1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 *
9 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included
19 * in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27 * OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "util/macros.h"
35 #include "util/u_math.h"
36 #include "util/rounding.h"
37 #include "imports.h"
38
39
40 /**
41 * \name Integer / float conversion for colors, normals, etc.
42 */
43 /*@{*/
44
45 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
46 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
47 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
48
49 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
50 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
51
52
53 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
54 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
55
56 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
57 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
58
59
60 /** Convert GLbyte to GLfloat while preserving zero */
61 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
62
63
64 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
65 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
66
67 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
68 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
69
70 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
71 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
72
73 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
74 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
75
76
77 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
78 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
79
80 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
81 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
82
83 /** Convert GLshort to GLfloat while preserving zero */
84 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
85
86
87 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
88 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
89
90 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
91 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
92
93
94 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
95 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
96
97 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
98 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
99
100
101 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
102 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
103
104 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
105 /* causes overflow:
106 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
107 */
108 /* a close approximation: */
109 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
110
111 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
112 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
113
114
115 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
116 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
117
118 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
119 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
120
121
122 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
123 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
124 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
125 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
126 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
127
128
129 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
130 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
131 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
132 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
133 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
134 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
135 us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
136 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
137 us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) )
138
139 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
140 s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
141
142 /***
143 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
144 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
145 ***/
146 #ifndef DEBUG
147 /* This function/macro is sensitive to precision. Test very carefully
148 * if you change it!
149 */
150 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
151 do { \
152 fi_type __tmp; \
153 __tmp.f = (FLT); \
154 if (__tmp.i < 0) \
155 UB = (GLubyte) 0; \
156 else if (__tmp.i >= IEEE_ONE) \
157 UB = (GLubyte) 255; \
158 else { \
159 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
160 UB = (GLubyte) __tmp.i; \
161 } \
162 } while (0)
163 #define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \
164 do { \
165 fi_type __tmp; \
166 __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \
167 UB = (GLubyte) __tmp.i; \
168 } while (0)
169 #else
170 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
171 ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F))
172 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
173 ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F))
174 #endif
175
UINT_AS_UNION(GLuint u)176 static fi_type UINT_AS_UNION(GLuint u)
177 {
178 fi_type tmp;
179 tmp.u = u;
180 return tmp;
181 }
182
INT_AS_UNION(GLint i)183 static inline fi_type INT_AS_UNION(GLint i)
184 {
185 fi_type tmp;
186 tmp.i = i;
187 return tmp;
188 }
189
FLOAT_AS_UNION(GLfloat f)190 static inline fi_type FLOAT_AS_UNION(GLfloat f)
191 {
192 fi_type tmp;
193 tmp.f = f;
194 return tmp;
195 }
196
197 /**
198 * Convert a floating point value to an unsigned fixed point value.
199 *
200 * \param frac_bits The number of bits used to store the fractional part.
201 */
202 static inline uint32_t
U_FIXED(float value,uint32_t frac_bits)203 U_FIXED(float value, uint32_t frac_bits)
204 {
205 value *= (1 << frac_bits);
206 return value < 0.0f ? 0 : (uint32_t) value;
207 }
208
209 /**
210 * Convert a floating point value to an signed fixed point value.
211 *
212 * \param frac_bits The number of bits used to store the fractional part.
