3993
3994 // There are four options here. If we have 'friend enum foo;' then this is a
3995 // friend declaration, and cannot have an accompanying definition. If we have
3996 // 'enum foo;', then this is a forward declaration. If we have
3997 // 'enum foo {...' then this is a definition. Otherwise we have something
3998 // like 'enum foo xyz', a reference.
3999 //
4000 // This is needed to handle stuff like this right (C99 6.7.2.3p11):
4001 // enum foo {..}; void bar() { enum foo; } <- new foo in bar.
4002 // enum foo {..}; void bar() { enum foo x; } <- use of old foo.
4003 //
4004 Sema::TagUseKind TUK;
4005 if (!AllowDeclaration) {
4006 TUK = Sema::TUK_Reference;
4007 } else if (Tok.is(tok::l_brace)) {
4008 if (DS.isFriendSpecified()) {
4009 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
4010 << SourceRange(DS.getFriendSpecLoc());
4011 ConsumeBrace();
4012 SkipUntil(tok::r_brace, StopAtSemi);
4013 TUK = Sema::TUK_Friend;
4014 } else {
4015 TUK = Sema::TUK_Definition;
4016 }
4017 } else if (!isTypeSpecifier(DSC) &&
4018 (Tok.is(tok::semi) ||
4019 (Tok.isAtStartOfLine() &&
4020 !isValidAfterTypeSpecifier(CanBeBitfield)))) {
4021 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
4022 if (Tok.isNot(tok::semi)) {
4023 // A semicolon was missing after this declaration. Diagnose and recover.
4024 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4025 PP.EnterToken(Tok);
4026 Tok.setKind(tok::semi);
4027 }
4028 } else {
4029 TUK = Sema::TUK_Reference;
4030 }
4031
4032 // If this is an elaborated type specifier, and we delayed
4033 // diagnostics before, just merge them into the current pool.
4034 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
4035 diagsFromTag.redelay();
4036 }
4037
4038 MultiTemplateParamsArg TParams;
4039 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
4040 TUK != Sema::TUK_Reference) {
4041 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
4042 // Skip the rest of this declarator, up until the comma or semicolon.
4043 Diag(Tok, diag::err_enum_template);
4044 SkipUntil(tok::comma, StopAtSemi);
4045 return;
4046 }
4047
4048 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
4049 // Enumerations can't be explicitly instantiated.
4050 DS.SetTypeSpecError();
4051 Diag(StartLoc, diag::err_explicit_instantiation_enum);
4052 return;
4053 }
4054
4055 assert(TemplateInfo.TemplateParams && "no template parameters");
4056 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
4057 TemplateInfo.TemplateParams->size());
4058 }
4059
4060 if (TUK == Sema::TUK_Reference)
4061 ProhibitAttributes(attrs);
4062
4063 if (!Name && TUK != Sema::TUK_Definition) {
4064 Diag(Tok, diag::err_enumerator_unnamed_no_def);
4065
4066 // Skip the rest of this declarator, up until the comma or semicolon.
4067 SkipUntil(tok::comma, StopAtSemi);
4068 return;
4069 }
4070
4071 handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
4072
4073 Sema::SkipBodyInfo SkipBody;
4074 if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
4075 NextToken().is(tok::identifier))
4076 SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
4077 NextToken().getIdentifierInfo(),
4078 NextToken().getLocation());
4079
4080 bool Owned = false;
4081 bool IsDependent = false;
4082 const char *PrevSpec = nullptr;
4083 unsigned DiagID;
4084 Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
4085 StartLoc, SS, Name, NameLoc, attrs.getList(),
4086 AS, DS.getModulePrivateSpecLoc(), TParams,
4087 Owned, IsDependent, ScopedEnumKWLoc,
4088 IsScopedUsingClassTag, BaseType,
4089 DSC == DSC_type_specifier, &SkipBody);
4090
4091 if (SkipBody.ShouldSkip) {
4092 assert(TUK == Sema::TUK_Definition && "can only skip a definition");
4093
4094 BalancedDelimiterTracker T(*this, tok::l_brace);
4095 T.consumeOpen();
4096 T.skipToEnd();
4097
4098 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4099 NameLoc.isValid() ? NameLoc : StartLoc,
4100 PrevSpec, DiagID, TagDecl, Owned,
4101 Actions.getASTContext().getPrintingPolicy()))
4102 Diag(StartLoc, DiagID) << PrevSpec;
4103 return;
4104 }
4105
4106 if (IsDependent) {
4107 // This enum has a dependent nested-name-specifier. Handle it as a
4108 // dependent tag.
4109 if (!Name) {
4110 DS.SetTypeSpecError();
4111 Diag(Tok, diag::err_expected_type_name_after_typename);
4112 return;
4113 }
4114
4115 TypeResult Type = Actions.ActOnDependentTag(
4116 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
4117 if (Type.isInvalid()) {
4118 DS.SetTypeSpecError();
4119 return;
4120 }
4121
4122 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
4123 NameLoc.isValid() ? NameLoc : StartLoc,
4124 PrevSpec, DiagID, Type.get(),
4125 Actions.getASTContext().getPrintingPolicy()))
4126 Diag(StartLoc, DiagID) << PrevSpec;
4127
4128 return;
4129 }
4130
4131 if (!TagDecl) {
4132 // The action failed to produce an enumeration tag. If this is a
4133 // definition, consume the entire definition.
4134 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
4135 ConsumeBrace();
4136 SkipUntil(tok::r_brace, StopAtSemi);
4137 }
4138
4139 DS.SetTypeSpecError();
4140 return;
4141 }
4142
4143 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
4144 ParseEnumBody(StartLoc, TagDecl);
4145
4146 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
4147 NameLoc.isValid() ? NameLoc : StartLoc,
4148 PrevSpec, DiagID, TagDecl, Owned,
4149 Actions.getASTContext().getPrintingPolicy()))
4150 Diag(StartLoc, DiagID) << PrevSpec;
4151 }
4152
4153 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
4154 /// enumerator-list:
4155 /// enumerator
4156 /// enumerator-list ',' enumerator
4157 /// enumerator:
4158 /// enumeration-constant attributes[opt]
4159 /// enumeration-constant attributes[opt] '=' constant-expression
4160 /// enumeration-constant:
4161 /// identifier
4162 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)4163 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
4164 // Enter the scope of the enum body and start the definition.
4165 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
4166 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
4167
4168 BalancedDelimiterTracker T(*this, tok::l_brace);
4169 T.consumeOpen();
4170
4171 // C does not allow an empty enumerator-list, C++ does [dcl.enum].
4172 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
4173 Diag(Tok, diag::error_empty_enum);
4174
4175 SmallVector<Decl *, 32> EnumConstantDecls;
4176 SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
4177
4178 Decl *LastEnumConstDecl = nullptr;
4179
4180 // Parse the enumerator-list.
4181 while (Tok.isNot(tok::r_brace)) {
4182 // Parse enumerator. If failed, try skipping till the start of the next
4183 // enumerator definition.
4184 if (Tok.isNot(tok::identifier)) {
4185 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
4186 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
4187 TryConsumeToken(tok::comma))
4188 continue;
4189 break;
4190 }
4191 IdentifierInfo *Ident = Tok.getIdentifierInfo();
4192 SourceLocation IdentLoc = ConsumeToken();
4193
4194 // If attributes exist after the enumerator, parse them.
4195 ParsedAttributesWithRange attrs(AttrFactory);
4196 MaybeParseGNUAttributes(attrs);
4197 ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
4198 if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
4199 if (!getLangOpts().CPlusPlus1z)
4200 Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
4201 << 1 /*enumerator*/;
4202 ParseCXX11Attributes(attrs);
4203 }
4204
4205 SourceLocation EqualLoc;
4206 ExprResult AssignedVal;
4207 EnumAvailabilityDiags.emplace_back(*this);
4208
4209 if (TryConsumeToken(tok::equal, EqualLoc)) {
4210 AssignedVal = ParseConstantExpression();
4211 if (AssignedVal.isInvalid())
4212 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
4213 }
4214
4215 // Install the enumerator constant into EnumDecl.
4216 Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
4217 LastEnumConstDecl,
4218 IdentLoc, Ident,
4219 attrs.getList(), EqualLoc,
4220 AssignedVal.get());
4221 EnumAvailabilityDiags.back().done();
4222
4223 EnumConstantDecls.push_back(EnumConstDecl);
4224 LastEnumConstDecl = EnumConstDecl;
4225
4226 if (Tok.is(tok::identifier)) {
4227 // We're missing a comma between enumerators.
4228 SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
4229 Diag(Loc, diag::err_enumerator_list_missing_comma)
4230 << FixItHint::CreateInsertion(Loc, ", ");
4231 continue;
4232 }
4233
4234 // Emumerator definition must be finished, only comma or r_brace are
4235 // allowed here.
4236 SourceLocation CommaLoc;
4237 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
4238 if (EqualLoc.isValid())
4239 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
4240 << tok::comma;
4241 else
4242 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4243 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4244 if (TryConsumeToken(tok::comma, CommaLoc))
4245 continue;
4246 } else {
4247 break;
4248 }
4249 }
4250
4251 // If comma is followed by r_brace, emit appropriate warning.
4252 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4253 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4254 Diag(CommaLoc, getLangOpts().CPlusPlus ?
4255 diag::ext_enumerator_list_comma_cxx :
4256 diag::ext_enumerator_list_comma_c)
4257 << FixItHint::CreateRemoval(CommaLoc);
4258 else if (getLangOpts().CPlusPlus11)
4259 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4260 << FixItHint::CreateRemoval(CommaLoc);
4261 break;
4262 }
4263 }
4264
4265 // Eat the }.
4266 T.consumeClose();
4267
4268 // If attributes exist after the identifier list, parse them.
4269 ParsedAttributes attrs(AttrFactory);
4270 MaybeParseGNUAttributes(attrs);
4271
4272 Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4273 EnumDecl, EnumConstantDecls,
4274 getCurScope(),
4275 attrs.getList());
4276
4277 // Now handle enum constant availability diagnostics.
4278 assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
4279 for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
4280 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
4281 EnumAvailabilityDiags[i].redelay();
4282 PD.complete(EnumConstantDecls[i]);
4283 }
4284
4285 EnumScope.Exit();
4286 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4287 T.getCloseLocation());
4288
4289 // The next token must be valid after an enum definition. If not, a ';'
4290 // was probably forgotten.
4291 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4292 if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4293 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4294 // Push this token back into the preprocessor and change our current token
4295 // to ';' so that the rest of the code recovers as though there were an
4296 // ';' after the definition.
