1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/Debug.h"
34 #include <cstdlib>
35
36 using namespace llvm;
37
X86FrameLowering(const X86Subtarget & STI,unsigned StackAlignOverride)38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39 unsigned StackAlignOverride)
40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41 STI.is64Bit() ? -8 : -4),
42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43 // Cache a bunch of frame-related predicates for this subtarget.
44 SlotSize = TRI->getSlotSize();
45 Is64Bit = STI.is64Bit();
46 IsLP64 = STI.isTarget64BitLP64();
47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49 StackPtr = TRI->getStackRegister();
50 }
51
hasReservedCallFrame(const MachineFunction & MF) const52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53 return !MF.getFrameInfo()->hasVarSizedObjects() &&
54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified. Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63 return hasReservedCallFrame(MF) ||
64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65 TRI->hasBasePointer(MF);
66 }
67
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
needsFrameIndexResolution(const MachineFunction & MF) const76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77 return MF.getFrameInfo()->hasStackObjects() ||
78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register. This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85 const MachineFrameInfo *MFI = MF.getFrameInfo();
86 const MachineModuleInfo &MMI = MF.getMMI();
87
88 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89 TRI->needsStackRealignment(MF) ||
90 MFI->hasVarSizedObjects() ||
91 MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
92 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93 MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94 MFI->hasStackMap() || MFI->hasPatchPoint() ||
95 MFI->hasCopyImplyingStackAdjustment());
96 }
97
getSUBriOpcode(unsigned IsLP64,int64_t Imm)98 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
99 if (IsLP64) {
100 if (isInt<8>(Imm))
101 return X86::SUB64ri8;
102 return X86::SUB64ri32;
103 } else {
104 if (isInt<8>(Imm))
105 return X86::SUB32ri8;
106 return X86::SUB32ri;
107 }
108 }
109
getADDriOpcode(unsigned IsLP64,int64_t Imm)110 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
111 if (IsLP64) {
112 if (isInt<8>(Imm))
113 return X86::ADD64ri8;
114 return X86::ADD64ri32;
115 } else {
116 if (isInt<8>(Imm))
117 return X86::ADD32ri8;
118 return X86::ADD32ri;
119 }
120 }
121
getSUBrrOpcode(unsigned isLP64)122 static unsigned getSUBrrOpcode(unsigned isLP64) {
123 return isLP64 ? X86::SUB64rr : X86::SUB32rr;
124 }
125
getADDrrOpcode(unsigned isLP64)126 static unsigned getADDrrOpcode(unsigned isLP64) {
127 return isLP64 ? X86::ADD64rr : X86::ADD32rr;
128 }
129
getANDriOpcode(bool IsLP64,int64_t Imm)130 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
131 if (IsLP64) {
132 if (isInt<8>(Imm))
133 return X86::AND64ri8;
134 return X86::AND64ri32;
135 }
136 if (isInt<8>(Imm))
137 return X86::AND32ri8;
138 return X86::AND32ri;
139 }
140
getLEArOpcode(unsigned IsLP64)141 static unsigned getLEArOpcode(unsigned IsLP64) {
142 return IsLP64 ? X86::LEA64r : X86::LEA32r;
143 }
144
145 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
146 /// when it reaches the "return" instruction. We can then pop a stack object
147 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const X86RegisterInfo * TRI,bool Is64Bit)148 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
149 MachineBasicBlock::iterator &MBBI,
150 const X86RegisterInfo *TRI,
151 bool Is64Bit) {
152 const MachineFunction *MF = MBB.getParent();
153 const Function *F = MF->getFunction();
154 if (!F || MF->getMMI().callsEHReturn())
155 return 0;
156
157 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
158
159 unsigned Opc = MBBI->getOpcode();
160 switch (Opc) {
161 default: return 0;
162 case TargetOpcode::PATCHABLE_RET:
163 case X86::RET:
164 case X86::RETL:
165 case X86::RETQ:
166 case X86::RETIL:
167 case X86::RETIQ:
168 case X86::TCRETURNdi:
169 case X86::TCRETURNri:
170 case X86::TCRETURNmi:
171 case X86::TCRETURNdi64:
172 case X86::TCRETURNri64:
173 case X86::TCRETURNmi64:
174 case X86::EH_RETURN:
175 case X86::EH_RETURN64: {
176 SmallSet<uint16_t, 8> Uses;
177 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
178 MachineOperand &MO = MBBI->getOperand(i);
179 if (!MO.isReg() || MO.isDef())
180 continue;
181 unsigned Reg = MO.getReg();
182 if (!Reg)
183 continue;
184 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
185 Uses.insert(*AI);
186 }
187
188 for (auto CS : AvailableRegs)
189 if (!Uses.count(CS) && CS != X86::RIP)
190 return CS;
191 }
192 }
193
194 return 0;
195 }
196
isEAXLiveIn(MachineBasicBlock & MBB)197 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
198 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
199 unsigned Reg = RegMask.PhysReg;
200
201 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
202 Reg == X86::AH || Reg == X86::AL)
203 return true;
204 }
205
206 return false;
207 }
208
209 /// Check if the flags need to be preserved before the terminators.
210 /// This would be the case, if the eflags is live-in of the region
211 /// composed by the terminators or live-out of that region, without
212 /// being defined by a terminator.
213 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)214 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
215 for (const MachineInstr &MI : MBB.terminators()) {
216 bool BreakNext = false;
217 for (const MachineOperand &MO : MI.operands()) {
218 if (!MO.isReg())
219 continue;
220 unsigned Reg = MO.getReg();
221 if (Reg != X86::EFLAGS)
222 continue;
223
224 // This terminator needs an eflags that is not defined
225 // by a previous another terminator:
226 // EFLAGS is live-in of the region composed by the terminators.
227 if (!MO.isDef())
228 return true;
229 // This terminator defines the eflags, i.e., we don't need to preserve it.
230 // However, we still need to check this specific terminator does not
231 // read a live-in value.
232 BreakNext = true;
233 }
234 // We found a definition of the eflags, no need to preserve them.
235 if (BreakNext)
236 return false;
237 }
238
239 // None of the terminators use or define the eflags.
240 // Check if they are live-out, that would imply we need to preserve them.
241 for (const MachineBasicBlock *Succ : MBB.successors())
242 if (Succ->isLiveIn(X86::EFLAGS))
243 return true;
244
245 return false;
246 }
247
248 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
249 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,int64_t NumBytes,bool InEpilogue) const250 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
251 MachineBasicBlock::iterator &MBBI,
252 int64_t NumBytes, bool InEpilogue) const {
253 bool isSub = NumBytes < 0;
254 uint64_t Offset = isSub ? -NumBytes : NumBytes;
255
256 uint64_t Chunk = (1LL << 31) - 1;
257 DebugLoc DL = MBB.findDebugLoc(MBBI);
258
259 while (Offset) {
260 if (Offset > Chunk) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
263 unsigned Reg = 0;
264
265 if (isSub && !isEAXLiveIn(MBB))
266 Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
267 else
268 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
269
270 if (Reg) {
271 unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272 BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
273 .addImm(Offset);
274 Opc = isSub
275 ? getSUBrrOpcode(Is64Bit)
276 : getADDrrOpcode(Is64Bit);
277 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
278 .addReg(StackPtr)
279 .addReg(Reg);
280 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
281 Offset = 0;
282 continue;
283 }
284 }
285
286 uint64_t ThisVal = std::min(Offset, Chunk);
287 if (ThisVal == (Is64Bit ? 8 : 4)) {
288 // Use push / pop instead.
289 unsigned Reg = isSub
290 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
291 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
292 if (Reg) {
293 unsigned Opc = isSub
294 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
295 : (Is64Bit ? X86::POP64r : X86::POP32r);
296 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
297 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
298 if (isSub)
299 MI->setFlag(MachineInstr::FrameSetup);
300 else
301 MI->setFlag(MachineInstr::FrameDestroy);
302 Offset -= ThisVal;
303 continue;
304 }
305 }
306
307 MachineInstrBuilder MI = BuildStackAdjustment(
308 MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
309 if (isSub)
310 MI.setMIFlag(MachineInstr::FrameSetup);
311 else
312 MI.setMIFlag(MachineInstr::FrameDestroy);
313
314 Offset -= ThisVal;
315 }
316 }
317
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const318 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
319 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
320 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
321 assert(Offset != 0 && "zero offset stack adjustment requested");
322
323 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
324 // is tricky.
325 bool UseLEA;
326 if (!InEpilogue) {
327 // Check if inserting the prologue at the beginning
328 // of MBB would require to use LEA operations.
329 // We need to use LEA operations if EFLAGS is live in, because
330 // it means an instruction will read it before it gets defined.
331 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
332 } else {
333 // If we can use LEA for SP but we shouldn't, check that none
334 // of the terminators uses the eflags. Otherwise we will insert
335 // a ADD that will redefine the eflags and break the condition.
336 // Alternatively, we could move the ADD, but this may not be possible
337 // and is an optimization anyway.
338 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
339 if (UseLEA && !STI.useLeaForSP())
340 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
341 // If that assert breaks, that means we do not do the right thing
342 // in canUseAsEpilogue.
343 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
344 "We shouldn't have allowed this insertion point");
345 }
346
347 MachineInstrBuilder MI;
348 if (UseLEA) {
349 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
350 TII.get(getLEArOpcode(Uses64BitFramePtr)),
351 StackPtr),
352 StackPtr, false, Offset);
353 } else {
354 bool IsSub = Offset < 0;
355 uint64_t AbsOffset = IsSub ? -Offset : Offset;
356 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
357 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
358 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
359 .addReg(StackPtr)
360 .addImm(AbsOffset);
361 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
362 }
363 return MI;
364 }
365
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const366 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
367 MachineBasicBlock::iterator &MBBI,
368 bool doMergeWithPrevious) const {
369 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
370 (!doMergeWithPrevious && MBBI == MBB.end()))
371 return 0;
372
373 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
374 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
375 : std::next(MBBI);
376 unsigned Opc = PI->getOpcode();
377 int Offset = 0;
378
379 if (!doMergeWithPrevious && NI != MBB.end() &&
380 NI->getOpcode() == TargetOpcode::CFI_INSTRUCTION) {
381 // Don't merge with the next instruction if it has CFI.
382 return Offset;
383 }
384
385 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
386 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
387 PI->getOperand(0).getReg() == StackPtr){
388 assert(PI->getOperand(1).getReg() == StackPtr);
389 Offset += PI->getOperand(2).getImm();
390 MBB.erase(PI);
391 if (!doMergeWithPrevious) MBBI = NI;
392 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
393 PI->getOperand(0).getReg() == StackPtr &&
394 PI->getOperand(1).getReg() == StackPtr &&
395 PI->getOperand(2).getImm() == 1 &&
396 PI->getOperand(3).getReg() == X86::NoRegister &&
397 PI->getOperand(5).getReg() == X86::NoRegister) {
398 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
399 Offset += PI->getOperand(4).getImm();
400 MBB.erase(PI);
401 if (!doMergeWithPrevious) MBBI = NI;
402 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
403 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
404 PI->getOperand(0).getReg() == StackPtr) {
405 assert(PI->getOperand(1).getReg() == StackPtr);
406 Offset -= PI->getOperand(2).getImm();
407 MBB.erase(PI);
408 if (!doMergeWithPrevious) MBBI = NI;
409 }
410
411 return Offset;
412 }
413
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst) const414 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
415 MachineBasicBlock::iterator MBBI,
416 const DebugLoc &DL,
417 const MCCFIInstruction &CFIInst) const {
418 MachineFunction &MF = *MBB.getParent();
419 unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
420 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
421 .addCFIIndex(CFIIndex);
422 }
423
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL) const424 void X86FrameLowering::emitCalleeSavedFrameMoves(
425 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
426 const DebugLoc &DL) const {
427 MachineFunction &MF = *MBB.getParent();
428 MachineFrameInfo *MFI = MF.getFrameInfo();
429 MachineModuleInfo &MMI = MF.getMMI();
430 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
431
432 // Add callee saved registers to move list.
433 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
434 if (CSI.empty()) return;
435
436 // Calculate offsets.
