1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * sha384_vector - SHA384 hash for data vector 84 * @num_elem: Number of elements in the data vector 85 * @addr: Pointers to the data areas 86 * @len: Lengths of the data blocks 87 * @mac: Buffer for the hash 88 * Returns: 0 on success, -1 on failure 89 */ 90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, 91 u8 *mac); 92 93 /** 94 * sha512_vector - SHA512 hash for data vector 95 * @num_elem: Number of elements in the data vector 96 * @addr: Pointers to the data areas 97 * @len: Lengths of the data blocks 98 * @mac: Buffer for the hash 99 * Returns: 0 on success, -1 on failure 100 */ 101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, 102 u8 *mac); 103 104 /** 105 * des_encrypt - Encrypt one block with DES 106 * @clear: 8 octets (in) 107 * @key: 7 octets (in) (no parity bits included) 108 * @cypher: 8 octets (out) 109 */ 110 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 111 112 /** 113 * aes_encrypt_init - Initialize AES for encryption 114 * @key: Encryption key 115 * @len: Key length in bytes (usually 16, i.e., 128 bits) 116 * Returns: Pointer to context data or %NULL on failure 117 */ 118 void * aes_encrypt_init(const u8 *key, size_t len); 119 120 /** 121 * aes_encrypt - Encrypt one AES block 122 * @ctx: Context pointer from aes_encrypt_init() 123 * @plain: Plaintext data to be encrypted (16 bytes) 124 * @crypt: Buffer for the encrypted data (16 bytes) 125 */ 126 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 127 128 /** 129 * aes_encrypt_deinit - Deinitialize AES encryption 130 * @ctx: Context pointer from aes_encrypt_init() 131 */ 132 void aes_encrypt_deinit(void *ctx); 133 134 /** 135 * aes_decrypt_init - Initialize AES for decryption 136 * @key: Decryption key 137 * @len: Key length in bytes (usually 16, i.e., 128 bits) 138 * Returns: Pointer to context data or %NULL on failure 139 */ 140 void * aes_decrypt_init(const u8 *key, size_t len); 141 142 /** 143 * aes_decrypt - Decrypt one AES block 144 * @ctx: Context pointer from aes_encrypt_init() 145 * @crypt: Encrypted data (16 bytes) 146 * @plain: Buffer for the decrypted data (16 bytes) 147 */ 148 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 149 150 /** 151 * aes_decrypt_deinit - Deinitialize AES decryption 152 * @ctx: Context pointer from aes_encrypt_init() 153 */ 154 void aes_decrypt_deinit(void *ctx); 155 156 157 enum crypto_hash_alg { 158 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 159 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 160 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256, 161 CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512 162 }; 163 164 struct crypto_hash; 165 166 /** 167 * crypto_hash_init - Initialize hash/HMAC function 168 * @alg: Hash algorithm 169 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 170 * @key_len: Length of the key in bytes 171 * Returns: Pointer to hash context to use with other hash functions or %NULL 172 * on failure 173 * 174 * This function is only used with internal TLSv1 implementation 175 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 176 * to implement this. 177 */ 178 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 179 size_t key_len); 180 181 /** 182 * crypto_hash_update - Add data to hash calculation 183 * @ctx: Context pointer from crypto_hash_init() 184 * @data: Data buffer to add 185 * @len: Length of the buffer 186 * 187 * This function is only used with internal TLSv1 implementation 188 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 189 * to implement this. 190 */ 191 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 192 193 /** 194 * crypto_hash_finish - Complete hash calculation 195 * @ctx: Context pointer from crypto_hash_init() 196 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 197 * context 198 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 199 * hash context; on return, this is set to the actual length of the hash value 200 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 201 * or -2 on other failures (including failed crypto_hash_update() operations) 202 * 203 * This function calculates the hash value and frees the context buffer that 204 * was used for hash calculation. 