4297 PP.EnterToken(Tok);
4298 Tok.setKind(tok::semi);
4299 }
4300 }
4301
4302 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4303 /// is definitely a type-specifier. Return false if it isn't part of a type
4304 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const4305 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4306 switch (Tok.getKind()) {
4307 default: return false;
4308 // type-specifiers
4309 case tok::kw_short:
4310 case tok::kw_long:
4311 case tok::kw___int64:
4312 case tok::kw___int128:
4313 case tok::kw_signed:
4314 case tok::kw_unsigned:
4315 case tok::kw__Complex:
4316 case tok::kw__Imaginary:
4317 case tok::kw_void:
4318 case tok::kw_char:
4319 case tok::kw_wchar_t:
4320 case tok::kw_char16_t:
4321 case tok::kw_char32_t:
4322 case tok::kw_int:
4323 case tok::kw_half:
4324 case tok::kw_float:
4325 case tok::kw_double:
4326 case tok::kw___float128:
4327 case tok::kw_bool:
4328 case tok::kw__Bool:
4329 case tok::kw__Decimal32:
4330 case tok::kw__Decimal64:
4331 case tok::kw__Decimal128:
4332 case tok::kw___vector:
4333 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4334 #include "clang/Basic/OpenCLImageTypes.def"
4335
4336 // struct-or-union-specifier (C99) or class-specifier (C++)
4337 case tok::kw_class:
4338 case tok::kw_struct:
4339 case tok::kw___interface:
4340 case tok::kw_union:
4341 // enum-specifier
4342 case tok::kw_enum:
4343
4344 // typedef-name
4345 case tok::annot_typename:
4346 return true;
4347 }
4348 }
4349
4350 /// isTypeSpecifierQualifier - Return true if the current token could be the
4351 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()4352 bool Parser::isTypeSpecifierQualifier() {
4353 switch (Tok.getKind()) {
4354 default: return false;
4355
4356 case tok::identifier: // foo::bar
4357 if (TryAltiVecVectorToken())
4358 return true;
4359 // Fall through.
4360 case tok::kw_typename: // typename T::type
4361 // Annotate typenames and C++ scope specifiers. If we get one, just
4362 // recurse to handle whatever we get.
4363 if (TryAnnotateTypeOrScopeToken())
4364 return true;
4365 if (Tok.is(tok::identifier))
4366 return false;
4367 return isTypeSpecifierQualifier();
4368
4369 case tok::coloncolon: // ::foo::bar
4370 if (NextToken().is(tok::kw_new) || // ::new
4371 NextToken().is(tok::kw_delete)) // ::delete
4372 return false;
4373
4374 if (TryAnnotateTypeOrScopeToken())
4375 return true;
4376 return isTypeSpecifierQualifier();
4377
4378 // GNU attributes support.
4379 case tok::kw___attribute:
4380 // GNU typeof support.
4381 case tok::kw_typeof:
4382
4383 // type-specifiers
4384 case tok::kw_short:
4385 case tok::kw_long:
4386 case tok::kw___int64:
4387 case tok::kw___int128:
4388 case tok::kw_signed:
4389 case tok::kw_unsigned:
4390 case tok::kw__Complex:
4391 case tok::kw__Imaginary:
4392 case tok::kw_void:
4393 case tok::kw_char:
4394 case tok::kw_wchar_t:
4395 case tok::kw_char16_t:
4396 case tok::kw_char32_t:
4397 case tok::kw_int:
4398 case tok::kw_half:
4399 case tok::kw_float:
4400 case tok::kw_double:
4401 case tok::kw___float128:
4402 case tok::kw_bool:
4403 case tok::kw__Bool:
4404 case tok::kw__Decimal32:
4405 case tok::kw__Decimal64:
4406 case tok::kw__Decimal128:
4407 case tok::kw___vector:
4408 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4409 #include "clang/Basic/OpenCLImageTypes.def"
4410
4411 // struct-or-union-specifier (C99) or class-specifier (C++)
4412 case tok::kw_class:
4413 case tok::kw_struct:
4414 case tok::kw___interface:
4415 case tok::kw_union:
4416 // enum-specifier
4417 case tok::kw_enum:
4418
4419 // type-qualifier
4420 case tok::kw_const:
4421 case tok::kw_volatile:
4422 case tok::kw_restrict:
4423
4424 // Debugger support.
4425 case tok::kw___unknown_anytype:
4426
4427 // typedef-name
4428 case tok::annot_typename:
4429 return true;
4430
4431 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4432 case tok::less:
4433 return getLangOpts().ObjC1;
4434
4435 case tok::kw___cdecl:
4436 case tok::kw___stdcall:
4437 case tok::kw___fastcall:
4438 case tok::kw___thiscall:
4439 case tok::kw___vectorcall:
4440 case tok::kw___w64:
4441 case tok::kw___ptr64:
4442 case tok::kw___ptr32:
4443 case tok::kw___pascal:
4444 case tok::kw___unaligned:
4445
4446 case tok::kw__Nonnull:
4447 case tok::kw__Nullable:
4448 case tok::kw__Null_unspecified:
4449
4450 case tok::kw___kindof:
4451
4452 case tok::kw___private:
4453 case tok::kw___local:
4454 case tok::kw___global:
4455 case tok::kw___constant:
4456 case tok::kw___generic:
4457 case tok::kw___read_only:
4458 case tok::kw___read_write:
4459 case tok::kw___write_only:
4460
4461 return true;
4462
4463 // C11 _Atomic
4464 case tok::kw__Atomic:
4465 return true;
4466 }
4467 }
4468
4469 /// isDeclarationSpecifier() - Return true if the current token is part of a
4470 /// declaration specifier.
4471 ///
4472 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4473 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4474 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4475 switch (Tok.getKind()) {
4476 default: return false;
4477
4478 case tok::kw_pipe:
4479 return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200);
4480
4481 case tok::identifier: // foo::bar
4482 // Unfortunate hack to support "Class.factoryMethod" notation.
4483 if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4484 return false;
4485 if (TryAltiVecVectorToken())
4486 return true;
4487 // Fall through.
4488 case tok::kw_decltype: // decltype(T())::type
4489 case tok::kw_typename: // typename T::type
4490 // Annotate typenames and C++ scope specifiers. If we get one, just
4491 // recurse to handle whatever we get.
4492 if (TryAnnotateTypeOrScopeToken())
4493 return true;
4494 if (Tok.is(tok::identifier))
4495 return false;
4496
4497 // If we're in Objective-C and we have an Objective-C class type followed
4498 // by an identifier and then either ':' or ']', in a place where an
4499 // expression is permitted, then this is probably a class message send
4500 // missing the initial '['. In this case, we won't consider this to be
4501 // the start of a declaration.
4502 if (DisambiguatingWithExpression &&
4503 isStartOfObjCClassMessageMissingOpenBracket())
4504 return false;
4505
4506 return isDeclarationSpecifier();
4507
4508 case tok::coloncolon: // ::foo::bar
4509 if (NextToken().is(tok::kw_new) || // ::new
4510 NextToken().is(tok::kw_delete)) // ::delete
4511 return false;
4512
4513 // Annotate typenames and C++ scope specifiers. If we get one, just
4514 // recurse to handle whatever we get.
4515 if (TryAnnotateTypeOrScopeToken())
4516 return true;
4517 return isDeclarationSpecifier();
4518
4519 // storage-class-specifier
4520 case tok::kw_typedef:
4521 case tok::kw_extern:
4522 case tok::kw___private_extern__:
4523 case tok::kw_static:
4524 case tok::kw_auto:
4525 case tok::kw___auto_type:
4526 case tok::kw_register:
4527 case tok::kw___thread:
4528 case tok::kw_thread_local:
4529 case tok::kw__Thread_local:
4530
4531 // Modules
4532 case tok::kw___module_private__:
4533
4534 // Debugger support
4535 case tok::kw___unknown_anytype:
4536
4537 // type-specifiers
4538 case tok::kw_short:
4539 case tok::kw_long:
4540 case tok::kw___int64:
4541 case tok::kw___int128:
4542 case tok::kw_signed:
4543 case tok::kw_unsigned:
4544 case tok::kw__Complex:
4545 case tok::kw__Imaginary:
4546 case tok::kw_void:
4547 case tok::kw_char:
4548 case tok::kw_wchar_t:
4549 case tok::kw_char16_t:
4550 case tok::kw_char32_t:
4551
4552 case tok::kw_int:
4553 case tok::kw_half:
4554 case tok::kw_float:
4555 case tok::kw_double:
4556 case tok::kw___float128:
4557 case tok::kw_bool:
4558 case tok::kw__Bool:
4559 case tok::kw__Decimal32:
4560 case tok::kw__Decimal64:
4561 case tok::kw__Decimal128:
4562 case tok::kw___vector:
4563
4564 // struct-or-union-specifier (C99) or class-specifier (C++)
4565 case tok::kw_class:
4566 case tok::kw_struct:
4567 case tok::kw_union:
4568 case tok::kw___interface:
4569 // enum-specifier
4570 case tok::kw_enum:
4571
4572 // type-qualifier
4573 case tok::kw_const:
4574 case tok::kw_volatile:
4575 case tok::kw_restrict:
4576
4577 // function-specifier
4578 case tok::kw_inline:
4579 case tok::kw_virtual:
4580 case tok::kw_explicit:
4581 case tok::kw__Noreturn:
4582
4583 // alignment-specifier
4584 case tok::kw__Alignas:
4585
4586 // friend keyword.
4587 case tok::kw_friend:
4588
4589 // static_assert-declaration
4590 case tok::kw__Static_assert:
4591
4592 // GNU typeof support.
4593 case tok::kw_typeof:
4594
4595 // GNU attributes.
4596 case tok::kw___attribute:
4597
4598 // C++11 decltype and constexpr.
4599 case tok::annot_decltype:
4600 case tok::kw_constexpr:
4601
4602 // C++ Concepts TS - concept
4603 case tok::kw_concept:
4604
4605 // C11 _Atomic
4606 case tok::kw__Atomic:
4607 return true;
4608
4609 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4610 case tok::less:
4611 return getLangOpts().ObjC1;
4612
4613 // typedef-name
4614 case tok::annot_typename:
4615 return !DisambiguatingWithExpression ||
4616 !isStartOfObjCClassMessageMissingOpenBracket();
4617
4618 case tok::kw___declspec:
4619 case tok::kw___cdecl:
4620 case tok::kw___stdcall:
4621 case tok::kw___fastcall:
4622 case tok::kw___thiscall:
4623 case tok::kw___vectorcall:
4624 case tok::kw___w64:
4625 case tok::kw___sptr:
4626 case tok::kw___uptr:
4627 case tok::kw___ptr64:
4628 case tok::kw___ptr32:
4629 case tok::kw___forceinline:
4630 case tok::kw___pascal:
4631 case tok::kw___unaligned:
4632
4633 case tok::kw__Nonnull:
4634 case tok::kw__Nullable:
4635 case tok::kw__Null_unspecified:
4636
4637 case tok::kw___kindof:
4638
4639 case tok::kw___private:
4640 case tok::kw___local:
4641 case tok::kw___global:
4642 case tok::kw___constant:
4643 case tok::kw___generic:
4644 case tok::kw___read_only:
4645 case tok::kw___read_write:
4646 case tok::kw___write_only:
4647 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
4648 #include "clang/Basic/OpenCLImageTypes.def"
4649
4650 return true;
4651 }
4652 }
4653
isConstructorDeclarator(bool IsUnqualified)4654 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4655 TentativeParsingAction TPA(*this);
4656
4657 // Parse the C++ scope specifier.