213 */
214 static inline int32_t
S_FIXED(float value,uint32_t frac_bits)215 S_FIXED(float value, uint32_t frac_bits)
216 {
217 return (int32_t) (value * (1 << frac_bits));
218 }
219 /*@}*/
220
221
222 /** Stepping a GLfloat pointer by a byte stride */
223 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
224 /** Stepping a GLuint pointer by a byte stride */
225 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
226 /** Stepping a GLubyte[4] pointer by a byte stride */
227 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
228 /** Stepping a GLfloat[4] pointer by a byte stride */
229 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
230 /** Stepping a \p t pointer by a byte stride */
231 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
232
233
234 /**********************************************************************/
235 /** \name 4-element vector operations */
236 /*@{*/
237
238 /** Zero */
239 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
240
241 /** Test for equality */
242 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
243 (a)[1] == (b)[1] && \
244 (a)[2] == (b)[2] && \
245 (a)[3] == (b)[3])
246
247 /** Test for equality (unsigned bytes) */
248 static inline GLboolean
TEST_EQ_4UBV(const GLubyte a[4],const GLubyte b[4])249 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
250 {
251 #if defined(__i386__)
252 return *((const GLuint *) a) == *((const GLuint *) b);
253 #else
254 return TEST_EQ_4V(a, b);
255 #endif
256 }
257
258
259 /** Copy a 4-element vector */
260 #define COPY_4V( DST, SRC ) \
261 do { \
262 (DST)[0] = (SRC)[0]; \
263 (DST)[1] = (SRC)[1]; \
264 (DST)[2] = (SRC)[2]; \
265 (DST)[3] = (SRC)[3]; \
266 } while (0)
267
268 /** Copy a 4-element unsigned byte vector */
269 static inline void
COPY_4UBV(GLubyte dst[4],const GLubyte src[4])270 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
271 {
272 #if defined(__i386__)
273 *((GLuint *) dst) = *((GLuint *) src);
274 #else
275 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
276 COPY_4V(dst, src);
277 #endif
278 }
279
280 /** Copy \p SZ elements into a 4-element vector */
281 #define COPY_SZ_4V(DST, SZ, SRC) \
282 do { \
283 switch (SZ) { \
284 case 4: (DST)[3] = (SRC)[3]; \
285 case 3: (DST)[2] = (SRC)[2]; \
286 case 2: (DST)[1] = (SRC)[1]; \
287 case 1: (DST)[0] = (SRC)[0]; \
288 } \
289 } while(0)
290
291 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
292 * default values to the remaining */
293 #define COPY_CLEAN_4V(DST, SZ, SRC) \
294 do { \
295 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
296 COPY_SZ_4V( DST, SZ, SRC ); \
297 } while (0)
298
299 /** Subtraction */
300 #define SUB_4V( DST, SRCA, SRCB ) \
301 do { \
302 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
303 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
304 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
305 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
306 } while (0)
307
308 /** Addition */
309 #define ADD_4V( DST, SRCA, SRCB ) \
310 do { \
311 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
312 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
313 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
314 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
315 } while (0)
316
317 /** Element-wise multiplication */
318 #define SCALE_4V( DST, SRCA, SRCB ) \
319 do { \
320 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
321 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
322 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
323 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
324 } while (0)
325
326 /** In-place addition */
327 #define ACC_4V( DST, SRC ) \
328 do { \
329 (DST)[0] += (SRC)[0]; \
330 (DST)[1] += (SRC)[1]; \
331 (DST)[2] += (SRC)[2]; \
332 (DST)[3] += (SRC)[3]; \
333 } while (0)
334
335 /** Element-wise multiplication and addition */
336 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
337 do { \
338 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
339 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
340 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
341 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
342 } while (0)
343
344 /** In-place scalar multiplication and addition */
345 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
346 do { \
347 (DST)[0] += S * (SRCB)[0]; \
348 (DST)[1] += S * (SRCB)[1]; \
349 (DST)[2] += S * (SRCB)[2]; \
350 (DST)[3] += S * (SRCB)[3]; \
351 } while (0)
352
353 /** Scalar multiplication */