205 * 206 * This function is only used with internal TLSv1 implementation 207 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 208 * to implement this. 209 */ 210 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 211 212 213 enum crypto_cipher_alg { 214 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 215 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 216 }; 217 218 struct crypto_cipher; 219 220 /** 221 * crypto_cipher_init - Initialize block/stream cipher function 222 * @alg: Cipher algorithm 223 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 224 * @key: Cipher key 225 * @key_len: Length of key in bytes 226 * Returns: Pointer to cipher context to use with other cipher functions or 227 * %NULL on failure 228 * 229 * This function is only used with internal TLSv1 implementation 230 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 231 * to implement this. 232 */ 233 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 234 const u8 *iv, const u8 *key, 235 size_t key_len); 236 237 /** 238 * crypto_cipher_encrypt - Cipher encrypt 239 * @ctx: Context pointer from crypto_cipher_init() 240 * @plain: Plaintext to cipher 241 * @crypt: Resulting ciphertext 242 * @len: Length of the plaintext 243 * Returns: 0 on success, -1 on failure 244 * 245 * This function is only used with internal TLSv1 implementation 246 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 247 * to implement this. 248 */ 249 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 250 const u8 *plain, u8 *crypt, size_t len); 251 252 /** 253 * crypto_cipher_decrypt - Cipher decrypt 254 * @ctx: Context pointer from crypto_cipher_init() 255 * @crypt: Ciphertext to decrypt 256 * @plain: Resulting plaintext 257 * @len: Length of the cipher text 258 * Returns: 0 on success, -1 on failure 259 * 260 * This function is only used with internal TLSv1 implementation 261 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 262 * to implement this. 263 */ 264 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 265 const u8 *crypt, u8 *plain, size_t len); 266 267 /** 268 * crypto_cipher_decrypt - Free cipher context 269 * @ctx: Context pointer from crypto_cipher_init() 270 * 271 * This function is only used with internal TLSv1 implementation 272 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 273 * to implement this. 274 */ 275 void crypto_cipher_deinit(struct crypto_cipher *ctx); 276 277 278 struct crypto_public_key; 279 struct crypto_private_key; 280 281 /** 282 * crypto_public_key_import - Import an RSA public key 283 * @key: Key buffer (DER encoded RSA public key) 284 * @len: Key buffer length in bytes 285 * Returns: Pointer to the public key or %NULL on failure 286 * 287 * This function can just return %NULL if the crypto library supports X.509 288 * parsing. In that case, crypto_public_key_from_cert() is used to import the 289 * public key from a certificate. 290 * 291 * This function is only used with internal TLSv1 implementation 292 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 293 * to implement this. 294 */ 295 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 296 297 struct crypto_public_key * 298 crypto_public_key_import_parts(const u8 *n, size_t n_len, 299 const u8 *e, size_t e_len); 300 301 /** 302 * crypto_private_key_import - Import an RSA private key 303 * @key: Key buffer (DER encoded RSA private key) 304 * @len: Key buffer length in bytes 305 * @passwd: Key encryption password or %NULL if key is not encrypted 306 * Returns: Pointer to the private key or %NULL on failure 307 * 308 * This function is only used with internal TLSv1 implementation 309 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 310 * to implement this. 311 */ 312 struct crypto_private_key * crypto_private_key_import(const u8 *key, 313 size_t len, 314 const char *passwd); 315 316 /** 317 * crypto_public_key_from_cert - Import an RSA public key from a certificate 318 * @buf: DER encoded X.509 certificate 319 * @len: Certificate buffer length in bytes 320 * Returns: Pointer to public key or %NULL on failure 321 * 322 * This function can just return %NULL if the crypto library does not support 323 * X.509 parsing. In that case, internal code will be used to parse the 324 * certificate and public key is imported using crypto_public_key_import(). 