4658 CXXScopeSpec SS;
4659 if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
4660 /*EnteringContext=*/true)) {
4661 TPA.Revert();
4662 return false;
4663 }
4664
4665 // Parse the constructor name.
4666 if (Tok.isOneOf(tok::identifier, tok::annot_template_id)) {
4667 // We already know that we have a constructor name; just consume
4668 // the token.
4669 ConsumeToken();
4670 } else {
4671 TPA.Revert();
4672 return false;
4673 }
4674
4675 // Current class name must be followed by a left parenthesis.
4676 if (Tok.isNot(tok::l_paren)) {
4677 TPA.Revert();
4678 return false;
4679 }
4680 ConsumeParen();
4681
4682 // A right parenthesis, or ellipsis followed by a right parenthesis signals
4683 // that we have a constructor.
4684 if (Tok.is(tok::r_paren) ||
4685 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4686 TPA.Revert();
4687 return true;
4688 }
4689
4690 // A C++11 attribute here signals that we have a constructor, and is an
4691 // attribute on the first constructor parameter.
4692 if (getLangOpts().CPlusPlus11 &&
4693 isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4694 /*OuterMightBeMessageSend*/ true)) {
4695 TPA.Revert();
4696 return true;
4697 }
4698
4699 // If we need to, enter the specified scope.
4700 DeclaratorScopeObj DeclScopeObj(*this, SS);
4701 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4702 DeclScopeObj.EnterDeclaratorScope();
4703
4704 // Optionally skip Microsoft attributes.
4705 ParsedAttributes Attrs(AttrFactory);
4706 MaybeParseMicrosoftAttributes(Attrs);
4707
4708 // Check whether the next token(s) are part of a declaration
4709 // specifier, in which case we have the start of a parameter and,
4710 // therefore, we know that this is a constructor.
4711 bool IsConstructor = false;
4712 if (isDeclarationSpecifier())
4713 IsConstructor = true;
4714 else if (Tok.is(tok::identifier) ||
4715 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4716 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4717 // This might be a parenthesized member name, but is more likely to
4718 // be a constructor declaration with an invalid argument type. Keep
4719 // looking.
4720 if (Tok.is(tok::annot_cxxscope))
4721 ConsumeToken();
4722 ConsumeToken();
4723
4724 // If this is not a constructor, we must be parsing a declarator,
4725 // which must have one of the following syntactic forms (see the
4726 // grammar extract at the start of ParseDirectDeclarator):
4727 switch (Tok.getKind()) {
4728 case tok::l_paren:
4729 // C(X ( int));
4730 case tok::l_square:
4731 // C(X [ 5]);
4732 // C(X [ [attribute]]);
4733 case tok::coloncolon:
4734 // C(X :: Y);
4735 // C(X :: *p);
4736 // Assume this isn't a constructor, rather than assuming it's a
4737 // constructor with an unnamed parameter of an ill-formed type.
4738 break;
4739
4740 case tok::r_paren:
4741 // C(X )
4742 if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4743 // Assume these were meant to be constructors:
4744 // C(X) : (the name of a bit-field cannot be parenthesized).
4745 // C(X) try (this is otherwise ill-formed).
4746 IsConstructor = true;
4747 }
4748 if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4749 // If we have a constructor name within the class definition,
4750 // assume these were meant to be constructors:
4751 // C(X) {
4752 // C(X) ;
4753 // ... because otherwise we would be declaring a non-static data
4754 // member that is ill-formed because it's of the same type as its
4755 // surrounding class.
4756 //
4757 // FIXME: We can actually do this whether or not the name is qualified,
4758 // because if it is qualified in this context it must be being used as
4759 // a constructor name. However, we do not implement that rule correctly
4760 // currently, so we're somewhat conservative here.
4761 IsConstructor = IsUnqualified;
4762 }
4763 break;
4764
4765 default:
4766 IsConstructor = true;
4767 break;
4768 }
4769 }
4770
4771 TPA.Revert();
4772 return IsConstructor;
4773 }
4774
4775 /// ParseTypeQualifierListOpt
4776 /// type-qualifier-list: [C99 6.7.5]
4777 /// type-qualifier
4778 /// [vendor] attributes
4779 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4780 /// type-qualifier-list type-qualifier
4781 /// [vendor] type-qualifier-list attributes
4782 /// [ only if AttrReqs & AR_VendorAttributesParsed ]
4783 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq
4784 /// [ only if AttReqs & AR_CXX11AttributesParsed ]
4785 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4786 /// AttrRequirements bitmask values.
ParseTypeQualifierListOpt(DeclSpec & DS,unsigned AttrReqs,bool AtomicAllowed,bool IdentifierRequired)4787 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4788 bool AtomicAllowed,
4789 bool IdentifierRequired) {
4790 if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4791 isCXX11AttributeSpecifier()) {
4792 ParsedAttributesWithRange attrs(AttrFactory);
4793 ParseCXX11Attributes(attrs);
4794 DS.takeAttributesFrom(attrs);
4795 }
4796
4797 SourceLocation EndLoc;
4798
4799 while (1) {
4800 bool isInvalid = false;
4801 const char *PrevSpec = nullptr;
4802 unsigned DiagID = 0;
4803 SourceLocation Loc = Tok.getLocation();
4804
4805 switch (Tok.getKind()) {
4806 case tok::code_completion:
4807 Actions.CodeCompleteTypeQualifiers(DS);
4808 return cutOffParsing();
4809
4810 case tok::kw_const:
4811 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID,
4812 getLangOpts());
4813 break;
4814 case tok::kw_volatile:
4815 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4816 getLangOpts());
4817 break;
4818 case tok::kw_restrict:
4819 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4820 getLangOpts());
4821 break;
4822 case tok::kw__Atomic:
4823 if (!AtomicAllowed)
4824 goto DoneWithTypeQuals;
4825 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4826 getLangOpts());
4827 break;
4828
4829 // OpenCL qualifiers:
4830 case tok::kw___private:
4831 case tok::kw___global:
4832 case tok::kw___local:
4833 case tok::kw___constant:
4834 case tok::kw___generic:
4835 case tok::kw___read_only:
4836 case tok::kw___write_only:
4837 case tok::kw___read_write:
4838 ParseOpenCLQualifiers(DS.getAttributes());
4839 break;
4840
4841 case tok::kw___unaligned:
4842 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
4843 getLangOpts());
4844 break;
4845 case tok::kw___uptr:
4846 // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4847 // with the MS modifier keyword.
4848 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4849 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4850 if (TryKeywordIdentFallback(false))
4851 continue;
4852 }
4853 case tok::kw___sptr:
4854 case tok::kw___w64:
4855 case tok::kw___ptr64:
4856 case tok::kw___ptr32:
4857 case tok::kw___cdecl:
4858 case tok::kw___stdcall:
4859 case tok::kw___fastcall:
4860 case tok::kw___thiscall:
4861 case tok::kw___vectorcall:
4862 if (AttrReqs & AR_DeclspecAttributesParsed) {
4863 ParseMicrosoftTypeAttributes(DS.getAttributes());
4864 continue;
4865 }
4866 goto DoneWithTypeQuals;
4867 case tok::kw___pascal:
4868 if (AttrReqs & AR_VendorAttributesParsed) {
4869 ParseBorlandTypeAttributes(DS.getAttributes());
4870 continue;
4871 }
4872 goto DoneWithTypeQuals;
4873
4874 // Nullability type specifiers.
4875 case tok::kw__Nonnull:
4876 case tok::kw__Nullable:
4877 case tok::kw__Null_unspecified:
4878 ParseNullabilityTypeSpecifiers(DS.getAttributes());
4879 continue;
4880
4881 // Objective-C 'kindof' types.
4882 case tok::kw___kindof:
4883 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4884 nullptr, 0, AttributeList::AS_Keyword);
4885 (void)ConsumeToken();
4886 continue;
4887
4888 case tok::kw___attribute:
4889 if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4890 // When GNU attributes are expressly forbidden, diagnose their usage.
4891 Diag(Tok, diag::err_attributes_not_allowed);
4892
4893 // Parse the attributes even if they are rejected to ensure that error
4894 // recovery is graceful.
4895 if (AttrReqs & AR_GNUAttributesParsed ||
4896 AttrReqs & AR_GNUAttributesParsedAndRejected) {
4897 ParseGNUAttributes(DS.getAttributes());
4898 continue; // do *not* consume the next token!
4899 }
4900 // otherwise, FALL THROUGH!
4901 default:
4902 DoneWithTypeQuals:
4903 // If this is not a type-qualifier token, we're done reading type
4904 // qualifiers. First verify that DeclSpec's are consistent.
4905 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
4906 if (EndLoc.isValid())
4907 DS.SetRangeEnd(EndLoc);
4908 return;
4909 }
4910
4911 // If the specifier combination wasn't legal, issue a diagnostic.
4912 if (isInvalid) {
4913 assert(PrevSpec && "Method did not return previous specifier!");
4914 Diag(Tok, DiagID) << PrevSpec;
4915 }
4916 EndLoc = ConsumeToken();
4917 }
4918 }
4919
4920 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4921 ///
ParseDeclarator(Declarator & D)4922 void Parser::ParseDeclarator(Declarator &D) {
4923 /// This implements the 'declarator' production in the C grammar, then checks
4924 /// for well-formedness and issues diagnostics.
4925 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4926 }
4927
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang,unsigned TheContext)4928 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4929 unsigned TheContext) {
4930 if (Kind == tok::star || Kind == tok::caret)
4931 return true;
4932
4933 if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200))
4934 return true;
4935
4936 if (!Lang.CPlusPlus)
4937 return false;
4938
4939 if (Kind == tok::amp)
4940 return true;
4941
4942 // We parse rvalue refs in C++03, because otherwise the errors are scary.
4943 // But we must not parse them in conversion-type-ids and new-type-ids, since
4944 // those can be legitimately followed by a && operator.
4945 // (The same thing can in theory happen after a trailing-return-type, but
4946 // since those are a C++11 feature, there is no rejects-valid issue there.)
4947 if (Kind == tok::ampamp)
4948 return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4949 TheContext != Declarator::CXXNewContext);
4950
4951 return false;
4952 }
4953
4954 // Indicates whether the given declarator is a pipe declarator.
isPipeDeclerator(const Declarator & D)4955 static bool isPipeDeclerator(const Declarator &D) {
4956 const unsigned NumTypes = D.getNumTypeObjects();
4957
4958 for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
4959 if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
4960 return true;
4961
4962 return false;
4963 }
4964
4965 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4966 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4967 /// isn't parsed at all, making this function effectively parse the C++
4968 /// ptr-operator production.
4969 ///
4970 /// If the grammar of this construct is extended, matching changes must also be
4971 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4972 /// isConstructorDeclarator.
