1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used argument matchers. More
35 // matchers can be defined by the user implementing the
36 // MatcherInterface<T> interface if necessary.
37
38 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39 #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41 #include <algorithm>
42 #include <limits>
43 #include <ostream> // NOLINT
44 #include <sstream>
45 #include <string>
46 #include <utility>
47 #include <vector>
48
49 #include "gmock/internal/gmock-internal-utils.h"
50 #include "gmock/internal/gmock-port.h"
51 #include "gtest/gtest.h"
52
53 namespace testing {
54
55 // To implement a matcher Foo for type T, define:
56 // 1. a class FooMatcherImpl that implements the
57 // MatcherInterface<T> interface, and
58 // 2. a factory function that creates a Matcher<T> object from a
59 // FooMatcherImpl*.
60 //
61 // The two-level delegation design makes it possible to allow a user
62 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
63 // is impossible if we pass matchers by pointers. It also eases
64 // ownership management as Matcher objects can now be copied like
65 // plain values.
66
67 // MatchResultListener is an abstract class. Its << operator can be
68 // used by a matcher to explain why a value matches or doesn't match.
69 //
70 // TODO(wan@google.com): add method
71 // bool InterestedInWhy(bool result) const;
72 // to indicate whether the listener is interested in why the match
73 // result is 'result'.
74 class MatchResultListener {
75 public:
76 // Creates a listener object with the given underlying ostream. The
77 // listener does not own the ostream.
MatchResultListener(::std::ostream * os)78 explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
79 virtual ~MatchResultListener() = 0; // Makes this class abstract.
80
81 // Streams x to the underlying ostream; does nothing if the ostream
82 // is NULL.
83 template <typename T>
84 MatchResultListener& operator<<(const T& x) {
85 if (stream_ != NULL)
86 *stream_ << x;
87 return *this;
88 }
89
90 // Returns the underlying ostream.
stream()91 ::std::ostream* stream() { return stream_; }
92
93 // Returns true iff the listener is interested in an explanation of
94 // the match result. A matcher's MatchAndExplain() method can use
95 // this information to avoid generating the explanation when no one
96 // intends to hear it.
IsInterested()97 bool IsInterested() const { return stream_ != NULL; }
98
99 private:
100 ::std::ostream* const stream_;
101
102 GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
103 };
104
~MatchResultListener()105 inline MatchResultListener::~MatchResultListener() {
106 }
107
108 // The implementation of a matcher.
109 template <typename T>
110 class MatcherInterface {
111 public:
~MatcherInterface()112 virtual ~MatcherInterface() {}
113
114 // Returns true iff the matcher matches x; also explains the match
115 // result to 'listener', in the form of a non-restrictive relative
116 // clause ("which ...", "whose ...", etc) that describes x. For
117 // example, the MatchAndExplain() method of the Pointee(...) matcher
118 // should generate an explanation like "which points to ...".
119 //
120 // You should override this method when defining a new matcher.
121 //
122 // It's the responsibility of the caller (Google Mock) to guarantee
123 // that 'listener' is not NULL. This helps to simplify a matcher's
124 // implementation when it doesn't care about the performance, as it
125 // can talk to 'listener' without checking its validity first.
126 // However, in order to implement dummy listeners efficiently,
127 // listener->stream() may be NULL.
128 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
129
130 // Describes this matcher to an ostream. The function should print
131 // a verb phrase that describes the property a value matching this
132 // matcher should have. The subject of the verb phrase is the value
133 // being matched. For example, the DescribeTo() method of the Gt(7)
134 // matcher prints "is greater than 7".
135 virtual void DescribeTo(::std::ostream* os) const = 0;
136
137 // Describes the negation of this matcher to an ostream. For
138 // example, if the description of this matcher is "is greater than
139 // 7", the negated description could be "is not greater than 7".
140 // You are not required to override this when implementing
141 // MatcherInterface, but it is highly advised so that your matcher
142 // can produce good error messages.
DescribeNegationTo(::std::ostream * os)143 virtual void DescribeNegationTo(::std::ostream* os) const {
144 *os << "not (";
145 DescribeTo(os);
146 *os << ")";
147 }
148 };
149
150 namespace internal {
151
152 // A match result listener that ignores the explanation.
153 class DummyMatchResultListener : public MatchResultListener {
154 public:
DummyMatchResultListener()155 DummyMatchResultListener() : MatchResultListener(NULL) {}
156
157 private:
158 GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
159 };
160
161 // A match result listener that forwards the explanation to a given
162 // ostream. The difference between this and MatchResultListener is
163 // that the former is concrete.
164 class StreamMatchResultListener : public MatchResultListener {
165 public:
StreamMatchResultListener(::std::ostream * os)166 explicit StreamMatchResultListener(::std::ostream* os)
167 : MatchResultListener(os) {}
168
169 private:
170 GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
171 };
172
173 // A match result listener that stores the explanation in a string.
174 class StringMatchResultListener : public MatchResultListener {
175 public:
StringMatchResultListener()176 StringMatchResultListener() : MatchResultListener(&ss_) {}
177
178 // Returns the explanation heard so far.
str()179 internal::string str() const { return ss_.str(); }
180
181 private:
182 ::std::stringstream ss_;
183
184 GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
185 };
186
187 // An internal class for implementing Matcher<T>, which will derive
188 // from it. We put functionalities common to all Matcher<T>
189 // specializations here to avoid code duplication.
190 template <typename T>
191 class MatcherBase {
192 public:
193 // Returns true iff the matcher matches x; also explains the match
194 // result to 'listener'.
MatchAndExplain(T x,MatchResultListener * listener)195 bool MatchAndExplain(T x, MatchResultListener* listener) const {
196 return impl_->MatchAndExplain(x, listener);
197 }
198
199 // Returns true iff this matcher matches x.
Matches(T x)200 bool Matches(T x) const {
201 DummyMatchResultListener dummy;
202 return MatchAndExplain(x, &dummy);
203 }
204
205 // Describes this matcher to an ostream.
DescribeTo(::std::ostream * os)206 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
207
208 // Describes the negation of this matcher to an ostream.
DescribeNegationTo(::std::ostream * os)209 void DescribeNegationTo(::std::ostream* os) const {
210 impl_->DescribeNegationTo(os);
211 }
212
213 // Explains why x matches, or doesn't match, the matcher.
ExplainMatchResultTo(T x,::std::ostream * os)214 void ExplainMatchResultTo(T x, ::std::ostream* os) const {
215 StreamMatchResultListener listener(os);
216 MatchAndExplain(x, &listener);
217 }
218
219 protected:
MatcherBase()220 MatcherBase() {}
221
222 // Constructs a matcher from its implementation.
MatcherBase(const MatcherInterface<T> * impl)223 explicit MatcherBase(const MatcherInterface<T>* impl)
224 : impl_(impl) {}
225
~MatcherBase()226 virtual ~MatcherBase() {}
227
228 private:
229 // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
230 // interfaces. The former dynamically allocates a chunk of memory
231 // to hold the reference count, while the latter tracks all
232 // references using a circular linked list without allocating
233 // memory. It has been observed that linked_ptr performs better in
234 // typical scenarios. However, shared_ptr can out-perform
235 // linked_ptr when there are many more uses of the copy constructor
236 // than the default constructor.
237 //
238 // If performance becomes a problem, we should see if using
239 // shared_ptr helps.
240 ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
241 };
242
243 } // namespace internal
244
245 // A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
246 // object that can check whether a value of type T matches. The
247 // implementation of Matcher<T> is just a linked_ptr to const
248 // MatcherInterface<T>, so copying is fairly cheap. Don't inherit
249 // from Matcher!
250 template <typename T>
251 class Matcher : public internal::MatcherBase<T> {
252 public:
253 // Constructs a null matcher. Needed for storing Matcher objects in STL
254 // containers. A default-constructed matcher is not yet initialized. You
255 // cannot use it until a valid value has been assigned to it.
Matcher()256 Matcher() {}
257
258 // Constructs a matcher from its implementation.
Matcher(const MatcherInterface<T> * impl)259 explicit Matcher(const MatcherInterface<T>* impl)
260 : internal::MatcherBase<T>(impl) {}
261
262 // Implicit constructor here allows people to write
263 // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
264 Matcher(T value); // NOLINT
265 };
266
267 // The following two specializations allow the user to write str
268 // instead of Eq(str) and "foo" instead of Eq("foo") when a string
269 // matcher is expected.
270 template <>
271 class GTEST_API_ Matcher<const internal::string&>
272 : public internal::MatcherBase<const internal::string&> {
273 public:
Matcher()274 Matcher() {}
275
Matcher(const MatcherInterface<const internal::string &> * impl)276 explicit Matcher(const MatcherInterface<const internal::string&>* impl)
277 : internal::MatcherBase<const internal::string&>(impl) {}
278
279 // Allows the user to write str instead of Eq(str) sometimes, where
280 // str is a string object.
281 Matcher(const internal::string& s); // NOLINT
282
283 // Allows the user to write "foo" instead of Eq("foo") sometimes.
284 Matcher(const char* s); // NOLINT
285 };
286
287 template <>
288 class GTEST_API_ Matcher<internal::string>
289 : public internal::MatcherBase<internal::string> {
290 public:
Matcher()291 Matcher() {}
292
Matcher(const MatcherInterface<internal::string> * impl)293 explicit Matcher(const MatcherInterface<internal::string>* impl)
294 : internal::MatcherBase<internal::string>(impl) {}
295
296 // Allows the user to write str instead of Eq(str) sometimes, where
297 // str is a string object.
298 Matcher(const internal::string& s); // NOLINT
299
300 // Allows the user to write "foo" instead of Eq("foo") sometimes.
301 Matcher(const char* s); // NOLINT
302 };
303
304 // The PolymorphicMatcher class template makes it easy to implement a
305 // polymorphic matcher (i.e. a matcher that can match values of more
306 // than one type, e.g. Eq(n) and NotNull()).
307 //
308 // To define a polymorphic matcher, a user should provide an Impl
309 // class that has a DescribeTo() method and a DescribeNegationTo()
310 // method, and define a member function (or member function template)
311 //
312 // bool MatchAndExplain(const Value& value,
313 // MatchResultListener* listener) const;
314 //
315 // See the definition of NotNull() for a complete example.
316 template <class Impl>
317 class PolymorphicMatcher {
318 public:
PolymorphicMatcher(const Impl & an_impl)319 explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
320
321 // Returns a mutable reference to the underlying matcher
322 // implementation object.
mutable_impl()323 Impl& mutable_impl() { return impl_; }
324
325 // Returns an immutable reference to the underlying matcher
326 // implementation object.
impl()327 const Impl& impl() const { return impl_; }
328
329 template <typename T>
330 operator Matcher<T>() const {
331 return Matcher<T>(new MonomorphicImpl<T>(impl_));
332 }
333
334 private:
335 template <typename T>
336 class MonomorphicImpl : public MatcherInterface<T> {
337 public:
MonomorphicImpl(const Impl & impl)338 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
339
DescribeTo(::std::ostream * os)340 virtual void DescribeTo(::std::ostream* os) const {
341 impl_.DescribeTo(os);
342 }
343
DescribeNegationTo(::std::ostream * os)344 virtual void DescribeNegationTo(::std::ostream* os) const {
345 impl_.DescribeNegationTo(os);
346 }
347
MatchAndExplain(T x,MatchResultListener * listener)348 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
349 return impl_.MatchAndExplain(x, listener);
350 }
351
352 private:
353 const Impl impl_;
354
355 GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
356 };
357
358 Impl impl_;
359
360 GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
361 };
362
363 // Creates a matcher from its implementation. This is easier to use
364 // than the Matcher<T> constructor as it doesn't require you to
365 // explicitly write the template argument, e.g.
366 //
367 // MakeMatcher(foo);
368 // vs
369 // Matcher<const string&>(foo);
370 template <typename T>
MakeMatcher(const MatcherInterface<T> * impl)371 inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
372 return Matcher<T>(impl);
373 };
374
375 // Creates a polymorphic matcher from its implementation. This is
376 // easier to use than the PolymorphicMatcher<Impl> constructor as it
377 // doesn't require you to explicitly write the template argument, e.g.
378 //
379 // MakePolymorphicMatcher(foo);
380 // vs
381 // PolymorphicMatcher<TypeOfFoo>(foo);
382 template <class Impl>
MakePolymorphicMatcher(const Impl & impl)383 inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
384 return PolymorphicMatcher<Impl>(impl);
385 }
386
387 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
388 // and MUST NOT BE USED IN USER CODE!!!
389 namespace internal {
390
391 // The MatcherCastImpl class template is a helper for implementing
392 // MatcherCast(). We need this helper in order to partially
393 // specialize the implementation of MatcherCast() (C++ allows
394 // class/struct templates to be partially specialized, but not
395 // function templates.).
396
397 // This general version is used when MatcherCast()'s argument is a
398 // polymorphic matcher (i.e. something that can be converted to a
399 // Matcher but is not one yet; for example, Eq(value)) or a value (for
400 // example, "hello").
401 template <typename T, typename M>
402 class MatcherCastImpl {
403 public:
Cast(M polymorphic_matcher_or_value)404 static Matcher<T> Cast(M polymorphic_matcher_or_value) {
405 // M can be a polymorhic matcher, in which case we want to use
406 // its conversion operator to create Matcher<T>. Or it can be a value
407 // that should be passed to the Matcher<T>'s constructor.
408 //
409 // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
410 // polymorphic matcher because it'll be ambiguous if T has an implicit
411 // constructor from M (this usually happens when T has an implicit
412 // constructor from any type).
413 //
414 // It won't work to unconditionally implict_cast
415 // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
416 // a user-defined conversion from M to T if one exists (assuming M is
417 // a value).