354 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
355 do { \
356 (DST)[0] = S * (SRCB)[0]; \
357 (DST)[1] = S * (SRCB)[1]; \
358 (DST)[2] = S * (SRCB)[2]; \
359 (DST)[3] = S * (SRCB)[3]; \
360 } while (0)
361
362 /** In-place scalar multiplication */
363 #define SELF_SCALE_SCALAR_4V( DST, S ) \
364 do { \
365 (DST)[0] *= S; \
366 (DST)[1] *= S; \
367 (DST)[2] *= S; \
368 (DST)[3] *= S; \
369 } while (0)
370
371 /*@}*/
372
373
374 /**********************************************************************/
375 /** \name 3-element vector operations*/
376 /*@{*/
377
378 /** Zero */
379 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
380
381 /** Test for equality */
382 #define TEST_EQ_3V(a,b) \
383 ((a)[0] == (b)[0] && \
384 (a)[1] == (b)[1] && \
385 (a)[2] == (b)[2])
386
387 /** Copy a 3-element vector */
388 #define COPY_3V( DST, SRC ) \
389 do { \
390 (DST)[0] = (SRC)[0]; \
391 (DST)[1] = (SRC)[1]; \
392 (DST)[2] = (SRC)[2]; \
393 } while (0)
394
395 /** Copy a 3-element vector with cast */
396 #define COPY_3V_CAST( DST, SRC, CAST ) \
397 do { \
398 (DST)[0] = (CAST)(SRC)[0]; \
399 (DST)[1] = (CAST)(SRC)[1]; \
400 (DST)[2] = (CAST)(SRC)[2]; \
401 } while (0)
402
403 /** Copy a 3-element float vector */
404 #define COPY_3FV( DST, SRC ) \
405 do { \
406 const GLfloat *_tmp = (SRC); \
407 (DST)[0] = _tmp[0]; \
408 (DST)[1] = _tmp[1]; \
409 (DST)[2] = _tmp[2]; \
410 } while (0)
411
412 /** Subtraction */
413 #define SUB_3V( DST, SRCA, SRCB ) \
414 do { \
415 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
416 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
417 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
418 } while (0)
419
420 /** Addition */
421 #define ADD_3V( DST, SRCA, SRCB ) \
422 do { \
423 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
424 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
425 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
426 } while (0)
427
428 /** In-place scalar multiplication */
429 #define SCALE_3V( DST, SRCA, SRCB ) \
430 do { \
431 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
432 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
433 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
434 } while (0)
435
436 /** In-place element-wise multiplication */
437 #define SELF_SCALE_3V( DST, SRC ) \
438 do { \
439 (DST)[0] *= (SRC)[0]; \
440 (DST)[1] *= (SRC)[1]; \
441 (DST)[2] *= (SRC)[2]; \
442 } while (0)
443
444 /** In-place addition */
445 #define ACC_3V( DST, SRC ) \
446 do { \
447 (DST)[0] += (SRC)[0]; \
448 (DST)[1] += (SRC)[1]; \
449 (DST)[2] += (SRC)[2]; \
450 } while (0)
451
452 /** Element-wise multiplication and addition */
453 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
454 do { \
455 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
456 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
457 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
458 } while (0)
459
460 /** Scalar multiplication */
461 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
462 do { \
463 (DST)[0] = S * (SRCB)[0]; \
464 (DST)[1] = S * (SRCB)[1]; \
465 (DST)[2] = S * (SRCB)[2]; \
466 } while (0)
467
468 /** In-place scalar multiplication and addition */
469 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
470 do { \
471 (DST)[0] += S * (SRCB)[0]; \
472 (DST)[1] += S * (SRCB)[1]; \
473 (DST)[2] += S * (SRCB)[2]; \
474 } while (0)
475
476 /** In-place scalar multiplication */
477 #define SELF_SCALE_SCALAR_3V( DST, S ) \
478 do { \
479 (DST)[0] *= S; \
480 (DST)[1] *= S; \
481 (DST)[2] *= S; \
482 } while (0)
483
484 /** In-place scalar addition */
485 #define ACC_SCALAR_3V( DST, S ) \
486 do { \
487 (DST)[0] += S; \
488 (DST)[1] += S; \
489 (DST)[2] += S; \
490 } while (0)
491
492 /** Assignment */
493 #define ASSIGN_3V( V, V0, V1, V2 ) \
494 do { \
495 V[0] = V0; \
496 V[1] = V1; \
497 V[2] = V2; \
498 } while(0)
499
500 /*@}*/
501
502
503 /**********************************************************************/
504 /** \name 2-element vector operations*/
505 /*@{*/
506
507 /** Zero */
508 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
509
510 /** Copy a 2-element vector */
511 #define COPY_2V( DST, SRC ) \
512 do { \
513 (DST)[0] = (SRC)[0]; \
514 (DST)[1] = (SRC)[1]; \
515 } while (0)
516
517 /** Copy a 2-element vector with cast */
518 #define COPY_2V_CAST( DST, SRC, CAST ) \
519 do { \
520 (DST)[0] = (CAST)(SRC)[0]; \
521 (DST)[1] = (CAST)(SRC)[1]; \
522 } while (0)
523