4973 ///
4974 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4975 /// [C] pointer[opt] direct-declarator
4976 /// [C++] direct-declarator
4977 /// [C++] ptr-operator declarator
4978 ///
4979 /// pointer: [C99 6.7.5]
4980 /// '*' type-qualifier-list[opt]
4981 /// '*' type-qualifier-list[opt] pointer
4982 ///
4983 /// ptr-operator:
4984 /// '*' cv-qualifier-seq[opt]
4985 /// '&'
4986 /// [C++0x] '&&'
4987 /// [GNU] '&' restrict[opt] attributes[opt]
4988 /// [GNU?] '&&' restrict[opt] attributes[opt]
4989 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4990 void Parser::ParseDeclaratorInternal(Declarator &D,
4991 DirectDeclParseFunction DirectDeclParser) {
4992 if (Diags.hasAllExtensionsSilenced())
4993 D.setExtension();
4994
4995 // C++ member pointers start with a '::' or a nested-name.
4996 // Member pointers get special handling, since there's no place for the
4997 // scope spec in the generic path below.
4998 if (getLangOpts().CPlusPlus &&
4999 (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
5000 (Tok.is(tok::identifier) &&
5001 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
5002 Tok.is(tok::annot_cxxscope))) {
5003 bool EnteringContext = D.getContext() == Declarator::FileContext ||
5004 D.getContext() == Declarator::MemberContext;
5005 CXXScopeSpec SS;
5006 ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
5007
5008 if (SS.isNotEmpty()) {
5009 if (Tok.isNot(tok::star)) {
5010 // The scope spec really belongs to the direct-declarator.
5011 if (D.mayHaveIdentifier())
5012 D.getCXXScopeSpec() = SS;
5013 else
5014 AnnotateScopeToken(SS, true);
5015
5016 if (DirectDeclParser)
5017 (this->*DirectDeclParser)(D);
5018 return;
5019 }
5020
5021 SourceLocation Loc = ConsumeToken();
5022 D.SetRangeEnd(Loc);
5023 DeclSpec DS(AttrFactory);
5024 ParseTypeQualifierListOpt(DS);
5025 D.ExtendWithDeclSpec(DS);
5026
5027 // Recurse to parse whatever is left.
5028 ParseDeclaratorInternal(D, DirectDeclParser);
5029
5030 // Sema will have to catch (syntactically invalid) pointers into global
5031 // scope. It has to catch pointers into namespace scope anyway.
5032 D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
5033 DS.getLocEnd()),
5034 DS.getAttributes(),
5035 /* Don't replace range end. */SourceLocation());
5036 return;
5037 }
5038 }
5039
5040 tok::TokenKind Kind = Tok.getKind();
5041
5042 if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
5043 DeclSpec DS(AttrFactory);
5044 ParseTypeQualifierListOpt(DS);
5045
5046 D.AddTypeInfo(
5047 DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
5048 DS.getAttributes(), SourceLocation());
5049 }
5050
5051 // Not a pointer, C++ reference, or block.
5052 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
5053 if (DirectDeclParser)
5054 (this->*DirectDeclParser)(D);
5055 return;
5056 }
5057
5058 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
5059 // '&&' -> rvalue reference
5060 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&.
5061 D.SetRangeEnd(Loc);
5062
5063 if (Kind == tok::star || Kind == tok::caret) {
5064 // Is a pointer.
5065 DeclSpec DS(AttrFactory);
5066
5067 // GNU attributes are not allowed here in a new-type-id, but Declspec and
5068 // C++11 attributes are allowed.
5069 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
5070 ((D.getContext() != Declarator::CXXNewContext)
5071 ? AR_GNUAttributesParsed
5072 : AR_GNUAttributesParsedAndRejected);
5073 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
5074 D.ExtendWithDeclSpec(DS);
5075
5076 // Recursively parse the declarator.
5077 ParseDeclaratorInternal(D, DirectDeclParser);
5078 if (Kind == tok::star)
5079 // Remember that we parsed a pointer type, and remember the type-quals.
5080 D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
5081 DS.getConstSpecLoc(),
5082 DS.getVolatileSpecLoc(),
5083 DS.getRestrictSpecLoc(),
5084 DS.getAtomicSpecLoc(),
5085 DS.getUnalignedSpecLoc()),
5086 DS.getAttributes(),
5087 SourceLocation());
5088 else
5089 // Remember that we parsed a Block type, and remember the type-quals.
5090 D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
5091 Loc),
5092 DS.getAttributes(),
5093 SourceLocation());
5094 } else {
5095 // Is a reference
5096 DeclSpec DS(AttrFactory);
5097
5098 // Complain about rvalue references in C++03, but then go on and build
5099 // the declarator.
5100 if (Kind == tok::ampamp)
5101 Diag(Loc, getLangOpts().CPlusPlus11 ?
5102 diag::warn_cxx98_compat_rvalue_reference :
5103 diag::ext_rvalue_reference);
5104
5105 // GNU-style and C++11 attributes are allowed here, as is restrict.
5106 ParseTypeQualifierListOpt(DS);
5107 D.ExtendWithDeclSpec(DS);
5108
5109 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
5110 // cv-qualifiers are introduced through the use of a typedef or of a
5111 // template type argument, in which case the cv-qualifiers are ignored.
5112 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
5113 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5114 Diag(DS.getConstSpecLoc(),
5115 diag::err_invalid_reference_qualifier_application) << "const";
5116 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5117 Diag(DS.getVolatileSpecLoc(),
5118 diag::err_invalid_reference_qualifier_application) << "volatile";
5119 // 'restrict' is permitted as an extension.
5120 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5121 Diag(DS.getAtomicSpecLoc(),
5122 diag::err_invalid_reference_qualifier_application) << "_Atomic";
5123 }
5124
5125 // Recursively parse the declarator.
5126 ParseDeclaratorInternal(D, DirectDeclParser);
5127
5128 if (D.getNumTypeObjects() > 0) {
5129 // C++ [dcl.ref]p4: There shall be no references to references.
5130 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
5131 if (InnerChunk.Kind == DeclaratorChunk::Reference) {
5132 if (const IdentifierInfo *II = D.getIdentifier())
5133 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5134 << II;
5135 else
5136 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
5137 << "type name";
5138
5139 // Once we've complained about the reference-to-reference, we
5140 // can go ahead and build the (technically ill-formed)
5141 // declarator: reference collapsing will take care of it.
5142 }
5143 }
5144
5145 // Remember that we parsed a reference type.
5146 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
5147 Kind == tok::amp),
5148 DS.getAttributes(),
5149 SourceLocation());
5150 }
5151 }
5152
5153 // When correcting from misplaced brackets before the identifier, the location
5154 // is saved inside the declarator so that other diagnostic messages can use
5155 // them. This extracts and returns that location, or returns the provided
5156 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)5157 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
5158 SourceLocation Loc) {
5159 if (D.getName().StartLocation.isInvalid() &&
5160 D.getName().EndLocation.isValid())
5161 return D.getName().EndLocation;
5162
5163 return Loc;
5164 }
5165
5166 /// ParseDirectDeclarator
5167 /// direct-declarator: [C99 6.7.5]
5168 /// [C99] identifier
5169 /// '(' declarator ')'
5170 /// [GNU] '(' attributes declarator ')'
5171 /// [C90] direct-declarator '[' constant-expression[opt] ']'
5172 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5173 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5174 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5175 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
5176 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5177 /// attribute-specifier-seq[opt]
5178 /// direct-declarator '(' parameter-type-list ')'
5179 /// direct-declarator '(' identifier-list[opt] ')'
5180 /// [GNU] direct-declarator '(' parameter-forward-declarations
5181 /// parameter-type-list[opt] ')'
5182 /// [C++] direct-declarator '(' parameter-declaration-clause ')'
5183 /// cv-qualifier-seq[opt] exception-specification[opt]
5184 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
5185 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt]
5186 /// ref-qualifier[opt] exception-specification[opt]
5187 /// [C++] declarator-id
5188 /// [C++11] declarator-id attribute-specifier-seq[opt]
5189 ///
5190 /// declarator-id: [C++ 8]
5191 /// '...'[opt] id-expression
5192 /// '::'[opt] nested-name-specifier[opt] type-name
5193 ///
5194 /// id-expression: [C++ 5.1]
5195 /// unqualified-id
5196 /// qualified-id
5197 ///
5198 /// unqualified-id: [C++ 5.1]
5199 /// identifier
5200 /// operator-function-id
5201 /// conversion-function-id
5202 /// '~' class-name
5203 /// template-id
5204 ///
5205 /// Note, any additional constructs added here may need corresponding changes
5206 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)5207 void Parser::ParseDirectDeclarator(Declarator &D) {
5208 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
5209
5210 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
5211 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
5212 // this context it is a bitfield. Also in range-based for statement colon
5213 // may delimit for-range-declaration.
5214 ColonProtectionRAIIObject X(*this,
5215 D.getContext() == Declarator::MemberContext ||
5216 (D.getContext() == Declarator::ForContext &&
5217 getLangOpts().CPlusPlus11));
5218
5219 // ParseDeclaratorInternal might already have parsed the scope.
5220 if (D.getCXXScopeSpec().isEmpty()) {
5221 bool EnteringContext = D.getContext() == Declarator::FileContext ||
5222 D.getContext() == Declarator::MemberContext;
5223 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
5224 EnteringContext);
5225 }
5226
5227 if (D.getCXXScopeSpec().isValid()) {
5228 if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
5229 D.getCXXScopeSpec()))
5230 // Change the declaration context for name lookup, until this function
5231 // is exited (and the declarator has been parsed).
5232 DeclScopeObj.EnterDeclaratorScope();
5233 }
5234
5235 // C++0x [dcl.fct]p14:
5236 // There is a syntactic ambiguity when an ellipsis occurs at the end of a
5237 // parameter-declaration-clause without a preceding comma. In this case,
5238 // the ellipsis is parsed as part of the abstract-declarator if the type
5239 // of the parameter either names a template parameter pack that has not
5240 // been expanded or contains auto; otherwise, it is parsed as part of the
5241 // parameter-declaration-clause.
5242 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
5243 !((D.getContext() == Declarator::PrototypeContext ||
5244 D.getContext() == Declarator::LambdaExprParameterContext ||
5245 D.getContext() == Declarator::BlockLiteralContext) &&
5246 NextToken().is(tok::r_paren) &&
5247 !D.hasGroupingParens() &&
5248 !Actions.containsUnexpandedParameterPacks(D) &&
5249 D.getDeclSpec().getTypeSpecType() != TST_auto)) {
5250 SourceLocation EllipsisLoc = ConsumeToken();
5251 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
5252 // The ellipsis was put in the wrong place. Recover, and explain to
5253 // the user what they should have done.
5254 ParseDeclarator(D);
5255 if (EllipsisLoc.isValid())
5256 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5257 return;
5258 } else
5259 D.setEllipsisLoc(EllipsisLoc);
5260
5261 // The ellipsis can't be followed by a parenthesized declarator. We
5262 // check for that in ParseParenDeclarator, after we have disambiguated
5263 // the l_paren token.
