1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <openssl/err.h>
63
64 #include "internal.h"
65
66
67 #if !defined(BN_ULLONG)
68 /* bn_div_words divides a double-width |h|,|l| by |d| and returns the result,
69 * which must fit in a |BN_ULONG|. */
bn_div_words(BN_ULONG h,BN_ULONG l,BN_ULONG d)70 static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) {
71 BN_ULONG dh, dl, q, ret = 0, th, tl, t;
72 int i, count = 2;
73
74 if (d == 0) {
75 return BN_MASK2;
76 }
77
78 i = BN_num_bits_word(d);
79 assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
80
81 i = BN_BITS2 - i;
82 if (h >= d) {
83 h -= d;
84 }
85
86 if (i) {
87 d <<= i;
88 h = (h << i) | (l >> (BN_BITS2 - i));
89 l <<= i;
90 }
91 dh = (d & BN_MASK2h) >> BN_BITS4;
92 dl = (d & BN_MASK2l);
93 for (;;) {
94 if ((h >> BN_BITS4) == dh) {
95 q = BN_MASK2l;
96 } else {
97 q = h / dh;
98 }
99
100 th = q * dh;
101 tl = dl * q;
102 for (;;) {
103 t = h - th;
104 if ((t & BN_MASK2h) ||
105 ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) {
106 break;
107 }
108 q--;
109 th -= dh;
110 tl -= dl;
111 }
112 t = (tl >> BN_BITS4);
113 tl = (tl << BN_BITS4) & BN_MASK2h;
114 th += t;
115
116 if (l < tl) {
117 th++;
118 }
119 l -= tl;
120 if (h < th) {
121 h += d;
122 q--;
123 }
124 h -= th;
125
126 if (--count == 0) {
127 break;
128 }
129
130 ret = q << BN_BITS4;
131 h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
132 l = (l & BN_MASK2l) << BN_BITS4;
133 }
134
135 ret |= q;
136 return ret;
137 }
138 #endif /* !defined(BN_ULLONG) */
139
bn_div_rem_words(BN_ULONG * quotient_out,BN_ULONG * rem_out,BN_ULONG n0,BN_ULONG n1,BN_ULONG d0)140 static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out,
141 BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) {
142 /* GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when
143 * the |BN_ULLONG|-based C code is used.
144 *
145 * GCC bugs:
146 * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
147 * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721
148 * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183
149 * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897
150 * * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668
151 *
152 * Clang bugs:
153 * * https://llvm.org/bugs/show_bug.cgi?id=6397
154 * * https://llvm.org/bugs/show_bug.cgi?id=12418
155 *
156 * These issues aren't specific to x86 and x86_64, so it might be worthwhile
157 * to add more assembly language implementations. */
158 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86) && defined(__GNUC__)
159 __asm__ volatile (
160 "divl %4"
161 : "=a"(*quotient_out), "=d"(*rem_out)
162 : "a"(n1), "d"(n0), "rm"(d0)
163 : "cc" );
164 #elif !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && defined(__GNUC__)
165 __asm__ volatile (
166 "divq %4"
167 : "=a"(*quotient_out), "=d"(*rem_out)
168 : "a"(n1), "d"(n0), "rm"(d0)
169 : "cc" );
170 #else
171 #if defined(BN_ULLONG)
172 BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1;
173 *quotient_out = (BN_ULONG)(n / d0);
174 #else
175 *quotient_out = bn_div_words(n0, n1, d0);
176 #endif
177 *rem_out = n1 - (*quotient_out * d0);
178 #endif
179 }
180
181 /* BN_div computes dv := num / divisor, rounding towards
182 * zero, and sets up rm such that dv*divisor + rm = num holds.
183 * Thus:
184 * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
185 * rm->neg == num->neg (unless the remainder is zero)
186 * If 'dv' or 'rm' is NULL, the respective value is not returned.