437 for (std::vector<CalleeSavedInfo>::const_iterator
438 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
439 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
440 unsigned Reg = I->getReg();
441
442 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
443 BuildCFI(MBB, MBBI, DL,
444 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
445 }
446 }
447
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const448 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
449 MachineBasicBlock &MBB,
450 MachineBasicBlock::iterator MBBI,
451 const DebugLoc &DL,
452 bool InProlog) const {
453 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
454 if (STI.isTargetWindowsCoreCLR()) {
455 if (InProlog) {
456 return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
457 } else {
458 return emitStackProbeInline(MF, MBB, MBBI, DL, false);
459 }
460 } else {
461 return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
462 }
463 }
464
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const465 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
466 MachineBasicBlock &PrologMBB) const {
467 const StringRef ChkStkStubSymbol = "__chkstk_stub";
468 MachineInstr *ChkStkStub = nullptr;
469
470 for (MachineInstr &MI : PrologMBB) {
471 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
472 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
473 ChkStkStub = &MI;
474 break;
475 }
476 }
477
478 if (ChkStkStub != nullptr) {
479 assert(!ChkStkStub->isBundled() &&
480 "Not expecting bundled instructions here");
481 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
482 assert(std::prev(MBBI).operator==(ChkStkStub) &&
483 "MBBI expected after __chkstk_stub.");
484 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
485 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
486 ChkStkStub->eraseFromParent();
487 }
488 }
489
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const490 MachineInstr *X86FrameLowering::emitStackProbeInline(
491 MachineFunction &MF, MachineBasicBlock &MBB,
492 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
493 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
494 assert(STI.is64Bit() && "different expansion needed for 32 bit");
495 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
496 const TargetInstrInfo &TII = *STI.getInstrInfo();
497 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
498
499 // RAX contains the number of bytes of desired stack adjustment.
500 // The handling here assumes this value has already been updated so as to
501 // maintain stack alignment.
502 //
503 // We need to exit with RSP modified by this amount and execute suitable
504 // page touches to notify the OS that we're growing the stack responsibly.
505 // All stack probing must be done without modifying RSP.
506 //
507 // MBB:
508 // SizeReg = RAX;
509 // ZeroReg = 0
510 // CopyReg = RSP
511 // Flags, TestReg = CopyReg - SizeReg
512 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
513 // LimitReg = gs magic thread env access
514 // if FinalReg >= LimitReg goto ContinueMBB
515 // RoundBB:
516 // RoundReg = page address of FinalReg
517 // LoopMBB:
518 // LoopReg = PHI(LimitReg,ProbeReg)
519 // ProbeReg = LoopReg - PageSize
520 // [ProbeReg] = 0
521 // if (ProbeReg > RoundReg) goto LoopMBB
522 // ContinueMBB:
523 // RSP = RSP - RAX
524 // [rest of original MBB]
525
526 // Set up the new basic blocks
527 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
528 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
529 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
530
531 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
532 MF.insert(MBBIter, RoundMBB);
533 MF.insert(MBBIter, LoopMBB);
534 MF.insert(MBBIter, ContinueMBB);
535
536 // Split MBB and move the tail portion down to ContinueMBB.
537 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
538 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
539 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
540
541 // Some useful constants
542 const int64_t ThreadEnvironmentStackLimit = 0x10;
543 const int64_t PageSize = 0x1000;
544 const int64_t PageMask = ~(PageSize - 1);
545
546 // Registers we need. For the normal case we use virtual
547 // registers. For the prolog expansion we use RAX, RCX and RDX.
548 MachineRegisterInfo &MRI = MF.getRegInfo();
549 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
550 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
551 : MRI.createVirtualRegister(RegClass),
552 ZeroReg = InProlog ? (unsigned)X86::RCX
553 : MRI.createVirtualRegister(RegClass),
554 CopyReg = InProlog ? (unsigned)X86::RDX
555 : MRI.createVirtualRegister(RegClass),
556 TestReg = InProlog ? (unsigned)X86::RDX
557 : MRI.createVirtualRegister(RegClass),
558 FinalReg = InProlog ? (unsigned)X86::RDX
559 : MRI.createVirtualRegister(RegClass),
560 RoundedReg = InProlog ? (unsigned)X86::RDX
561 : MRI.createVirtualRegister(RegClass),
562 LimitReg = InProlog ? (unsigned)X86::RCX
563 : MRI.createVirtualRegister(RegClass),
564 JoinReg = InProlog ? (unsigned)X86::RCX
565 : MRI.createVirtualRegister(RegClass),
566 ProbeReg = InProlog ? (unsigned)X86::RCX
567 : MRI.createVirtualRegister(RegClass);
568
569 // SP-relative offsets where we can save RCX and RDX.
570 int64_t RCXShadowSlot = 0;
571 int64_t RDXShadowSlot = 0;
572
573 // If inlining in the prolog, save RCX and RDX.
574 // Future optimization: don't save or restore if not live in.
575 if (InProlog) {
576 // Compute the offsets. We need to account for things already
577 // pushed onto the stack at this point: return address, frame
578 // pointer (if used), and callee saves.
579 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
580 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
581 const bool HasFP = hasFP(MF);
582 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
583 RDXShadowSlot = RCXShadowSlot + 8;
584 // Emit the saves.
585 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
586 RCXShadowSlot)
587 .addReg(X86::RCX);
588 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
589 RDXShadowSlot)
590 .addReg(X86::RDX);
591 } else {
592 // Not in the prolog. Copy RAX to a virtual reg.
593 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
594 }
595
596 // Add code to MBB to check for overflow and set the new target stack pointer
597 // to zero if so.
598 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
599 .addReg(ZeroReg, RegState::Undef)
600 .addReg(ZeroReg, RegState::Undef);
601 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
602 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
603 .addReg(CopyReg)
604 .addReg(SizeReg);
605 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
606 .addReg(TestReg)
607 .addReg(ZeroReg);
608
609 // FinalReg now holds final stack pointer value, or zero if
610 // allocation would overflow. Compare against the current stack
611 // limit from the thread environment block. Note this limit is the
612 // lowest touched page on the stack, not the point at which the OS
613 // will cause an overflow exception, so this is just an optimization
614 // to avoid unnecessarily touching pages that are below the current
615 // SP but already commited to the stack by the OS.
616 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
617 .addReg(0)
618 .addImm(1)
619 .addReg(0)
620 .addImm(ThreadEnvironmentStackLimit)
621 .addReg(X86::GS);
622 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
623 // Jump if the desired stack pointer is at or above the stack limit.
624 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
625
626 // Add code to roundMBB to round the final stack pointer to a page boundary.
627 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
628 .addReg(FinalReg)
629 .addImm(PageMask);
630 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
631
632 // LimitReg now holds the current stack limit, RoundedReg page-rounded
633 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
634 // and probe until we reach RoundedReg.
635 if (!InProlog) {
636 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
637 .addReg(LimitReg)
638 .addMBB(RoundMBB)
639 .addReg(ProbeReg)
640 .addMBB(LoopMBB);
641 }
642
643 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
644 false, -PageSize);
645
646 // Probe by storing a byte onto the stack.
647 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
648 .addReg(ProbeReg)
649 .addImm(1)
650 .addReg(0)
651 .addImm(0)
652 .addReg(0)
653 .addImm(0);
654 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
655 .addReg(RoundedReg)
656 .addReg(ProbeReg);
657 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
658
659 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
660
661 // If in prolog, restore RDX and RCX.
662 if (InProlog) {
663 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
664 X86::RCX),
665 X86::RSP, false, RCXShadowSlot);
666 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
667 X86::RDX),
668 X86::RSP, false, RDXShadowSlot);
669 }
670
671 // Now that the probing is done, add code to continueMBB to update
672 // the stack pointer for real.
673 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
674 .addReg(X86::RSP)
675 .addReg(SizeReg);
676
677 // Add the control flow edges we need.
678 MBB.addSuccessor(ContinueMBB);
679 MBB.addSuccessor(RoundMBB);
680 RoundMBB->addSuccessor(LoopMBB);
681 LoopMBB->addSuccessor(ContinueMBB);
682 LoopMBB->addSuccessor(LoopMBB);
683
684 // Mark all the instructions added to the prolog as frame setup.
685 if (InProlog) {
686 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
687 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
688 }
689 for (MachineInstr &MI : *RoundMBB) {
690 MI.setFlag(MachineInstr::FrameSetup);
691 }
692 for (MachineInstr &MI : *LoopMBB) {
693 MI.setFlag(MachineInstr::FrameSetup);
694 }
695 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
696 CMBBI != ContinueMBBI; ++CMBBI) {
697 CMBBI->setFlag(MachineInstr::FrameSetup);
698 }
699 }
700
701 // Possible TODO: physreg liveness for InProlog case.
702
703 return &*ContinueMBBI;
704 }
705
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const706 MachineInstr *X86FrameLowering::emitStackProbeCall(
707 MachineFunction &MF, MachineBasicBlock &MBB,
708 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
709 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
710
711 unsigned CallOp;
712 if (Is64Bit)
713 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
714 else
715 CallOp = X86::CALLpcrel32;
716
717 const char *Symbol;
718 if (Is64Bit) {
719 if (STI.isTargetCygMing()) {
720 Symbol = "___chkstk_ms";
721 } else {
722 Symbol = "__chkstk";
723 }
724 } else if (STI.isTargetCygMing())
725 Symbol = "_alloca";
726 else
727 Symbol = "_chkstk";
728
729 MachineInstrBuilder CI;
730 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
731
732 // All current stack probes take AX and SP as input, clobber flags, and
733 // preserve all registers. x86_64 probes leave RSP unmodified.
734 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
735 // For the large code model, we have to call through a register. Use R11,
736 // as it is scratch in all supported calling conventions.
737 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
738 .addExternalSymbol(Symbol);
739 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
740 } else {
741 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
742 }
743
744 unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
745 unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
746 CI.addReg(AX, RegState::Implicit)
747 .addReg(SP, RegState::Implicit)
748 .addReg(AX, RegState::Define | RegState::Implicit)
749 .addReg(SP, RegState::Define | RegState::Implicit)
750 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
751
752 if (Is64Bit) {
753 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
754 // themselves. It also does not clobber %rax so we can reuse it when
755 // adjusting %rsp.
756 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
757 .addReg(X86::RSP)
758 .addReg(X86::RAX);
759 }
760
761 if (InProlog) {
762 // Apply the frame setup flag to all inserted instrs.
763 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
764 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
765 }
766
767 return &*MBBI;
768 }
769
emitStackProbeInlineStub(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const770 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
771 MachineFunction &MF, MachineBasicBlock &MBB,
772 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
773
774 assert(InProlog && "ChkStkStub called outside prolog!");
775
776 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
777 .addExternalSymbol("__chkstk_stub");
778
779 return &*MBBI;
780 }
781
calculateSetFPREG(uint64_t SPAdjust)782 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
783 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
784 // and might require smaller successive adjustments.
785 const uint64_t Win64MaxSEHOffset = 128;
786 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
787 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
788 return SEHFrameOffset & -16;
789 }
790
791 // If we're forcing a stack realignment we can't rely on just the frame
792 // info, we need to know the ABI stack alignment as well in case we
793 // have a call out. Otherwise just make sure we have some alignment - we'll
794 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const795 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
796 const MachineFrameInfo *MFI = MF.getFrameInfo();
797 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
798 unsigned StackAlign = getStackAlignment();
799 if (MF.getFunction()->hasFnAttribute("stackrealign")) {
800 if (MFI->hasCalls())
801 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
802 else if (MaxAlign < SlotSize)
803 MaxAlign = SlotSize;
804 }
805 return MaxAlign;
806 }
807
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const808 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
809 MachineBasicBlock::iterator MBBI,
810 const DebugLoc &DL, unsigned Reg,
811 uint64_t MaxAlign) const {
812 uint64_t Val = -MaxAlign;
813 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
814 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
815 .addReg(Reg)
816 .addImm(Val)
817 .setMIFlag(MachineInstr::FrameSetup);
818
819 // The EFLAGS implicit def is dead.
820 MI->getOperand(3).setIsDead();
821 }
822
823 /// emitPrologue - Push callee-saved registers onto the stack, which
824 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
825 /// space for local variables. Also emit labels used by the exception handler to
826 /// generate the exception handling frames.