5264 }
5265
5266 if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
5267 tok::tilde)) {
5268 // We found something that indicates the start of an unqualified-id.
5269 // Parse that unqualified-id.
5270 bool AllowConstructorName;
5271 if (D.getDeclSpec().hasTypeSpecifier())
5272 AllowConstructorName = false;
5273 else if (D.getCXXScopeSpec().isSet())
5274 AllowConstructorName =
5275 (D.getContext() == Declarator::FileContext ||
5276 D.getContext() == Declarator::MemberContext);
5277 else
5278 AllowConstructorName = (D.getContext() == Declarator::MemberContext);
5279
5280 SourceLocation TemplateKWLoc;
5281 bool HadScope = D.getCXXScopeSpec().isValid();
5282 if (ParseUnqualifiedId(D.getCXXScopeSpec(),
5283 /*EnteringContext=*/true,
5284 /*AllowDestructorName=*/true, AllowConstructorName,
5285 nullptr, TemplateKWLoc, D.getName()) ||
5286 // Once we're past the identifier, if the scope was bad, mark the
5287 // whole declarator bad.
5288 D.getCXXScopeSpec().isInvalid()) {
5289 D.SetIdentifier(nullptr, Tok.getLocation());
5290 D.setInvalidType(true);
5291 } else {
5292 // ParseUnqualifiedId might have parsed a scope specifier during error
5293 // recovery. If it did so, enter that scope.
5294 if (!HadScope && D.getCXXScopeSpec().isValid() &&
5295 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5296 D.getCXXScopeSpec()))
5297 DeclScopeObj.EnterDeclaratorScope();
5298
5299 // Parsed the unqualified-id; update range information and move along.
5300 if (D.getSourceRange().getBegin().isInvalid())
5301 D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5302 D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5303 }
5304 goto PastIdentifier;
5305 }
5306
5307 if (D.getCXXScopeSpec().isNotEmpty()) {
5308 // We have a scope specifier but no following unqualified-id.
5309 Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
5310 diag::err_expected_unqualified_id)
5311 << /*C++*/1;
5312 D.SetIdentifier(nullptr, Tok.getLocation());
5313 goto PastIdentifier;
5314 }
5315 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5316 assert(!getLangOpts().CPlusPlus &&
5317 "There's a C++-specific check for tok::identifier above");
5318 assert(Tok.getIdentifierInfo() && "Not an identifier?");
5319 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5320 D.SetRangeEnd(Tok.getLocation());
5321 ConsumeToken();
5322 goto PastIdentifier;
5323 } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5324 // A virt-specifier isn't treated as an identifier if it appears after a
5325 // trailing-return-type.
5326 if (D.getContext() != Declarator::TrailingReturnContext ||
5327 !isCXX11VirtSpecifier(Tok)) {
5328 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5329 << FixItHint::CreateRemoval(Tok.getLocation());
5330 D.SetIdentifier(nullptr, Tok.getLocation());
5331 ConsumeToken();
5332 goto PastIdentifier;
5333 }
5334 }
5335
5336 if (Tok.is(tok::l_paren)) {
5337 // direct-declarator: '(' declarator ')'
5338 // direct-declarator: '(' attributes declarator ')'
5339 // Example: 'char (*X)' or 'int (*XX)(void)'
5340 ParseParenDeclarator(D);
5341
5342 // If the declarator was parenthesized, we entered the declarator
5343 // scope when parsing the parenthesized declarator, then exited
5344 // the scope already. Re-enter the scope, if we need to.
5345 if (D.getCXXScopeSpec().isSet()) {
5346 // If there was an error parsing parenthesized declarator, declarator
5347 // scope may have been entered before. Don't do it again.
5348 if (!D.isInvalidType() &&
5349 Actions.ShouldEnterDeclaratorScope(getCurScope(),
5350 D.getCXXScopeSpec()))
5351 // Change the declaration context for name lookup, until this function
5352 // is exited (and the declarator has been parsed).
5353 DeclScopeObj.EnterDeclaratorScope();
5354 }
5355 } else if (D.mayOmitIdentifier()) {
5356 // This could be something simple like "int" (in which case the declarator
5357 // portion is empty), if an abstract-declarator is allowed.
5358 D.SetIdentifier(nullptr, Tok.getLocation());
5359
5360 // The grammar for abstract-pack-declarator does not allow grouping parens.
5361 // FIXME: Revisit this once core issue 1488 is resolved.
5362 if (D.hasEllipsis() && D.hasGroupingParens())
5363 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5364 diag::ext_abstract_pack_declarator_parens);
5365 } else {
5366 if (Tok.getKind() == tok::annot_pragma_parser_crash)
5367 LLVM_BUILTIN_TRAP;
5368 if (Tok.is(tok::l_square))
5369 return ParseMisplacedBracketDeclarator(D);
5370 if (D.getContext() == Declarator::MemberContext) {
5371 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5372 diag::err_expected_member_name_or_semi)
5373 << (D.getDeclSpec().isEmpty() ? SourceRange()
5374 : D.getDeclSpec().getSourceRange());
5375 } else if (getLangOpts().CPlusPlus) {
5376 if (Tok.isOneOf(tok::period, tok::arrow))
5377 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5378 else {
5379 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5380 if (Tok.isAtStartOfLine() && Loc.isValid())
5381 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5382 << getLangOpts().CPlusPlus;
5383 else
5384 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5385 diag::err_expected_unqualified_id)
5386 << getLangOpts().CPlusPlus;
5387 }
5388 } else {
5389 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5390 diag::err_expected_either)
5391 << tok::identifier << tok::l_paren;
5392 }
5393 D.SetIdentifier(nullptr, Tok.getLocation());
5394 D.setInvalidType(true);
5395 }
5396
5397 PastIdentifier:
5398 assert(D.isPastIdentifier() &&
5399 "Haven't past the location of the identifier yet?");
5400
5401 // Don't parse attributes unless we have parsed an unparenthesized name.
5402 if (D.hasName() && !D.getNumTypeObjects())
5403 MaybeParseCXX11Attributes(D);
5404
5405 while (1) {
5406 if (Tok.is(tok::l_paren)) {
5407 // Enter function-declaration scope, limiting any declarators to the
5408 // function prototype scope, including parameter declarators.
5409 ParseScope PrototypeScope(this,
5410 Scope::FunctionPrototypeScope|Scope::DeclScope|
5411 (D.isFunctionDeclaratorAFunctionDeclaration()
5412 ? Scope::FunctionDeclarationScope : 0));
5413
5414 // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5415 // In such a case, check if we actually have a function declarator; if it
5416 // is not, the declarator has been fully parsed.
5417 bool IsAmbiguous = false;
5418 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5419 // The name of the declarator, if any, is tentatively declared within
5420 // a possible direct initializer.
5421 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5422 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5423 TentativelyDeclaredIdentifiers.pop_back();
5424 if (!IsFunctionDecl)
5425 break;
5426 }
5427 ParsedAttributes attrs(AttrFactory);
5428 BalancedDelimiterTracker T(*this, tok::l_paren);
5429 T.consumeOpen();
5430 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5431 PrototypeScope.Exit();
5432 } else if (Tok.is(tok::l_square)) {
5433 ParseBracketDeclarator(D);
5434 } else {
5435 break;
5436 }
5437 }
5438 }
5439
5440 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is
5441 /// only called before the identifier, so these are most likely just grouping
5442 /// parens for precedence. If we find that these are actually function
5443 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5444 ///
5445 /// direct-declarator:
5446 /// '(' declarator ')'
5447 /// [GNU] '(' attributes declarator ')'
5448 /// direct-declarator '(' parameter-type-list ')'
5449 /// direct-declarator '(' identifier-list[opt] ')'
5450 /// [GNU] direct-declarator '(' parameter-forward-declarations
5451 /// parameter-type-list[opt] ')'
5452 ///
ParseParenDeclarator(Declarator & D)5453 void Parser::ParseParenDeclarator(Declarator &D) {
5454 BalancedDelimiterTracker T(*this, tok::l_paren);
5455 T.consumeOpen();
5456
5457 assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5458
5459 // Eat any attributes before we look at whether this is a grouping or function
5460 // declarator paren. If this is a grouping paren, the attribute applies to
5461 // the type being built up, for example:
5462 // int (__attribute__(()) *x)(long y)
5463 // If this ends up not being a grouping paren, the attribute applies to the
5464 // first argument, for example:
5465 // int (__attribute__(()) int x)
5466 // In either case, we need to eat any attributes to be able to determine what
5467 // sort of paren this is.
5468 //
5469 ParsedAttributes attrs(AttrFactory);
5470 bool RequiresArg = false;
5471 if (Tok.is(tok::kw___attribute)) {
5472 ParseGNUAttributes(attrs);
5473
5474 // We require that the argument list (if this is a non-grouping paren) be
5475 // present even if the attribute list was empty.
5476 RequiresArg = true;
5477 }
5478
5479 // Eat any Microsoft extensions.
5480 ParseMicrosoftTypeAttributes(attrs);
5481
5482 // Eat any Borland extensions.
5483 if (Tok.is(tok::kw___pascal))
5484 ParseBorlandTypeAttributes(attrs);
5485
5486 // If we haven't past the identifier yet (or where the identifier would be
5487 // stored, if this is an abstract declarator), then this is probably just
5488 // grouping parens. However, if this could be an abstract-declarator, then
5489 // this could also be the start of function arguments (consider 'void()').
5490 bool isGrouping;
5491
5492 if (!D.mayOmitIdentifier()) {
5493 // If this can't be an abstract-declarator, this *must* be a grouping
5494 // paren, because we haven't seen the identifier yet.
5495 isGrouping = true;
5496 } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
5497 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5498 NextToken().is(tok::r_paren)) || // C++ int(...)
5499 isDeclarationSpecifier() || // 'int(int)' is a function.
5500 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
5501 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5502 // considered to be a type, not a K&R identifier-list.
5503 isGrouping = false;
5504 } else {
5505 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5506 isGrouping = true;
5507 }
5508
5509 // If this is a grouping paren, handle:
5510 // direct-declarator: '(' declarator ')'
5511 // direct-declarator: '(' attributes declarator ')'
5512 if (isGrouping) {
5513 SourceLocation EllipsisLoc = D.getEllipsisLoc();
5514 D.setEllipsisLoc(SourceLocation());
5515
5516 bool hadGroupingParens = D.hasGroupingParens();
5517 D.setGroupingParens(true);
5518 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5519 // Match the ')'.
5520 T.consumeClose();
5521 D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5522 T.getCloseLocation()),
5523 attrs, T.getCloseLocation());
5524
5525 D.setGroupingParens(hadGroupingParens);
5526
5527 // An ellipsis cannot be placed outside parentheses.