418 return CastImpl(
419 polymorphic_matcher_or_value,
420 BooleanConstant<
421 internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
422 }
423
424 private:
CastImpl(M value,BooleanConstant<false>)425 static Matcher<T> CastImpl(M value, BooleanConstant<false>) {
426 // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
427 // matcher. It must be a value then. Use direct initialization to create
428 // a matcher.
429 return Matcher<T>(ImplicitCast_<T>(value));
430 }
431
CastImpl(M polymorphic_matcher_or_value,BooleanConstant<true>)432 static Matcher<T> CastImpl(M polymorphic_matcher_or_value,
433 BooleanConstant<true>) {
434 // M is implicitly convertible to Matcher<T>, which means that either
435 // M is a polymorhpic matcher or Matcher<T> has an implicit constructor
436 // from M. In both cases using the implicit conversion will produce a
437 // matcher.
438 //
439 // Even if T has an implicit constructor from M, it won't be called because
440 // creating Matcher<T> would require a chain of two user-defined conversions
441 // (first to create T from M and then to create Matcher<T> from T).
442 return polymorphic_matcher_or_value;
443 }
444 };
445
446 // This more specialized version is used when MatcherCast()'s argument
447 // is already a Matcher. This only compiles when type T can be
448 // statically converted to type U.
449 template <typename T, typename U>
450 class MatcherCastImpl<T, Matcher<U> > {
451 public:
Cast(const Matcher<U> & source_matcher)452 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
453 return Matcher<T>(new Impl(source_matcher));
454 }
455
456 private:
457 class Impl : public MatcherInterface<T> {
458 public:
Impl(const Matcher<U> & source_matcher)459 explicit Impl(const Matcher<U>& source_matcher)
460 : source_matcher_(source_matcher) {}
461
462 // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)463 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
464 return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
465 }
466
DescribeTo(::std::ostream * os)467 virtual void DescribeTo(::std::ostream* os) const {
468 source_matcher_.DescribeTo(os);
469 }
470
DescribeNegationTo(::std::ostream * os)471 virtual void DescribeNegationTo(::std::ostream* os) const {
472 source_matcher_.DescribeNegationTo(os);
473 }
474
475 private:
476 const Matcher<U> source_matcher_;
477
478 GTEST_DISALLOW_ASSIGN_(Impl);
479 };
480 };
481
482 // This even more specialized version is used for efficiently casting
483 // a matcher to its own type.
484 template <typename T>
485 class MatcherCastImpl<T, Matcher<T> > {
486 public:
Cast(const Matcher<T> & matcher)487 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
488 };
489
490 } // namespace internal
491
492 // In order to be safe and clear, casting between different matcher
493 // types is done explicitly via MatcherCast<T>(m), which takes a
494 // matcher m and returns a Matcher<T>. It compiles only when T can be
495 // statically converted to the argument type of m.
496 template <typename T, typename M>
MatcherCast(M matcher)497 inline Matcher<T> MatcherCast(M matcher) {
498 return internal::MatcherCastImpl<T, M>::Cast(matcher);
499 }
500
501 // Implements SafeMatcherCast().
502 //
503 // We use an intermediate class to do the actual safe casting as Nokia's
504 // Symbian compiler cannot decide between
505 // template <T, M> ... (M) and
506 // template <T, U> ... (const Matcher<U>&)
507 // for function templates but can for member function templates.
508 template <typename T>
509 class SafeMatcherCastImpl {
510 public:
511 // This overload handles polymorphic matchers and values only since
512 // monomorphic matchers are handled by the next one.
513 template <typename M>
Cast(M polymorphic_matcher_or_value)514 static inline Matcher<T> Cast(M polymorphic_matcher_or_value) {
515 return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
516 }
517
518 // This overload handles monomorphic matchers.
519 //
520 // In general, if type T can be implicitly converted to type U, we can
521 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
522 // contravariant): just keep a copy of the original Matcher<U>, convert the
523 // argument from type T to U, and then pass it to the underlying Matcher<U>.
524 // The only exception is when U is a reference and T is not, as the
525 // underlying Matcher<U> may be interested in the argument's address, which
526 // is not preserved in the conversion from T to U.
527 template <typename U>
Cast(const Matcher<U> & matcher)528 static inline Matcher<T> Cast(const Matcher<U>& matcher) {
529 // Enforce that T can be implicitly converted to U.
530 GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
531 T_must_be_implicitly_convertible_to_U);
532 // Enforce that we are not converting a non-reference type T to a reference
533 // type U.
534 GTEST_COMPILE_ASSERT_(
535 internal::is_reference<T>::value || !internal::is_reference<U>::value,
536 cannot_convert_non_referentce_arg_to_reference);
537 // In case both T and U are arithmetic types, enforce that the
538 // conversion is not lossy.
539 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
540 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
541 const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
542 const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
543 GTEST_COMPILE_ASSERT_(
544 kTIsOther || kUIsOther ||
545 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
546 conversion_of_arithmetic_types_must_be_lossless);
547 return MatcherCast<T>(matcher);
548 }
549 };
550
551 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher)552 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
553 return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
554 }
555
556 // A<T>() returns a matcher that matches any value of type T.
557 template <typename T>
558 Matcher<T> A();
559
560 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
561 // and MUST NOT BE USED IN USER CODE!!!
562 namespace internal {
563
564 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const internal::string & explanation,std::ostream * os)565 inline void PrintIfNotEmpty(const internal::string& explanation,
566 std::ostream* os) {
567 if (explanation != "" && os != NULL) {
568 *os << ", " << explanation;
569 }
570 }
571
572 // Returns true if the given type name is easy to read by a human.
573 // This is used to decide whether printing the type of a value might
574 // be helpful.
IsReadableTypeName(const string & type_name)575 inline bool IsReadableTypeName(const string& type_name) {
576 // We consider a type name readable if it's short or doesn't contain
577 // a template or function type.
578 return (type_name.length() <= 20 ||
579 type_name.find_first_of("<(") == string::npos);
580 }
581
582 // Matches the value against the given matcher, prints the value and explains
583 // the match result to the listener. Returns the match result.
584 // 'listener' must not be NULL.
585 // Value cannot be passed by const reference, because some matchers take a
586 // non-const argument.
587 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)588 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
589 MatchResultListener* listener) {
590 if (!listener->IsInterested()) {
591 // If the listener is not interested, we do not need to construct the
592 // inner explanation.
593 return matcher.Matches(value);
594 }
595
596 StringMatchResultListener inner_listener;
597 const bool match = matcher.MatchAndExplain(value, &inner_listener);
598
599 UniversalPrint(value, listener->stream());
600 #if GTEST_HAS_RTTI
601 const string& type_name = GetTypeName<Value>();
602 if (IsReadableTypeName(type_name))
603 *listener->stream() << " (of type " << type_name << ")";
604 #endif
605 PrintIfNotEmpty(inner_listener.str(), listener->stream());
606
607 return match;
608 }
609
610 // An internal helper class for doing compile-time loop on a tuple's
611 // fields.
612 template <size_t N>
613 class TuplePrefix {
614 public:
615 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
616 // iff the first N fields of matcher_tuple matches the first N
617 // fields of value_tuple, respectively.
618 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)619 static bool Matches(const MatcherTuple& matcher_tuple,
620 const ValueTuple& value_tuple) {
621 using ::std::tr1::get;
622 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
623 && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
624 }
625
626 // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
627 // describes failures in matching the first N fields of matchers
628 // against the first N fields of values. If there is no failure,
629 // nothing will be streamed to os.
630 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)631 static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
632 const ValueTuple& values,
633 ::std::ostream* os) {
634 using ::std::tr1::tuple_element;
635 using ::std::tr1::get;
636
637 // First, describes failures in the first N - 1 fields.
638 TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
639
640 // Then describes the failure (if any) in the (N - 1)-th (0-based)
641 // field.
642 typename tuple_element<N - 1, MatcherTuple>::type matcher =
643 get<N - 1>(matchers);
644 typedef typename tuple_element<N - 1, ValueTuple>::type Value;
645 Value value = get<N - 1>(values);
646 StringMatchResultListener listener;
647 if (!matcher.MatchAndExplain(value, &listener)) {
648 // TODO(wan): include in the message the name of the parameter
649 // as used in MOCK_METHOD*() when possible.
650 *os << " Expected arg #" << N - 1 << ": ";
651 get<N - 1>(matchers).DescribeTo(os);
652 *os << "\n Actual: ";
653 // We remove the reference in type Value to prevent the
654 // universal printer from printing the address of value, which
655 // isn't interesting to the user most of the time. The
656 // matcher's MatchAndExplain() method handles the case when
657 // the address is interesting.
658 internal::UniversalPrint(value, os);
659 PrintIfNotEmpty(listener.str(), os);
660 *os << "\n";
661 }
662 }
663 };
664
665 // The base case.
666 template <>
667 class TuplePrefix<0> {
668 public:
669 template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)670 static bool Matches(const MatcherTuple& /* matcher_tuple */,
671 const ValueTuple& /* value_tuple */) {
672 return true;
673 }
674
675 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)676 static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
677 const ValueTuple& /* values */,
678 ::std::ostream* /* os */) {}
679 };
680
681 // TupleMatches(matcher_tuple, value_tuple) returns true iff all
682 // matchers in matcher_tuple match the corresponding fields in
683 // value_tuple. It is a compiler error if matcher_tuple and
684 // value_tuple have different number of fields or incompatible field
685 // types.
686 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)687 bool TupleMatches(const MatcherTuple& matcher_tuple,
688 const ValueTuple& value_tuple) {
689 using ::std::tr1::tuple_size;
690 // Makes sure that matcher_tuple and value_tuple have the same
691 // number of fields.
692 GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
693 tuple_size<ValueTuple>::value,
694 matcher_and_value_have_different_numbers_of_fields);
695 return TuplePrefix<tuple_size<ValueTuple>::value>::
696 Matches(matcher_tuple, value_tuple);
697 }
698
699 // Describes failures in matching matchers against values. If there
700 // is no failure, nothing will be streamed to os.
701 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)702 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
703 const ValueTuple& values,
704 ::std::ostream* os) {
705 using ::std::tr1::tuple_size;
706 TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
707 matchers, values, os);
708 }
709
710 // Implements A<T>().
711 template <typename T>
712 class AnyMatcherImpl : public MatcherInterface<T> {
713 public:
MatchAndExplain(T,MatchResultListener *)714 virtual bool MatchAndExplain(
715 T /* x */, MatchResultListener* /* listener */) const { return true; }
DescribeTo(::std::ostream * os)716 virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
DescribeNegationTo(::std::ostream * os)717 virtual void DescribeNegationTo(::std::ostream* os) const {
718 // This is mostly for completeness' safe, as it's not very useful
719 // to write Not(A<bool>()). However we cannot completely rule out
720 // such a possibility, and it doesn't hurt to be prepared.
721 *os << "never matches";
722 }
723 };
724
725 // Implements _, a matcher that matches any value of any
726 // type. This is a polymorphic matcher, so we need a template type
727 // conversion operator to make it appearing as a Matcher<T> for any
728 // type T.
729 class AnythingMatcher {
730 public:
731 template <typename T>
732 operator Matcher<T>() const { return A<T>(); }
733 };
734
735 // Implements a matcher that compares a given value with a
736 // pre-supplied value using one of the ==, <=, <, etc, operators. The
737 // two values being compared don't have to have the same type.
738 //
739 // The matcher defined here is polymorphic (for example, Eq(5) can be
740 // used to match an int, a short, a double, etc). Therefore we use
741 // a template type conversion operator in the implementation.
742 //
743 // We define this as a macro in order to eliminate duplicated source
744 // code.
745 //
746 // The following template definition assumes that the Rhs parameter is
747 // a "bare" type (i.e. neither 'const T' nor 'T&').
748 #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
749 name, op, relation, negated_relation) \
750 template <typename Rhs> class name##Matcher { \
751 public: \
752 explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
753 template <typename Lhs> \
754 operator Matcher<Lhs>() const { \
755 return MakeMatcher(new Impl<Lhs>(rhs_)); \
756 } \
757 private: \
758 template <typename Lhs> \
759 class Impl : public MatcherInterface<Lhs> { \
760 public: \
761 explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
762 virtual bool MatchAndExplain(\
763 Lhs lhs, MatchResultListener* /* listener */) const { \
764 return lhs op rhs_; \
765 } \
766 virtual void DescribeTo(::std::ostream* os) const { \
767 *os << relation " "; \
768 UniversalPrint(rhs_, os); \
769 } \
770 virtual void DescribeNegationTo(::std::ostream* os) const { \
771 *os << negated_relation " "; \
772 UniversalPrint(rhs_, os); \
773 } \
774 private: \
775 Rhs rhs_; \
776 GTEST_DISALLOW_ASSIGN_(Impl); \
777 }; \
778 Rhs rhs_; \
779 GTEST_DISALLOW_ASSIGN_(name##Matcher); \
780 }
781
782 // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
783 // respectively.
784 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
785 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
786 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
787 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
788 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
789 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
790
791 #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
792
793 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
794 // pointer that is NULL.
795 class IsNullMatcher {
796 public:
797 template <typename Pointer>
MatchAndExplain(const Pointer & p,MatchResultListener *)798 bool MatchAndExplain(const Pointer& p,
799 MatchResultListener* /* listener */) const {
800 return GetRawPointer(p) == NULL;
801 }
802
DescribeTo(::std::ostream * os)803 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
DescribeNegationTo(::std::ostream * os)804 void DescribeNegationTo(::std::ostream* os) const {
805 *os << "isn't NULL";
806 }
807 };
808
809 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
810 // pointer that is not NULL.