827
828 /*
829 Here's a gist of what gets emitted:
830
831 ; Establish frame pointer, if needed
832 [if needs FP]
833 push %rbp
834 .cfi_def_cfa_offset 16
835 .cfi_offset %rbp, -16
836 .seh_pushreg %rpb
837 mov %rsp, %rbp
838 .cfi_def_cfa_register %rbp
839
840 ; Spill general-purpose registers
841 [for all callee-saved GPRs]
842 pushq %<reg>
843 [if not needs FP]
844 .cfi_def_cfa_offset (offset from RETADDR)
845 .seh_pushreg %<reg>
846
847 ; If the required stack alignment > default stack alignment
848 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
849 ; of unknown size in the stack frame.
850 [if stack needs re-alignment]
851 and $MASK, %rsp
852
853 ; Allocate space for locals
854 [if target is Windows and allocated space > 4096 bytes]
855 ; Windows needs special care for allocations larger
856 ; than one page.
857 mov $NNN, %rax
858 call ___chkstk_ms/___chkstk
859 sub %rax, %rsp
860 [else]
861 sub $NNN, %rsp
862
863 [if needs FP]
864 .seh_stackalloc (size of XMM spill slots)
865 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
866 [else]
867 .seh_stackalloc NNN
868
869 ; Spill XMMs
870 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
871 ; they may get spilled on any platform, if the current function
872 ; calls @llvm.eh.unwind.init
873 [if needs FP]
874 [for all callee-saved XMM registers]
875 movaps %<xmm reg>, -MMM(%rbp)
876 [for all callee-saved XMM registers]
877 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
878 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
879 [else]
880 [for all callee-saved XMM registers]
881 movaps %<xmm reg>, KKK(%rsp)
882 [for all callee-saved XMM registers]
883 .seh_savexmm %<xmm reg>, KKK
884
885 .seh_endprologue
886
887 [if needs base pointer]
888 mov %rsp, %rbx
889 [if needs to restore base pointer]
890 mov %rsp, -MMM(%rbp)
891
892 ; Emit CFI info
893 [if needs FP]
894 [for all callee-saved registers]
895 .cfi_offset %<reg>, (offset from %rbp)
896 [else]
897 .cfi_def_cfa_offset (offset from RETADDR)
898 [for all callee-saved registers]
899 .cfi_offset %<reg>, (offset from %rsp)
900
901 Notes:
902 - .seh directives are emitted only for Windows 64 ABI
903 - .cfi directives are emitted for all other ABIs
904 - for 32-bit code, substitute %e?? registers for %r??
905 */
906
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const907 void X86FrameLowering::emitPrologue(MachineFunction &MF,
908 MachineBasicBlock &MBB) const {
909 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
910 "MF used frame lowering for wrong subtarget");
911 MachineBasicBlock::iterator MBBI = MBB.begin();
912 MachineFrameInfo *MFI = MF.getFrameInfo();
913 const Function *Fn = MF.getFunction();
914 MachineModuleInfo &MMI = MF.getMMI();
915 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
916 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
917 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
918 bool IsFunclet = MBB.isEHFuncletEntry();
919 EHPersonality Personality = EHPersonality::Unknown;
920 if (Fn->hasPersonalityFn())
921 Personality = classifyEHPersonality(Fn->getPersonalityFn());
922 bool FnHasClrFunclet =
923 MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
924 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
925 bool HasFP = hasFP(MF);
926 bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
927 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
928 bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
929 bool NeedsDwarfCFI =
930 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
931 unsigned FramePtr = TRI->getFrameRegister(MF);
932 const unsigned MachineFramePtr =
933 STI.isTarget64BitILP32()
934 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
935 unsigned BasePtr = TRI->getBaseRegister();
936
937 // Debug location must be unknown since the first debug location is used
938 // to determine the end of the prologue.
939 DebugLoc DL;
940
941 // Add RETADDR move area to callee saved frame size.
942 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
943 if (TailCallReturnAddrDelta && IsWin64Prologue)
944 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
945
946 if (TailCallReturnAddrDelta < 0)
947 X86FI->setCalleeSavedFrameSize(
948 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
949
950 bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
951
952 // The default stack probe size is 4096 if the function has no stackprobesize
953 // attribute.
954 unsigned StackProbeSize = 4096;
955 if (Fn->hasFnAttribute("stack-probe-size"))
956 Fn->getFnAttribute("stack-probe-size")
957 .getValueAsString()
958 .getAsInteger(0, StackProbeSize);
959
960 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
961 // function, and use up to 128 bytes of stack space, don't have a frame
962 // pointer, calls, or dynamic alloca then we do not need to adjust the
963 // stack pointer (we fit in the Red Zone). We also check that we don't
964 // push and pop from the stack.
965 if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
966 !TRI->needsStackRealignment(MF) &&
967 !MFI->hasVarSizedObjects() && // No dynamic alloca.
968 !MFI->adjustsStack() && // No calls.
969 !IsWin64CC && // Win64 has no Red Zone
970 !MFI->hasCopyImplyingStackAdjustment() && // Don't push and pop.
971 !MF.shouldSplitStack()) { // Regular stack
972 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
973 if (HasFP) MinSize += SlotSize;
974 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
975 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
976 MFI->setStackSize(StackSize);
977 }
978
979 // Insert stack pointer adjustment for later moving of return addr. Only
980 // applies to tail call optimized functions where the callee argument stack
981 // size is bigger than the callers.
982 if (TailCallReturnAddrDelta < 0) {
983 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
984 /*InEpilogue=*/false)
985 .setMIFlag(MachineInstr::FrameSetup);
986 }
987
988 // Mapping for machine moves:
989 //
990 // DST: VirtualFP AND
991 // SRC: VirtualFP => DW_CFA_def_cfa_offset
992 // ELSE => DW_CFA_def_cfa
993 //
994 // SRC: VirtualFP AND
995 // DST: Register => DW_CFA_def_cfa_register
996 //
997 // ELSE
998 // OFFSET < 0 => DW_CFA_offset_extended_sf
999 // REG < 64 => DW_CFA_offset + Reg
1000 // ELSE => DW_CFA_offset_extended
1001
1002 uint64_t NumBytes = 0;
1003 int stackGrowth = -SlotSize;
1004
1005 // Find the funclet establisher parameter
1006 unsigned Establisher = X86::NoRegister;
1007 if (IsClrFunclet)
1008 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1009 else if (IsFunclet)
1010 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1011
1012 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1013 // Immediately spill establisher into the home slot.
1014 // The runtime cares about this.
1015 // MOV64mr %rdx, 16(%rsp)
1016 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1017 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1018 .addReg(Establisher)
1019 .setMIFlag(MachineInstr::FrameSetup);
1020 MBB.addLiveIn(Establisher);
1021 }
1022
1023 if (HasFP) {
1024 // Calculate required stack adjustment.
1025 uint64_t FrameSize = StackSize - SlotSize;
1026 // If required, include space for extra hidden slot for stashing base pointer.
1027 if (X86FI->getRestoreBasePointer())
1028 FrameSize += SlotSize;
1029
1030 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1031
1032 // Callee-saved registers are pushed on stack before the stack is realigned.
1033 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1034 NumBytes = alignTo(NumBytes, MaxAlign);
1035
1036 // Get the offset of the stack slot for the EBP register, which is
1037 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1038 // Update the frame offset adjustment.
1039 if (!IsFunclet)
1040 MFI->setOffsetAdjustment(-NumBytes);
1041 else
1042 assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
1043 "should calculate same local variable offset for funclets");
1044
1045 // Save EBP/RBP into the appropriate stack slot.
1046 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1047 .addReg(MachineFramePtr, RegState::Kill)
1048 .setMIFlag(MachineInstr::FrameSetup);
1049
1050 if (NeedsDwarfCFI) {
1051 // Mark the place where EBP/RBP was saved.
1052 // Define the current CFA rule to use the provided offset.
1053 assert(StackSize);
1054 BuildCFI(MBB, MBBI, DL,
1055 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1056
1057 // Change the rule for the FramePtr to be an "offset" rule.
1058 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1059 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1060 nullptr, DwarfFramePtr, 2 * stackGrowth));
1061 }
1062
1063 if (NeedsWinCFI) {
1064 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1065 .addImm(FramePtr)
1066 .setMIFlag(MachineInstr::FrameSetup);
1067 }
1068
1069 if (!IsWin64Prologue && !IsFunclet) {
1070 // Update EBP with the new base value.
1071 BuildMI(MBB, MBBI, DL,
1072 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1073 FramePtr)
1074 .addReg(StackPtr)
1075 .setMIFlag(MachineInstr::FrameSetup);
1076
1077 if (NeedsDwarfCFI) {
1078 // Mark effective beginning of when frame pointer becomes valid.
1079 // Define the current CFA to use the EBP/RBP register.
1080 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1081 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1082 nullptr, DwarfFramePtr));
1083 }
1084 }
1085
1086 // Mark the FramePtr as live-in in every block. Don't do this again for
1087 // funclet prologues.
1088 if (!IsFunclet) {
1089 for (MachineBasicBlock &EveryMBB : MF)
1090 EveryMBB.addLiveIn(MachineFramePtr);
1091 }
1092 } else {
1093 assert(!IsFunclet && "funclets without FPs not yet implemented");
1094 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1095 }
1096
1097 // For EH funclets, only allocate enough space for outgoing calls. Save the
1098 // NumBytes value that we would've used for the parent frame.
1099 unsigned ParentFrameNumBytes = NumBytes;
1100 if (IsFunclet)
1101 NumBytes = getWinEHFuncletFrameSize(MF);
1102
1103 // Skip the callee-saved push instructions.
1104 bool PushedRegs = false;
1105 int StackOffset = 2 * stackGrowth;
1106
1107 while (MBBI != MBB.end() &&
1108 MBBI->getFlag(MachineInstr::FrameSetup) &&
1109 (MBBI->getOpcode() == X86::PUSH32r ||
1110 MBBI->getOpcode() == X86::PUSH64r)) {
1111 PushedRegs = true;
1112 unsigned Reg = MBBI->getOperand(0).getReg();
1113 ++MBBI;
1114
1115 if (!HasFP && NeedsDwarfCFI) {
1116 // Mark callee-saved push instruction.
1117 // Define the current CFA rule to use the provided offset.
1118 assert(StackSize);
1119 BuildCFI(MBB, MBBI, DL,
1120 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1121 StackOffset += stackGrowth;
1122 }
1123
1124 if (NeedsWinCFI) {
1125 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1126 MachineInstr::FrameSetup);
1127 }
1128 }
1129
1130 // Realign stack after we pushed callee-saved registers (so that we'll be
1131 // able to calculate their offsets from the frame pointer).
1132 // Don't do this for Win64, it needs to realign the stack after the prologue.
1133 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1134 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1135 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1136 }
1137
1138 // If there is an SUB32ri of ESP immediately before this instruction, merge
1139 // the two. This can be the case when tail call elimination is enabled and
1140 // the callee has more arguments then the caller.
1141 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1142
1143 // Adjust stack pointer: ESP -= numbytes.
1144
1145 // Windows and cygwin/mingw require a prologue helper routine when allocating
1146 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1147 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1148 // stack and adjust the stack pointer in one go. The 64-bit version of
1149 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1150 // responsible for adjusting the stack pointer. Touching the stack at 4K
1151 // increments is necessary to ensure that the guard pages used by the OS
1152 // virtual memory manager are allocated in correct sequence.
1153 uint64_t AlignedNumBytes = NumBytes;
1154 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1155 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1156 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1157 // Check whether EAX is livein for this block.
1158 bool isEAXAlive = isEAXLiveIn(MBB);
1159
1160 if (isEAXAlive) {
1161 // Sanity check that EAX is not livein for this function.
1162 // It should not be, so throw an assert.
1163 assert(!Is64Bit && "EAX is livein in x64 case!");
1164
1165 // Save EAX
1166 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1167 .addReg(X86::EAX, RegState::Kill)
1168 .setMIFlag(MachineInstr::FrameSetup);
1169 }
1170
1171 if (Is64Bit) {
1172 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1173 // Function prologue is responsible for adjusting the stack pointer.