5528 if (EllipsisLoc.isValid())
5529 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5530
5531 return;
5532 }
5533
5534 // Okay, if this wasn't a grouping paren, it must be the start of a function
5535 // argument list. Recognize that this declarator will never have an
5536 // identifier (and remember where it would have been), then call into
5537 // ParseFunctionDeclarator to handle of argument list.
5538 D.SetIdentifier(nullptr, Tok.getLocation());
5539
5540 // Enter function-declaration scope, limiting any declarators to the
5541 // function prototype scope, including parameter declarators.
5542 ParseScope PrototypeScope(this,
5543 Scope::FunctionPrototypeScope | Scope::DeclScope |
5544 (D.isFunctionDeclaratorAFunctionDeclaration()
5545 ? Scope::FunctionDeclarationScope : 0));
5546 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5547 PrototypeScope.Exit();
5548 }
5549
5550 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5551 /// declarator D up to a paren, which indicates that we are parsing function
5552 /// arguments.
5553 ///
5554 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5555 /// immediately after the open paren - they should be considered to be the
5556 /// first argument of a parameter.
5557 ///
5558 /// If RequiresArg is true, then the first argument of the function is required
5559 /// to be present and required to not be an identifier list.
5560 ///
5561 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5562 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5563 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5564 ///
5565 /// [C++11] exception-specification:
5566 /// dynamic-exception-specification
5567 /// noexcept-specification
5568 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5569 void Parser::ParseFunctionDeclarator(Declarator &D,
5570 ParsedAttributes &FirstArgAttrs,
5571 BalancedDelimiterTracker &Tracker,
5572 bool IsAmbiguous,
5573 bool RequiresArg) {
5574 assert(getCurScope()->isFunctionPrototypeScope() &&
5575 "Should call from a Function scope");
5576 // lparen is already consumed!
5577 assert(D.isPastIdentifier() && "Should not call before identifier!");
5578
5579 // This should be true when the function has typed arguments.
5580 // Otherwise, it is treated as a K&R-style function.
5581 bool HasProto = false;
5582 // Build up an array of information about the parsed arguments.
5583 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5584 // Remember where we see an ellipsis, if any.
5585 SourceLocation EllipsisLoc;
5586
5587 DeclSpec DS(AttrFactory);
5588 bool RefQualifierIsLValueRef = true;
5589 SourceLocation RefQualifierLoc;
5590 SourceLocation ConstQualifierLoc;
5591 SourceLocation VolatileQualifierLoc;
5592 SourceLocation RestrictQualifierLoc;
5593 ExceptionSpecificationType ESpecType = EST_None;
5594 SourceRange ESpecRange;
5595 SmallVector<ParsedType, 2> DynamicExceptions;
5596 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5597 ExprResult NoexceptExpr;
5598 CachedTokens *ExceptionSpecTokens = nullptr;
5599 ParsedAttributes FnAttrs(AttrFactory);
5600 TypeResult TrailingReturnType;
5601
5602 /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5603 EndLoc is the end location for the function declarator.
5604 They differ for trailing return types. */
5605 SourceLocation StartLoc, LocalEndLoc, EndLoc;
5606 SourceLocation LParenLoc, RParenLoc;
5607 LParenLoc = Tracker.getOpenLocation();
5608 StartLoc = LParenLoc;
5609
5610 if (isFunctionDeclaratorIdentifierList()) {
5611 if (RequiresArg)
5612 Diag(Tok, diag::err_argument_required_after_attribute);
5613
5614 ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5615
5616 Tracker.consumeClose();
5617 RParenLoc = Tracker.getCloseLocation();
5618 LocalEndLoc = RParenLoc;
5619 EndLoc = RParenLoc;
5620 } else {
5621 if (Tok.isNot(tok::r_paren))
5622 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5623 EllipsisLoc);
5624 else if (RequiresArg)
5625 Diag(Tok, diag::err_argument_required_after_attribute);
5626
5627 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5628
5629 // If we have the closing ')', eat it.
5630 Tracker.consumeClose();
5631 RParenLoc = Tracker.getCloseLocation();
5632 LocalEndLoc = RParenLoc;
5633 EndLoc = RParenLoc;
5634
5635 if (getLangOpts().CPlusPlus) {
5636 // FIXME: Accept these components in any order, and produce fixits to
5637 // correct the order if the user gets it wrong. Ideally we should deal
5638 // with the pure-specifier in the same way.
5639
5640 // Parse cv-qualifier-seq[opt].
5641 ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5642 /*AtomicAllowed*/ false);
5643 if (!DS.getSourceRange().getEnd().isInvalid()) {
5644 EndLoc = DS.getSourceRange().getEnd();
5645 ConstQualifierLoc = DS.getConstSpecLoc();
5646 VolatileQualifierLoc = DS.getVolatileSpecLoc();
5647 RestrictQualifierLoc = DS.getRestrictSpecLoc();
5648 }
5649
5650 // Parse ref-qualifier[opt].
5651 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
5652 EndLoc = RefQualifierLoc;
5653
5654 // C++11 [expr.prim.general]p3:
5655 // If a declaration declares a member function or member function
5656 // template of a class X, the expression this is a prvalue of type
5657 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5658 // and the end of the function-definition, member-declarator, or
5659 // declarator.
5660 // FIXME: currently, "static" case isn't handled correctly.
5661 bool IsCXX11MemberFunction =
5662 getLangOpts().CPlusPlus11 &&
5663 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5664 (D.getContext() == Declarator::MemberContext
5665 ? !D.getDeclSpec().isFriendSpecified()
5666 : D.getContext() == Declarator::FileContext &&
5667 D.getCXXScopeSpec().isValid() &&
5668 Actions.CurContext->isRecord());
5669 Sema::CXXThisScopeRAII ThisScope(Actions,
5670 dyn_cast<CXXRecordDecl>(Actions.CurContext),
5671 DS.getTypeQualifiers() |
5672 (D.getDeclSpec().isConstexprSpecified() &&
5673 !getLangOpts().CPlusPlus14
5674 ? Qualifiers::Const : 0),
5675 IsCXX11MemberFunction);
5676
5677 // Parse exception-specification[opt].
5678 bool Delayed = D.isFirstDeclarationOfMember() &&
5679 D.isFunctionDeclaratorAFunctionDeclaration();
5680 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5681 GetLookAheadToken(0).is(tok::kw_noexcept) &&
5682 GetLookAheadToken(1).is(tok::l_paren) &&
5683 GetLookAheadToken(2).is(tok::kw_noexcept) &&
5684 GetLookAheadToken(3).is(tok::l_paren) &&
5685 GetLookAheadToken(4).is(tok::identifier) &&
5686 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5687 // HACK: We've got an exception-specification
5688 // noexcept(noexcept(swap(...)))
5689 // or
5690 // noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5691 // on a 'swap' member function. This is a libstdc++ bug; the lookup
5692 // for 'swap' will only find the function we're currently declaring,
5693 // whereas it expects to find a non-member swap through ADL. Turn off
5694 // delayed parsing to give it a chance to find what it expects.
5695 Delayed = false;
5696 }
5697 ESpecType = tryParseExceptionSpecification(Delayed,
5698 ESpecRange,
5699 DynamicExceptions,
5700 DynamicExceptionRanges,
5701 NoexceptExpr,
5702 ExceptionSpecTokens);
5703 if (ESpecType != EST_None)
5704 EndLoc = ESpecRange.getEnd();
5705
5706 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5707 // after the exception-specification.
5708 MaybeParseCXX11Attributes(FnAttrs);
5709
5710 // Parse trailing-return-type[opt].
5711 LocalEndLoc = EndLoc;
5712 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5713 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5714 if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5715 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5716 LocalEndLoc = Tok.getLocation();
5717 SourceRange Range;
5718 TrailingReturnType = ParseTrailingReturnType(Range);
5719 EndLoc = Range.getEnd();
5720 }
5721 }
5722 }
5723
5724 // Remember that we parsed a function type, and remember the attributes.
5725 D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5726 IsAmbiguous,
5727 LParenLoc,
5728 ParamInfo.data(), ParamInfo.size(),
5729 EllipsisLoc, RParenLoc,
5730 DS.getTypeQualifiers(),
5731 RefQualifierIsLValueRef,
5732 RefQualifierLoc, ConstQualifierLoc,
5733 VolatileQualifierLoc,
5734 RestrictQualifierLoc,
5735 /*MutableLoc=*/SourceLocation(),
5736 ESpecType, ESpecRange,
5737 DynamicExceptions.data(),
5738 DynamicExceptionRanges.data(),
5739 DynamicExceptions.size(),
5740 NoexceptExpr.isUsable() ?
5741 NoexceptExpr.get() : nullptr,
5742 ExceptionSpecTokens,
5743 StartLoc, LocalEndLoc, D,
5744 TrailingReturnType),
5745 FnAttrs, EndLoc);
5746 }
5747
5748 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
5749 /// true if a ref-qualifier is found.
ParseRefQualifier(bool & RefQualifierIsLValueRef,SourceLocation & RefQualifierLoc)5750 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
5751 SourceLocation &RefQualifierLoc) {
5752 if (Tok.isOneOf(tok::amp, tok::ampamp)) {
5753 Diag(Tok, getLangOpts().CPlusPlus11 ?
5754 diag::warn_cxx98_compat_ref_qualifier :
5755 diag::ext_ref_qualifier);
5756
5757 RefQualifierIsLValueRef = Tok.is(tok::amp);
5758 RefQualifierLoc = ConsumeToken();
5759 return true;
5760 }
5761 return false;
5762 }
5763
5764 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5765 /// identifier list form for a K&R-style function: void foo(a,b,c)
5766 ///
5767 /// Note that identifier-lists are only allowed for normal declarators, not for
5768 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5769 bool Parser::isFunctionDeclaratorIdentifierList() {
5770 return !getLangOpts().CPlusPlus
5771 && Tok.is(tok::identifier)
5772 && !TryAltiVecVectorToken()
5773 // K&R identifier lists can't have typedefs as identifiers, per C99
5774 // 6.7.5.3p11.
5775 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5776 // Identifier lists follow a really simple grammar: the identifiers can
5777 // be followed *only* by a ", identifier" or ")". However, K&R
5778 // identifier lists are really rare in the brave new modern world, and
5779 // it is very common for someone to typo a type in a non-K&R style
5780 // list. If we are presented with something like: "void foo(intptr x,
5781 // float y)", we don't want to start parsing the function declarator as
5782 // though it is a K&R style declarator just because intptr is an
5783 // invalid type.
5784 //
5785 // To handle this, we check to see if the token after the first
5786 // identifier is a "," or ")". Only then do we parse it as an
5787 // identifier list.
5788 && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5789 }
5790
5791 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5792 /// we found a K&R-style identifier list instead of a typed parameter list.
5793 ///
5794 /// After returning, ParamInfo will hold the parsed parameters.