325 * 326 * This function is only used with internal TLSv1 implementation 327 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 328 * to implement this. 329 */ 330 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 331 size_t len); 332 333 /** 334 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 335 * @key: Public key 336 * @in: Plaintext buffer 337 * @inlen: Length of plaintext buffer in bytes 338 * @out: Output buffer for encrypted data 339 * @outlen: Length of output buffer in bytes; set to used length on success 340 * Returns: 0 on success, -1 on failure 341 * 342 * This function is only used with internal TLSv1 implementation 343 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 344 * to implement this. 345 */ 346 int __must_check crypto_public_key_encrypt_pkcs1_v15( 347 struct crypto_public_key *key, const u8 *in, size_t inlen, 348 u8 *out, size_t *outlen); 349 350 /** 351 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 352 * @key: Private key 353 * @in: Encrypted buffer 354 * @inlen: Length of encrypted buffer in bytes 355 * @out: Output buffer for encrypted data 356 * @outlen: Length of output buffer in bytes; set to used length on success 357 * Returns: 0 on success, -1 on failure 358 * 359 * This function is only used with internal TLSv1 implementation 360 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 361 * to implement this. 362 */ 363 int __must_check crypto_private_key_decrypt_pkcs1_v15( 364 struct crypto_private_key *key, const u8 *in, size_t inlen, 365 u8 *out, size_t *outlen); 366 367 /** 368 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 369 * @key: Private key from crypto_private_key_import() 370 * @in: Plaintext buffer 371 * @inlen: Length of plaintext buffer in bytes 372 * @out: Output buffer for encrypted (signed) data 373 * @outlen: Length of output buffer in bytes; set to used length on success 374 * Returns: 0 on success, -1 on failure 375 * 376 * This function is only used with internal TLSv1 implementation 377 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 378 * to implement this. 379 */ 380 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 381 const u8 *in, size_t inlen, 382 u8 *out, size_t *outlen); 383 384 /** 385 * crypto_public_key_free - Free public key 386 * @key: Public key 387 * 388 * This function is only used with internal TLSv1 implementation 389 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 390 * to implement this. 391 */ 392 void crypto_public_key_free(struct crypto_public_key *key); 393 394 /** 395 * crypto_private_key_free - Free private key 396 * @key: Private key from crypto_private_key_import() 397 * 398 * This function is only used with internal TLSv1 implementation 399 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 400 * to implement this. 401 */ 402 void crypto_private_key_free(struct crypto_private_key *key); 403 404 /** 405 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 406 * @key: Public key 407 * @crypt: Encrypted signature data (using the private key) 408 * @crypt_len: Encrypted signature data length 409 * @plain: Buffer for plaintext (at least crypt_len bytes) 410 * @plain_len: Plaintext length (max buffer size on input, real len on output); 411 * Returns: 0 on success, -1 on failure 412 */ 413 int __must_check crypto_public_key_decrypt_pkcs1( 414 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 415 u8 *plain, size_t *plain_len); 416 417 /** 418 * crypto_global_init - Initialize crypto wrapper 419 * 420 * This function is only used with internal TLSv1 implementation 421 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 422 * to implement this. 423 */ 424 int __must_check crypto_global_init(void); 425 426 /** 427 * crypto_global_deinit - Deinitialize crypto wrapper 428 * 429 * This function is only used with internal TLSv1 implementation 430 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 431 * to implement this. 432 */ 433 void crypto_global_deinit(void); 434 435 /** 436 * crypto_mod_exp - Modular exponentiation of large integers 437 * @base: Base integer (big endian byte array) 438 * @base_len: Length of base integer in bytes 439 * @power: Power integer (big endian byte array) 440 * @power_len: Length of power integer in bytes 441 * @modulus: Modulus integer (big endian byte array) 442 * @modulus_len: Length of modulus integer in bytes 443 * @result: Buffer for the result 444 * @result_len: Result length (max buffer size on input, real len on output) 445 * Returns: 0 on success, -1 on failure 446 * 447 * This function calculates result = base ^ power mod modulus. modules_len is 448 * used as the maximum size of modulus buffer. It is set to the used size on 449 * success. 