1174 if (isUInt<32>(NumBytes)) {
1175 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1176 .addImm(NumBytes)
1177 .setMIFlag(MachineInstr::FrameSetup);
1178 } else if (isInt<32>(NumBytes)) {
1179 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1180 .addImm(NumBytes)
1181 .setMIFlag(MachineInstr::FrameSetup);
1182 } else {
1183 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1184 .addImm(NumBytes)
1185 .setMIFlag(MachineInstr::FrameSetup);
1186 }
1187 } else {
1188 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1189 // We'll also use 4 already allocated bytes for EAX.
1190 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1191 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1192 .setMIFlag(MachineInstr::FrameSetup);
1193 }
1194
1195 // Call __chkstk, __chkstk_ms, or __alloca.
1196 emitStackProbe(MF, MBB, MBBI, DL, true);
1197
1198 if (isEAXAlive) {
1199 // Restore EAX
1200 MachineInstr *MI =
1201 addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1202 StackPtr, false, NumBytes - 4);
1203 MI->setFlag(MachineInstr::FrameSetup);
1204 MBB.insert(MBBI, MI);
1205 }
1206 } else if (NumBytes) {
1207 emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1208 }
1209
1210 if (NeedsWinCFI && NumBytes)
1211 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1212 .addImm(NumBytes)
1213 .setMIFlag(MachineInstr::FrameSetup);
1214
1215 int SEHFrameOffset = 0;
1216 unsigned SPOrEstablisher;
1217 if (IsFunclet) {
1218 if (IsClrFunclet) {
1219 // The establisher parameter passed to a CLR funclet is actually a pointer
1220 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1221 // to find the root function establisher frame by loading the PSPSym from
1222 // the intermediate frame.
1223 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1224 MachinePointerInfo NoInfo;
1225 MBB.addLiveIn(Establisher);
1226 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1227 Establisher, false, PSPSlotOffset)
1228 .addMemOperand(MF.getMachineMemOperand(
1229 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1230 ;
1231 // Save the root establisher back into the current funclet's (mostly
1232 // empty) frame, in case a sub-funclet or the GC needs it.
1233 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1234 false, PSPSlotOffset)
1235 .addReg(Establisher)
1236 .addMemOperand(
1237 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1238 MachineMemOperand::MOVolatile,
1239 SlotSize, SlotSize));
1240 }
1241 SPOrEstablisher = Establisher;
1242 } else {
1243 SPOrEstablisher = StackPtr;
1244 }
1245
1246 if (IsWin64Prologue && HasFP) {
1247 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1248 // this calculation on the incoming establisher, which holds the value of
1249 // RSP from the parent frame at the end of the prologue.
1250 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1251 if (SEHFrameOffset)
1252 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1253 SPOrEstablisher, false, SEHFrameOffset);
1254 else
1255 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1256 .addReg(SPOrEstablisher);
1257
1258 // If this is not a funclet, emit the CFI describing our frame pointer.
1259 if (NeedsWinCFI && !IsFunclet) {
1260 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1261 .addImm(FramePtr)
1262 .addImm(SEHFrameOffset)
1263 .setMIFlag(MachineInstr::FrameSetup);
1264 if (isAsynchronousEHPersonality(Personality))
1265 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1266 }
1267 } else if (IsFunclet && STI.is32Bit()) {
1268 // Reset EBP / ESI to something good for funclets.
1269 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1270 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1271 // into the registration node so that the runtime will restore it for us.
1272 if (!MBB.isCleanupFuncletEntry()) {
1273 assert(Personality == EHPersonality::MSVC_CXX);
1274 unsigned FrameReg;
1275 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1276 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1277 // ESP is the first field, so no extra displacement is needed.
1278 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1279 false, EHRegOffset)
1280 .addReg(X86::ESP);
1281 }
1282 }
1283
1284 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1285 const MachineInstr &FrameInstr = *MBBI;
1286 ++MBBI;
1287
1288 if (NeedsWinCFI) {
1289 int FI;
1290 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1291 if (X86::FR64RegClass.contains(Reg)) {
1292 unsigned IgnoredFrameReg;
1293 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1294 Offset += SEHFrameOffset;
1295
1296 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1297 .addImm(Reg)
1298 .addImm(Offset)
1299 .setMIFlag(MachineInstr::FrameSetup);
1300 }
1301 }
1302 }
1303 }
1304
1305 if (NeedsWinCFI)
1306 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1307 .setMIFlag(MachineInstr::FrameSetup);
1308
1309 if (FnHasClrFunclet && !IsFunclet) {
1310 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1311 // immediately after the prolog) into the PSPSlot so that funclets
1312 // and the GC can recover it.
1313 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1314 auto PSPInfo = MachinePointerInfo::getFixedStack(
1315 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1316 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1317 PSPSlotOffset)
1318 .addReg(StackPtr)
1319 .addMemOperand(MF.getMachineMemOperand(
1320 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1321 SlotSize, SlotSize));
1322 }
1323
1324 // Realign stack after we spilled callee-saved registers (so that we'll be
1325 // able to calculate their offsets from the frame pointer).
1326 // Win64 requires aligning the stack after the prologue.
1327 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1328 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1329 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1330 }
1331
1332 // We already dealt with stack realignment and funclets above.
1333 if (IsFunclet && STI.is32Bit())
1334 return;
1335
1336 // If we need a base pointer, set it up here. It's whatever the value
1337 // of the stack pointer is at this point. Any variable size objects
1338 // will be allocated after this, so we can still use the base pointer
1339 // to reference locals.
1340 if (TRI->hasBasePointer(MF)) {
1341 // Update the base pointer with the current stack pointer.
1342 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1343 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1344 .addReg(SPOrEstablisher)
1345 .setMIFlag(MachineInstr::FrameSetup);
1346 if (X86FI->getRestoreBasePointer()) {
1347 // Stash value of base pointer. Saving RSP instead of EBP shortens
1348 // dependence chain. Used by SjLj EH.
1349 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1350 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1351 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1352 .addReg(SPOrEstablisher)
1353 .setMIFlag(MachineInstr::FrameSetup);
1354 }
1355
1356 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1357 // Stash the value of the frame pointer relative to the base pointer for
1358 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1359 // it recovers the frame pointer from the base pointer rather than the
1360 // other way around.
1361 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1362 unsigned UsedReg;
1363 int Offset =
1364 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1365 assert(UsedReg == BasePtr);
1366 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1367 .addReg(FramePtr)
1368 .setMIFlag(MachineInstr::FrameSetup);
1369 }
1370 }
1371
1372 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1373 // Mark end of stack pointer adjustment.
1374 if (!HasFP && NumBytes) {
1375 // Define the current CFA rule to use the provided offset.
1376 assert(StackSize);
1377 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1378 nullptr, -StackSize + stackGrowth));
1379 }
1380
1381 // Emit DWARF info specifying the offsets of the callee-saved registers.
1382 if (PushedRegs)
1383 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1384 }
1385
1386 // X86 Interrupt handling function cannot assume anything about the direction
1387 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1388 // in each prologue of interrupt handler function.
1389 //
1390 // FIXME: Create "cld" instruction only in these cases:
1391 // 1. The interrupt handling function uses any of the "rep" instructions.
1392 // 2. Interrupt handling function calls another function.
1393 //
1394 if (Fn->getCallingConv() == CallingConv::X86_INTR)
1395 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1396 .setMIFlag(MachineInstr::FrameSetup);
1397 }
1398
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1399 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1400 const MachineFunction &MF) const {
1401 // We can't use LEA instructions for adjusting the stack pointer if this is a
1402 // leaf function in the Win64 ABI. Only ADD instructions may be used to
1403 // deallocate the stack.
1404 // This means that we can use LEA for SP in two situations:
1405 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1406 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1407 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1408 }
1409
isFuncletReturnInstr(MachineInstr & MI)1410 static bool isFuncletReturnInstr(MachineInstr &MI) {
1411 switch (MI.getOpcode()) {
1412 case X86::CATCHRET:
1413 case X86::CLEANUPRET:
1414 return true;
1415 default:
1416 return false;
1417 }
1418 llvm_unreachable("impossible");
1419 }
1420
1421 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1422 // stack. It holds a pointer to the bottom of the root function frame. The
1423 // establisher frame pointer passed to a nested funclet may point to the
1424 // (mostly empty) frame of its parent funclet, but it will need to find
1425 // the frame of the root function to access locals. To facilitate this,
1426 // every funclet copies the pointer to the bottom of the root function
1427 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1428 // same offset for the PSPSym in the root function frame that's used in the
1429 // funclets' frames allows each funclet to dynamically accept any ancestor
1430 // frame as its establisher argument (the runtime doesn't guarantee the
1431 // immediate parent for some reason lost to history), and also allows the GC,
1432 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1433 // frame with only a single offset reported for the entire method.
1434 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1435 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1436 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1437 unsigned SPReg;
1438 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1439 /*IgnoreSPUpdates*/ true);
1440 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1441 return static_cast<unsigned>(Offset);
1442 }
1443
1444 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1445 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1446 // This is the size of the pushed CSRs.
1447 unsigned CSSize =
1448 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1449 // This is the amount of stack a funclet needs to allocate.
1450 unsigned UsedSize;
1451 EHPersonality Personality =
1452 classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1453 if (Personality == EHPersonality::CoreCLR) {
1454 // CLR funclets need to hold enough space to include the PSPSym, at the
1455 // same offset from the stack pointer (immediately after the prolog) as it
1456 // resides at in the main function.
1457 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1458 } else {
1459 // Other funclets just need enough stack for outgoing call arguments.
1460 UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
1461 }
1462 // RBP is not included in the callee saved register block. After pushing RBP,
1463 // everything is 16 byte aligned. Everything we allocate before an outgoing
1464 // call must also be 16 byte aligned.
1465 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1466 // Subtract out the size of the callee saved registers. This is how much stack
1467 // each funclet will allocate.
1468 return FrameSizeMinusRBP - CSSize;
1469 }
1470
isTailCallOpcode(unsigned Opc)1471 static bool isTailCallOpcode(unsigned Opc) {
1472 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1473 Opc == X86::TCRETURNmi ||
1474 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1475 Opc == X86::TCRETURNmi64;
1476 }
1477
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1478 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1479 MachineBasicBlock &MBB) const {
1480 const MachineFrameInfo *MFI = MF.getFrameInfo();
1481 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1482 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1483 unsigned RetOpcode = MBBI->getOpcode();
1484 DebugLoc DL;
1485 if (MBBI != MBB.end())
1486 DL = MBBI->getDebugLoc();
1487 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1488 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1489 unsigned FramePtr = TRI->getFrameRegister(MF);
1490 unsigned MachineFramePtr =
1491 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1492
1493 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1494 bool NeedsWinCFI =
1495 IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1496 bool IsFunclet = isFuncletReturnInstr(*MBBI);
1497 MachineBasicBlock *TargetMBB = nullptr;
1498
1499 // Get the number of bytes to allocate from the FrameInfo.
1500 uint64_t StackSize = MFI->getStackSize();
1501 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1502 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1503 uint64_t NumBytes = 0;
1504
1505 if (MBBI->getOpcode() == X86::CATCHRET) {
1506 // SEH shouldn't use catchret.
1507 assert(!isAsynchronousEHPersonality(
1508 classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1509 "SEH should not use CATCHRET");
1510
1511 NumBytes = getWinEHFuncletFrameSize(MF);
1512 assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1513 TargetMBB = MBBI->getOperand(0).getMBB();
1514
1515 // Pop EBP.
1516 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1517 MachineFramePtr)
1518 .setMIFlag(MachineInstr::FrameDestroy);
1519 } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
1520 NumBytes = getWinEHFuncletFrameSize(MF);
1521 assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1522 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1523 MachineFramePtr)
1524 .setMIFlag(MachineInstr::FrameDestroy);
1525 } else if (hasFP(MF)) {
1526 // Calculate required stack adjustment.
1527 uint64_t FrameSize = StackSize - SlotSize;
1528 NumBytes = FrameSize - CSSize;
1529
1530 // Callee-saved registers were pushed on stack before the stack was
1531 // realigned.
1532 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1533 NumBytes = alignTo(FrameSize, MaxAlign);
1534
1535 // Pop EBP.