187 *
188 * This was specifically designed to contain fewer branches that may leak
189 * sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL
190 * and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and
191 * Jean-Pierre Seifert. */
BN_div(BIGNUM * dv,BIGNUM * rm,const BIGNUM * num,const BIGNUM * divisor,BN_CTX * ctx)192 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
193 BN_CTX *ctx) {
194 int norm_shift, i, loop;
195 BIGNUM *tmp, wnum, *snum, *sdiv, *res;
196 BN_ULONG *resp, *wnump;
197 BN_ULONG d0, d1;
198 int num_n, div_n;
199
200 /* Invalid zero-padding would have particularly bad consequences
201 * so don't just rely on bn_check_top() here */
202 if ((num->top > 0 && num->d[num->top - 1] == 0) ||
203 (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
204 OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED);
205 return 0;
206 }
207
208 if (BN_is_zero(divisor)) {
209 OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO);
210 return 0;
211 }
212
213 BN_CTX_start(ctx);
214 tmp = BN_CTX_get(ctx);
215 snum = BN_CTX_get(ctx);
216 sdiv = BN_CTX_get(ctx);
217 if (dv == NULL) {
218 res = BN_CTX_get(ctx);
219 } else {
220 res = dv;
221 }
222 if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
223 goto err;
224 }
225
226 /* First we normalise the numbers */
227 norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
228 if (!(BN_lshift(sdiv, divisor, norm_shift))) {
229 goto err;
230 }
231 sdiv->neg = 0;
232 norm_shift += BN_BITS2;
233 if (!(BN_lshift(snum, num, norm_shift))) {
234 goto err;
235 }
236 snum->neg = 0;
237
238 /* Since we don't want to have special-case logic for the case where snum is
239 * larger than sdiv, we pad snum with enough zeroes without changing its
240 * value. */
241 if (snum->top <= sdiv->top + 1) {
242 if (!bn_wexpand(snum, sdiv->top + 2)) {
243 goto err;
244 }
245 for (i = snum->top; i < sdiv->top + 2; i++) {
246 snum->d[i] = 0;
247 }
248 snum->top = sdiv->top + 2;
249 } else {
250 if (!bn_wexpand(snum, snum->top + 1)) {
251 goto err;
252 }
253 snum->d[snum->top] = 0;
254 snum->top++;
255 }
256
257 div_n = sdiv->top;
258 num_n = snum->top;
259 loop = num_n - div_n;
260 /* Lets setup a 'window' into snum
261 * This is the part that corresponds to the current
262 * 'area' being divided */
263 wnum.neg = 0;
264 wnum.d = &(snum->d[loop]);
265 wnum.top = div_n;
266 /* only needed when BN_ucmp messes up the values between top and max */
267 wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
268
269 /* Get the top 2 words of sdiv */
270 /* div_n=sdiv->top; */
271 d0 = sdiv->d[div_n - 1];
272 d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
273
274 /* pointer to the 'top' of snum */
275 wnump = &(snum->d[num_n - 1]);
276
277 /* Setup to 'res' */
278 res->neg = (num->neg ^ divisor->neg);
279 if (!bn_wexpand(res, (loop + 1))) {
280 goto err;
281 }
282 res->top = loop - 1;
283 resp = &(res->d[loop - 1]);
284
285 /* space for temp */
286 if (!bn_wexpand(tmp, (div_n + 1))) {
287 goto err;
288 }
289
290 /* if res->top == 0 then clear the neg value otherwise decrease
291 * the resp pointer */
292 if (res->top == 0) {
293 res->neg = 0;
294 } else {
295 resp--;
296 }
297
298 for (i = 0; i < loop - 1; i++, wnump--, resp--) {
299 BN_ULONG q, l0;
300 /* the first part of the loop uses the top two words of snum and sdiv to
301 * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
302 BN_ULONG n0, n1, rem = 0;
303