450 * 451 * This function is only used with internal TLSv1 implementation 452 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 453 * to implement this. 454 */ 455 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 456 const u8 *power, size_t power_len, 457 const u8 *modulus, size_t modulus_len, 458 u8 *result, size_t *result_len); 459 460 /** 461 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 462 * @key: RC4 key 463 * @keylen: RC4 key length 464 * @skip: number of bytes to skip from the beginning of the RC4 stream 465 * @data: data to be XOR'ed with RC4 stream 466 * @data_len: buf length 467 * Returns: 0 on success, -1 on failure 468 * 469 * Generate RC4 pseudo random stream for the given key, skip beginning of the 470 * stream, and XOR the end result with the data buffer to perform RC4 471 * encryption/decryption. 472 */ 473 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 474 u8 *data, size_t data_len); 475 476 /** 477 * crypto_get_random - Generate cryptographically strong pseudy-random bytes 478 * @buf: Buffer for data 479 * @len: Number of bytes to generate 480 * Returns: 0 on success, -1 on failure 481 * 482 * If the PRNG does not have enough entropy to ensure unpredictable byte 483 * sequence, this functions must return -1. 484 */ 485 int crypto_get_random(void *buf, size_t len); 486 487 488 /** 489 * struct crypto_bignum - bignum 490 * 491 * Internal data structure for bignum implementation. The contents is specific 492 * to the used crypto library. 493 */ 494 struct crypto_bignum; 495 496 /** 497 * crypto_bignum_init - Allocate memory for bignum 498 * Returns: Pointer to allocated bignum or %NULL on failure 499 */ 500 struct crypto_bignum * crypto_bignum_init(void); 501 502 /** 503 * crypto_bignum_init_set - Allocate memory for bignum and set the value 504 * @buf: Buffer with unsigned binary value 505 * @len: Length of buf in octets 506 * Returns: Pointer to allocated bignum or %NULL on failure 507 */ 508 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 509 510 /** 511 * crypto_bignum_deinit - Free bignum 512 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 513 * @clear: Whether to clear the value from memory 514 */ 515 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 516 517 /** 518 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 519 * @a: Bignum 520 * @buf: Buffer for the binary number 521 * @len: Length of @buf in octets 522 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 523 * Returns: Number of octets written on success, -1 on failure 524 */ 525 int crypto_bignum_to_bin(const struct crypto_bignum *a, 526 u8 *buf, size_t buflen, size_t padlen); 527 528 /** 529 * crypto_bignum_add - c = a + b 530 * @a: Bignum 531 * @b: Bignum 532 * @c: Bignum; used to store the result of a + b 533 * Returns: 0 on success, -1 on failure 534 */ 535 int crypto_bignum_add(const struct crypto_bignum *a, 536 const struct crypto_bignum *b, 537 struct crypto_bignum *c); 538 539 /** 540 * crypto_bignum_mod - c = a % b 541 * @a: Bignum 542 * @b: Bignum 543 * @c: Bignum; used to store the result of a % b 544 * Returns: 0 on success, -1 on failure 545 */ 546 int crypto_bignum_mod(const struct crypto_bignum *a, 547 const struct crypto_bignum *b, 548 struct crypto_bignum *c); 549 550 /** 551 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 552 * @a: Bignum; base 553 * @b: Bignum; exponent 554 * @c: Bignum; modulus 555 * @d: Bignum; used to store the result of a^b (mod c) 556 * Returns: 0 on success, -1 on failure 557 */ 558 int crypto_bignum_exptmod(const struct crypto_bignum *a, 559 const struct crypto_bignum *b, 560 const struct crypto_bignum *c, 561 struct crypto_bignum *d); 562 563 /** 564 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 565 * @a: Bignum 566 * @b: Bignum 567 * @c: Bignum; used to store the result 568 * Returns: 