811 class NotNullMatcher {
812 public:
813 template <typename Pointer>
MatchAndExplain(const Pointer & p,MatchResultListener *)814 bool MatchAndExplain(const Pointer& p,
815 MatchResultListener* /* listener */) const {
816 return GetRawPointer(p) != NULL;
817 }
818
DescribeTo(::std::ostream * os)819 void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
DescribeNegationTo(::std::ostream * os)820 void DescribeNegationTo(::std::ostream* os) const {
821 *os << "is NULL";
822 }
823 };
824
825 // Ref(variable) matches any argument that is a reference to
826 // 'variable'. This matcher is polymorphic as it can match any
827 // super type of the type of 'variable'.
828 //
829 // The RefMatcher template class implements Ref(variable). It can
830 // only be instantiated with a reference type. This prevents a user
831 // from mistakenly using Ref(x) to match a non-reference function
832 // argument. For example, the following will righteously cause a
833 // compiler error:
834 //
835 // int n;
836 // Matcher<int> m1 = Ref(n); // This won't compile.
837 // Matcher<int&> m2 = Ref(n); // This will compile.
838 template <typename T>
839 class RefMatcher;
840
841 template <typename T>
842 class RefMatcher<T&> {
843 // Google Mock is a generic framework and thus needs to support
844 // mocking any function types, including those that take non-const
845 // reference arguments. Therefore the template parameter T (and
846 // Super below) can be instantiated to either a const type or a
847 // non-const type.
848 public:
849 // RefMatcher() takes a T& instead of const T&, as we want the
850 // compiler to catch using Ref(const_value) as a matcher for a
851 // non-const reference.
RefMatcher(T & x)852 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
853
854 template <typename Super>
855 operator Matcher<Super&>() const {
856 // By passing object_ (type T&) to Impl(), which expects a Super&,
857 // we make sure that Super is a super type of T. In particular,
858 // this catches using Ref(const_value) as a matcher for a
859 // non-const reference, as you cannot implicitly convert a const
860 // reference to a non-const reference.
861 return MakeMatcher(new Impl<Super>(object_));
862 }
863
864 private:
865 template <typename Super>
866 class Impl : public MatcherInterface<Super&> {
867 public:
Impl(Super & x)868 explicit Impl(Super& x) : object_(x) {} // NOLINT
869
870 // MatchAndExplain() takes a Super& (as opposed to const Super&)
871 // in order to match the interface MatcherInterface<Super&>.
MatchAndExplain(Super & x,MatchResultListener * listener)872 virtual bool MatchAndExplain(
873 Super& x, MatchResultListener* listener) const {
874 *listener << "which is located @" << static_cast<const void*>(&x);
875 return &x == &object_;
876 }
877
DescribeTo(::std::ostream * os)878 virtual void DescribeTo(::std::ostream* os) const {
879 *os << "references the variable ";
880 UniversalPrinter<Super&>::Print(object_, os);
881 }
882
DescribeNegationTo(::std::ostream * os)883 virtual void DescribeNegationTo(::std::ostream* os) const {
884 *os << "does not reference the variable ";
885 UniversalPrinter<Super&>::Print(object_, os);
886 }
887
888 private:
889 const Super& object_;
890
891 GTEST_DISALLOW_ASSIGN_(Impl);
892 };
893
894 T& object_;
895
896 GTEST_DISALLOW_ASSIGN_(RefMatcher);
897 };
898
899 // Polymorphic helper functions for narrow and wide string matchers.
CaseInsensitiveCStringEquals(const char * lhs,const char * rhs)900 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
901 return String::CaseInsensitiveCStringEquals(lhs, rhs);
902 }
903
CaseInsensitiveCStringEquals(const wchar_t * lhs,const wchar_t * rhs)904 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
905 const wchar_t* rhs) {
906 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
907 }
908
909 // String comparison for narrow or wide strings that can have embedded NUL
910 // characters.
911 template <typename StringType>
CaseInsensitiveStringEquals(const StringType & s1,const StringType & s2)912 bool CaseInsensitiveStringEquals(const StringType& s1,
913 const StringType& s2) {
914 // Are the heads equal?
915 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
916 return false;
917 }
918
919 // Skip the equal heads.
920 const typename StringType::value_type nul = 0;
921 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
922
923 // Are we at the end of either s1 or s2?
924 if (i1 == StringType::npos || i2 == StringType::npos) {
925 return i1 == i2;
926 }
927
928 // Are the tails equal?
929 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
930 }
931
932 // String matchers.
933
934 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
935 template <typename StringType>
936 class StrEqualityMatcher {
937 public:
938 typedef typename StringType::const_pointer ConstCharPointer;
939
StrEqualityMatcher(const StringType & str,bool expect_eq,bool case_sensitive)940 StrEqualityMatcher(const StringType& str, bool expect_eq,
941 bool case_sensitive)
942 : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
943
944 // When expect_eq_ is true, returns true iff s is equal to string_;
945 // otherwise returns true iff s is not equal to string_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)946 bool MatchAndExplain(ConstCharPointer s,
947 MatchResultListener* listener) const {
948 if (s == NULL) {
949 return !expect_eq_;
950 }
951 return MatchAndExplain(StringType(s), listener);
952 }
953
MatchAndExplain(const StringType & s,MatchResultListener *)954 bool MatchAndExplain(const StringType& s,
955 MatchResultListener* /* listener */) const {
956 const bool eq = case_sensitive_ ? s == string_ :
957 CaseInsensitiveStringEquals(s, string_);
958 return expect_eq_ == eq;
959 }
960
DescribeTo(::std::ostream * os)961 void DescribeTo(::std::ostream* os) const {
962 DescribeToHelper(expect_eq_, os);
963 }
964
DescribeNegationTo(::std::ostream * os)965 void DescribeNegationTo(::std::ostream* os) const {
966 DescribeToHelper(!expect_eq_, os);
967 }
968
969 private:
DescribeToHelper(bool expect_eq,::std::ostream * os)970 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
971 *os << (expect_eq ? "is " : "isn't ");
972 *os << "equal to ";
973 if (!case_sensitive_) {
974 *os << "(ignoring case) ";
975 }
976 UniversalPrint(string_, os);
977 }
978
979 const StringType string_;
980 const bool expect_eq_;
981 const bool case_sensitive_;
982
983 GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
984 };
985
986 // Implements the polymorphic HasSubstr(substring) matcher, which
987 // can be used as a Matcher<T> as long as T can be converted to a
988 // string.
989 template <typename StringType>
990 class HasSubstrMatcher {
991 public:
992 typedef typename StringType::const_pointer ConstCharPointer;
993
HasSubstrMatcher(const StringType & substring)994 explicit HasSubstrMatcher(const StringType& substring)
995 : substring_(substring) {}
996
997 // These overloaded methods allow HasSubstr(substring) to be used as a
998 // Matcher<T> as long as T can be converted to string. Returns true
999 // iff s contains substring_ as a substring.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)1000 bool MatchAndExplain(ConstCharPointer s,
1001 MatchResultListener* listener) const {
1002 return s != NULL && MatchAndExplain(StringType(s), listener);
1003 }
1004
MatchAndExplain(const StringType & s,MatchResultListener *)1005 bool MatchAndExplain(const StringType& s,
1006 MatchResultListener* /* listener */) const {
1007 return s.find(substring_) != StringType::npos;
1008 }
1009
1010 // Describes what this matcher matches.
DescribeTo(::std::ostream * os)1011 void DescribeTo(::std::ostream* os) const {
1012 *os << "has substring ";
1013 UniversalPrint(substring_, os);
1014 }
1015
DescribeNegationTo(::std::ostream * os)1016 void DescribeNegationTo(::std::ostream* os) const {
1017 *os << "has no substring ";
1018 UniversalPrint(substring_, os);
1019 }
1020
1021 private:
1022 const StringType substring_;
1023
1024 GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
1025 };
1026
1027 // Implements the polymorphic StartsWith(substring) matcher, which
1028 // can be used as a Matcher<T> as long as T can be converted to a
1029 // string.
1030 template <typename StringType>
1031 class StartsWithMatcher {
1032 public:
1033 typedef typename StringType::const_pointer ConstCharPointer;
1034
StartsWithMatcher(const StringType & prefix)1035 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
1036 }
1037
1038 // These overloaded methods allow StartsWith(prefix) to be used as a
1039 // Matcher<T> as long as T can be converted to string. Returns true
1040 // iff s starts with prefix_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)1041 bool MatchAndExplain(ConstCharPointer s,
1042 MatchResultListener* listener) const {
1043 return s != NULL && MatchAndExplain(StringType(s), listener);
1044 }
1045
MatchAndExplain(const StringType & s,MatchResultListener *)1046 bool MatchAndExplain(const StringType& s,
1047 MatchResultListener* /* listener */) const {
1048 return s.length() >= prefix_.length() &&
1049 s.substr(0, prefix_.length()) == prefix_;
1050 }
1051
DescribeTo(::std::ostream * os)1052 void DescribeTo(::std::ostream* os) const {
1053 *os << "starts with ";
1054 UniversalPrint(prefix_, os);
1055 }
1056
DescribeNegationTo(::std::ostream * os)1057 void DescribeNegationTo(::std::ostream* os) const {
1058 *os << "doesn't start with ";
1059 UniversalPrint(prefix_, os);
1060 }
1061
1062 private:
1063 const StringType prefix_;
1064
1065 GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
1066 };
1067
1068 // Implements the polymorphic EndsWith(substring) matcher, which
1069 // can be used as a Matcher<T> as long as T can be converted to a
1070 // string.
1071 template <typename StringType>
1072 class EndsWithMatcher {
1073 public:
1074 typedef typename StringType::const_pointer ConstCharPointer;
1075
EndsWithMatcher(const StringType & suffix)1076 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1077
1078 // These overloaded methods allow EndsWith(suffix) to be used as a
1079 // Matcher<T> as long as T can be converted to string. Returns true
1080 // iff s ends with suffix_.
MatchAndExplain(ConstCharPointer s,MatchResultListener * listener)1081 bool MatchAndExplain(ConstCharPointer s,
1082 MatchResultListener* listener) const {
1083 return s != NULL && MatchAndExplain(StringType(s), listener);
1084 }
1085
MatchAndExplain(const StringType & s,MatchResultListener *)1086 bool MatchAndExplain(const StringType& s,
1087 MatchResultListener* /* listener */) const {
1088 return s.length() >= suffix_.length() &&
1089 s.substr(s.length() - suffix_.length()) == suffix_;
1090 }
1091
DescribeTo(::std::ostream * os)1092 void DescribeTo(::std::ostream* os) const {
1093 *os << "ends with ";
1094 UniversalPrint(suffix_, os);
1095 }
1096
DescribeNegationTo(::std::ostream * os)1097 void DescribeNegationTo(::std::ostream* os) const {
1098 *os << "doesn't end with ";
1099 UniversalPrint(suffix_, os);
1100 }
1101
1102 private:
1103 const StringType suffix_;
1104
1105 GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
1106 };
1107
1108 // Implements polymorphic matchers MatchesRegex(regex) and
1109 // ContainsRegex(regex), which can be used as a Matcher<T> as long as
1110 // T can be converted to a string.
1111 class MatchesRegexMatcher {
1112 public:
MatchesRegexMatcher(const RE * regex,bool full_match)1113 MatchesRegexMatcher(const RE* regex, bool full_match)
1114 : regex_(regex), full_match_(full_match) {}
1115
1116 // These overloaded methods allow MatchesRegex(regex) to be used as
1117 // a Matcher<T> as long as T can be converted to string. Returns
1118 // true iff s matches regular expression regex. When full_match_ is
1119 // true, a full match is done; otherwise a partial match is done.
MatchAndExplain(const char * s,MatchResultListener * listener)1120 bool MatchAndExplain(const char* s,
1121 MatchResultListener* listener) const {
1122 return s != NULL && MatchAndExplain(internal::string(s), listener);
1123 }
1124
MatchAndExplain(const internal::string & s,MatchResultListener *)1125 bool MatchAndExplain(const internal::string& s,
1126 MatchResultListener* /* listener */) const {
1127 return full_match_ ? RE::FullMatch(s, *regex_) :
1128 RE::PartialMatch(s, *regex_);
1129 }
1130
DescribeTo(::std::ostream * os)1131 void DescribeTo(::std::ostream* os) const {
1132 *os << (full_match_ ? "matches" : "contains")
1133 << " regular expression ";
1134 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1135 }
1136
DescribeNegationTo(::std::ostream * os)1137 void DescribeNegationTo(::std::ostream* os) const {
1138 *os << "doesn't " << (full_match_ ? "match" : "contain")
1139 << " regular expression ";
1140 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
1141 }
1142
1143 private:
1144 const internal::linked_ptr<const RE> regex_;
1145 const bool full_match_;
1146
1147 GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
1148 };
1149
1150 // Implements a matcher that compares the two fields of a 2-tuple
1151 // using one of the ==, <=, <, etc, operators. The two fields being
1152 // compared don't have to have the same type.
1153 //
1154 // The matcher defined here is polymorphic (for example, Eq() can be
1155 // used to match a tuple<int, short>, a tuple<const long&, double>,
1156 // etc). Therefore we use a template type conversion operator in the
1157 // implementation.
1158 //
1159 // We define this as a macro in order to eliminate duplicated source
1160 // code.
1161 #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
1162 class name##2Matcher { \
1163 public: \
1164 template <typename T1, typename T2> \
1165 operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \
1166 return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \
1167 } \
1168 template <typename T1, typename T2> \
1169 operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
1170 return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \
1171 } \
1172 private: \
1173 template <typename Tuple> \
1174 class Impl : public MatcherInterface<Tuple> { \
1175 public: \
1176 virtual bool MatchAndExplain( \
1177 Tuple args, \
1178 MatchResultListener* /* listener */) const { \
1179 return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
1180 } \
1181 virtual void DescribeTo(::std::ostream* os) const { \
1182 *os << "are " relation; \
1183 } \
1184 virtual void DescribeNegationTo(::std::ostream* os) const { \
1185 *os << "aren't " relation; \
1186 } \
1187 }; \
1188 }
1189
1190 // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
1191 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair");
1192 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1193 Ge, >=, "a pair where the first >= the second");
1194 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1195 Gt, >, "a pair where the first > the second");
1196 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1197 Le, <=, "a pair where the first <= the second");
1198 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
1199 Lt, <, "a pair where the first < the second");
1200 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair");
1201
1202 #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
1203
1204 // Implements the Not(...) matcher for a particular argument type T.