304 n0 = wnump[0];
305 n1 = wnump[-1];
306 if (n0 == d0) {
307 q = BN_MASK2;
308 } else {
309 /* n0 < d0 */
310 bn_div_rem_words(&q, &rem, n0, n1, d0);
311
312 #ifdef BN_ULLONG
313 BN_ULLONG t2 = (BN_ULLONG)d1 * q;
314 for (;;) {
315 if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
316 break;
317 }
318 q--;
319 rem += d0;
320 if (rem < d0) {
321 break; /* don't let rem overflow */
322 }
323 t2 -= d1;
324 }
325 #else /* !BN_ULLONG */
326 BN_ULONG t2l, t2h;
327 BN_UMULT_LOHI(t2l, t2h, d1, q);
328 for (;;) {
329 if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
330 break;
331 }
332 q--;
333 rem += d0;
334 if (rem < d0) {
335 break; /* don't let rem overflow */
336 }
337 if (t2l < d1) {
338 t2h--;
339 }
340 t2l -= d1;
341 }
342 #endif /* !BN_ULLONG */
343 }
344
345 l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
346 tmp->d[div_n] = l0;
347 wnum.d--;
348 /* ingore top values of the bignums just sub the two
349 * BN_ULONG arrays with bn_sub_words */
350 if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
351 /* Note: As we have considered only the leading
352 * two BN_ULONGs in the calculation of q, sdiv * q
353 * might be greater than wnum (but then (q-1) * sdiv
354 * is less or equal than wnum)
355 */
356 q--;
357 if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
358 /* we can't have an overflow here (assuming
359 * that q != 0, but if q == 0 then tmp is
360 * zero anyway) */
361 (*wnump)++;
362 }
363 }
364 /* store part of the result */
365 *resp = q;
366 }
367 bn_correct_top(snum);
368 if (rm != NULL) {
369 /* Keep a copy of the neg flag in num because if rm==num
370 * BN_rshift() will overwrite it.
371 */
372 int neg = num->neg;
373 if (!BN_rshift(rm, snum, norm_shift)) {
374 goto err;
375 }
376 if (!BN_is_zero(rm)) {
377 rm->neg = neg;
378 }
379 }
380 bn_correct_top(res);
381 BN_CTX_end(ctx);
382 return 1;
383
384 err:
385 BN_CTX_end(ctx);
386 return 0;
387 }
388
BN_nnmod(BIGNUM * r,const BIGNUM * m,const BIGNUM * d,BN_CTX * ctx)389 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
390 if (!(BN_mod(r, m, d, ctx))) {
391 return 0;
392 }
393 if (!r->neg) {
394 return 1;
395 }
396
397 /* now -|d| < r < 0, so we have to set r := r + |d|. */
398 return (d->neg ? BN_sub : BN_add)(r, r, d);
399 }
400
BN_mod_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)401 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
402 BN_CTX *ctx) {
403 if (!BN_add(r, a, b)) {
404 return 0;
405 }
406 return BN_nnmod(r, r, m, ctx);
407 }
408
BN_mod_add_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)409 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
410 const BIGNUM *m) {
411 if (!BN_uadd(r, a, b)) {
412 return 0;
413 }
414 if (BN_ucmp(r, m) >= 0) {
415 return BN_usub(r, r, m);
416 }
417 return 1;
418 }
419
BN_mod_sub(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)420 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
421 BN_CTX *ctx) {
422 if (!BN_sub(r, a, b)) {
423 return 0;
424 }
425 return BN_nnmod(r, r, m, ctx);
426 }
427
428 /* BN_mod_sub variant that may be used if both a and b are non-negative
429 * and less than m */
BN_mod_sub_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)430 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
431 const BIGNUM *m) {
432 if (!BN_sub(r, a, b)) {
433 return 0;
434 }
435 if (r->neg) {
436 return BN_add(r, r, m);
437 }
438 return 1;
439 }
440
