1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ScheduleDAGInstrs class, which implements 11 // scheduling for a MachineInstr-based dependency graph. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 17 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SparseMultiSet.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/CodeGen/ScheduleDAG.h" 22 #include "llvm/CodeGen/TargetSchedule.h" 23 #include "llvm/Support/Compiler.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include <list> 26 27 namespace llvm { 28 class MachineFrameInfo; 29 class MachineLoopInfo; 30 class MachineDominatorTree; 31 class RegPressureTracker; 32 class PressureDiffs; 33 34 /// An individual mapping from virtual register number to SUnit. 35 struct VReg2SUnit { 36 unsigned VirtReg; 37 LaneBitmask LaneMask; 38 SUnit *SU; 39 VReg2SUnitVReg2SUnit40 VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU) 41 : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {} 42 getSparseSetIndexVReg2SUnit43 unsigned getSparseSetIndex() const { 44 return TargetRegisterInfo::virtReg2Index(VirtReg); 45 } 46 }; 47 48 /// Mapping from virtual register to SUnit including an operand index. 49 struct VReg2SUnitOperIdx : public VReg2SUnit { 50 unsigned OperandIndex; 51 VReg2SUnitOperIdxVReg2SUnitOperIdx52 VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask, 53 unsigned OperandIndex, SUnit *SU) 54 : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {} 55 }; 56 57 /// Record a physical register access. 58 /// For non-data-dependent uses, OpIdx == -1. 59 struct PhysRegSUOper { 60 SUnit *SU; 61 int OpIdx; 62 unsigned Reg; 63 PhysRegSUOperPhysRegSUOper64 PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {} 65 getSparseSetIndexPhysRegSUOper66 unsigned getSparseSetIndex() const { return Reg; } 67 }; 68 69 /// Use a SparseMultiSet to track physical registers. Storage is only 70 /// allocated once for the pass. It can be cleared in constant time and reused 71 /// without any frees. 72 typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t> 73 Reg2SUnitsMap; 74 75 /// Use SparseSet as a SparseMap by relying on the fact that it never 76 /// compares ValueT's, only unsigned keys. This allows the set to be cleared 77 /// between scheduling regions in constant time as long as ValueT does not 78 /// require a destructor. 79 typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap; 80 81 /// Track local uses of virtual registers. These uses are gathered by the DAG 82 /// builder and may be consulted by the scheduler to avoid iterating an entire 83 /// vreg use list. 84 typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMultiMap; 85 86 typedef SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor> 87 VReg2SUnitOperIdxMultiMap; 88 89 typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType; 90 struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> { UnderlyingObjectUnderlyingObject91 UnderlyingObject(ValueType V, bool MayAlias) 92 : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {} getValueUnderlyingObject93 ValueType getValue() const { return getPointer(); } mayAliasUnderlyingObject94 bool mayAlias() const { return getInt(); } 95 }; 96 typedef SmallVector<UnderlyingObject, 4> UnderlyingObjectsVector; 97 98 /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of 99 /// MachineInstrs. 100 class ScheduleDAGInstrs : public ScheduleDAG { 101 protected: 102 const MachineLoopInfo *MLI; 103 const MachineFrameInfo *MFI; 104 105 /// TargetSchedModel provides an interface to the machine model. 106 TargetSchedModel SchedModel; 107 108 /// True if the DAG builder should remove kill flags (in preparation for 109 /// rescheduling). 110 bool RemoveKillFlags; 111 112 /// The standard DAG builder does not normally include terminators as DAG 113 /// nodes because it does not create the necessary dependencies to prevent 114 /// reordering. A specialized scheduler can override 115 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate 116 /// it has taken responsibility for scheduling the terminator correctly. 117 bool CanHandleTerminators; 118 119 /// Whether lane masks should get tracked. 120 bool TrackLaneMasks; 121 122 /// State specific to the current scheduling region. 123 /// ------------------------------------------------ 124 125 /// The block in which to insert instructions 126 MachineBasicBlock *BB; 127 128 /// The beginning of the range to be scheduled. 129 MachineBasicBlock::iterator RegionBegin; 130 131 /// The end of the range to be scheduled. 132 MachineBasicBlock::iterator RegionEnd; 133 134 /// Instructions in this region (distance(RegionBegin, RegionEnd)). 135 unsigned NumRegionInstrs; 136 137 /// After calling BuildSchedGraph, each machine instruction in the current 138 /// scheduling region is mapped to an SUnit. 139 DenseMap<MachineInstr*, SUnit*> MISUnitMap; 140 141 /// After calling BuildSchedGraph, each vreg used in the scheduling region 142 /// is mapped to a set of SUnits. These include all local vreg uses, not 143 /// just the uses for a singly defined vreg. 144 VReg2SUnitMultiMap VRegUses; 145 146 /// State internal to DAG building. 147 /// ------------------------------- 148 149 /// Defs, Uses - Remember where defs and uses of each register are as we 150 /// iterate upward through the instructions. This is allocated here instead 151 /// of inside BuildSchedGraph to avoid the need for it to be initialized and 152 /// destructed for each block. 153 Reg2SUnitsMap Defs; 154 Reg2SUnitsMap Uses; 155 156 /// Tracks the last instruction(s) in this region defining each virtual 157 /// register. There may be multiple current definitions for a register with 158 /// disjunct lanemasks. 159 VReg2SUnitMultiMap CurrentVRegDefs; 160 /// Tracks the last instructions in this region using each virtual register. 