1536 BuildMI(MBB, MBBI, DL,
1537 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1538 .setMIFlag(MachineInstr::FrameDestroy);
1539 } else {
1540 NumBytes = StackSize - CSSize;
1541 }
1542 uint64_t SEHStackAllocAmt = NumBytes;
1543
1544 // Skip the callee-saved pop instructions.
1545 while (MBBI != MBB.begin()) {
1546 MachineBasicBlock::iterator PI = std::prev(MBBI);
1547 unsigned Opc = PI->getOpcode();
1548
1549 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1550 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1551 Opc != X86::DBG_VALUE && !PI->isTerminator())
1552 break;
1553
1554 --MBBI;
1555 }
1556 MachineBasicBlock::iterator FirstCSPop = MBBI;
1557
1558 if (TargetMBB) {
1559 // Fill EAX/RAX with the address of the target block.
1560 unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1561 if (STI.is64Bit()) {
1562 // LEA64r TargetMBB(%rip), %rax
1563 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1564 .addReg(X86::RIP)
1565 .addImm(0)
1566 .addReg(0)
1567 .addMBB(TargetMBB)
1568 .addReg(0);
1569 } else {
1570 // MOV32ri $TargetMBB, %eax
1571 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1572 .addMBB(TargetMBB);
1573 }
1574 // Record that we've taken the address of TargetMBB and no longer just
1575 // reference it in a terminator.
1576 TargetMBB->setHasAddressTaken();
1577 }
1578
1579 if (MBBI != MBB.end())
1580 DL = MBBI->getDebugLoc();
1581
1582 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1583 // instruction, merge the two instructions.
1584 if (NumBytes || MFI->hasVarSizedObjects())
1585 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1586
1587 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1588 // slot before popping them off! Same applies for the case, when stack was
1589 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1590 // will not do realignment or dynamic stack allocation.
1591 if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
1592 !IsFunclet) {
1593 if (TRI->needsStackRealignment(MF))
1594 MBBI = FirstCSPop;
1595 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1596 uint64_t LEAAmount =
1597 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1598
1599 // There are only two legal forms of epilogue:
1600 // - add SEHAllocationSize, %rsp
1601 // - lea SEHAllocationSize(%FramePtr), %rsp
1602 //
1603 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1604 // However, we may use this sequence if we have a frame pointer because the
1605 // effects of the prologue can safely be undone.
1606 if (LEAAmount != 0) {
1607 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1608 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1609 FramePtr, false, LEAAmount);
1610 --MBBI;
1611 } else {
1612 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1613 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1614 .addReg(FramePtr);
1615 --MBBI;
1616 }
1617 } else if (NumBytes) {
1618 // Adjust stack pointer back: ESP += numbytes.
1619 emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1620 --MBBI;
1621 }
1622
1623 // Windows unwinder will not invoke function's exception handler if IP is
1624 // either in prologue or in epilogue. This behavior causes a problem when a
1625 // call immediately precedes an epilogue, because the return address points
1626 // into the epilogue. To cope with that, we insert an epilogue marker here,
1627 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1628 // final emitted code.
1629 if (NeedsWinCFI)
1630 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1631
1632 if (!isTailCallOpcode(RetOpcode)) {
1633 // Add the return addr area delta back since we are not tail calling.
1634 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1635 assert(Offset >= 0 && "TCDelta should never be positive");
1636 if (Offset) {
1637 MBBI = MBB.getFirstTerminator();
1638
1639 // Check for possible merge with preceding ADD instruction.
1640 Offset += mergeSPUpdates(MBB, MBBI, true);
1641 emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1642 }
1643 }
1644 }
1645
1646 // NOTE: this only has a subset of the full frame index logic. In
1647 // particular, the FI < 0 and AfterFPPop logic is handled in
1648 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1649 // (probably?) it should be moved into here.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1650 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1651 unsigned &FrameReg) const {
1652 const MachineFrameInfo *MFI = MF.getFrameInfo();
1653
1654 // We can't calculate offset from frame pointer if the stack is realigned,
1655 // so enforce usage of stack/base pointer. The base pointer is used when we
1656 // have dynamic allocas in addition to dynamic realignment.
1657 if (TRI->hasBasePointer(MF))
1658 FrameReg = TRI->getBaseRegister();
1659 else if (TRI->needsStackRealignment(MF))
1660 FrameReg = TRI->getStackRegister();
1661 else
1662 FrameReg = TRI->getFrameRegister(MF);
1663
1664 // Offset will hold the offset from the stack pointer at function entry to the
1665 // object.
1666 // We need to factor in additional offsets applied during the prologue to the
1667 // frame, base, and stack pointer depending on which is used.
1668 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1669 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1670 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1671 uint64_t StackSize = MFI->getStackSize();
1672 bool HasFP = hasFP(MF);
1673 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1674 int64_t FPDelta = 0;
1675
1676 if (IsWin64Prologue) {
1677 assert(!MFI->hasCalls() || (StackSize % 16) == 8);
1678
1679 // Calculate required stack adjustment.
1680 uint64_t FrameSize = StackSize - SlotSize;
1681 // If required, include space for extra hidden slot for stashing base pointer.
1682 if (X86FI->getRestoreBasePointer())
1683 FrameSize += SlotSize;
1684 uint64_t NumBytes = FrameSize - CSSize;
1685
1686 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1687 if (FI && FI == X86FI->getFAIndex())
1688 return -SEHFrameOffset;
1689
1690 // FPDelta is the offset from the "traditional" FP location of the old base
1691 // pointer followed by return address and the location required by the
1692 // restricted Win64 prologue.
1693 // Add FPDelta to all offsets below that go through the frame pointer.
1694 FPDelta = FrameSize - SEHFrameOffset;
1695 assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
1696 "FPDelta isn't aligned per the Win64 ABI!");
1697 }
1698
1699
1700 if (TRI->hasBasePointer(MF)) {
1701 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1702 if (FI < 0) {
1703 // Skip the saved EBP.
1704 return Offset + SlotSize + FPDelta;
1705 } else {
1706 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1707 return Offset + StackSize;
1708 }
1709 } else if (TRI->needsStackRealignment(MF)) {
1710 if (FI < 0) {
1711 // Skip the saved EBP.
1712 return Offset + SlotSize + FPDelta;
1713 } else {
1714 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1715 return Offset + StackSize;
1716 }
1717 // FIXME: Support tail calls
1718 } else {
1719 if (!HasFP)
1720 return Offset + StackSize;
1721
1722 // Skip the saved EBP.
1723 Offset += SlotSize;
1724
1725 // Skip the RETADDR move area
1726 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1727 if (TailCallReturnAddrDelta < 0)
1728 Offset -= TailCallReturnAddrDelta;
1729 }
1730
1731 return Offset + FPDelta;
1732 }
1733
1734 int
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,unsigned & FrameReg,bool IgnoreSPUpdates) const1735 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1736 int FI, unsigned &FrameReg,
1737 bool IgnoreSPUpdates) const {
1738
1739 const MachineFrameInfo *MFI = MF.getFrameInfo();
1740 // Does not include any dynamic realign.
1741 const uint64_t StackSize = MFI->getStackSize();
1742 // LLVM arranges the stack as follows:
1743 // ...
1744 // ARG2
1745 // ARG1
1746 // RETADDR
1747 // PUSH RBP <-- RBP points here
1748 // PUSH CSRs
1749 // ~~~~~~~ <-- possible stack realignment (non-win64)
1750 // ...
1751 // STACK OBJECTS
1752 // ... <-- RSP after prologue points here
1753 // ~~~~~~~ <-- possible stack realignment (win64)
1754 //
1755 // if (hasVarSizedObjects()):
1756 // ... <-- "base pointer" (ESI/RBX) points here
1757 // DYNAMIC ALLOCAS
1758 // ... <-- RSP points here
1759 //
1760 // Case 1: In the simple case of no stack realignment and no dynamic
1761 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1762 // with fixed offsets from RSP.
1763 //
1764 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1765 // stack objects are addressed with RBP and regular stack objects with RSP.
1766 //
1767 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1768 // to address stack arguments for outgoing calls and nothing else. The "base
1769 // pointer" points to local variables, and RBP points to fixed objects.
1770 //
1771 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1772 // answer we give is relative to the SP after the prologue, and not the
1773 // SP in the middle of the function.
1774
1775 if (MFI->isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1776 !STI.isTargetWin64())
1777 return getFrameIndexReference(MF, FI, FrameReg);
1778
1779 // If !hasReservedCallFrame the function might have SP adjustement in the
1780 // body. So, even though the offset is statically known, it depends on where
1781 // we are in the function.
1782 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
1783 if (!IgnoreSPUpdates && !TFI->hasReservedCallFrame(MF))
1784 return getFrameIndexReference(MF, FI, FrameReg);
1785
1786 // We don't handle tail calls, and shouldn't be seeing them either.
1787 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1788 "we don't handle this case!");
1789
1790 // Fill in FrameReg output argument.
1791 FrameReg = TRI->getStackRegister();
1792
1793 // This is how the math works out:
1794 //
1795 // %rsp grows (i.e. gets lower) left to right. Each box below is
1796 // one word (eight bytes). Obj0 is the stack slot we're trying to
1797 // get to.
1798 //
1799 // ----------------------------------
1800 // | BP | Obj0 | Obj1 | ... | ObjN |
1801 // ----------------------------------
1802 // ^ ^ ^ ^
1803 // A B C E
1804 //
1805 // A is the incoming stack pointer.
1806 // (B - A) is the local area offset (-8 for x86-64) [1]
1807 // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1808 //
1809 // |(E - B)| is the StackSize (absolute value, positive). For a
1810 // stack that grown down, this works out to be (B - E). [3]
1811 //
1812 // E is also the value of %rsp after stack has been set up, and we
1813 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1814 // (C - E) == (C - A) - (B - A) + (B - E)
1815 // { Using [1], [2] and [3] above }
1816 // == getObjectOffset - LocalAreaOffset + StackSize
1817 //
1818
1819 // Get the Offset from the StackPointer
1820 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1821
1822 return Offset + StackSize;
1823 }
1824
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1825 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1826 MachineFunction &MF, const TargetRegisterInfo *TRI,
1827 std::vector<CalleeSavedInfo> &CSI) const {
1828 MachineFrameInfo *MFI = MF.getFrameInfo();
1829 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1830
1831 unsigned CalleeSavedFrameSize = 0;
1832 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1833
1834 if (hasFP(MF)) {
1835 // emitPrologue always spills frame register the first thing.
1836 SpillSlotOffset -= SlotSize;
1837 MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1838
1839 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1840 // the frame register, we can delete it from CSI list and not have to worry
1841 // about avoiding it later.
1842 unsigned FPReg = TRI->getFrameRegister(MF);
1843 for (unsigned i = 0; i < CSI.size(); ++i) {
1844 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1845 CSI.erase(CSI.begin() + i);
1846 break;
1847 }
1848 }
1849 }
1850
1851 // Assign slots for GPRs. It increases frame size.
1852 for (unsigned i = CSI.size(); i != 0; --i) {
1853 unsigned Reg = CSI[i - 1].getReg();
1854
1855 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1856 continue;
1857
1858 SpillSlotOffset -= SlotSize;
1859 CalleeSavedFrameSize += SlotSize;
1860
1861 int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1862 CSI[i - 1].setFrameIdx(SlotIndex);
1863 }
1864
1865 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1866
1867 // Assign slots for XMMs.
1868 for (unsigned i = CSI.size(); i != 0; --i) {
1869 unsigned Reg = CSI[i - 1].getReg();
1870 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1871 continue;
1872
1873 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1874 // ensure alignment
1875 SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1876 // spill into slot
1877 SpillSlotOffset -= RC->getSize();
1878 int SlotIndex =
1879 MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1880 CSI[i - 1].setFrameIdx(SlotIndex);
1881 MFI->ensureMaxAlignment(RC->getAlignment());
1882 }
1883
1884 return true;
1885 }
1886
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1887 bool X86FrameLowering::spillCalleeSavedRegisters(
1888 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1889 const std::vector<CalleeSavedInfo> &CSI,
1890 const TargetRegisterInfo *TRI) const {
1891 DebugLoc DL = MBB.findDebugLoc(MI);
1892
1893 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1894 // for us, and there are no XMM CSRs on Win32.