1205 // We do not nest it inside the NotMatcher class template, as that
1206 // will prevent different instantiations of NotMatcher from sharing
1207 // the same NotMatcherImpl<T> class.
1208 template <typename T>
1209 class NotMatcherImpl : public MatcherInterface<T> {
1210 public:
NotMatcherImpl(const Matcher<T> & matcher)1211 explicit NotMatcherImpl(const Matcher<T>& matcher)
1212 : matcher_(matcher) {}
1213
MatchAndExplain(T x,MatchResultListener * listener)1214 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1215 return !matcher_.MatchAndExplain(x, listener);
1216 }
1217
DescribeTo(::std::ostream * os)1218 virtual void DescribeTo(::std::ostream* os) const {
1219 matcher_.DescribeNegationTo(os);
1220 }
1221
DescribeNegationTo(::std::ostream * os)1222 virtual void DescribeNegationTo(::std::ostream* os) const {
1223 matcher_.DescribeTo(os);
1224 }
1225
1226 private:
1227 const Matcher<T> matcher_;
1228
1229 GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
1230 };
1231
1232 // Implements the Not(m) matcher, which matches a value that doesn't
1233 // match matcher m.
1234 template <typename InnerMatcher>
1235 class NotMatcher {
1236 public:
NotMatcher(InnerMatcher matcher)1237 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1238
1239 // This template type conversion operator allows Not(m) to be used
1240 // to match any type m can match.
1241 template <typename T>
1242 operator Matcher<T>() const {
1243 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1244 }
1245
1246 private:
1247 InnerMatcher matcher_;
1248
1249 GTEST_DISALLOW_ASSIGN_(NotMatcher);
1250 };
1251
1252 // Implements the AllOf(m1, m2) matcher for a particular argument type
1253 // T. We do not nest it inside the BothOfMatcher class template, as
1254 // that will prevent different instantiations of BothOfMatcher from
1255 // sharing the same BothOfMatcherImpl<T> class.
1256 template <typename T>
1257 class BothOfMatcherImpl : public MatcherInterface<T> {
1258 public:
BothOfMatcherImpl(const Matcher<T> & matcher1,const Matcher<T> & matcher2)1259 BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1260 : matcher1_(matcher1), matcher2_(matcher2) {}
1261
DescribeTo(::std::ostream * os)1262 virtual void DescribeTo(::std::ostream* os) const {
1263 *os << "(";
1264 matcher1_.DescribeTo(os);
1265 *os << ") and (";
1266 matcher2_.DescribeTo(os);
1267 *os << ")";
1268 }
1269
DescribeNegationTo(::std::ostream * os)1270 virtual void DescribeNegationTo(::std::ostream* os) const {
1271 *os << "(";
1272 matcher1_.DescribeNegationTo(os);
1273 *os << ") or (";
1274 matcher2_.DescribeNegationTo(os);
1275 *os << ")";
1276 }
1277
MatchAndExplain(T x,MatchResultListener * listener)1278 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1279 // If either matcher1_ or matcher2_ doesn't match x, we only need
1280 // to explain why one of them fails.
1281 StringMatchResultListener listener1;
1282 if (!matcher1_.MatchAndExplain(x, &listener1)) {
1283 *listener << listener1.str();
1284 return false;
1285 }
1286
1287 StringMatchResultListener listener2;
1288 if (!matcher2_.MatchAndExplain(x, &listener2)) {
1289 *listener << listener2.str();
1290 return false;
1291 }
1292
1293 // Otherwise we need to explain why *both* of them match.
1294 const internal::string s1 = listener1.str();
1295 const internal::string s2 = listener2.str();
1296
1297 if (s1 == "") {
1298 *listener << s2;
1299 } else {
1300 *listener << s1;
1301 if (s2 != "") {
1302 *listener << ", and " << s2;
1303 }
1304 }
1305 return true;
1306 }
1307
1308 private:
1309 const Matcher<T> matcher1_;
1310 const Matcher<T> matcher2_;
1311
1312 GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
1313 };
1314
1315 // Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1316 // matches a value that matches all of the matchers m_1, ..., and m_n.
1317 template <typename Matcher1, typename Matcher2>
1318 class BothOfMatcher {
1319 public:
BothOfMatcher(Matcher1 matcher1,Matcher2 matcher2)1320 BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1321 : matcher1_(matcher1), matcher2_(matcher2) {}
1322
1323 // This template type conversion operator allows a
1324 // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1325 // both Matcher1 and Matcher2 can match.
1326 template <typename T>
1327 operator Matcher<T>() const {
1328 return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1329 SafeMatcherCast<T>(matcher2_)));
1330 }
1331
1332 private:
1333 Matcher1 matcher1_;
1334 Matcher2 matcher2_;
1335
1336 GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
1337 };
1338
1339 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1340 // T. We do not nest it inside the AnyOfMatcher class template, as
1341 // that will prevent different instantiations of AnyOfMatcher from
1342 // sharing the same EitherOfMatcherImpl<T> class.
1343 template <typename T>
1344 class EitherOfMatcherImpl : public MatcherInterface<T> {
1345 public:
EitherOfMatcherImpl(const Matcher<T> & matcher1,const Matcher<T> & matcher2)1346 EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1347 : matcher1_(matcher1), matcher2_(matcher2) {}
1348
DescribeTo(::std::ostream * os)1349 virtual void DescribeTo(::std::ostream* os) const {
1350 *os << "(";
1351 matcher1_.DescribeTo(os);
1352 *os << ") or (";
1353 matcher2_.DescribeTo(os);
1354 *os << ")";
1355 }
1356
DescribeNegationTo(::std::ostream * os)1357 virtual void DescribeNegationTo(::std::ostream* os) const {
1358 *os << "(";
1359 matcher1_.DescribeNegationTo(os);
1360 *os << ") and (";
1361 matcher2_.DescribeNegationTo(os);
1362 *os << ")";
1363 }
1364
MatchAndExplain(T x,MatchResultListener * listener)1365 virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
1366 // If either matcher1_ or matcher2_ matches x, we just need to
1367 // explain why *one* of them matches.
1368 StringMatchResultListener listener1;
1369 if (matcher1_.MatchAndExplain(x, &listener1)) {
1370 *listener << listener1.str();
1371 return true;
1372 }
1373
1374 StringMatchResultListener listener2;
1375 if (matcher2_.MatchAndExplain(x, &listener2)) {
1376 *listener << listener2.str();
1377 return true;
1378 }
1379
1380 // Otherwise we need to explain why *both* of them fail.
1381 const internal::string s1 = listener1.str();
1382 const internal::string s2 = listener2.str();
1383
1384 if (s1 == "") {
1385 *listener << s2;
1386 } else {
1387 *listener << s1;
1388 if (s2 != "") {
1389 *listener << ", and " << s2;
1390 }
1391 }
1392 return false;
1393 }
1394
1395 private:
1396 const Matcher<T> matcher1_;
1397 const Matcher<T> matcher2_;
1398
1399 GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
1400 };
1401
1402 // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1403 // matches a value that matches at least one of the matchers m_1, ...,
1404 // and m_n.
1405 template <typename Matcher1, typename Matcher2>
1406 class EitherOfMatcher {
1407 public:
EitherOfMatcher(Matcher1 matcher1,Matcher2 matcher2)1408 EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1409 : matcher1_(matcher1), matcher2_(matcher2) {}
1410
1411 // This template type conversion operator allows a
1412 // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1413 // both Matcher1 and Matcher2 can match.
1414 template <typename T>
1415 operator Matcher<T>() const {
1416 return Matcher<T>(new EitherOfMatcherImpl<T>(
1417 SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1418 }
1419
1420 private:
1421 Matcher1 matcher1_;
1422 Matcher2 matcher2_;
1423
1424 GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
1425 };
1426
1427 // Used for implementing Truly(pred), which turns a predicate into a
1428 // matcher.
1429 template <typename Predicate>
1430 class TrulyMatcher {
1431 public:
TrulyMatcher(Predicate pred)1432 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1433
1434 // This method template allows Truly(pred) to be used as a matcher
1435 // for type T where T is the argument type of predicate 'pred'. The
1436 // argument is passed by reference as the predicate may be
1437 // interested in the address of the argument.
1438 template <typename T>
MatchAndExplain(T & x,MatchResultListener *)1439 bool MatchAndExplain(T& x, // NOLINT
1440 MatchResultListener* /* listener */) const {
1441 // Without the if-statement, MSVC sometimes warns about converting
1442 // a value to bool (warning 4800).
1443 //
1444 // We cannot write 'return !!predicate_(x);' as that doesn't work
1445 // when predicate_(x) returns a class convertible to bool but
1446 // having no operator!().
1447 if (predicate_(x))
1448 return true;
1449 return false;
1450 }
1451
DescribeTo(::std::ostream * os)1452 void DescribeTo(::std::ostream* os) const {
1453 *os << "satisfies the given predicate";
1454 }
1455
DescribeNegationTo(::std::ostream * os)1456 void DescribeNegationTo(::std::ostream* os) const {
1457 *os << "doesn't satisfy the given predicate";
1458 }
1459
1460 private:
1461 Predicate predicate_;
1462
1463 GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
1464 };
1465
1466 // Used for implementing Matches(matcher), which turns a matcher into
1467 // a predicate.
1468 template <typename M>
1469 class MatcherAsPredicate {
1470 public:
MatcherAsPredicate(M matcher)1471 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1472
1473 // This template operator() allows Matches(m) to be used as a
1474 // predicate on type T where m is a matcher on type T.
1475 //
1476 // The argument x is passed by reference instead of by value, as
1477 // some matcher may be interested in its address (e.g. as in
1478 // Matches(Ref(n))(x)).
1479 template <typename T>
operator()1480 bool operator()(const T& x) const {
1481 // We let matcher_ commit to a particular type here instead of
1482 // when the MatcherAsPredicate object was constructed. This
1483 // allows us to write Matches(m) where m is a polymorphic matcher
1484 // (e.g. Eq(5)).
1485 //
1486 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1487 // compile when matcher_ has type Matcher<const T&>; if we write
1488 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1489 // when matcher_ has type Matcher<T>; if we just write
1490 // matcher_.Matches(x), it won't compile when matcher_ is
1491 // polymorphic, e.g. Eq(5).
1492 //
1493 // MatcherCast<const T&>() is necessary for making the code work
1494 // in all of the above situations.
1495 return MatcherCast<const T&>(matcher_).Matches(x);
1496 }
1497
1498 private:
1499 M matcher_;
1500
1501 GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
1502 };
1503
1504 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1505 // argument M must be a type that can be converted to a matcher.
1506 template <typename M>
1507 class PredicateFormatterFromMatcher {
1508 public:
PredicateFormatterFromMatcher(const M & m)1509 explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1510
1511 // This template () operator allows a PredicateFormatterFromMatcher
1512 // object to act as a predicate-formatter suitable for using with
1513 // Google Test's EXPECT_PRED_FORMAT1() macro.
1514 template <typename T>
operator()1515 AssertionResult operator()(const char* value_text, const T& x) const {
1516 // We convert matcher_ to a Matcher<const T&> *now* instead of
1517 // when the PredicateFormatterFromMatcher object was constructed,
1518 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1519 // know which type to instantiate it to until we actually see the
1520 // type of x here.
1521 //
1522 // We write MatcherCast<const T&>(matcher_) instead of
1523 // Matcher<const T&>(matcher_), as the latter won't compile when
1524 // matcher_ has type Matcher<T> (e.g. An<int>()).
1525 const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1526 StringMatchResultListener listener;
1527 if (MatchPrintAndExplain(x, matcher, &listener))
1528 return AssertionSuccess();
1529
1530 ::std::stringstream ss;
1531 ss << "Value of: " << value_text << "\n"
1532 << "Expected: ";
1533 matcher.DescribeTo(&ss);
1534 ss << "\n Actual: " << listener.str();
1535 return AssertionFailure() << ss.str();
1536 }
1537
1538 private:
1539 const M matcher_;
1540
1541 GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
1542 };
1543
1544 // A helper function for converting a matcher to a predicate-formatter
1545 // without the user needing to explicitly write the type. This is
1546 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1547 template <typename M>
1548 inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(const M & matcher)1549 MakePredicateFormatterFromMatcher(const M& matcher) {
1550 return PredicateFormatterFromMatcher<M>(matcher);
1551 }
1552
1553 // Implements the polymorphic floating point equality matcher, which
1554 // matches two float values using ULP-based approximation. The
1555 // template is meant to be instantiated with FloatType being either
1556 // float or double.
1557 template <typename FloatType>
1558 class FloatingEqMatcher {
1559 public:
1560 // Constructor for FloatingEqMatcher.
1561 // The matcher's input will be compared with rhs. The matcher treats two
1562 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1563 // equality comparisons between NANs will always return false.
FloatingEqMatcher(FloatType rhs,bool nan_eq_nan)1564 FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1565 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1566
1567 // Implements floating point equality matcher as a Matcher<T>.
1568 template <typename T>
1569 class Impl : public MatcherInterface<T> {
1570 public:
Impl(FloatType rhs,bool nan_eq_nan)1571 Impl(FloatType rhs, bool nan_eq_nan) :
1572 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1573
MatchAndExplain(T value,MatchResultListener *)1574 virtual bool MatchAndExplain(T value,
1575 MatchResultListener* /* listener */) const {
1576 const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1577
1578 // Compares NaNs first, if nan_eq_nan_ is true.