524 /** Copy a 2-element float vector */
525 #define COPY_2FV( DST, SRC ) \
526 do { \
527 const GLfloat *_tmp = (SRC); \
528 (DST)[0] = _tmp[0]; \
529 (DST)[1] = _tmp[1]; \
530 } while (0)
531
532 /** Subtraction */
533 #define SUB_2V( DST, SRCA, SRCB ) \
534 do { \
535 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
536 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
537 } while (0)
538
539 /** Addition */
540 #define ADD_2V( DST, SRCA, SRCB ) \
541 do { \
542 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
543 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
544 } while (0)
545
546 /** In-place scalar multiplication */
547 #define SCALE_2V( DST, SRCA, SRCB ) \
548 do { \
549 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
550 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
551 } while (0)
552
553 /** In-place addition */
554 #define ACC_2V( DST, SRC ) \
555 do { \
556 (DST)[0] += (SRC)[0]; \
557 (DST)[1] += (SRC)[1]; \
558 } while (0)
559
560 /** Element-wise multiplication and addition */
561 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
562 do { \
563 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
564 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
565 } while (0)
566
567 /** Scalar multiplication */
568 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
569 do { \
570 (DST)[0] = S * (SRCB)[0]; \
571 (DST)[1] = S * (SRCB)[1]; \
572 } while (0)
573
574 /** In-place scalar multiplication and addition */
575 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
576 do { \
577 (DST)[0] += S * (SRCB)[0]; \
578 (DST)[1] += S * (SRCB)[1]; \
579 } while (0)
580
581 /** In-place scalar multiplication */
582 #define SELF_SCALE_SCALAR_2V( DST, S ) \
583 do { \
584 (DST)[0] *= S; \
585 (DST)[1] *= S; \
586 } while (0)
587
588 /** In-place scalar addition */
589 #define ACC_SCALAR_2V( DST, S ) \
590 do { \
591 (DST)[0] += S; \
592 (DST)[1] += S; \
593 } while (0)
594
595 /** Assign scalers to short vectors */
596 #define ASSIGN_2V( V, V0, V1 ) \
597 do { \
598 V[0] = V0; \
599 V[1] = V1; \
600 } while(0)
601
602 /*@}*/
603
604 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
605 * default values to the remaining components.
606 * The default values are chosen based on \p type.
607 */
608 static inline void
COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4],int sz,const fi_type src[4],GLenum type)609 COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4],
610 GLenum type)
611 {
612 switch (type) {
613 case GL_FLOAT:
614 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
615 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1));
616 break;
617 case GL_INT:
618 ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0),
619 INT_AS_UNION(0), INT_AS_UNION(1));
620 break;
621 case GL_UNSIGNED_INT:
622 ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0),
623 UINT_AS_UNION(0), UINT_AS_UNION(1));
624 break;
625 default:
626 ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
627 FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */
628 assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro");
629 }
630 COPY_SZ_4V(dst, sz, src);
631 }
632
633 /** \name Linear interpolation functions */
634 /*@{*/
635
636 static inline GLfloat
LINTERP(GLfloat t,GLfloat out,GLfloat in)637 LINTERP(GLfloat t, GLfloat out, GLfloat in)
638 {
639 return out + t * (in - out);
640 }
641
642 static inline void
INTERP_3F(GLfloat t,GLfloat dst[3],const GLfloat out[3],const GLfloat in[3])643 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
644 {
645 dst[0] = LINTERP( t, out[0], in[0] );
646 dst[1] = LINTERP( t, out[1], in[1] );
647 dst[2] = LINTERP( t, out[2], in[2] );
648 }
649
650 static inline void
INTERP_4F(GLfloat t,GLfloat dst[4],const GLfloat out[4],const GLfloat in[4])651 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
652 {
653 dst[0] = LINTERP( t, out[0], in[0] );
654 dst[1] = LINTERP( t, out[1], in[1] );
655 dst[2] = LINTERP( t, out[2], in[2] );
656 dst[3] = LINTERP( t, out[3], in[3] );
657 }
658
659 /*@}*/
660
661
662
663 static inline unsigned
minify(unsigned value,unsigned levels)664 minify(unsigned value, unsigned levels)
665 {
666 return MAX2(1, value >> levels);
667 }
668
669 /**
670 * Align a value up to an alignment value
671 *
672 * If \c value is not already aligned to the requested alignment value, it
673 * will be rounded up.
674 *
675 * \param value Value to be rounded
676 * \param alignment Alignment value to be used. This must be a power of two.