5795 ///
5796 /// identifier-list: [C99 6.7.5]
5797 /// identifier
5798 /// identifier-list ',' identifier
5799 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5800 void Parser::ParseFunctionDeclaratorIdentifierList(
5801 Declarator &D,
5802 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5803 // If there was no identifier specified for the declarator, either we are in
5804 // an abstract-declarator, or we are in a parameter declarator which was found
5805 // to be abstract. In abstract-declarators, identifier lists are not valid:
5806 // diagnose this.
5807 if (!D.getIdentifier())
5808 Diag(Tok, diag::ext_ident_list_in_param);
5809
5810 // Maintain an efficient lookup of params we have seen so far.
5811 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5812
5813 do {
5814 // If this isn't an identifier, report the error and skip until ')'.
5815 if (Tok.isNot(tok::identifier)) {
5816 Diag(Tok, diag::err_expected) << tok::identifier;
5817 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5818 // Forget we parsed anything.
5819 ParamInfo.clear();
5820 return;
5821 }
5822
5823 IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5824
5825 // Reject 'typedef int y; int test(x, y)', but continue parsing.
5826 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5827 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5828
5829 // Verify that the argument identifier has not already been mentioned.
5830 if (!ParamsSoFar.insert(ParmII).second) {
5831 Diag(Tok, diag::err_param_redefinition) << ParmII;
5832 } else {
5833 // Remember this identifier in ParamInfo.
5834 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5835 Tok.getLocation(),
5836 nullptr));
5837 }
5838
5839 // Eat the identifier.
5840 ConsumeToken();
5841 // The list continues if we see a comma.
5842 } while (TryConsumeToken(tok::comma));
5843 }
5844
5845 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5846 /// after the opening parenthesis. This function will not parse a K&R-style
5847 /// identifier list.
5848 ///
5849 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the
5850 /// caller parsed those arguments immediately after the open paren - they should
5851 /// be considered to be part of the first parameter.
5852 ///
5853 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5854 /// be the location of the ellipsis, if any was parsed.
5855 ///
5856 /// parameter-type-list: [C99 6.7.5]
5857 /// parameter-list
5858 /// parameter-list ',' '...'
5859 /// [C++] parameter-list '...'
5860 ///
5861 /// parameter-list: [C99 6.7.5]
5862 /// parameter-declaration
5863 /// parameter-list ',' parameter-declaration
5864 ///
5865 /// parameter-declaration: [C99 6.7.5]
5866 /// declaration-specifiers declarator
5867 /// [C++] declaration-specifiers declarator '=' assignment-expression
5868 /// [C++11] initializer-clause
5869 /// [GNU] declaration-specifiers declarator attributes
5870 /// declaration-specifiers abstract-declarator[opt]
5871 /// [C++] declaration-specifiers abstract-declarator[opt]
5872 /// '=' assignment-expression
5873 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes
5874 /// [C++11] attribute-specifier-seq parameter-declaration
5875 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5876 void Parser::ParseParameterDeclarationClause(
5877 Declarator &D,
5878 ParsedAttributes &FirstArgAttrs,
5879 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5880 SourceLocation &EllipsisLoc) {
5881 do {
5882 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5883 // before deciding this was a parameter-declaration-clause.
5884 if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5885 break;
5886
5887 // Parse the declaration-specifiers.
5888 // Just use the ParsingDeclaration "scope" of the declarator.
5889 DeclSpec DS(AttrFactory);
5890
5891 // Parse any C++11 attributes.
5892 MaybeParseCXX11Attributes(DS.getAttributes());
5893
5894 // Skip any Microsoft attributes before a param.
5895 MaybeParseMicrosoftAttributes(DS.getAttributes());
5896
5897 SourceLocation DSStart = Tok.getLocation();
5898
5899 // If the caller parsed attributes for the first argument, add them now.
5900 // Take them so that we only apply the attributes to the first parameter.
5901 // FIXME: If we can leave the attributes in the token stream somehow, we can
5902 // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5903 // too much hassle.
5904 DS.takeAttributesFrom(FirstArgAttrs);
5905
5906 ParseDeclarationSpecifiers(DS);
5907
5908
5909 // Parse the declarator. This is "PrototypeContext" or
5910 // "LambdaExprParameterContext", because we must accept either
5911 // 'declarator' or 'abstract-declarator' here.
5912 Declarator ParmDeclarator(DS,
5913 D.getContext() == Declarator::LambdaExprContext ?
5914 Declarator::LambdaExprParameterContext :
5915 Declarator::PrototypeContext);
5916 ParseDeclarator(ParmDeclarator);
5917
5918 // Parse GNU attributes, if present.
5919 MaybeParseGNUAttributes(ParmDeclarator);
5920
5921 // Remember this parsed parameter in ParamInfo.
5922 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5923
5924 // DefArgToks is used when the parsing of default arguments needs
5925 // to be delayed.
5926 CachedTokens *DefArgToks = nullptr;
5927
5928 // If no parameter was specified, verify that *something* was specified,
5929 // otherwise we have a missing type and identifier.
5930 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5931 ParmDeclarator.getNumTypeObjects() == 0) {
5932 // Completely missing, emit error.
5933 Diag(DSStart, diag::err_missing_param);
5934 } else {
5935 // Otherwise, we have something. Add it and let semantic analysis try
5936 // to grok it and add the result to the ParamInfo we are building.
5937
5938 // Last chance to recover from a misplaced ellipsis in an attempted
5939 // parameter pack declaration.
5940 if (Tok.is(tok::ellipsis) &&
5941 (NextToken().isNot(tok::r_paren) ||
5942 (!ParmDeclarator.getEllipsisLoc().isValid() &&
5943 !Actions.isUnexpandedParameterPackPermitted())) &&
5944 Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5945 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5946
5947 // Inform the actions module about the parameter declarator, so it gets
5948 // added to the current scope.
5949 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5950 // Parse the default argument, if any. We parse the default
5951 // arguments in all dialects; the semantic analysis in
5952 // ActOnParamDefaultArgument will reject the default argument in
5953 // C.
5954 if (Tok.is(tok::equal)) {
5955 SourceLocation EqualLoc = Tok.getLocation();
5956
5957 // Parse the default argument
5958 if (D.getContext() == Declarator::MemberContext) {
5959 // If we're inside a class definition, cache the tokens
5960 // corresponding to the default argument. We'll actually parse
5961 // them when we see the end of the class definition.
5962 // FIXME: Can we use a smart pointer for Toks?
5963 DefArgToks = new CachedTokens;
5964
5965 SourceLocation ArgStartLoc = NextToken().getLocation();
5966 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5967 delete DefArgToks;
5968 DefArgToks = nullptr;
5969 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5970 } else {
5971 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5972 ArgStartLoc);
5973 }
5974 } else {
5975 // Consume the '='.
5976 ConsumeToken();
5977
5978 // The argument isn't actually potentially evaluated unless it is
5979 // used.
5980 EnterExpressionEvaluationContext Eval(Actions,
5981 Sema::PotentiallyEvaluatedIfUsed,
5982 Param);
5983
5984 ExprResult DefArgResult;
5985 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5986 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5987 DefArgResult = ParseBraceInitializer();
5988 } else
5989 DefArgResult = ParseAssignmentExpression();
5990 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5991 if (DefArgResult.isInvalid()) {
5992 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5993 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5994 } else {
5995 // Inform the actions module about the default argument
5996 Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5997 DefArgResult.get());
5998 }
5999 }
6000 }
6001
6002 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
6003 ParmDeclarator.getIdentifierLoc(),
6004 Param, DefArgToks));
6005 }
6006
6007 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
6008 if (!getLangOpts().CPlusPlus) {
6009 // We have ellipsis without a preceding ',', which is ill-formed
6010 // in C. Complain and provide the fix.
6011 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
6012 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6013 } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
6014 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
6015 // It looks like this was supposed to be a parameter pack. Warn and
6016 // point out where the ellipsis should have gone.
6017 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
6018 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
6019 << ParmEllipsis.isValid() << ParmEllipsis;
6020 if (ParmEllipsis.isValid()) {
6021 Diag(ParmEllipsis,
6022 diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
6023 } else {
6024 Diag(ParmDeclarator.getIdentifierLoc(),
6025 diag::note_misplaced_ellipsis_vararg_add_ellipsis)
6026 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
6027 "...")
6028 << !ParmDeclarator.hasName();
6029 }
6030 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
6031 << FixItHint::CreateInsertion(EllipsisLoc, ", ");
6032 }
6033
6034 // We can't have any more parameters after an ellipsis.
6035 break;
6036 }
6037
6038 // If the next token is a comma, consume it and keep reading arguments.
6039 } while (TryConsumeToken(tok::comma));
6040 }
6041
6042 /// [C90] direct-declarator '[' constant-expression[opt] ']'
6043 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6044 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6045 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6046 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']'
6047 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6048 /// attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)6049 void Parser::ParseBracketDeclarator(Declarator &D) {
6050 if (CheckProhibitedCXX11Attribute())
6051 return;
6052
6053 BalancedDelimiterTracker T(*this, tok::l_square);
6054 T.consumeOpen();
6055
6056 // C array syntax has many features, but by-far the most common is [] and [4].
6057 // This code does a fast path to handle some of the most obvious cases.
6058 if (Tok.getKind() == tok::r_square) {
6059 T.consumeClose();
6060 ParsedAttributes attrs(AttrFactory);
6061 MaybeParseCXX11Attributes(attrs);
6062
6063 // Remember that we parsed the empty array type.
6064 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
6065 T.getOpenLocation(),
6066 T.getCloseLocation()),
6067 attrs, T.getCloseLocation());
6068 return;
6069 } else if (Tok.getKind() == tok::numeric_constant &&
6070 GetLookAheadToken(1).is(tok::r_square)) {
6071 // [4] is very common. Parse the numeric constant expression.
6072 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
6073 ConsumeToken();
6074
6075 T.consumeClose();
6076 ParsedAttributes attrs(AttrFactory);
6077 MaybeParseCXX11Attributes(attrs);
6078
6079 // Remember that we parsed a array type, and remember its features.
6080 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
6081 ExprRes.get(),
6082 T.getOpenLocation(),
6083 T.getCloseLocation()),
6084 attrs, T.getCloseLocation());
6085 return;
6086 } else if (Tok.getKind() == tok::code_completion) {
6087 Actions.CodeCompleteBracketDeclarator(getCurScope());
6088 return cutOffParsing();
6089 }
6090
6091 // If valid, this location is the position where we read the 'static' keyword.
6092 SourceLocation StaticLoc;
6093 TryConsumeToken(tok::kw_static, StaticLoc);
6094
6095 // If there is a type-qualifier-list, read it now.
6096 // Type qualifiers in an array subscript are a C99 feature.
6097 DeclSpec DS(AttrFactory);
6098 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
6099
6100 // If we haven't already read 'static', check to see if there is one after the
6101 // type-qualifier-list.
6102 if (!StaticLoc.isValid())
6103 TryConsumeToken(tok::kw_static, StaticLoc);
6104
6105 // Handle "direct-declarator [ type-qual-list[opt] * ]".