1579 if (nan_eq_nan_ && lhs.is_nan()) {
1580 return rhs.is_nan();
1581 }
1582
1583 return lhs.AlmostEquals(rhs);
1584 }
1585
DescribeTo(::std::ostream * os)1586 virtual void DescribeTo(::std::ostream* os) const {
1587 // os->precision() returns the previously set precision, which we
1588 // store to restore the ostream to its original configuration
1589 // after outputting.
1590 const ::std::streamsize old_precision = os->precision(
1591 ::std::numeric_limits<FloatType>::digits10 + 2);
1592 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1593 if (nan_eq_nan_) {
1594 *os << "is NaN";
1595 } else {
1596 *os << "never matches";
1597 }
1598 } else {
1599 *os << "is approximately " << rhs_;
1600 }
1601 os->precision(old_precision);
1602 }
1603
DescribeNegationTo(::std::ostream * os)1604 virtual void DescribeNegationTo(::std::ostream* os) const {
1605 // As before, get original precision.
1606 const ::std::streamsize old_precision = os->precision(
1607 ::std::numeric_limits<FloatType>::digits10 + 2);
1608 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1609 if (nan_eq_nan_) {
1610 *os << "isn't NaN";
1611 } else {
1612 *os << "is anything";
1613 }
1614 } else {
1615 *os << "isn't approximately " << rhs_;
1616 }
1617 // Restore original precision.
1618 os->precision(old_precision);
1619 }
1620
1621 private:
1622 const FloatType rhs_;
1623 const bool nan_eq_nan_;
1624
1625 GTEST_DISALLOW_ASSIGN_(Impl);
1626 };
1627
1628 // The following 3 type conversion operators allow FloatEq(rhs) and
1629 // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1630 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1631 // (While Google's C++ coding style doesn't allow arguments passed
1632 // by non-const reference, we may see them in code not conforming to
1633 // the style. Therefore Google Mock needs to support them.)
1634 operator Matcher<FloatType>() const {
1635 return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1636 }
1637
1638 operator Matcher<const FloatType&>() const {
1639 return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1640 }
1641
1642 operator Matcher<FloatType&>() const {
1643 return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1644 }
1645
1646 private:
1647 const FloatType rhs_;
1648 const bool nan_eq_nan_;
1649
1650 GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
1651 };
1652
1653 // Implements the Pointee(m) matcher for matching a pointer whose
1654 // pointee matches matcher m. The pointer can be either raw or smart.
1655 template <typename InnerMatcher>
1656 class PointeeMatcher {
1657 public:
PointeeMatcher(const InnerMatcher & matcher)1658 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1659
1660 // This type conversion operator template allows Pointee(m) to be
1661 // used as a matcher for any pointer type whose pointee type is
1662 // compatible with the inner matcher, where type Pointer can be
1663 // either a raw pointer or a smart pointer.
1664 //
1665 // The reason we do this instead of relying on
1666 // MakePolymorphicMatcher() is that the latter is not flexible
1667 // enough for implementing the DescribeTo() method of Pointee().
1668 template <typename Pointer>
1669 operator Matcher<Pointer>() const {
1670 return MakeMatcher(new Impl<Pointer>(matcher_));
1671 }
1672
1673 private:
1674 // The monomorphic implementation that works for a particular pointer type.
1675 template <typename Pointer>
1676 class Impl : public MatcherInterface<Pointer> {
1677 public:
1678 typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT
1679 GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1680
Impl(const InnerMatcher & matcher)1681 explicit Impl(const InnerMatcher& matcher)
1682 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1683
DescribeTo(::std::ostream * os)1684 virtual void DescribeTo(::std::ostream* os) const {
1685 *os << "points to a value that ";
1686 matcher_.DescribeTo(os);
1687 }
1688
DescribeNegationTo(::std::ostream * os)1689 virtual void DescribeNegationTo(::std::ostream* os) const {
1690 *os << "does not point to a value that ";
1691 matcher_.DescribeTo(os);
1692 }
1693
MatchAndExplain(Pointer pointer,MatchResultListener * listener)1694 virtual bool MatchAndExplain(Pointer pointer,
1695 MatchResultListener* listener) const {
1696 if (GetRawPointer(pointer) == NULL)
1697 return false;
1698
1699 *listener << "which points to ";
1700 return MatchPrintAndExplain(*pointer, matcher_, listener);
1701 }
1702
1703 private:
1704 const Matcher<const Pointee&> matcher_;
1705
1706 GTEST_DISALLOW_ASSIGN_(Impl);
1707 };
1708
1709 const InnerMatcher matcher_;
1710
1711 GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
1712 };
1713
1714 // Implements the Field() matcher for matching a field (i.e. member
1715 // variable) of an object.
1716 template <typename Class, typename FieldType>
1717 class FieldMatcher {
1718 public:
FieldMatcher(FieldType Class::* field,const Matcher<const FieldType &> & matcher)1719 FieldMatcher(FieldType Class::*field,
1720 const Matcher<const FieldType&>& matcher)
1721 : field_(field), matcher_(matcher) {}
1722
DescribeTo(::std::ostream * os)1723 void DescribeTo(::std::ostream* os) const {
1724 *os << "is an object whose given field ";
1725 matcher_.DescribeTo(os);
1726 }
1727
DescribeNegationTo(::std::ostream * os)1728 void DescribeNegationTo(::std::ostream* os) const {
1729 *os << "is an object whose given field ";
1730 matcher_.DescribeNegationTo(os);
1731 }
1732
1733 template <typename T>
MatchAndExplain(const T & value,MatchResultListener * listener)1734 bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
1735 return MatchAndExplainImpl(
1736 typename ::testing::internal::
1737 is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1738 value, listener);
1739 }
1740
1741 private:
1742 // The first argument of MatchAndExplainImpl() is needed to help
1743 // Symbian's C++ compiler choose which overload to use. Its type is
1744 // true_type iff the Field() matcher is used to match a pointer.
MatchAndExplainImpl(false_type,const Class & obj,MatchResultListener * listener)1745 bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1746 MatchResultListener* listener) const {
1747 *listener << "whose given field is ";
1748 return MatchPrintAndExplain(obj.*field_, matcher_, listener);
1749 }
1750
MatchAndExplainImpl(true_type,const Class * p,MatchResultListener * listener)1751 bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1752 MatchResultListener* listener) const {
1753 if (p == NULL)
1754 return false;
1755
1756 *listener << "which points to an object ";
1757 // Since *p has a field, it must be a class/struct/union type and
1758 // thus cannot be a pointer. Therefore we pass false_type() as
1759 // the first argument.
1760 return MatchAndExplainImpl(false_type(), *p, listener);
1761 }
1762
1763 const FieldType Class::*field_;
1764 const Matcher<const FieldType&> matcher_;
1765
1766 GTEST_DISALLOW_ASSIGN_(FieldMatcher);
1767 };
1768
1769 // Implements the Property() matcher for matching a property
1770 // (i.e. return value of a getter method) of an object.
1771 template <typename Class, typename PropertyType>
1772 class PropertyMatcher {
1773 public:
1774 // The property may have a reference type, so 'const PropertyType&'
1775 // may cause double references and fail to compile. That's why we
1776 // need GTEST_REFERENCE_TO_CONST, which works regardless of
1777 // PropertyType being a reference or not.
1778 typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1779
PropertyMatcher(PropertyType (Class::* property)()const,const Matcher<RefToConstProperty> & matcher)1780 PropertyMatcher(PropertyType (Class::*property)() const,
1781 const Matcher<RefToConstProperty>& matcher)
1782 : property_(property), matcher_(matcher) {}
1783
DescribeTo(::std::ostream * os)1784 void DescribeTo(::std::ostream* os) const {
1785 *os << "is an object whose given property ";
1786 matcher_.DescribeTo(os);
1787 }
1788
DescribeNegationTo(::std::ostream * os)1789 void DescribeNegationTo(::std::ostream* os) const {
1790 *os << "is an object whose given property ";
1791 matcher_.DescribeNegationTo(os);
1792 }
1793
1794 template <typename T>
MatchAndExplain(const T & value,MatchResultListener * listener)1795 bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
1796 return MatchAndExplainImpl(
1797 typename ::testing::internal::
1798 is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
1799 value, listener);
1800 }
1801
1802 private:
1803 // The first argument of MatchAndExplainImpl() is needed to help
1804 // Symbian's C++ compiler choose which overload to use. Its type is
1805 // true_type iff the Property() matcher is used to match a pointer.
MatchAndExplainImpl(false_type,const Class & obj,MatchResultListener * listener)1806 bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
1807 MatchResultListener* listener) const {
1808 *listener << "whose given property is ";
1809 // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
1810 // which takes a non-const reference as argument.
1811 RefToConstProperty result = (obj.*property_)();
1812 return MatchPrintAndExplain(result, matcher_, listener);
1813 }
1814
MatchAndExplainImpl(true_type,const Class * p,MatchResultListener * listener)1815 bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
1816 MatchResultListener* listener) const {
1817 if (p == NULL)
1818 return false;
1819
1820 *listener << "which points to an object ";
1821 // Since *p has a property method, it must be a class/struct/union
1822 // type and thus cannot be a pointer. Therefore we pass
1823 // false_type() as the first argument.
1824 return MatchAndExplainImpl(false_type(), *p, listener);
1825 }
1826
1827 PropertyType (Class::*property_)() const;
1828 const Matcher<RefToConstProperty> matcher_;
1829
1830 GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
1831 };
1832
1833 // Type traits specifying various features of different functors for ResultOf.
1834 // The default template specifies features for functor objects.
1835 // Functor classes have to typedef argument_type and result_type
1836 // to be compatible with ResultOf.
1837 template <typename Functor>
1838 struct CallableTraits {
1839 typedef typename Functor::result_type ResultType;
1840 typedef Functor StorageType;
1841
CheckIsValidCallableTraits1842 static void CheckIsValid(Functor /* functor */) {}
1843 template <typename T>
InvokeCallableTraits1844 static ResultType Invoke(Functor f, T arg) { return f(arg); }
1845 };
1846
1847 // Specialization for function pointers.
1848 template <typename ArgType, typename ResType>
1849 struct CallableTraits<ResType(*)(ArgType)> {
1850 typedef ResType ResultType;
1851 typedef ResType(*StorageType)(ArgType);
1852
1853 static void CheckIsValid(ResType(*f)(ArgType)) {
1854 GTEST_CHECK_(f != NULL)
1855 << "NULL function pointer is passed into ResultOf().";
1856 }
1857 template <typename T>
1858 static ResType Invoke(ResType(*f)(ArgType), T arg) {
1859 return (*f)(arg);
1860 }
1861 };
1862
1863 // Implements the ResultOf() matcher for matching a return value of a
1864 // unary function of an object.
1865 template <typename Callable>
1866 class ResultOfMatcher {
1867 public:
1868 typedef typename CallableTraits<Callable>::ResultType ResultType;
1869
1870 ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1871 : callable_(callable), matcher_(matcher) {
1872 CallableTraits<Callable>::CheckIsValid(callable_);
1873 }
1874
1875 template <typename T>
1876 operator Matcher<T>() const {
1877 return Matcher<T>(new Impl<T>(callable_, matcher_));
1878 }
1879
1880 private:
1881 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1882
1883 template <typename T>
1884 class Impl : public MatcherInterface<T> {
1885 public:
1886 Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1887 : callable_(callable), matcher_(matcher) {}
1888
1889 virtual void DescribeTo(::std::ostream* os) const {
1890 *os << "is mapped by the given callable to a value that ";
1891 matcher_.DescribeTo(os);
1892 }
1893
1894 virtual void DescribeNegationTo(::std::ostream* os) const {
1895 *os << "is mapped by the given callable to a value that ";
1896 matcher_.DescribeNegationTo(os);
1897 }
1898
1899 virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
1900 *listener << "which is mapped by the given callable to ";
1901 // Cannot pass the return value (for example, int) to
1902 // MatchPrintAndExplain, which takes a non-const reference as argument.
1903 ResultType result =
1904 CallableTraits<Callable>::template Invoke<T>(callable_, obj);
1905 return MatchPrintAndExplain(result, matcher_, listener);
1906 }
1907
1908 private:
1909 // Functors often define operator() as non-const method even though
1910 // they are actualy stateless. But we need to use them even when
1911 // 'this' is a const pointer. It's the user's responsibility not to
1912 // use stateful callables with ResultOf(), which does't guarantee
1913 // how many times the callable will be invoked.
1914 mutable CallableStorageType callable_;
1915 const Matcher<ResultType> matcher_;
1916
1917 GTEST_DISALLOW_ASSIGN_(Impl);
1918 }; // class Impl
1919
1920 const CallableStorageType callable_;
1921 const Matcher<ResultType> matcher_;
1922
1923 GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
1924 };
1925
1926 // Implements an equality matcher for any STL-style container whose elements
1927 // support ==. This matcher is like Eq(), but its failure explanations provide
1928 // more detailed information that is useful when the container is used as a set.
1929 // The failure message reports elements that are in one of the operands but not
1930 // the other. The failure messages do not report duplicate or out-of-order
1931 // elements in the containers (which don't properly matter to sets, but can
1932 // occur if the containers are vectors or lists, for example).
1933 //
1934 // Uses the container's const_iterator, value_type, operator ==,
1935 // begin(), and end().
1936 template <typename Container>
1937 class ContainerEqMatcher {
1938 public:
1939 typedef internal::StlContainerView<Container> View;
1940 typedef typename View::type StlContainer;
1941 typedef typename View::const_reference StlContainerReference;
1942
1943 // We make a copy of rhs in case the elements in it are modified
1944 // after this matcher is created.
1945 explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1946 // Makes sure the user doesn't instantiate this class template
1947 // with a const or reference type.