1895 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1896 return true;
1897
1898 // Push GPRs. It increases frame size.
1899 const MachineFunction &MF = *MBB.getParent();
1900 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1901 for (unsigned i = CSI.size(); i != 0; --i) {
1902 unsigned Reg = CSI[i - 1].getReg();
1903
1904 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1905 continue;
1906
1907 const MachineRegisterInfo &MRI = MF.getRegInfo();
1908 bool isLiveIn = MRI.isLiveIn(Reg);
1909 if (!isLiveIn)
1910 MBB.addLiveIn(Reg);
1911
1912 // Decide whether we can add a kill flag to the use.
1913 bool CanKill = !isLiveIn;
1914 // Check if any subregister is live-in
1915 if (CanKill) {
1916 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
1917 if (MRI.isLiveIn(*AReg)) {
1918 CanKill = false;
1919 break;
1920 }
1921 }
1922 }
1923
1924 // Do not set a kill flag on values that are also marked as live-in. This
1925 // happens with the @llvm-returnaddress intrinsic and with arguments
1926 // passed in callee saved registers.
1927 // Omitting the kill flags is conservatively correct even if the live-in
1928 // is not used after all.
1929 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
1930 .setMIFlag(MachineInstr::FrameSetup);
1931 }
1932
1933 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1934 // It can be done by spilling XMMs to stack frame.
1935 for (unsigned i = CSI.size(); i != 0; --i) {
1936 unsigned Reg = CSI[i-1].getReg();
1937 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1938 continue;
1939 // Add the callee-saved register as live-in. It's killed at the spill.
1940 MBB.addLiveIn(Reg);
1941 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1942
1943 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1944 TRI);
1945 --MI;
1946 MI->setFlag(MachineInstr::FrameSetup);
1947 ++MI;
1948 }
1949
1950 return true;
1951 }
1952
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1953 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1954 MachineBasicBlock::iterator MI,
1955 const std::vector<CalleeSavedInfo> &CSI,
1956 const TargetRegisterInfo *TRI) const {
1957 if (CSI.empty())
1958 return false;
1959
1960 if (isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
1961 // Don't restore CSRs in 32-bit EH funclets. Matches
1962 // spillCalleeSavedRegisters.
1963 if (STI.is32Bit())
1964 return true;
1965 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1966 // funclets. emitEpilogue transforms these to normal jumps.
1967 if (MI->getOpcode() == X86::CATCHRET) {
1968 const Function *Func = MBB.getParent()->getFunction();
1969 bool IsSEH = isAsynchronousEHPersonality(
1970 classifyEHPersonality(Func->getPersonalityFn()));
1971 if (IsSEH)
1972 return true;
1973 }
1974 }
1975
1976 DebugLoc DL = MBB.findDebugLoc(MI);
1977
1978 // Reload XMMs from stack frame.
1979 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1980 unsigned Reg = CSI[i].getReg();
1981 if (X86::GR64RegClass.contains(Reg) ||
1982 X86::GR32RegClass.contains(Reg))
1983 continue;
1984
1985 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1986 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1987 }
1988
1989 // POP GPRs.
1990 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1991 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1992 unsigned Reg = CSI[i].getReg();
1993 if (!X86::GR64RegClass.contains(Reg) &&
1994 !X86::GR32RegClass.contains(Reg))
1995 continue;
1996
1997 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
1998 .setMIFlag(MachineInstr::FrameDestroy);
1999 }
2000 return true;
2001 }
2002
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2003 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2004 BitVector &SavedRegs,
2005 RegScavenger *RS) const {
2006 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2007
2008 MachineFrameInfo *MFI = MF.getFrameInfo();
2009
2010 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2011 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
2012
2013 if (TailCallReturnAddrDelta < 0) {
2014 // create RETURNADDR area
2015 // arg
2016 // arg
2017 // RETADDR
2018 // { ...
2019 // RETADDR area
2020 // ...
2021 // }
2022 // [EBP]
2023 MFI->CreateFixedObject(-TailCallReturnAddrDelta,
2024 TailCallReturnAddrDelta - SlotSize, true);
2025 }
2026
2027 // Spill the BasePtr if it's used.
2028 if (TRI->hasBasePointer(MF)) {
2029 SavedRegs.set(TRI->getBaseRegister());
2030
2031 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
2032 if (MF.getMMI().hasEHFunclets()) {
2033 int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
2034 X86FI->setHasSEHFramePtrSave(true);
2035 X86FI->setSEHFramePtrSaveIndex(FI);
2036 }
2037 }
2038 }
2039
2040 static bool
HasNestArgument(const MachineFunction * MF)2041 HasNestArgument(const MachineFunction *MF) {
2042 const Function *F = MF->getFunction();
2043 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2044 I != E; I++) {
2045 if (I->hasNestAttr())
2046 return true;
2047 }
2048 return false;
2049 }
2050
2051 /// GetScratchRegister - Get a temp register for performing work in the
2052 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2053 /// and the properties of the function either one or two registers will be
2054 /// needed. Set primary to true for the first register, false for the second.
2055 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2056 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2057 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
2058
2059 // Erlang stuff.
2060 if (CallingConvention == CallingConv::HiPE) {
2061 if (Is64Bit)
2062 return Primary ? X86::R14 : X86::R13;
2063 else
2064 return Primary ? X86::EBX : X86::EDI;
2065 }
2066
2067 if (Is64Bit) {
2068 if (IsLP64)
2069 return Primary ? X86::R11 : X86::R12;
2070 else
2071 return Primary ? X86::R11D : X86::R12D;
2072 }
2073
2074 bool IsNested = HasNestArgument(&MF);
2075
2076 if (CallingConvention == CallingConv::X86_FastCall ||
2077 CallingConvention == CallingConv::Fast) {
2078 if (IsNested)
2079 report_fatal_error("Segmented stacks does not support fastcall with "
2080 "nested function.");
2081 return Primary ? X86::EAX : X86::ECX;
2082 }
2083 if (IsNested)
2084 return Primary ? X86::EDX : X86::EAX;
2085 return Primary ? X86::ECX : X86::EAX;
2086 }
2087
2088 // The stack limit in the TCB is set to this many bytes above the actual stack
2089 // limit.
2090 static const uint64_t kSplitStackAvailable = 256;
2091
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2092 void X86FrameLowering::adjustForSegmentedStacks(
2093 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2094 MachineFrameInfo *MFI = MF.getFrameInfo();
2095 uint64_t StackSize;
2096 unsigned TlsReg, TlsOffset;
2097 DebugLoc DL;
2098
2099 // To support shrink-wrapping we would need to insert the new blocks
2100 // at the right place and update the branches to PrologueMBB.
2101 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2102
2103 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2104 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2105 "Scratch register is live-in");
2106
2107 if (MF.getFunction()->isVarArg())
2108 report_fatal_error("Segmented stacks do not support vararg functions.");
2109 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2110 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2111 !STI.isTargetDragonFly())
2112 report_fatal_error("Segmented stacks not supported on this platform.");
2113
2114 // Eventually StackSize will be calculated by a link-time pass; which will
2115 // also decide whether checking code needs to be injected into this particular
2116 // prologue.
2117 StackSize = MFI->getStackSize();
2118
2119 // Do not generate a prologue for functions with a stack of size zero
2120 if (StackSize == 0)
2121 return;
2122
2123 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2124 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2125 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2126 bool IsNested = false;
2127
2128 // We need to know if the function has a nest argument only in 64 bit mode.
2129 if (Is64Bit)
2130 IsNested = HasNestArgument(&MF);
2131
2132 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2133 // allocMBB needs to be last (terminating) instruction.
2134
2135 for (const auto &LI : PrologueMBB.liveins()) {
2136 allocMBB->addLiveIn(LI);
2137 checkMBB->addLiveIn(LI);
2138 }
2139
2140 if (IsNested)
2141 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2142
2143 MF.push_front(allocMBB);
2144 MF.push_front(checkMBB);
2145
2146 // When the frame size is less than 256 we just compare the stack
2147 // boundary directly to the value of the stack pointer, per gcc.
2148 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2149
2150 // Read the limit off the current stacklet off the stack_guard location.
2151 if (Is64Bit) {
2152 if (STI.isTargetLinux()) {
2153 TlsReg = X86::FS;
2154 TlsOffset = IsLP64 ? 0x70 : 0x40;
2155 } else if (STI.isTargetDarwin()) {
2156 TlsReg = X86::GS;
2157 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2158 } else if (STI.isTargetWin64()) {
2159 TlsReg = X86::GS;
2160 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2161 } else if (STI.isTargetFreeBSD()) {
2162 TlsReg = X86::FS;
2163 TlsOffset = 0x18;
2164 } else if (STI.isTargetDragonFly()) {
2165 TlsReg = X86::FS;
2166 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2167 } else {
2168 report_fatal_error("Segmented stacks not supported on this platform.");
2169 }
2170
2171 if (CompareStackPointer)
2172 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2173 else
2174 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2175 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2176
2177 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2178 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2179 } else {
2180 if (STI.isTargetLinux()) {
2181 TlsReg = X86::GS;
2182 TlsOffset = 0x30;
2183 } else if (STI.isTargetDarwin()) {
2184 TlsReg = X86::GS;
2185 TlsOffset = 0x48 + 90*4;
2186 } else if (STI.isTargetWin32()) {
2187 TlsReg = X86::FS;
2188 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2189 } else if (STI.isTargetDragonFly()) {
2190 TlsReg = X86::FS;
2191 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2192 } else if (STI.isTargetFreeBSD()) {
2193 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2194 } else {
2195 report_fatal_error("Segmented stacks not supported on this platform.");
2196 }
2197
2198 if (CompareStackPointer)
2199 ScratchReg = X86::ESP;
2200 else
2201 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2202 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2203
2204 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2205 STI.isTargetDragonFly()) {
2206 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2207 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2208 } else if (STI.isTargetDarwin()) {
2209
2210 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2211 unsigned ScratchReg2;
2212 bool SaveScratch2;
2213 if (CompareStackPointer) {
2214 // The primary scratch register is available for holding the TLS offset.
2215 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2216 SaveScratch2 = false;
2217 } else {
2218 // Need to use a second register to hold the TLS offset
2219 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2220
2221 // Unfortunately, with fastcc the second scratch register may hold an
2222 // argument.
2223 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2224 }
2225
2226 // If Scratch2 is live-in then it needs to be saved.
2227 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2228 "Scratch register is live-in and not saved");
2229
2230 if (SaveScratch2)
2231 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2232 .addReg(ScratchReg2, RegState::Kill);
2233
2234 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2235 .addImm(TlsOffset);
2236 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2237 .addReg(ScratchReg)
2238 .addReg(ScratchReg2).addImm(1).addReg(0)
2239 .addImm(0)
2240 .addReg(TlsReg);
2241
2242 if (SaveScratch2)
2243 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2244 }
2245 }
2246
2247 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2248 // It jumps to normal execution of the function body.
2249 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2250
2251 // On 32 bit we first push the arguments size and then the frame size. On 64
2252 // bit, we pass the stack frame size in r10 and the argument size in r11.
2253 if (Is64Bit) {
2254 // Functions with nested arguments use R10, so it needs to be saved across
2255 // the call to _morestack
2256
2257 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2258 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2259 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2260 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2261 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2262
2263 if (IsNested)
2264 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2265
2266 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2267 .addImm(StackSize);
2268 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2269 .addImm(X86FI->getArgumentStackSize());
2270 } else {
2271 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2272 .addImm(X86FI->getArgumentStackSize());
2273 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2274 .addImm(StackSize);
2275 }
2276
2277 // __morestack is in libgcc
2278 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2279 // Under the large code model, we cannot assume that __morestack lives
2280 // within 2^31 bytes of the call site, so we cannot use pc-relative
2281 // addressing. We cannot perform the call via a temporary register,
2282 // as the rax register may be used to store the static chain, and all
2283 // other suitable registers may be either callee-save or used for
2284 // parameter passing. We cannot use the stack at this point either
2285 // because __morestack manipulates the stack directly.
2286 //
2287 // To avoid these issues, perform an indirect call via a read-only memory
2288 // location containing the address.
2289 //
2290 // This solution is not perfect, as it assumes that the .rodata section
2291 // is laid out within 2^31 bytes of each function body, but this seems
2292 // to be sufficient for JIT.