677 *
678 * \sa ROUND_DOWN_TO()
679 */
680 static inline uintptr_t
ALIGN(uintptr_t value,int32_t alignment)681 ALIGN(uintptr_t value, int32_t alignment)
682 {
683 assert((alignment > 0) && _mesa_is_pow_two(alignment));
684 return (((value) + (alignment) - 1) & ~((alignment) - 1));
685 }
686
687 /**
688 * Like ALIGN(), but works with a non-power-of-two alignment.
689 */
690 static inline uintptr_t
ALIGN_NPOT(uintptr_t value,int32_t alignment)691 ALIGN_NPOT(uintptr_t value, int32_t alignment)
692 {
693 assert(alignment > 0);
694 return (value + alignment - 1) / alignment * alignment;
695 }
696
697 /**
698 * Align a value down to an alignment value
699 *
700 * If \c value is not already aligned to the requested alignment value, it
701 * will be rounded down.
702 *
703 * \param value Value to be rounded
704 * \param alignment Alignment value to be used. This must be a power of two.
705 *
706 * \sa ALIGN()
707 */
708 static inline uintptr_t
ROUND_DOWN_TO(uintptr_t value,int32_t alignment)709 ROUND_DOWN_TO(uintptr_t value, int32_t alignment)
710 {
711 assert((alignment > 0) && _mesa_is_pow_two(alignment));
712 return ((value) & ~(alignment - 1));
713 }
714
715
716 /** Cross product of two 3-element vectors */
717 static inline void
CROSS3(GLfloat n[3],const GLfloat u[3],const GLfloat v[3])718 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
719 {
720 n[0] = u[1] * v[2] - u[2] * v[1];
721 n[1] = u[2] * v[0] - u[0] * v[2];
722 n[2] = u[0] * v[1] - u[1] * v[0];
723 }
724
725
726 /** Dot product of two 2-element vectors */
727 static inline GLfloat
DOT2(const GLfloat a[2],const GLfloat b[2])728 DOT2(const GLfloat a[2], const GLfloat b[2])
729 {
730 return a[0] * b[0] + a[1] * b[1];
731 }
732
733 static inline GLfloat
DOT3(const GLfloat a[3],const GLfloat b[3])734 DOT3(const GLfloat a[3], const GLfloat b[3])
735 {
736 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
737 }
738
739 static inline GLfloat
DOT4(const GLfloat a[4],const GLfloat b[4])740 DOT4(const GLfloat a[4], const GLfloat b[4])
741 {
742 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
743 }
744
745
746 static inline GLfloat
LEN_SQUARED_3FV(const GLfloat v[3])747 LEN_SQUARED_3FV(const GLfloat v[3])
748 {
749 return DOT3(v, v);
750 }
751
752 static inline GLfloat
LEN_SQUARED_2FV(const GLfloat v[2])753 LEN_SQUARED_2FV(const GLfloat v[2])
754 {
755 return DOT2(v, v);
756 }
757
758
759 static inline GLfloat
LEN_3FV(const GLfloat v[3])760 LEN_3FV(const GLfloat v[3])
761 {
762 return sqrtf(LEN_SQUARED_3FV(v));
763 }
764
765 static inline GLfloat
LEN_2FV(const GLfloat v[2])766 LEN_2FV(const GLfloat v[2])
767 {
768 return sqrtf(LEN_SQUARED_2FV(v));
769 }
770
771
772 /* Normalize a 3-element vector to unit length. */
773 static inline void
NORMALIZE_3FV(GLfloat v[3])774 NORMALIZE_3FV(GLfloat v[3])
775 {
776 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
777 if (len) {
778 len = 1.0f / sqrtf(len);
779 v[0] *= len;
780 v[1] *= len;
781 v[2] *= len;
782 }
783 }
784
785
786 /** Test two floats have opposite signs */
787 static inline GLboolean
DIFFERENT_SIGNS(GLfloat x,GLfloat y)788 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
789 {
790 #ifdef _MSC_VER
791 #pragma warning( push )
792 #pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */
793 #endif
794 return signbit(x) != signbit(y);
795 #ifdef _MSC_VER
796 #pragma warning( pop )
797 #endif
798 }
799
800
801 /** casts to silence warnings with some compilers */
802 #define ENUM_TO_INT(E) ((GLint)(E))
803 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
804 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
805 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
806
807
808 /* Stringify */
809 #define STRINGIFY(x) #x
810
811 #endif
812