1948 (void)testing::StaticAssertTypeEq<Container,
1949 GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
1950 }
1951
1952 void DescribeTo(::std::ostream* os) const {
1953 *os << "equals ";
1954 UniversalPrint(rhs_, os);
1955 }
1956 void DescribeNegationTo(::std::ostream* os) const {
1957 *os << "does not equal ";
1958 UniversalPrint(rhs_, os);
1959 }
1960
1961 template <typename LhsContainer>
1962 bool MatchAndExplain(const LhsContainer& lhs,
1963 MatchResultListener* listener) const {
1964 // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1965 // that causes LhsContainer to be a const type sometimes.
1966 typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
1967 LhsView;
1968 typedef typename LhsView::type LhsStlContainer;
1969 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1970 if (lhs_stl_container == rhs_)
1971 return true;
1972
1973 ::std::ostream* const os = listener->stream();
1974 if (os != NULL) {
1975 // Something is different. Check for extra values first.
1976 bool printed_header = false;
1977 for (typename LhsStlContainer::const_iterator it =
1978 lhs_stl_container.begin();
1979 it != lhs_stl_container.end(); ++it) {
1980 if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1981 rhs_.end()) {
1982 if (printed_header) {
1983 *os << ", ";
1984 } else {
1985 *os << "which has these unexpected elements: ";
1986 printed_header = true;
1987 }
1988 UniversalPrint(*it, os);
1989 }
1990 }
1991
1992 // Now check for missing values.
1993 bool printed_header2 = false;
1994 for (typename StlContainer::const_iterator it = rhs_.begin();
1995 it != rhs_.end(); ++it) {
1996 if (internal::ArrayAwareFind(
1997 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1998 lhs_stl_container.end()) {
1999 if (printed_header2) {
2000 *os << ", ";
2001 } else {
2002 *os << (printed_header ? ",\nand" : "which")
2003 << " doesn't have these expected elements: ";
2004 printed_header2 = true;
2005 }
2006 UniversalPrint(*it, os);
2007 }
2008 }
2009 }
2010
2011 return false;
2012 }
2013
2014 private:
2015 const StlContainer rhs_;
2016
2017 GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
2018 };
2019
2020 // A comparator functor that uses the < operator to compare two values.
2021 struct LessComparator {
2022 template <typename T, typename U>
2023 bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
2024 };
2025
2026 // Implements WhenSortedBy(comparator, container_matcher).
2027 template <typename Comparator, typename ContainerMatcher>
2028 class WhenSortedByMatcher {
2029 public:
2030 WhenSortedByMatcher(const Comparator& comparator,
2031 const ContainerMatcher& matcher)
2032 : comparator_(comparator), matcher_(matcher) {}
2033
2034 template <typename LhsContainer>
2035 operator Matcher<LhsContainer>() const {
2036 return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2037 }
2038
2039 template <typename LhsContainer>
2040 class Impl : public MatcherInterface<LhsContainer> {
2041 public:
2042 typedef internal::StlContainerView<
2043 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2044 typedef typename LhsView::type LhsStlContainer;
2045 typedef typename LhsView::const_reference LhsStlContainerReference;
2046 typedef typename LhsStlContainer::value_type LhsValue;
2047
2048 Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2049 : comparator_(comparator), matcher_(matcher) {}
2050
2051 virtual void DescribeTo(::std::ostream* os) const {
2052 *os << "(when sorted) ";
2053 matcher_.DescribeTo(os);
2054 }
2055
2056 virtual void DescribeNegationTo(::std::ostream* os) const {
2057 *os << "(when sorted) ";
2058 matcher_.DescribeNegationTo(os);
2059 }
2060
2061 virtual bool MatchAndExplain(LhsContainer lhs,
2062 MatchResultListener* listener) const {
2063 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2064 std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2065 lhs_stl_container.end());
2066 std::sort(sorted_container.begin(), sorted_container.end(), comparator_);
2067
2068 if (!listener->IsInterested()) {
2069 // If the listener is not interested, we do not need to
2070 // construct the inner explanation.
2071 return matcher_.Matches(sorted_container);
2072 }
2073
2074 *listener << "which is ";
2075 UniversalPrint(sorted_container, listener->stream());
2076 *listener << " when sorted";
2077
2078 StringMatchResultListener inner_listener;
2079 const bool match = matcher_.MatchAndExplain(sorted_container,
2080 &inner_listener);
2081 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2082 return match;
2083 }
2084
2085 private:
2086 const Comparator comparator_;
2087 const Matcher<const std::vector<LhsValue>&> matcher_;
2088
2089 GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
2090 };
2091
2092 private:
2093 const Comparator comparator_;
2094 const ContainerMatcher matcher_;
2095
2096 GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
2097 };
2098
2099 // Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
2100 // must be able to be safely cast to Matcher<tuple<const T1&, const
2101 // T2&> >, where T1 and T2 are the types of elements in the LHS
2102 // container and the RHS container respectively.
2103 template <typename TupleMatcher, typename RhsContainer>
2104 class PointwiseMatcher {
2105 public:
2106 typedef internal::StlContainerView<RhsContainer> RhsView;
2107 typedef typename RhsView::type RhsStlContainer;
2108 typedef typename RhsStlContainer::value_type RhsValue;
2109
2110 // Like ContainerEq, we make a copy of rhs in case the elements in
2111 // it are modified after this matcher is created.
2112 PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2113 : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
2114 // Makes sure the user doesn't instantiate this class template
2115 // with a const or reference type.
2116 (void)testing::StaticAssertTypeEq<RhsContainer,
2117 GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
2118 }
2119
2120 template <typename LhsContainer>
2121 operator Matcher<LhsContainer>() const {
2122 return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
2123 }
2124
2125 template <typename LhsContainer>
2126 class Impl : public MatcherInterface<LhsContainer> {
2127 public:
2128 typedef internal::StlContainerView<
2129 GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
2130 typedef typename LhsView::type LhsStlContainer;
2131 typedef typename LhsView::const_reference LhsStlContainerReference;
2132 typedef typename LhsStlContainer::value_type LhsValue;
2133 // We pass the LHS value and the RHS value to the inner matcher by
2134 // reference, as they may be expensive to copy. We must use tuple
2135 // instead of pair here, as a pair cannot hold references (C++ 98,
2136 // 20.2.2 [lib.pairs]).
2137 typedef std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2138
2139 Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2140 // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2141 : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2142 rhs_(rhs) {}
2143
2144 virtual void DescribeTo(::std::ostream* os) const {
2145 *os << "contains " << rhs_.size()
2146 << " values, where each value and its corresponding value in ";
2147 UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2148 *os << " ";
2149 mono_tuple_matcher_.DescribeTo(os);
2150 }
2151 virtual void DescribeNegationTo(::std::ostream* os) const {
2152 *os << "doesn't contain exactly " << rhs_.size()
2153 << " values, or contains a value x at some index i"
2154 << " where x and the i-th value of ";
2155 UniversalPrint(rhs_, os);
2156 *os << " ";
2157 mono_tuple_matcher_.DescribeNegationTo(os);
2158 }
2159
2160 virtual bool MatchAndExplain(LhsContainer lhs,
2161 MatchResultListener* listener) const {
2162 LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2163 const size_t actual_size = lhs_stl_container.size();
2164 if (actual_size != rhs_.size()) {
2165 *listener << "which contains " << actual_size << " values";
2166 return false;
2167 }
2168
2169 typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
2170 typename RhsStlContainer::const_iterator right = rhs_.begin();
2171 for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2172 const InnerMatcherArg value_pair(*left, *right);
2173
2174 if (listener->IsInterested()) {
2175 StringMatchResultListener inner_listener;
2176 if (!mono_tuple_matcher_.MatchAndExplain(
2177 value_pair, &inner_listener)) {
2178 *listener << "where the value pair (";
2179 UniversalPrint(*left, listener->stream());
2180 *listener << ", ";
2181 UniversalPrint(*right, listener->stream());
2182 *listener << ") at index #" << i << " don't match";
2183 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2184 return false;
2185 }
2186 } else {
2187 if (!mono_tuple_matcher_.Matches(value_pair))
2188 return false;
2189 }
2190 }
2191
2192 return true;
2193 }
2194
2195 private:
2196 const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2197 const RhsStlContainer rhs_;
2198
2199 GTEST_DISALLOW_ASSIGN_(Impl);
2200 };
2201
2202 private:
2203 const TupleMatcher tuple_matcher_;
2204 const RhsStlContainer rhs_;
2205
2206 GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
2207 };
2208
2209 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2210 template <typename Container>
2211 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2212 public:
2213 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2214 typedef StlContainerView<RawContainer> View;
2215 typedef typename View::type StlContainer;
2216 typedef typename View::const_reference StlContainerReference;
2217 typedef typename StlContainer::value_type Element;
2218
2219 template <typename InnerMatcher>
2220 explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2221 : inner_matcher_(
2222 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2223
2224 // Checks whether:
2225 // * All elements in the container match, if all_elements_should_match.
2226 // * Any element in the container matches, if !all_elements_should_match.
2227 bool MatchAndExplainImpl(bool all_elements_should_match,
2228 Container container,
2229 MatchResultListener* listener) const {
2230 StlContainerReference stl_container = View::ConstReference(container);
2231 size_t i = 0;
2232 for (typename StlContainer::const_iterator it = stl_container.begin();
2233 it != stl_container.end(); ++it, ++i) {
2234 StringMatchResultListener inner_listener;
2235 const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2236
2237 if (matches != all_elements_should_match) {
2238 *listener << "whose element #" << i
2239 << (matches ? " matches" : " doesn't match");
2240 PrintIfNotEmpty(inner_listener.str(), listener->stream());
2241 return !all_elements_should_match;
2242 }
2243 }
2244 return all_elements_should_match;
2245 }
2246
2247 protected:
2248 const Matcher<const Element&> inner_matcher_;
2249
2250 GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
2251 };
2252
2253 // Implements Contains(element_matcher) for the given argument type Container.
2254 // Symmetric to EachMatcherImpl.
2255 template <typename Container>
2256 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2257 public:
2258 template <typename InnerMatcher>
2259 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2260 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2261
2262 // Describes what this matcher does.
2263 virtual void DescribeTo(::std::ostream* os) const {
2264 *os << "contains at least one element that ";
2265 this->inner_matcher_.DescribeTo(os);
2266 }
2267
2268 virtual void DescribeNegationTo(::std::ostream* os) const {
2269 *os << "doesn't contain any element that ";
2270 this->inner_matcher_.DescribeTo(os);
2271 }
2272
2273 virtual bool MatchAndExplain(Container container,
2274 MatchResultListener* listener) const {
2275 return this->MatchAndExplainImpl(false, container, listener);
2276 }
2277
2278 private:
2279 GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
2280 };
2281
2282 // Implements Each(element_matcher) for the given argument type Container.
2283 // Symmetric to ContainsMatcherImpl.
2284 template <typename Container>
2285 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2286 public:
2287 template <typename InnerMatcher>
2288 explicit EachMatcherImpl(InnerMatcher inner_matcher)
2289 : QuantifierMatcherImpl<Container>(inner_matcher) {}
2290
2291 // Describes what this matcher does.
2292 virtual void DescribeTo(::std::ostream* os) const {
2293 *os << "only contains elements that ";
2294 this->inner_matcher_.DescribeTo(os);
2295 }
2296
2297 virtual void DescribeNegationTo(::std::ostream* os) const {
2298 *os << "contains some element that ";
2299 this->inner_matcher_.DescribeNegationTo(os);
2300 }
2301
2302 virtual bool MatchAndExplain(Container container,
2303 MatchResultListener* listener) const {
2304 return this->MatchAndExplainImpl(true, container, listener);
2305 }
2306
2307 private:
2308 GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
2309 };
2310
2311 // Implements polymorphic Contains(element_matcher).
2312 template <typename M>
2313 class ContainsMatcher {
2314 public:
2315 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2316
2317 template <typename Container>
2318 operator Matcher<Container>() const {
2319 return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
2320 }
2321
2322 private:
2323 const M inner_matcher_;
2324
2325 GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
2326 };
2327
2328 // Implements polymorphic Each(element_matcher).
2329 template <typename M>
2330 class EachMatcher {
2331 public:
2332 explicit EachMatcher(M m) : inner_matcher_(m) {}
2333
2334 template <typename Container>
2335 operator Matcher<Container>() const {
2336 return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
2337 }
2338
2339 private:
2340 const M inner_matcher_;
2341
2342 GTEST_DISALLOW_ASSIGN_(EachMatcher);
2343 };
2344
2345 // Implements Key(inner_matcher) for the given argument pair type.
2346 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2347 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2348 // std::map that contains at least one element whose key is >= 5.
2349 template <typename PairType>
2350 class KeyMatcherImpl : public MatcherInterface<PairType> {
2351 public:
2352 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2353 typedef typename RawPairType::first_type KeyType;
2354
2355 template <typename InnerMatcher>
2356 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2357 : inner_matcher_(
2358 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
2359 }
2360
2361 // Returns true iff 'key_value.first' (the key) matches the inner matcher.
2362 virtual bool MatchAndExplain(PairType key_value,
2363 MatchResultListener* listener) const {
2364 StringMatchResultListener inner_listener;
2365 const bool match = inner_matcher_.MatchAndExplain(key_value.first,
2366 &inner_listener);
2367 const internal::string explanation = inner_listener.str();
2368 if (explanation != "") {
2369 *listener << "whose first field is a value " << explanation;
2370 }
2371 return match;
2372 }
2373
2374 // Describes what this matcher does.
2375 virtual void DescribeTo(::std::ostream* os) const {
2376 *os << "has a key that ";
2377 inner_matcher_.DescribeTo(os);
2378 }
2379
2380 // Describes what the negation of this matcher does.
2381 virtual void DescribeNegationTo(::std::ostream* os) const {
2382 *os << "doesn't have a key that ";
2383 inner_matcher_.DescribeTo(os);
2384 }
2385
2386 private:
2387 const Matcher<const KeyType&> inner_matcher_;
2388
2389 GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
2390 };
2391
2392 // Implements polymorphic Key(matcher_for_key).