2293 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2294 .addReg(X86::RIP)
2295 .addImm(0)
2296 .addReg(0)
2297 .addExternalSymbol("__morestack_addr")
2298 .addReg(0);
2299 MF.getMMI().setUsesMorestackAddr(true);
2300 } else {
2301 if (Is64Bit)
2302 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2303 .addExternalSymbol("__morestack");
2304 else
2305 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2306 .addExternalSymbol("__morestack");
2307 }
2308
2309 if (IsNested)
2310 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2311 else
2312 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2313
2314 allocMBB->addSuccessor(&PrologueMBB);
2315
2316 checkMBB->addSuccessor(allocMBB);
2317 checkMBB->addSuccessor(&PrologueMBB);
2318
2319 #ifdef EXPENSIVE_CHECKS
2320 MF.verify();
2321 #endif
2322 }
2323
2324 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2325 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2326 /// to fields it needs, through a named metadata node "hipe.literals" containing
2327 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)2328 static unsigned getHiPELiteral(
2329 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2330 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2331 MDNode *Node = HiPELiteralsMD->getOperand(i);
2332 if (Node->getNumOperands() != 2) continue;
2333 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2334 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2335 if (!NodeName || !NodeVal) continue;
2336 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2337 if (ValConst && NodeName->getString() == LiteralName) {
2338 return ValConst->getZExtValue();
2339 }
2340 }
2341
2342 report_fatal_error("HiPE literal " + LiteralName
2343 + " required but not provided");
2344 }
2345
2346 /// Erlang programs may need a special prologue to handle the stack size they
2347 /// might need at runtime. That is because Erlang/OTP does not implement a C
2348 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2349 /// (for more information see Eric Stenman's Ph.D. thesis:
2350 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2351 ///
2352 /// CheckStack:
2353 /// temp0 = sp - MaxStack
2354 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2355 /// OldStart:
2356 /// ...
2357 /// IncStack:
2358 /// call inc_stack # doubles the stack space
2359 /// temp0 = sp - MaxStack
2360 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2361 void X86FrameLowering::adjustForHiPEPrologue(
2362 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2363 MachineFrameInfo *MFI = MF.getFrameInfo();
2364 DebugLoc DL;
2365
2366 // To support shrink-wrapping we would need to insert the new blocks
2367 // at the right place and update the branches to PrologueMBB.
2368 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2369
2370 // HiPE-specific values
2371 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2372 ->getNamedMetadata("hipe.literals");
2373 if (!HiPELiteralsMD)
2374 report_fatal_error(
2375 "Can't generate HiPE prologue without runtime parameters");
2376 const unsigned HipeLeafWords
2377 = getHiPELiteral(HiPELiteralsMD,
2378 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2379 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2380 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2381 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2382 MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2383 unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
2384
2385 assert(STI.isTargetLinux() &&
2386 "HiPE prologue is only supported on Linux operating systems.");
2387
2388 // Compute the largest caller's frame that is needed to fit the callees'
2389 // frames. This 'MaxStack' is computed from:
2390 //
2391 // a) the fixed frame size, which is the space needed for all spilled temps,
2392 // b) outgoing on-stack parameter areas, and
2393 // c) the minimum stack space this function needs to make available for the
2394 // functions it calls (a tunable ABI property).
2395 if (MFI->hasCalls()) {
2396 unsigned MoreStackForCalls = 0;
2397
2398 for (auto &MBB : MF) {
2399 for (auto &MI : MBB) {
2400 if (!MI.isCall())
2401 continue;
2402
2403 // Get callee operand.
2404 const MachineOperand &MO = MI.getOperand(0);
2405
2406 // Only take account of global function calls (no closures etc.).
2407 if (!MO.isGlobal())
2408 continue;
2409
2410 const Function *F = dyn_cast<Function>(MO.getGlobal());
2411 if (!F)
2412 continue;
2413
2414 // Do not update 'MaxStack' for primitive and built-in functions
2415 // (encoded with names either starting with "erlang."/"bif_" or not
2416 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2417 // "_", such as the BIF "suspend_0") as they are executed on another
2418 // stack.
2419 if (F->getName().find("erlang.") != StringRef::npos ||
2420 F->getName().find("bif_") != StringRef::npos ||
2421 F->getName().find_first_of("._") == StringRef::npos)
2422 continue;
2423
2424 unsigned CalleeStkArity =
2425 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2426 if (HipeLeafWords - 1 > CalleeStkArity)
2427 MoreStackForCalls = std::max(MoreStackForCalls,
2428 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2429 }
2430 }
2431 MaxStack += MoreStackForCalls;
2432 }
2433
2434 // If the stack frame needed is larger than the guaranteed then runtime checks
2435 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2436 if (MaxStack > Guaranteed) {
2437 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2438 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2439
2440 for (const auto &LI : PrologueMBB.liveins()) {
2441 stackCheckMBB->addLiveIn(LI);
2442 incStackMBB->addLiveIn(LI);
2443 }
2444
2445 MF.push_front(incStackMBB);
2446 MF.push_front(stackCheckMBB);
2447
2448 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2449 unsigned LEAop, CMPop, CALLop;
2450 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2451 if (Is64Bit) {
2452 SPReg = X86::RSP;
2453 PReg = X86::RBP;
2454 LEAop = X86::LEA64r;
2455 CMPop = X86::CMP64rm;
2456 CALLop = X86::CALL64pcrel32;
2457 } else {
2458 SPReg = X86::ESP;
2459 PReg = X86::EBP;
2460 LEAop = X86::LEA32r;
2461 CMPop = X86::CMP32rm;
2462 CALLop = X86::CALLpcrel32;
2463 }
2464
2465 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2466 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2467 "HiPE prologue scratch register is live-in");
2468
2469 // Create new MBB for StackCheck:
2470 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2471 SPReg, false, -MaxStack);
2472 // SPLimitOffset is in a fixed heap location (pointed by BP).
2473 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2474 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2475 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2476
2477 // Create new MBB for IncStack:
2478 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2479 addExternalSymbol("inc_stack_0");
2480 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2481 SPReg, false, -MaxStack);
2482 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2483 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2484 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2485
2486 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2487 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2488 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2489 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2490 }
2491 #ifdef EXPENSIVE_CHECKS
2492 MF.verify();
2493 #endif
2494 }
2495
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const2496 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2497 MachineBasicBlock::iterator MBBI,
2498 const DebugLoc &DL,
2499 int Offset) const {
2500
2501 if (Offset <= 0)
2502 return false;
2503
2504 if (Offset % SlotSize)
2505 return false;
2506
2507 int NumPops = Offset / SlotSize;
2508 // This is only worth it if we have at most 2 pops.
2509 if (NumPops != 1 && NumPops != 2)
2510 return false;
2511
2512 // Handle only the trivial case where the adjustment directly follows
2513 // a call. This is the most common one, anyway.
2514 if (MBBI == MBB.begin())
2515 return false;
2516 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2517 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2518 return false;
2519
2520 unsigned Regs[2];
2521 unsigned FoundRegs = 0;
2522
2523 auto RegMask = Prev->getOperand(1);
2524
2525 auto &RegClass =
2526 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2527 // Try to find up to NumPops free registers.
2528 for (auto Candidate : RegClass) {
2529
2530 // Poor man's liveness:
2531 // Since we're immediately after a call, any register that is clobbered
2532 // by the call and not defined by it can be considered dead.
2533 if (!RegMask.clobbersPhysReg(Candidate))
2534 continue;
2535
2536 bool IsDef = false;
2537 for (const MachineOperand &MO : Prev->implicit_operands()) {
2538 if (MO.isReg() && MO.isDef() &&
2539 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2540 IsDef = true;
2541 break;
2542 }
2543 }
2544
2545 if (IsDef)
2546 continue;
2547
2548 Regs[FoundRegs++] = Candidate;
2549 if (FoundRegs == (unsigned)NumPops)
2550 break;
2551 }
2552
2553 if (FoundRegs == 0)
2554 return false;
2555
2556 // If we found only one free register, but need two, reuse the same one twice.
2557 while (FoundRegs < (unsigned)NumPops)
2558 Regs[FoundRegs++] = Regs[0];
2559
2560 for (int i = 0; i < NumPops; ++i)
2561 BuildMI(MBB, MBBI, DL,
2562 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2563
2564 return true;
2565 }
2566
2567 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2568 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2569 MachineBasicBlock::iterator I) const {
2570 bool reserveCallFrame = hasReservedCallFrame(MF);
2571 unsigned Opcode = I->getOpcode();
2572 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2573 DebugLoc DL = I->getDebugLoc();
2574 uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2575 uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2576 I = MBB.erase(I);
2577
2578 if (!reserveCallFrame) {
2579 // If the stack pointer can be changed after prologue, turn the
2580 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2581 // adjcallstackdown instruction into 'add ESP, <amt>'
2582
2583 // We need to keep the stack aligned properly. To do this, we round the
2584 // amount of space needed for the outgoing arguments up to the next
2585 // alignment boundary.
2586 unsigned StackAlign = getStackAlignment();
2587 Amount = alignTo(Amount, StackAlign);
2588
2589 MachineModuleInfo &MMI = MF.getMMI();
2590 const Function *Fn = MF.getFunction();
2591 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2592 bool DwarfCFI = !WindowsCFI &&
2593 (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2594
2595 // If we have any exception handlers in this function, and we adjust
2596 // the SP before calls, we may need to indicate this to the unwinder
2597 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2598 // Amount == 0, because the preceding function may have set a non-0
2599 // GNU_ARGS_SIZE.
2600 // TODO: We don't need to reset this between subsequent functions,
2601 // if it didn't change.
2602 bool HasDwarfEHHandlers = !WindowsCFI &&
2603 !MF.getMMI().getLandingPads().empty();
2604
2605 if (HasDwarfEHHandlers && !isDestroy &&
2606 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2607 BuildCFI(MBB, I, DL,
2608 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2609
2610 if (Amount == 0)
2611 return I;
2612
2613 // Factor out the amount that gets handled inside the sequence
2614 // (Pushes of argument for frame setup, callee pops for frame destroy)
2615 Amount -= InternalAmt;
2616
2617 // TODO: This is needed only if we require precise CFA.
2618 // If this is a callee-pop calling convention, emit a CFA adjust for
2619 // the amount the callee popped.
2620 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2621 BuildCFI(MBB, I, DL,
2622 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2623
2624 // Add Amount to SP to destroy a frame, or subtract to setup.
2625 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2626 int64_t CfaAdjustment = -StackAdjustment;
2627
2628 if (StackAdjustment) {
2629 // Merge with any previous or following adjustment instruction. Note: the
2630 // instructions merged with here do not have CFI, so their stack
2631 // adjustments do not feed into CfaAdjustment.
2632 StackAdjustment += mergeSPUpdates(MBB, I, true);
2633 StackAdjustment += mergeSPUpdates(MBB, I, false);
2634
2635 if (StackAdjustment) {
2636 if (!(Fn->optForMinSize() &&
2637 adjustStackWithPops(MBB, I, DL, StackAdjustment)))
2638 BuildStackAdjustment(MBB, I, DL, StackAdjustment,
2639 /*InEpilogue=*/false);
2640 }
2641 }
2642
2643 if (DwarfCFI && !hasFP(MF)) {
2644 // If we don't have FP, but need to generate unwind information,
2645 // we need to set the correct CFA offset after the stack adjustment.
2646 // How much we adjust the CFA offset depends on whether we're emitting
2647 // CFI only for EH purposes or for debugging. EH only requires the CFA
2648 // offset to be correct at each call site, while for debugging we want
2649 // it to be more precise.
2650
2651 // TODO: When not using precise CFA, we also need to adjust for the
2652 // InternalAmt here.
2653 if (CfaAdjustment) {
2654 BuildCFI(MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(
2655 nullptr, CfaAdjustment));
2656 }
2657 }
2658
2659 return I;
2660 }
2661
2662 if (isDestroy && InternalAmt) {
2663 // If we are performing frame pointer elimination and if the callee pops
2664 // something off the stack pointer, add it back. We do this until we have
2665 // more advanced stack pointer tracking ability.