0 on success, -1 on failure 569 */ 570 int crypto_bignum_inverse(const struct crypto_bignum *a, 571 const struct crypto_bignum *b, 572 struct crypto_bignum *c); 573 574 /** 575 * crypto_bignum_sub - c = a - b 576 * @a: Bignum 577 * @b: Bignum 578 * @c: Bignum; used to store the result of a - b 579 * Returns: 0 on success, -1 on failure 580 */ 581 int crypto_bignum_sub(const struct crypto_bignum *a, 582 const struct crypto_bignum *b, 583 struct crypto_bignum *c); 584 585 /** 586 * crypto_bignum_div - c = a / b 587 * @a: Bignum 588 * @b: Bignum 589 * @c: Bignum; used to store the result of a / b 590 * Returns: 0 on success, -1 on failure 591 */ 592 int crypto_bignum_div(const struct crypto_bignum *a, 593 const struct crypto_bignum *b, 594 struct crypto_bignum *c); 595 596 /** 597 * crypto_bignum_mulmod - d = a * b (mod c) 598 * @a: Bignum 599 * @b: Bignum 600 * @c: Bignum 601 * @d: Bignum; used to store the result of (a * b) % c 602 * Returns: 0 on success, -1 on failure 603 */ 604 int crypto_bignum_mulmod(const struct crypto_bignum *a, 605 const struct crypto_bignum *b, 606 const struct crypto_bignum *c, 607 struct crypto_bignum *d); 608 609 /** 610 * crypto_bignum_cmp - Compare two bignums 611 * @a: Bignum 612 * @b: Bignum 613 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 614 */ 615 int crypto_bignum_cmp(const struct crypto_bignum *a, 616 const struct crypto_bignum *b); 617 618 /** 619 * crypto_bignum_bits - Get size of a bignum in bits 620 * @a: Bignum 621 * Returns: Number of bits in the bignum 622 */ 623 int crypto_bignum_bits(const struct crypto_bignum *a); 624 625 /** 626 * crypto_bignum_is_zero - Is the given bignum zero 627 * @a: Bignum 628 * Returns: 1 if @a is zero or 0 if not 629 */ 630 int crypto_bignum_is_zero(const struct crypto_bignum *a); 631 632 /** 633 * crypto_bignum_is_one - Is the given bignum one 634 * @a: Bignum 635 * Returns: 1 if @a is one or 0 if not 636 */ 637 int crypto_bignum_is_one(const struct crypto_bignum *a); 638 639 /** 640 * crypto_bignum_legendre - Compute the Legendre symbol (a/p) 641 * @a: Bignum 642 * @p: Bignum 643 * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure 644 */ 645 int crypto_bignum_legendre(const struct crypto_bignum *a, 646 const struct crypto_bignum *p); 647 648 /** 649 * struct crypto_ec - Elliptic curve context 650 * 651 * Internal data structure for EC implementation. The contents is specific 652 * to the used crypto library. 653 */ 654 struct crypto_ec; 655 656 /** 657 * crypto_ec_init - Initialize elliptic curve context 658 * @group: Identifying number for the ECC group (IANA "Group Description" 659 * attribute registrty for RFC 2409) 660 * Returns: Pointer to EC context or %NULL on failure 661 */ 662 struct crypto_ec * crypto_ec_init(int group); 663 664 /** 665 * crypto_ec_deinit - Deinitialize elliptic curve context 666 * @e: EC context from crypto_ec_init() 667 */ 668 void crypto_ec_deinit(struct crypto_ec *e); 669 670 /** 671 * crypto_ec_prime_len - Get length of the prime in octets 672 * @e: EC context from crypto_ec_init() 673 * Returns: Length of the prime defining the group 674 */ 675 size_t crypto_ec_prime_len(struct crypto_ec *e); 676 677 /** 678 * crypto_ec_prime_len_bits - Get length of the prime in bits 679 * @e: EC context from crypto_ec_init() 680 * Returns: Length of the prime defining the group in bits 681 */ 682 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 683 684 /** 685 * crypto_ec_get_prime - Get prime defining an EC group 686 * @e: EC context from crypto_ec_init() 687 * Returns: Prime (bignum) defining the group 688 */ 689 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 690 691 /** 692 * crypto_ec_get_order - Get order of an EC group 693 * @e: EC context from crypto_ec_init() 694 * Returns: Order (bignum) of the group 695 */ 696 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 697 698 /** 699 * struct crypto_ec_point - Elliptic curve point 700 * 701 * Internal data structure for EC implementation to represent a point. The 702 * contents is specific to the used crypto library. 