2393 template <typename M>
2394 class KeyMatcher {
2395 public:
2396 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2397
2398 template <typename PairType>
2399 operator Matcher<PairType>() const {
2400 return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
2401 }
2402
2403 private:
2404 const M matcher_for_key_;
2405
2406 GTEST_DISALLOW_ASSIGN_(KeyMatcher);
2407 };
2408
2409 // Implements Pair(first_matcher, second_matcher) for the given argument pair
2410 // type with its two matchers. See Pair() function below.
2411 template <typename PairType>
2412 class PairMatcherImpl : public MatcherInterface<PairType> {
2413 public:
2414 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2415 typedef typename RawPairType::first_type FirstType;
2416 typedef typename RawPairType::second_type SecondType;
2417
2418 template <typename FirstMatcher, typename SecondMatcher>
2419 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
2420 : first_matcher_(
2421 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
2422 second_matcher_(
2423 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
2424 }
2425
2426 // Describes what this matcher does.
2427 virtual void DescribeTo(::std::ostream* os) const {
2428 *os << "has a first field that ";
2429 first_matcher_.DescribeTo(os);
2430 *os << ", and has a second field that ";
2431 second_matcher_.DescribeTo(os);
2432 }
2433
2434 // Describes what the negation of this matcher does.
2435 virtual void DescribeNegationTo(::std::ostream* os) const {
2436 *os << "has a first field that ";
2437 first_matcher_.DescribeNegationTo(os);
2438 *os << ", or has a second field that ";
2439 second_matcher_.DescribeNegationTo(os);
2440 }
2441
2442 // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
2443 // matches second_matcher.
2444 virtual bool MatchAndExplain(PairType a_pair,
2445 MatchResultListener* listener) const {
2446 if (!listener->IsInterested()) {
2447 // If the listener is not interested, we don't need to construct the
2448 // explanation.
2449 return first_matcher_.Matches(a_pair.first) &&
2450 second_matcher_.Matches(a_pair.second);
2451 }
2452 StringMatchResultListener first_inner_listener;
2453 if (!first_matcher_.MatchAndExplain(a_pair.first,
2454 &first_inner_listener)) {
2455 *listener << "whose first field does not match";
2456 PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
2457 return false;
2458 }
2459 StringMatchResultListener second_inner_listener;
2460 if (!second_matcher_.MatchAndExplain(a_pair.second,
2461 &second_inner_listener)) {
2462 *listener << "whose second field does not match";
2463 PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
2464 return false;
2465 }
2466 ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
2467 listener);
2468 return true;
2469 }
2470
2471 private:
2472 void ExplainSuccess(const internal::string& first_explanation,
2473 const internal::string& second_explanation,
2474 MatchResultListener* listener) const {
2475 *listener << "whose both fields match";
2476 if (first_explanation != "") {
2477 *listener << ", where the first field is a value " << first_explanation;
2478 }
2479 if (second_explanation != "") {
2480 *listener << ", ";
2481 if (first_explanation != "") {
2482 *listener << "and ";
2483 } else {
2484 *listener << "where ";
2485 }
2486 *listener << "the second field is a value " << second_explanation;
2487 }
2488 }
2489
2490 const Matcher<const FirstType&> first_matcher_;
2491 const Matcher<const SecondType&> second_matcher_;
2492
2493 GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
2494 };
2495
2496 // Implements polymorphic Pair(first_matcher, second_matcher).
2497 template <typename FirstMatcher, typename SecondMatcher>
2498 class PairMatcher {
2499 public:
2500 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2501 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2502
2503 template <typename PairType>
2504 operator Matcher<PairType> () const {
2505 return MakeMatcher(
2506 new PairMatcherImpl<PairType>(
2507 first_matcher_, second_matcher_));
2508 }
2509
2510 private:
2511 const FirstMatcher first_matcher_;
2512 const SecondMatcher second_matcher_;
2513
2514 GTEST_DISALLOW_ASSIGN_(PairMatcher);
2515 };
2516
2517 // Implements ElementsAre() and ElementsAreArray().
2518 template <typename Container>
2519 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2520 public:
2521 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2522 typedef internal::StlContainerView<RawContainer> View;
2523 typedef typename View::type StlContainer;
2524 typedef typename View::const_reference StlContainerReference;
2525 typedef typename StlContainer::value_type Element;
2526
2527 // Constructs the matcher from a sequence of element values or
2528 // element matchers.
2529 template <typename InputIter>
2530 ElementsAreMatcherImpl(InputIter first, size_t a_count) {
2531 matchers_.reserve(a_count);
2532 InputIter it = first;
2533 for (size_t i = 0; i != a_count; ++i, ++it) {
2534 matchers_.push_back(MatcherCast<const Element&>(*it));
2535 }
2536 }
2537
2538 // Describes what this matcher does.
2539 virtual void DescribeTo(::std::ostream* os) const {
2540 if (count() == 0) {
2541 *os << "is empty";
2542 } else if (count() == 1) {
2543 *os << "has 1 element that ";
2544 matchers_[0].DescribeTo(os);
2545 } else {
2546 *os << "has " << Elements(count()) << " where\n";
2547 for (size_t i = 0; i != count(); ++i) {
2548 *os << "element #" << i << " ";
2549 matchers_[i].DescribeTo(os);
2550 if (i + 1 < count()) {
2551 *os << ",\n";
2552 }
2553 }
2554 }
2555 }
2556
2557 // Describes what the negation of this matcher does.
2558 virtual void DescribeNegationTo(::std::ostream* os) const {
2559 if (count() == 0) {
2560 *os << "isn't empty";
2561 return;
2562 }
2563
2564 *os << "doesn't have " << Elements(count()) << ", or\n";
2565 for (size_t i = 0; i != count(); ++i) {
2566 *os << "element #" << i << " ";
2567 matchers_[i].DescribeNegationTo(os);
2568 if (i + 1 < count()) {
2569 *os << ", or\n";
2570 }
2571 }
2572 }
2573
2574 virtual bool MatchAndExplain(Container container,
2575 MatchResultListener* listener) const {
2576 StlContainerReference stl_container = View::ConstReference(container);
2577 const size_t actual_count = stl_container.size();
2578 if (actual_count != count()) {
2579 // The element count doesn't match. If the container is empty,
2580 // there's no need to explain anything as Google Mock already
2581 // prints the empty container. Otherwise we just need to show
2582 // how many elements there actually are.
2583 if (actual_count != 0) {
2584 *listener << "which has " << Elements(actual_count);
2585 }
2586 return false;
2587 }
2588
2589 typename StlContainer::const_iterator it = stl_container.begin();
2590 // explanations[i] is the explanation of the element at index i.
2591 std::vector<internal::string> explanations(count());
2592 for (size_t i = 0; i != count(); ++it, ++i) {
2593 StringMatchResultListener s;
2594 if (matchers_[i].MatchAndExplain(*it, &s)) {
2595 explanations[i] = s.str();
2596 } else {
2597 // The container has the right size but the i-th element
2598 // doesn't match its expectation.
2599 *listener << "whose element #" << i << " doesn't match";
2600 PrintIfNotEmpty(s.str(), listener->stream());
2601 return false;
2602 }
2603 }
2604
2605 // Every element matches its expectation. We need to explain why
2606 // (the obvious ones can be skipped).
2607 bool reason_printed = false;
2608 for (size_t i = 0; i != count(); ++i) {
2609 const internal::string& s = explanations[i];
2610 if (!s.empty()) {
2611 if (reason_printed) {
2612 *listener << ",\nand ";
2613 }
2614 *listener << "whose element #" << i << " matches, " << s;
2615 reason_printed = true;
2616 }
2617 }
2618
2619 return true;
2620 }
2621
2622 private:
2623 static Message Elements(size_t count) {
2624 return Message() << count << (count == 1 ? " element" : " elements");
2625 }
2626
2627 size_t count() const { return matchers_.size(); }
2628 std::vector<Matcher<const Element&> > matchers_;
2629
2630 GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
2631 };
2632
2633 // Implements ElementsAre() of 0 arguments.
2634 class ElementsAreMatcher0 {
2635 public:
2636 ElementsAreMatcher0() {}
2637
2638 template <typename Container>
2639 operator Matcher<Container>() const {
2640 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2641 typedef typename internal::StlContainerView<RawContainer>::type::value_type
2642 Element;
2643
2644 const Matcher<const Element&>* const matchers = NULL;
2645 return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2646 }
2647 };
2648
2649 // Implements ElementsAreArray().
2650 template <typename T>
2651 class ElementsAreArrayMatcher {
2652 public:
2653 ElementsAreArrayMatcher(const T* first, size_t count) :
2654 first_(first), count_(count) {}
2655
2656 template <typename Container>
2657 operator Matcher<Container>() const {
2658 typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2659 typedef typename internal::StlContainerView<RawContainer>::type::value_type
2660 Element;
2661
2662 return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2663 }
2664
2665 private:
2666 const T* const first_;
2667 const size_t count_;
2668
2669 GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
2670 };
2671
2672 // Returns the description for a matcher defined using the MATCHER*()
2673 // macro where the user-supplied description string is "", if
2674 // 'negation' is false; otherwise returns the description of the
2675 // negation of the matcher. 'param_values' contains a list of strings
2676 // that are the print-out of the matcher's parameters.
2677 GTEST_API_ string FormatMatcherDescription(bool negation,
2678 const char* matcher_name,
2679 const Strings& param_values);
2680
2681 } // namespace internal
2682
2683 // _ is a matcher that matches anything of any type.
2684 //
2685 // This definition is fine as:
2686 //
2687 // 1. The C++ standard permits using the name _ in a namespace that
2688 // is not the global namespace or ::std.
2689 // 2. The AnythingMatcher class has no data member or constructor,
2690 // so it's OK to create global variables of this type.
2691 // 3. c-style has approved of using _ in this case.
2692 const internal::AnythingMatcher _ = {};
2693 // Creates a matcher that matches any value of the given type T.
2694 template <typename T>
2695 inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2696
2697 // Creates a matcher that matches any value of the given type T.
2698 template <typename T>
2699 inline Matcher<T> An() { return A<T>(); }
2700
2701 // Creates a polymorphic matcher that matches anything equal to x.
2702 // Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2703 // wouldn't compile.
2704 template <typename T>
2705 inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2706
2707 // Constructs a Matcher<T> from a 'value' of type T. The constructed
2708 // matcher matches any value that's equal to 'value'.
2709 template <typename T>
2710 Matcher<T>::Matcher(T value) { *this = Eq(value); }
2711
2712 // Creates a monomorphic matcher that matches anything with type Lhs
2713 // and equal to rhs. A user may need to use this instead of Eq(...)
2714 // in order to resolve an overloading ambiguity.
2715 //
2716 // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2717 // or Matcher<T>(x), but more readable than the latter.
2718 //
2719 // We could define similar monomorphic matchers for other comparison
2720 // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2721 // it yet as those are used much less than Eq() in practice. A user
2722 // can always write Matcher<T>(Lt(5)) to be explicit about the type,
2723 // for example.
2724 template <typename Lhs, typename Rhs>
2725 inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2726
2727 // Creates a polymorphic matcher that matches anything >= x.
2728 template <typename Rhs>
2729 inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2730 return internal::GeMatcher<Rhs>(x);
2731 }
2732
2733 // Creates a polymorphic matcher that matches anything > x.
2734 template <typename Rhs>
2735 inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2736 return internal::GtMatcher<Rhs>(x);
2737 }
2738
2739 // Creates a polymorphic matcher that matches anything <= x.
2740 template <typename Rhs>
2741 inline internal::LeMatcher<Rhs> Le(Rhs x) {
2742 return internal::LeMatcher<Rhs>(x);
2743 }
2744
2745 // Creates a polymorphic matcher that matches anything < x.
2746 template <typename Rhs>
2747 inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2748 return internal::LtMatcher<Rhs>(x);
2749 }
2750
2751 // Creates a polymorphic matcher that matches anything != x.
2752 template <typename Rhs>
2753 inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2754 return internal::NeMatcher<Rhs>(x);
2755 }
2756
2757 // Creates a polymorphic matcher that matches any NULL pointer.
2758 inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2759 return MakePolymorphicMatcher(internal::IsNullMatcher());
2760 }
2761
2762 // Creates a polymorphic matcher that matches any non-NULL pointer.
2763 // This is convenient as Not(NULL) doesn't compile (the compiler
2764 // thinks that that expression is comparing a pointer with an integer).
2765 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2766 return MakePolymorphicMatcher(internal::NotNullMatcher());
2767 }
2768
2769 // Creates a polymorphic matcher that matches any argument that
2770 // references variable x.
2771 template <typename T>
2772 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
2773 return internal::RefMatcher<T&>(x);
2774 }
2775
2776 // Creates a matcher that matches any double argument approximately
2777 // equal to rhs, where two NANs are considered unequal.
2778 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2779 return internal::FloatingEqMatcher<double>(rhs, false);
2780 }
2781
2782 // Creates a matcher that matches any double argument approximately
2783 // equal to rhs, including NaN values when rhs is NaN.
2784 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2785 return internal::FloatingEqMatcher<double>(rhs, true);
2786 }
2787
2788 // Creates a matcher that matches any float argument approximately
2789 // equal to rhs, where two NANs are considered unequal.
2790 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2791 return internal::FloatingEqMatcher<float>(rhs, false);
2792 }
2793
2794 // Creates a matcher that matches any double argument approximately
2795 // equal to rhs, including NaN values when rhs is NaN.
2796 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2797 return internal::FloatingEqMatcher<float>(rhs, true);
2798 }
2799
2800 // Creates a matcher that matches a pointer (raw or smart) that points
2801 // to a value that matches inner_matcher.