2666 // We are not tracking the stack pointer adjustment by the callee, so make
2667 // sure we restore the stack pointer immediately after the call, there may
2668 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2669 MachineBasicBlock::iterator CI = I;
2670 MachineBasicBlock::iterator B = MBB.begin();
2671 while (CI != B && !std::prev(CI)->isCall())
2672 --CI;
2673 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2674 }
2675
2676 return I;
2677 }
2678
canUseAsPrologue(const MachineBasicBlock & MBB) const2679 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2680 assert(MBB.getParent() && "Block is not attached to a function!");
2681 const MachineFunction &MF = *MBB.getParent();
2682 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2683 }
2684
canUseAsEpilogue(const MachineBasicBlock & MBB) const2685 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2686 assert(MBB.getParent() && "Block is not attached to a function!");
2687
2688 // Win64 has strict requirements in terms of epilogue and we are
2689 // not taking a chance at messing with them.
2690 // I.e., unless this block is already an exit block, we can't use
2691 // it as an epilogue.
2692 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2693 return false;
2694
2695 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2696 return true;
2697
2698 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2699 // clobbers the EFLAGS. Check that we do not need to preserve it,
2700 // otherwise, conservatively assume this is not
2701 // safe to insert the epilogue here.
2702 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2703 }
2704
enableShrinkWrapping(const MachineFunction & MF) const2705 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2706 // If we may need to emit frameless compact unwind information, give
2707 // up as this is currently broken: PR25614.
2708 return (MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2709 // The lowering of segmented stack and HiPE only support entry blocks
2710 // as prologue blocks: PR26107.
2711 // This limitation may be lifted if we fix:
2712 // - adjustForSegmentedStacks
2713 // - adjustForHiPEPrologue
2714 MF.getFunction()->getCallingConv() != CallingConv::HiPE &&
2715 !MF.shouldSplitStack();
2716 }
2717
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const2718 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2719 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2720 const DebugLoc &DL, bool RestoreSP) const {
2721 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2722 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2723 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2724 "restoring EBP/ESI on non-32-bit target");
2725
2726 MachineFunction &MF = *MBB.getParent();
2727 unsigned FramePtr = TRI->getFrameRegister(MF);
2728 unsigned BasePtr = TRI->getBaseRegister();
2729 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2730 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2731 MachineFrameInfo *MFI = MF.getFrameInfo();
2732
2733 // FIXME: Don't set FrameSetup flag in catchret case.
2734
2735 int FI = FuncInfo.EHRegNodeFrameIndex;
2736 int EHRegSize = MFI->getObjectSize(FI);
2737
2738 if (RestoreSP) {
2739 // MOV32rm -EHRegSize(%ebp), %esp
2740 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2741 X86::EBP, true, -EHRegSize)
2742 .setMIFlag(MachineInstr::FrameSetup);
2743 }
2744
2745 unsigned UsedReg;
2746 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2747 int EndOffset = -EHRegOffset - EHRegSize;
2748 FuncInfo.EHRegNodeEndOffset = EndOffset;
2749
2750 if (UsedReg == FramePtr) {
2751 // ADD $offset, %ebp
2752 unsigned ADDri = getADDriOpcode(false, EndOffset);
2753 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2754 .addReg(FramePtr)
2755 .addImm(EndOffset)
2756 .setMIFlag(MachineInstr::FrameSetup)
2757 ->getOperand(3)
2758 .setIsDead();
2759 assert(EndOffset >= 0 &&
2760 "end of registration object above normal EBP position!");
2761 } else if (UsedReg == BasePtr) {
2762 // LEA offset(%ebp), %esi
2763 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2764 FramePtr, false, EndOffset)
2765 .setMIFlag(MachineInstr::FrameSetup);
2766 // MOV32rm SavedEBPOffset(%esi), %ebp
2767 assert(X86FI->getHasSEHFramePtrSave());
2768 int Offset =
2769 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2770 assert(UsedReg == BasePtr);
2771 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2772 UsedReg, true, Offset)
2773 .setMIFlag(MachineInstr::FrameSetup);
2774 } else {
2775 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2776 }
2777 return MBBI;
2778 }
2779
2780 namespace {
2781 // Struct used by orderFrameObjects to help sort the stack objects.
2782 struct X86FrameSortingObject {
2783 bool IsValid = false; // true if we care about this Object.
2784 unsigned ObjectIndex = 0; // Index of Object into MFI list.
2785 unsigned ObjectSize = 0; // Size of Object in bytes.
2786 unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
2787 unsigned ObjectNumUses = 0; // Object static number of uses.
2788 };
2789
2790 // The comparison function we use for std::sort to order our local
2791 // stack symbols. The current algorithm is to use an estimated
2792 // "density". This takes into consideration the size and number of
2793 // uses each object has in order to roughly minimize code size.
2794 // So, for example, an object of size 16B that is referenced 5 times
2795 // will get higher priority than 4 4B objects referenced 1 time each.
2796 // It's not perfect and we may be able to squeeze a few more bytes out of
2797 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
2798 // fringe end can have special consideration, given their size is less
2799 // important, etc.), but the algorithmic complexity grows too much to be
2800 // worth the extra gains we get. This gets us pretty close.
2801 // The final order leaves us with objects with highest priority going
2802 // at the end of our list.
2803 struct X86FrameSortingComparator {
operator ()__anon56024f940111::X86FrameSortingComparator2804 inline bool operator()(const X86FrameSortingObject &A,
2805 const X86FrameSortingObject &B) {
2806 uint64_t DensityAScaled, DensityBScaled;
2807
2808 // For consistency in our comparison, all invalid objects are placed
2809 // at the end. This also allows us to stop walking when we hit the
2810 // first invalid item after it's all sorted.
2811 if (!A.IsValid)
2812 return false;
2813 if (!B.IsValid)
2814 return true;
2815
2816 // The density is calculated by doing :
2817 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
2818 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
2819 // Since this approach may cause inconsistencies in
2820 // the floating point <, >, == comparisons, depending on the floating
2821 // point model with which the compiler was built, we're going
2822 // to scale both sides by multiplying with
2823 // A.ObjectSize * B.ObjectSize. This ends up factoring away
2824 // the division and, with it, the need for any floating point
2825 // arithmetic.
2826 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
2827 static_cast<uint64_t>(B.ObjectSize);
2828 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
2829 static_cast<uint64_t>(A.ObjectSize);
2830
2831 // If the two densities are equal, prioritize highest alignment
2832 // objects. This allows for similar alignment objects
2833 // to be packed together (given the same density).
2834 // There's room for improvement here, also, since we can pack
2835 // similar alignment (different density) objects next to each
2836 // other to save padding. This will also require further
2837 // complexity/iterations, and the overall gain isn't worth it,
2838 // in general. Something to keep in mind, though.
2839 if (DensityAScaled == DensityBScaled)
2840 return A.ObjectAlignment < B.ObjectAlignment;
2841
2842 return DensityAScaled < DensityBScaled;
2843 }
2844 };
2845 } // namespace
2846
2847 // Order the symbols in the local stack.
2848 // We want to place the local stack objects in some sort of sensible order.
2849 // The heuristic we use is to try and pack them according to static number
2850 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const2851 void X86FrameLowering::orderFrameObjects(
2852 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
2853 const MachineFrameInfo *MFI = MF.getFrameInfo();
2854
2855 // Don't waste time if there's nothing to do.
2856 if (ObjectsToAllocate.empty())
2857 return;
2858
2859 // Create an array of all MFI objects. We won't need all of these
2860 // objects, but we're going to create a full array of them to make
2861 // it easier to index into when we're counting "uses" down below.
2862 // We want to be able to easily/cheaply access an object by simply
2863 // indexing into it, instead of having to search for it every time.
2864 std::vector<X86FrameSortingObject> SortingObjects(MFI->getObjectIndexEnd());
2865
2866 // Walk the objects we care about and mark them as such in our working
2867 // struct.
2868 for (auto &Obj : ObjectsToAllocate) {
2869 SortingObjects[Obj].IsValid = true;
2870 SortingObjects[Obj].ObjectIndex = Obj;
2871 SortingObjects[Obj].ObjectAlignment = MFI->getObjectAlignment(Obj);
2872 // Set the size.
2873 int ObjectSize = MFI->getObjectSize(Obj);
2874 if (ObjectSize == 0)
2875 // Variable size. Just use 4.
2876 SortingObjects[Obj].ObjectSize = 4;
2877 else
2878 SortingObjects[Obj].ObjectSize = ObjectSize;
2879 }
2880
2881 // Count the number of uses for each object.
2882 for (auto &MBB : MF) {
2883 for (auto &MI : MBB) {
2884 if (MI.isDebugValue())
2885 continue;
2886 for (const MachineOperand &MO : MI.operands()) {
2887 // Check to see if it's a local stack symbol.
2888 if (!MO.isFI())
2889 continue;
2890 int Index = MO.getIndex();
2891 // Check to see if it falls within our range, and is tagged
2892 // to require ordering.
2893 if (Index >= 0 && Index < MFI->getObjectIndexEnd() &&
2894 SortingObjects[Index].IsValid)
2895 SortingObjects[Index].ObjectNumUses++;
2896 }
2897 }
2898 }
2899
2900 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
2901 // info).
2902 std::stable_sort(SortingObjects.begin(), SortingObjects.end(),
2903 X86FrameSortingComparator());
2904
2905 // Now modify the original list to represent the final order that
2906 // we want. The order will depend on whether we're going to access them
2907 // from the stack pointer or the frame pointer. For SP, the list should
2908 // end up with the END containing objects that we want with smaller offsets.
2909 // For FP, it should be flipped.
2910 int i = 0;
2911 for (auto &Obj : SortingObjects) {
2912 // All invalid items are sorted at the end, so it's safe to stop.
2913 if (!Obj.IsValid)
2914 break;
2915 ObjectsToAllocate[i++] = Obj.ObjectIndex;
2916 }
2917
2918 // Flip it if we're accessing off of the FP.
2919 if (!TRI->needsStackRealignment(MF) && hasFP(MF))
2920 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
2921 }
2922
2923
getWinEHParentFrameOffset(const MachineFunction & MF) const2924 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2925 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2926 unsigned Offset = 16;
2927 // RBP is immediately pushed.
2928 Offset += SlotSize;
2929 // All callee-saved registers are then pushed.
2930 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2931 // Every funclet allocates enough stack space for the largest outgoing call.
2932 Offset += getWinEHFuncletFrameSize(MF);
2933 return Offset;
2934 }
2935
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const2936 void X86FrameLowering::processFunctionBeforeFrameFinalized(
2937 MachineFunction &MF, RegScavenger *RS) const {
2938 // If this function isn't doing Win64-style C++ EH, we don't need to do
2939 // anything.
2940 const Function *Fn = MF.getFunction();
2941 if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2942 classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2943 return;
2944
2945 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2946 // relative to RSP after the prologue. Find the offset of the last fixed
2947 // object, so that we can allocate a slot immediately following it. If there
2948 // were no fixed objects, use offset -SlotSize, which is immediately after the
2949 // return address. Fixed objects have negative frame indices.
2950 MachineFrameInfo *MFI = MF.getFrameInfo();
2951 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
2952 int64_t MinFixedObjOffset = -SlotSize;
2953 for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
2954 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
2955
2956 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
2957 for (WinEHHandlerType &H : TBME.HandlerArray) {
2958 int FrameIndex = H.CatchObj.FrameIndex;
2959 if (FrameIndex != INT_MAX) {
2960 // Ensure alignment.
2961 unsigned Align = MFI->getObjectAlignment(FrameIndex);
2962 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
2963 MinFixedObjOffset -= MFI->getObjectSize(FrameIndex);
2964 MFI->setObjectOffset(FrameIndex, MinFixedObjOffset);
2965 }
2966 }
2967 }
2968
2969 // Ensure alignment.
2970 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
2971 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2972 int UnwindHelpFI =
2973 MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2974 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
2975
2976 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2977 // other frame setup instructions.
2978 MachineBasicBlock &MBB = MF.front();
2979 auto MBBI = MBB.begin();
2980 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2981 ++MBBI;
2982
2983 DebugLoc DL = MBB.findDebugLoc(MBBI);
2984 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2985 UnwindHelpFI)
2986 .addImm(-2);
2987 }
2988