BN_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)441 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
442 BN_CTX *ctx) {
443 BIGNUM *t;
444 int ret = 0;
445
446 BN_CTX_start(ctx);
447 t = BN_CTX_get(ctx);
448 if (t == NULL) {
449 goto err;
450 }
451
452 if (a == b) {
453 if (!BN_sqr(t, a, ctx)) {
454 goto err;
455 }
456 } else {
457 if (!BN_mul(t, a, b, ctx)) {
458 goto err;
459 }
460 }
461
462 if (!BN_nnmod(r, t, m, ctx)) {
463 goto err;
464 }
465
466 ret = 1;
467
468 err:
469 BN_CTX_end(ctx);
470 return ret;
471 }
472
BN_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)473 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
474 if (!BN_sqr(r, a, ctx)) {
475 return 0;
476 }
477
478 /* r->neg == 0, thus we don't need BN_nnmod */
479 return BN_mod(r, r, m, ctx);
480 }
481
BN_mod_lshift(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)482 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
483 BN_CTX *ctx) {
484 BIGNUM *abs_m = NULL;
485 int ret;
486
487 if (!BN_nnmod(r, a, m, ctx)) {
488 return 0;
489 }
490
491 if (m->neg) {
492 abs_m = BN_dup(m);
493 if (abs_m == NULL) {
494 return 0;
495 }
496 abs_m->neg = 0;
497 }
498
499 ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
500
501 BN_free(abs_m);
502 return ret;
503 }
504
BN_mod_lshift_quick(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m)505 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
506 if (r != a) {
507 if (BN_copy(r, a) == NULL) {
508 return 0;
509 }
510 }
511
512 while (n > 0) {
513 int max_shift;
514
515 /* 0 < r < m */
516 max_shift = BN_num_bits(m) - BN_num_bits(r);
517 /* max_shift >= 0 */
518
519 if (max_shift < 0) {
520 OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
521 return 0;
522 }
523
524 if (max_shift > n) {
525 max_shift = n;
526 }
527
528 if (max_shift) {
529 if (!BN_lshift(r, r, max_shift)) {
530 return 0;
531 }
532 n -= max_shift;
533 } else {
534 if (!BN_lshift1(r, r)) {
535 return 0;
536 }
537 --n;
538 }
539
540 /* BN_num_bits(r) <= BN_num_bits(m) */
541 if (BN_cmp(r, m) >= 0) {
542 if (!BN_sub(r, r, m)) {
543 return 0;
544 }
545 }
546 }
547
548 return 1;
549 }
550
BN_mod_lshift1(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)551 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
552 if (!BN_lshift1(r, a)) {
553 return 0;
554 }
555
556 return BN_nnmod(r, r, m, ctx);
557 }
558
BN_mod_lshift1_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * m)559 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
560 if (!BN_lshift1(r, a)) {
561 return 0;
562 }
563 if (BN_cmp(r, m) >= 0) {
564 return BN_sub(r, r, m);
565 }
566
567 return 1;
568 }
569
BN_div_word(BIGNUM * a,BN_ULONG w)570 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
571 BN_ULONG ret = 0;
572 int i, j;
573
574 w &= BN_MASK2;
575
576 if (!w) {
577 /* actually this an error (division by zero) */
578 return (BN_ULONG) - 1;
579 }
580
581 if (a->top == 0) {
582 return 0;
583 }
584
585 /* normalize input for |bn_div_rem_words|. */
586 j = BN_BITS2 - BN_num_bits_word(w);
587 w <<= j;
588 if (!BN_lshift(a, a, j)) {
589 return (BN_ULONG) - 1;
590 }
591
592 for (i = a->top - 1; i >= 0; i--) {
593 BN_ULONG l = a->d[i];
594 BN_ULONG d;
595 BN_ULONG unused_rem;
596 bn_div_rem_words(&d, &unused_rem, ret, l, w);
597 ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
598 a->d[i] = d;
599 }
600
601 if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
602 a->top--;
603 }
604
605 if (a->top == 0) {