703 */ 704 struct crypto_ec_point; 705 706 /** 707 * crypto_ec_point_init - Initialize data for an EC point 708 * @e: EC context from crypto_ec_init() 709 * Returns: Pointer to EC point data or %NULL on failure 710 */ 711 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 712 713 /** 714 * crypto_ec_point_deinit - Deinitialize EC point data 715 * @p: EC point data from crypto_ec_point_init() 716 * @clear: Whether to clear the EC point value from memory 717 */ 718 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 719 720 /** 721 * crypto_ec_point_to_bin - Write EC point value as binary data 722 * @e: EC context from crypto_ec_init() 723 * @p: EC point data from crypto_ec_point_init() 724 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 725 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 726 * Returns: 0 on success, -1 on failure 727 * 728 * This function can be used to write an EC point as binary data in a format 729 * that has the x and y coordinates in big endian byte order fields padded to 730 * the length of the prime defining the group. 731 */ 732 int crypto_ec_point_to_bin(struct crypto_ec *e, 733 const struct crypto_ec_point *point, u8 *x, u8 *y); 734 735 /** 736 * crypto_ec_point_from_bin - Create EC point from binary data 737 * @e: EC context from crypto_ec_init() 738 * @val: Binary data to read the EC point from 739 * Returns: Pointer to EC point data or %NULL on failure 740 * 741 * This function readers x and y coordinates of the EC point from the provided 742 * buffer assuming the values are in big endian byte order with fields padded to 743 * the length of the prime defining the group. 744 */ 745 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 746 const u8 *val); 747 748 /** 749 * crypto_bignum_add - c = a + b 750 * @e: EC context from crypto_ec_init() 751 * @a: Bignum 752 * @b: Bignum 753 * @c: Bignum; used to store the result of a + b 754 * Returns: 0 on success, -1 on failure 755 */ 756 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 757 const struct crypto_ec_point *b, 758 struct crypto_ec_point *c); 759 760 /** 761 * crypto_bignum_mul - res = b * p 762 * @e: EC context from crypto_ec_init() 763 * @p: EC point 764 * @b: Bignum 765 * @res: EC point; used to store the result of b * p 766 * Returns: 0 on success, -1 on failure 767 */ 768 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 769 const struct crypto_bignum *b, 770 struct crypto_ec_point *res); 771 772 /** 773 * crypto_ec_point_invert - Compute inverse of an EC point 774 * @e: EC context from crypto_ec_init() 775 * @p: EC point to invert (and result of the operation) 776 * Returns: 0 on success, -1 on failure 777 */ 778 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 779 780 /** 781 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 782 * @e: EC context from crypto_ec_init() 783 * @p: EC point to use for the returning the result 784 * @x: x coordinate 785 * @y_bit: y-bit (0 or 1) for selecting the y value to use 786 * Returns: 0 on success, -1 on failure 787 */ 788 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 789 struct crypto_ec_point *p, 790 const struct crypto_bignum *x, int y_bit); 791 792 /** 793 * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b 794 * @e: EC context from crypto_ec_init() 795 * @x: x coordinate 796 * Returns: y^2 on success, %NULL failure 797 */ 798 struct crypto_bignum * 799 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 800 const struct crypto_bignum *x); 801 802 /** 803 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 804 * @e: EC context from crypto_ec_init() 805 * @p: EC point 806 * Returns: 1 if the specified EC point is the neutral element of the group or 807 * 0 if not 808 */ 809 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 810 const struct crypto_ec_point *p); 811 812 /** 813 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 814 * @e: EC context from crypto_ec_init() 815 * @p: EC point 816 * Returns: 1 if the specified EC point is on the curve or 0 if not 817 */ 818 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 819 const struct crypto_ec_point *p); 820 821 /** 822 * crypto_ec_point_cmp - Compare two EC points 823 * @e: EC context from crypto_ec_init() 824 * @a: EC point 825 * @b: EC point 826 * Returns: 0 on equal, non-zero otherwise 827 */ 828 int crypto_ec_point_cmp(const struct crypto_ec *e, 829 const struct crypto_ec_point *a, 830 const struct crypto_ec_point *b); 831 832 #endif /* CRYPTO_H */ 833