2802 template <typename InnerMatcher>
2803 inline internal::PointeeMatcher<InnerMatcher> Pointee(
2804 const InnerMatcher& inner_matcher) {
2805 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2806 }
2807
2808 // Creates a matcher that matches an object whose given field matches
2809 // 'matcher'. For example,
2810 // Field(&Foo::number, Ge(5))
2811 // matches a Foo object x iff x.number >= 5.
2812 template <typename Class, typename FieldType, typename FieldMatcher>
2813 inline PolymorphicMatcher<
2814 internal::FieldMatcher<Class, FieldType> > Field(
2815 FieldType Class::*field, const FieldMatcher& matcher) {
2816 return MakePolymorphicMatcher(
2817 internal::FieldMatcher<Class, FieldType>(
2818 field, MatcherCast<const FieldType&>(matcher)));
2819 // The call to MatcherCast() is required for supporting inner
2820 // matchers of compatible types. For example, it allows
2821 // Field(&Foo::bar, m)
2822 // to compile where bar is an int32 and m is a matcher for int64.
2823 }
2824
2825 // Creates a matcher that matches an object whose given property
2826 // matches 'matcher'. For example,
2827 // Property(&Foo::str, StartsWith("hi"))
2828 // matches a Foo object x iff x.str() starts with "hi".
2829 template <typename Class, typename PropertyType, typename PropertyMatcher>
2830 inline PolymorphicMatcher<
2831 internal::PropertyMatcher<Class, PropertyType> > Property(
2832 PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2833 return MakePolymorphicMatcher(
2834 internal::PropertyMatcher<Class, PropertyType>(
2835 property,
2836 MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
2837 // The call to MatcherCast() is required for supporting inner
2838 // matchers of compatible types. For example, it allows
2839 // Property(&Foo::bar, m)
2840 // to compile where bar() returns an int32 and m is a matcher for int64.
2841 }
2842
2843 // Creates a matcher that matches an object iff the result of applying
2844 // a callable to x matches 'matcher'.
2845 // For example,
2846 // ResultOf(f, StartsWith("hi"))
2847 // matches a Foo object x iff f(x) starts with "hi".
2848 // callable parameter can be a function, function pointer, or a functor.
2849 // Callable has to satisfy the following conditions:
2850 // * It is required to keep no state affecting the results of
2851 // the calls on it and make no assumptions about how many calls
2852 // will be made. Any state it keeps must be protected from the
2853 // concurrent access.
2854 // * If it is a function object, it has to define type result_type.
2855 // We recommend deriving your functor classes from std::unary_function.
2856 template <typename Callable, typename ResultOfMatcher>
2857 internal::ResultOfMatcher<Callable> ResultOf(
2858 Callable callable, const ResultOfMatcher& matcher) {
2859 return internal::ResultOfMatcher<Callable>(
2860 callable,
2861 MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2862 matcher));
2863 // The call to MatcherCast() is required for supporting inner
2864 // matchers of compatible types. For example, it allows
2865 // ResultOf(Function, m)
2866 // to compile where Function() returns an int32 and m is a matcher for int64.
2867 }
2868
2869 // String matchers.
2870
2871 // Matches a string equal to str.
2872 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2873 StrEq(const internal::string& str) {
2874 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2875 str, true, true));
2876 }
2877
2878 // Matches a string not equal to str.
2879 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2880 StrNe(const internal::string& str) {
2881 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2882 str, false, true));
2883 }
2884
2885 // Matches a string equal to str, ignoring case.
2886 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2887 StrCaseEq(const internal::string& str) {
2888 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2889 str, true, false));
2890 }
2891
2892 // Matches a string not equal to str, ignoring case.
2893 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2894 StrCaseNe(const internal::string& str) {
2895 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2896 str, false, false));
2897 }
2898
2899 // Creates a matcher that matches any string, std::string, or C string
2900 // that contains the given substring.
2901 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2902 HasSubstr(const internal::string& substring) {
2903 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2904 substring));
2905 }
2906
2907 // Matches a string that starts with 'prefix' (case-sensitive).
2908 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2909 StartsWith(const internal::string& prefix) {
2910 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2911 prefix));
2912 }
2913
2914 // Matches a string that ends with 'suffix' (case-sensitive).
2915 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2916 EndsWith(const internal::string& suffix) {
2917 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2918 suffix));
2919 }
2920
2921 // Matches a string that fully matches regular expression 'regex'.
2922 // The matcher takes ownership of 'regex'.
2923 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2924 const internal::RE* regex) {
2925 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2926 }
2927 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2928 const internal::string& regex) {
2929 return MatchesRegex(new internal::RE(regex));
2930 }
2931
2932 // Matches a string that contains regular expression 'regex'.
2933 // The matcher takes ownership of 'regex'.
2934 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2935 const internal::RE* regex) {
2936 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2937 }
2938 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2939 const internal::string& regex) {
2940 return ContainsRegex(new internal::RE(regex));
2941 }
2942
2943 #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2944 // Wide string matchers.
2945
2946 // Matches a string equal to str.
2947 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2948 StrEq(const internal::wstring& str) {
2949 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2950 str, true, true));
2951 }
2952
2953 // Matches a string not equal to str.
2954 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2955 StrNe(const internal::wstring& str) {
2956 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2957 str, false, true));
2958 }
2959
2960 // Matches a string equal to str, ignoring case.
2961 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2962 StrCaseEq(const internal::wstring& str) {
2963 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2964 str, true, false));
2965 }
2966
2967 // Matches a string not equal to str, ignoring case.
2968 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2969 StrCaseNe(const internal::wstring& str) {
2970 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2971 str, false, false));
2972 }
2973
2974 // Creates a matcher that matches any wstring, std::wstring, or C wide string
2975 // that contains the given substring.
2976 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2977 HasSubstr(const internal::wstring& substring) {
2978 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2979 substring));
2980 }
2981
2982 // Matches a string that starts with 'prefix' (case-sensitive).
2983 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2984 StartsWith(const internal::wstring& prefix) {
2985 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2986 prefix));
2987 }
2988
2989 // Matches a string that ends with 'suffix' (case-sensitive).
2990 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2991 EndsWith(const internal::wstring& suffix) {
2992 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2993 suffix));
2994 }
2995
2996 #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2997
2998 // Creates a polymorphic matcher that matches a 2-tuple where the
2999 // first field == the second field.
3000 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
3001
3002 // Creates a polymorphic matcher that matches a 2-tuple where the
3003 // first field >= the second field.
3004 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
3005
3006 // Creates a polymorphic matcher that matches a 2-tuple where the
3007 // first field > the second field.
3008 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
3009
3010 // Creates a polymorphic matcher that matches a 2-tuple where the
3011 // first field <= the second field.
3012 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
3013
3014 // Creates a polymorphic matcher that matches a 2-tuple where the
3015 // first field < the second field.
3016 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
3017
3018 // Creates a polymorphic matcher that matches a 2-tuple where the
3019 // first field != the second field.
3020 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
3021
3022 // Creates a matcher that matches any value of type T that m doesn't
3023 // match.
3024 template <typename InnerMatcher>
3025 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
3026 return internal::NotMatcher<InnerMatcher>(m);
3027 }
3028
3029 // Returns a matcher that matches anything that satisfies the given
3030 // predicate. The predicate can be any unary function or functor
3031 // whose return type can be implicitly converted to bool.
3032 template <typename Predicate>
3033 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
3034 Truly(Predicate pred) {
3035 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
3036 }
3037
3038 // Returns a matcher that matches an equal container.
3039 // This matcher behaves like Eq(), but in the event of mismatch lists the
3040 // values that are included in one container but not the other. (Duplicate
3041 // values and order differences are not explained.)
3042 template <typename Container>
3043 inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT
3044 GTEST_REMOVE_CONST_(Container)> >
3045 ContainerEq(const Container& rhs) {
3046 // This following line is for working around a bug in MSVC 8.0,
3047 // which causes Container to be a const type sometimes.
3048 typedef GTEST_REMOVE_CONST_(Container) RawContainer;
3049 return MakePolymorphicMatcher(
3050 internal::ContainerEqMatcher<RawContainer>(rhs));
3051 }
3052
3053 // Returns a matcher that matches a container that, when sorted using
3054 // the given comparator, matches container_matcher.
3055 template <typename Comparator, typename ContainerMatcher>
3056 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
3057 WhenSortedBy(const Comparator& comparator,
3058 const ContainerMatcher& container_matcher) {
3059 return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
3060 comparator, container_matcher);
3061 }
3062
3063 // Returns a matcher that matches a container that, when sorted using
3064 // the < operator, matches container_matcher.
3065 template <typename ContainerMatcher>
3066 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
3067 WhenSorted(const ContainerMatcher& container_matcher) {
3068 return
3069 internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
3070 internal::LessComparator(), container_matcher);
3071 }
3072
3073 // Matches an STL-style container or a native array that contains the
3074 // same number of elements as in rhs, where its i-th element and rhs's
3075 // i-th element (as a pair) satisfy the given pair matcher, for all i.
3076 // TupleMatcher must be able to be safely cast to Matcher<tuple<const
3077 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
3078 // LHS container and the RHS container respectively.
3079 template <typename TupleMatcher, typename Container>
3080 inline internal::PointwiseMatcher<TupleMatcher,
3081 GTEST_REMOVE_CONST_(Container)>
3082 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
3083 // This following line is for working around a bug in MSVC 8.0,
3084 // which causes Container to be a const type sometimes.
3085 typedef GTEST_REMOVE_CONST_(Container) RawContainer;
3086 return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
3087 tuple_matcher, rhs);
3088 }
3089
3090 // Matches an STL-style container or a native array that contains at
3091 // least one element matching the given value or matcher.
3092 //
3093 // Examples:
3094 // ::std::set<int> page_ids;
3095 // page_ids.insert(3);
3096 // page_ids.insert(1);
3097 // EXPECT_THAT(page_ids, Contains(1));
3098 // EXPECT_THAT(page_ids, Contains(Gt(2)));
3099 // EXPECT_THAT(page_ids, Not(Contains(4)));
3100 //
3101 // ::std::map<int, size_t> page_lengths;
3102 // page_lengths[1] = 100;
3103 // EXPECT_THAT(page_lengths,
3104 // Contains(::std::pair<const int, size_t>(1, 100)));
3105 //
3106 // const char* user_ids[] = { "joe", "mike", "tom" };
3107 // EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
3108 template <typename M>
3109 inline internal::ContainsMatcher<M> Contains(M matcher) {
3110 return internal::ContainsMatcher<M>(matcher);
3111 }
3112
3113 // Matches an STL-style container or a native array that contains only
3114 // elements matching the given value or matcher.
3115 //
3116 // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
3117 // the messages are different.
3118 //
3119 // Examples:
3120 // ::std::set<int> page_ids;
3121 // // Each(m) matches an empty container, regardless of what m is.
3122 // EXPECT_THAT(page_ids, Each(Eq(1)));
3123 // EXPECT_THAT(page_ids, Each(Eq(77)));
3124 //
3125 // page_ids.insert(3);
3126 // EXPECT_THAT(page_ids, Each(Gt(0)));
3127 // EXPECT_THAT(page_ids, Not(Each(Gt(4))));
3128 // page_ids.insert(1);
3129 // EXPECT_THAT(page_ids, Not(Each(Lt(2))));
3130 //
3131 // ::std::map<int, size_t> page_lengths;
3132 // page_lengths[1] = 100;
3133 // page_lengths[2] = 200;
3134 // page_lengths[3] = 300;
3135 // EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
3136 // EXPECT_THAT(page_lengths, Each(Key(Le(3))));
3137 //
3138 // const char* user_ids[] = { "joe", "mike", "tom" };
3139 // EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
3140 template <typename M>
3141 inline internal::EachMatcher<M> Each(M matcher) {
3142 return internal::EachMatcher<M>(matcher);
3143 }
3144
3145 // Key(inner_matcher) matches an std::pair whose 'first' field matches
3146 // inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
3147 // std::map that contains at least one element whose key is >= 5.
3148 template <typename M>
3149 inline internal::KeyMatcher<M> Key(M inner_matcher) {
3150 return internal::KeyMatcher<M>(inner_matcher);
3151 }
3152
3153 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
3154 // matches first_matcher and whose 'second' field matches second_matcher. For
3155 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
3156 // to match a std::map<int, string> that contains exactly one element whose key
3157 // is >= 5 and whose value equals "foo".
3158 template <typename FirstMatcher, typename SecondMatcher>
3159 inline internal::PairMatcher<FirstMatcher, SecondMatcher>
3160 Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
3161 return internal::PairMatcher<FirstMatcher, SecondMatcher>(
3162 first_matcher, second_matcher);
3163 }
3164
3165 // Returns a predicate that is satisfied by anything that matches the
3166 // given matcher.
3167 template <typename M>
3168 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
3169 return internal::MatcherAsPredicate<M>(matcher);
3170 }
3171
3172 // Returns true iff the value matches the matcher.
3173 template <typename T, typename M>
3174 inline bool Value(const T& value, M matcher) {
3175 return testing::Matches(matcher)(value);
3176 }
3177
3178 // Matches the value against the given matcher and explains the match
3179 // result to listener.
3180 template <typename T, typename M>
3181 inline bool ExplainMatchResult(
3182 M matcher, const T& value, MatchResultListener* listener) {
3183 return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
3184 }
3185
3186 // AllArgs(m) is a synonym of m. This is useful in
3187 //
3188 // EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
3189 //
3190 // which is easier to read than
3191 //
3192 // EXPECT_CALL(foo, Bar(_, _)).With(Eq());
3193 template <typename InnerMatcher>
3194 inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
3195
3196 // These macros allow using matchers to check values in Google Test
3197 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
3198 // succeed iff the value matches the matcher. If the assertion fails,
3199 // the value and the description of the matcher will be printed.
3200 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
3201 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3202 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
3203 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
3204
3205 } // namespace testing
3206
3207 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
3208