606 a->neg = 0;
607 }
608
609 ret >>= j;
610 return ret;
611 }
612
BN_mod_word(const BIGNUM * a,BN_ULONG w)613 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
614 #ifndef BN_ULLONG
615 BN_ULONG ret = 0;
616 #else
617 BN_ULLONG ret = 0;
618 #endif
619 int i;
620
621 if (w == 0) {
622 return (BN_ULONG) -1;
623 }
624
625 #ifndef BN_ULLONG
626 /* If |w| is too long and we don't have |BN_ULLONG| then we need to fall back
627 * to using |BN_div_word|. */
628 if (w > ((BN_ULONG)1 << BN_BITS4)) {
629 BIGNUM *tmp = BN_dup(a);
630 if (tmp == NULL) {
631 return (BN_ULONG)-1;
632 }
633 ret = BN_div_word(tmp, w);
634 BN_free(tmp);
635 return ret;
636 }
637 #endif
638
639 w &= BN_MASK2;
640 for (i = a->top - 1; i >= 0; i--) {
641 #ifndef BN_ULLONG
642 ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
643 ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
644 #else
645 ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
646 #endif
647 }
648 return (BN_ULONG)ret;
649 }
650
BN_mod_pow2(BIGNUM * r,const BIGNUM * a,size_t e)651 int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
652 if (e == 0 || a->top == 0) {
653 BN_zero(r);
654 return 1;
655 }
656
657 size_t num_words = 1 + ((e - 1) / BN_BITS2);
658
659 /* If |a| definitely has less than |e| bits, just BN_copy. */
660 if ((size_t) a->top < num_words) {
661 return BN_copy(r, a) != NULL;
662 }
663
664 /* Otherwise, first make sure we have enough space in |r|.
665 * Note that this will fail if num_words > INT_MAX. */
666 if (!bn_wexpand(r, num_words)) {
667 return 0;
668 }
669
670 /* Copy the content of |a| into |r|. */
671 OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG));
672
673 /* If |e| isn't word-aligned, we have to mask off some of our bits. */
674 size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8);
675 if (top_word_exponent != 0) {
676 r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
677 }
678
679 /* Fill in the remaining fields of |r|. */
680 r->neg = a->neg;
681 r->top = (int) num_words;
682 bn_correct_top(r);
683 return 1;
684 }
685
BN_nnmod_pow2(BIGNUM * r,const BIGNUM * a,size_t e)686 int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) {
687 if (!BN_mod_pow2(r, a, e)) {
688 return 0;
689 }
690
691 /* If the returned value was non-negative, we're done. */
692 if (BN_is_zero(r) || !r->neg) {
693 return 1;
694 }
695
696 size_t num_words = 1 + (e - 1) / BN_BITS2;
697
698 /* Expand |r| to the size of our modulus. */
699 if (!bn_wexpand(r, num_words)) {
700 return 0;
701 }
702
703 /* Clear the upper words of |r|. */
704 OPENSSL_memset(&r->d[r->top], 0, (num_words - r->top) * BN_BYTES);
705
706 /* Set parameters of |r|. */
707 r->neg = 0;
708 r->top = (int) num_words;
709
710 /* Now, invert every word. The idea here is that we want to compute 2^e-|x|,
711 * which is actually equivalent to the twos-complement representation of |x|
712 * in |e| bits, which is -x = ~x + 1. */
713 for (int i = 0; i < r->top; i++) {
714 r->d[i] = ~r->d[i];
715 }
716
717 /* If our exponent doesn't span the top word, we have to mask the rest. */
718 size_t top_word_exponent = e % BN_BITS2;
719 if (top_word_exponent != 0) {
720 r->d[r->top - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1;
721 }
722
723 /* Keep the correct_top invariant for BN_add. */
724 bn_correct_top(r);
725
726 /* Finally, add one, for the reason described above. */
727 return BN_add(r, r, BN_value_one());
728 }
729