6106 bool isStar = false;
6107 ExprResult NumElements;
6108
6109 // Handle the case where we have '[*]' as the array size. However, a leading
6110 // star could be the start of an expression, for example 'X[*p + 4]'. Verify
6111 // the token after the star is a ']'. Since stars in arrays are
6112 // infrequent, use of lookahead is not costly here.
6113 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
6114 ConsumeToken(); // Eat the '*'.
6115
6116 if (StaticLoc.isValid()) {
6117 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
6118 StaticLoc = SourceLocation(); // Drop the static.
6119 }
6120 isStar = true;
6121 } else if (Tok.isNot(tok::r_square)) {
6122 // Note, in C89, this production uses the constant-expr production instead
6123 // of assignment-expr. The only difference is that assignment-expr allows
6124 // things like '=' and '*='. Sema rejects these in C89 mode because they
6125 // are not i-c-e's, so we don't need to distinguish between the two here.
6126
6127 // Parse the constant-expression or assignment-expression now (depending
6128 // on dialect).
6129 if (getLangOpts().CPlusPlus) {
6130 NumElements = ParseConstantExpression();
6131 } else {
6132 EnterExpressionEvaluationContext Unevaluated(Actions,
6133 Sema::ConstantEvaluated);
6134 NumElements =
6135 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
6136 }
6137 } else {
6138 if (StaticLoc.isValid()) {
6139 Diag(StaticLoc, diag::err_unspecified_size_with_static);
6140 StaticLoc = SourceLocation(); // Drop the static.
6141 }
6142 }
6143
6144 // If there was an error parsing the assignment-expression, recover.
6145 if (NumElements.isInvalid()) {
6146 D.setInvalidType(true);
6147 // If the expression was invalid, skip it.
6148 SkipUntil(tok::r_square, StopAtSemi);
6149 return;
6150 }
6151
6152 T.consumeClose();
6153
6154 ParsedAttributes attrs(AttrFactory);
6155 MaybeParseCXX11Attributes(attrs);
6156
6157 // Remember that we parsed a array type, and remember its features.
6158 D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
6159 StaticLoc.isValid(), isStar,
6160 NumElements.get(),
6161 T.getOpenLocation(),
6162 T.getCloseLocation()),
6163 attrs, T.getCloseLocation());
6164 }
6165
6166 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)6167 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
6168 assert(Tok.is(tok::l_square) && "Missing opening bracket");
6169 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
6170
6171 SourceLocation StartBracketLoc = Tok.getLocation();
6172 Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
6173
6174 while (Tok.is(tok::l_square)) {
6175 ParseBracketDeclarator(TempDeclarator);
6176 }
6177
6178 // Stuff the location of the start of the brackets into the Declarator.
6179 // The diagnostics from ParseDirectDeclarator will make more sense if
6180 // they use this location instead.
6181 if (Tok.is(tok::semi))
6182 D.getName().EndLocation = StartBracketLoc;
6183
6184 SourceLocation SuggestParenLoc = Tok.getLocation();
6185
6186 // Now that the brackets are removed, try parsing the declarator again.
6187 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6188
6189 // Something went wrong parsing the brackets, in which case,
6190 // ParseBracketDeclarator has emitted an error, and we don't need to emit
6191 // one here.
6192 if (TempDeclarator.getNumTypeObjects() == 0)
6193 return;
6194
6195 // Determine if parens will need to be suggested in the diagnostic.
6196 bool NeedParens = false;
6197 if (D.getNumTypeObjects() != 0) {
6198 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
6199 case DeclaratorChunk::Pointer:
6200 case DeclaratorChunk::Reference:
6201 case DeclaratorChunk::BlockPointer:
6202 case DeclaratorChunk::MemberPointer:
6203 case DeclaratorChunk::Pipe:
6204 NeedParens = true;
6205 break;
6206 case DeclaratorChunk::Array:
6207 case DeclaratorChunk::Function:
6208 case DeclaratorChunk::Paren:
6209 break;
6210 }
6211 }
6212
6213 if (NeedParens) {
6214 // Create a DeclaratorChunk for the inserted parens.
6215 ParsedAttributes attrs(AttrFactory);
6216 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6217 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
6218 SourceLocation());
6219 }
6220
6221 // Adding back the bracket info to the end of the Declarator.
6222 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
6223 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
6224 ParsedAttributes attrs(AttrFactory);
6225 attrs.set(Chunk.Common.AttrList);
6226 D.AddTypeInfo(Chunk, attrs, SourceLocation());
6227 }
6228
6229 // The missing identifier would have been diagnosed in ParseDirectDeclarator.
6230 // If parentheses are required, always suggest them.
6231 if (!D.getIdentifier() && !NeedParens)
6232 return;
6233
6234 SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
6235
6236 // Generate the move bracket error message.
6237 SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
6238 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
6239
6240 if (NeedParens) {
6241 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6242 << getLangOpts().CPlusPlus
6243 << FixItHint::CreateInsertion(SuggestParenLoc, "(")
6244 << FixItHint::CreateInsertion(EndLoc, ")")
6245 << FixItHint::CreateInsertionFromRange(
6246 EndLoc, CharSourceRange(BracketRange, true))
6247 << FixItHint::CreateRemoval(BracketRange);
6248 } else {
6249 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
6250 << getLangOpts().CPlusPlus
6251 << FixItHint::CreateInsertionFromRange(
6252 EndLoc, CharSourceRange(BracketRange, true))
6253 << FixItHint::CreateRemoval(BracketRange);
6254 }
6255 }
6256
6257 /// [GNU] typeof-specifier:
6258 /// typeof ( expressions )
6259 /// typeof ( type-name )
6260 /// [GNU/C++] typeof unary-expression
6261 ///
ParseTypeofSpecifier(DeclSpec & DS)6262 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
6263 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
6264 Token OpTok = Tok;
6265 SourceLocation StartLoc = ConsumeToken();
6266
6267 const bool hasParens = Tok.is(tok::l_paren);
6268
6269 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
6270 Sema::ReuseLambdaContextDecl);
6271
6272 bool isCastExpr;
6273 ParsedType CastTy;
6274 SourceRange CastRange;
6275 ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
6276 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
6277 if (hasParens)
6278 DS.setTypeofParensRange(CastRange);
6279
6280 if (CastRange.getEnd().isInvalid())
6281 // FIXME: Not accurate, the range gets one token more than it should.
6282 DS.SetRangeEnd(Tok.getLocation());
6283 else
6284 DS.SetRangeEnd(CastRange.getEnd());
6285
6286 if (isCastExpr) {
6287 if (!CastTy) {
6288 DS.SetTypeSpecError();
6289 return;
6290 }
6291
6292 const char *PrevSpec = nullptr;
6293 unsigned DiagID;
6294 // Check for duplicate type specifiers (e.g. "int typeof(int)").
6295 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
6296 DiagID, CastTy,
6297 Actions.getASTContext().getPrintingPolicy()))
6298 Diag(StartLoc, DiagID) << PrevSpec;
6299 return;
6300 }
6301
6302 // If we get here, the operand to the typeof was an expresion.
6303 if (Operand.isInvalid()) {
6304 DS.SetTypeSpecError();
6305 return;
6306 }
6307
6308 // We might need to transform the operand if it is potentially evaluated.
6309 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6310 if (Operand.isInvalid()) {
6311 DS.SetTypeSpecError();
6312 return;
6313 }
6314
6315 const char *PrevSpec = nullptr;
6316 unsigned DiagID;
6317 // Check for duplicate type specifiers (e.g. "int typeof(int)").
6318 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6319 DiagID, Operand.get(),
6320 Actions.getASTContext().getPrintingPolicy()))
6321 Diag(StartLoc, DiagID) << PrevSpec;
6322 }
6323
6324 /// [C11] atomic-specifier:
6325 /// _Atomic ( type-name )
6326 ///
ParseAtomicSpecifier(DeclSpec & DS)6327 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6328 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6329 "Not an atomic specifier");
6330
6331 SourceLocation StartLoc = ConsumeToken();
6332 BalancedDelimiterTracker T(*this, tok::l_paren);
6333 if (T.consumeOpen())
6334 return;
6335
6336 TypeResult Result = ParseTypeName();
6337 if (Result.isInvalid()) {
6338 SkipUntil(tok::r_paren, StopAtSemi);
6339 return;
6340 }
6341
6342 // Match the ')'
6343 T.consumeClose();
6344
6345 if (T.getCloseLocation().isInvalid())
6346 return;
6347
6348 DS.setTypeofParensRange(T.getRange());
6349 DS.SetRangeEnd(T.getCloseLocation());
6350
6351 const char *PrevSpec = nullptr;
6352 unsigned DiagID;
6353 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6354 DiagID, Result.get(),
6355 Actions.getASTContext().getPrintingPolicy()))
6356 Diag(StartLoc, DiagID) << PrevSpec;
6357 }
6358
6359 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6360 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()6361 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6362 Token Next = NextToken();
6363 switch (Next.getKind()) {
6364 default: return false;
6365 case tok::kw_short:
6366 case tok::kw_long:
6367 case tok::kw_signed:
6368 case tok::kw_unsigned:
6369 case tok::kw_void:
6370 case tok::kw_char:
6371 case tok::kw_int:
6372 case tok::kw_float:
6373 case tok::kw_double:
6374 case tok::kw_bool:
6375 case tok::kw___bool:
6376 case tok::kw___pixel:
6377 Tok.setKind(tok::kw___vector);
6378 return true;
6379 case tok::identifier:
6380 if (Next.getIdentifierInfo() == Ident_pixel) {
6381 Tok.setKind(tok::kw___vector);
6382 return true;
6383 }
6384 if (Next.getIdentifierInfo() == Ident_bool) {
6385 Tok.setKind(tok::kw___vector);
6386 return true;
6387 }
6388 return false;
6389 }
6390 }
6391
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)6392 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6393 const char *&PrevSpec, unsigned &DiagID,
6394 bool &isInvalid) {
6395 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6396 if (Tok.getIdentifierInfo() == Ident_vector) {
6397 Token Next = NextToken();
6398 switch (Next.getKind()) {
6399 case tok::kw_short:
6400 case tok::kw_long:
6401 case tok::kw_signed:
6402 case tok::kw_unsigned:
6403 case tok::kw_void:
6404 case tok::kw_char:
6405 case tok::kw_int:
6406 case tok::kw_float:
6407 case tok::kw_double:
6408 case tok::kw_bool:
6409 case tok::kw___bool:
6410 case tok::kw___pixel:
6411 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6412 return true;
6413 case tok::identifier:
6414 if (Next.getIdentifierInfo() == Ident_pixel) {
6415 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6416 return true;
6417 }
6418 if (Next.getIdentifierInfo() == Ident_bool) {
6419 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6420 return true;
6421 }
6422 break;
6423 default:
6424 break;
6425 }
6426 } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6427 DS.isTypeAltiVecVector()) {
6428 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6429 return true;
6430 } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6431 DS.isTypeAltiVecVector()) {
6432 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6433 return true;
6434 }
6435 return false;
6436 }
6437