161 VReg2SUnitOperIdxMultiMap CurrentVRegUses; 162 163 AliasAnalysis *AAForDep; 164 165 /// Remember a generic side-effecting instruction as we proceed. 166 /// No other SU ever gets scheduled around it (except in the special 167 /// case of a huge region that gets reduced). 168 SUnit *BarrierChain; 169 170 public: 171 172 /// A list of SUnits, used in Value2SUsMap, during DAG construction. 173 /// Note: to gain speed it might be worth investigating an optimized 174 /// implementation of this data structure, such as a singly linked list 175 /// with a memory pool (SmallVector was tried but slow and SparseSet is not 176 /// applicable). 177 typedef std::list<SUnit *> SUList; 178 protected: 179 /// A map from ValueType to SUList, used during DAG construction, 180 /// as a means of remembering which SUs depend on which memory 181 /// locations. 182 class Value2SUsMap; 183 184 /// Remove in FIFO order some SUs from huge maps. 185 void reduceHugeMemNodeMaps(Value2SUsMap &stores, 186 Value2SUsMap &loads, unsigned N); 187 188 /// Add a chain edge between SUa and SUb, but only if both AliasAnalysis 189 /// and Target fail to deny the dependency. 190 void addChainDependency(SUnit *SUa, SUnit *SUb, 191 unsigned Latency = 0); 192 193 /// Add dependencies as needed from all SUs in list to SU. addChainDependencies(SUnit * SU,SUList & sus,unsigned Latency)194 void addChainDependencies(SUnit *SU, SUList &sus, unsigned Latency) { 195 for (auto *su : sus) 196 addChainDependency(SU, su, Latency); 197 } 198 199 /// Add dependencies as needed from all SUs in map, to SU. 200 void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap); 201 202 /// Add dependencies as needed to SU, from all SUs mapped to V. 203 void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap, 204 ValueType V); 205 206 /// Add barrier chain edges from all SUs in map, and then clear 207 /// the map. This is equivalent to insertBarrierChain(), but 208 /// optimized for the common case where the new BarrierChain (a 209 /// global memory object) has a higher NodeNum than all SUs in 210 /// map. It is assumed BarrierChain has been set before calling 211 /// this. 212 void addBarrierChain(Value2SUsMap &map); 213 214 /// Insert a barrier chain in a huge region, far below current 215 /// SU. Add barrier chain edges from all SUs in map with higher 216 /// NodeNums than this new BarrierChain, and remove them from 217 /// map. It is assumed BarrierChain has been set before calling 218 /// this. 219 void insertBarrierChain(Value2SUsMap &map); 220 221 /// For an unanalyzable memory access, this Value is used in maps. 222 UndefValue *UnknownValue; 223 224 /// DbgValues - Remember instruction that precedes DBG_VALUE. 225 /// These are generated by buildSchedGraph but persist so they can be 226 /// referenced when emitting the final schedule. 227 typedef std::vector<std::pair<MachineInstr *, MachineInstr *> > 228 DbgValueVector; 229 DbgValueVector DbgValues; 230 MachineInstr *FirstDbgValue; 231 232 /// Set of live physical registers for updating kill flags. 233 BitVector LiveRegs; 234 235 public: 236 explicit ScheduleDAGInstrs(MachineFunction &mf, 237 const MachineLoopInfo *mli, 238 bool RemoveKillFlags = false); 239 ~ScheduleDAGInstrs()240 ~ScheduleDAGInstrs() override {} 241 242 /// \brief Get the machine model for instruction scheduling. getSchedModel()243 const TargetSchedModel *getSchedModel() const { return &SchedModel; } 244 245 /// \brief Resolve and cache a resolved scheduling class for an SUnit. getSchedClass(SUnit * SU)246 const MCSchedClassDesc *getSchedClass(SUnit *SU) const { 247 if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) 248 SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); 249 return SU->SchedClass; 250 } 251 252 /// begin - Return an iterator to the top of the current scheduling region. begin()253 MachineBasicBlock::iterator begin() const { return RegionBegin; } 254 255 /// end - Return an iterator to the bottom of the current scheduling region. end()256 MachineBasicBlock::iterator end() const { return RegionEnd; } 257 258 /// newSUnit - Creates a new SUnit and return a ptr to it. 259 SUnit *newSUnit(MachineInstr *MI); 260 261 /// getSUnit - Return an existing SUnit for this MI, or NULL. 262 SUnit *getSUnit(MachineInstr *MI) const; 263 264 /// startBlock - Prepare to perform scheduling in the given block. 265 virtual void startBlock(MachineBasicBlock *BB); 266 267 /// finishBlock - Clean up after scheduling in the given block. 268 virtual void finishBlock(); 269 270 /// Initialize the scheduler state for the next scheduling region. 271 virtual void enterRegion(MachineBasicBlock *bb, 272 MachineBasicBlock::iterator begin, 273 MachineBasicBlock::iterator end, 274 unsigned regioninstrs); 275 276 /// Notify that the scheduler has finished scheduling the current region. 277 virtual void exitRegion(); 278 279 /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are 280 /// input. 281 void buildSchedGraph(AliasAnalysis *AA, 282 RegPressureTracker *RPTracker = nullptr, 283 PressureDiffs *PDiffs = nullptr, 284 LiveIntervals *LIS = nullptr, 285 bool TrackLaneMasks = false); 286 287 /// addSchedBarrierDeps - Add dependencies from instructions in the current 288 /// list of instructions being scheduled to scheduling barrier. We want to 289 /// make sure instructions which define registers that are either used by 290 /// the terminator or are live-out are properly scheduled. This is 291 /// especially important when the definition latency of the return value(s) 292 /// are too high to be hidden by the branch or when the liveout registers 293 /// used by instructions in the fallthrough block. 294 void addSchedBarrierDeps(); 295 296 /// schedule - Order nodes according to selected style, filling 297 /// in the Sequence member. 298 /// 299 /// Typically, a scheduling algorithm will implement schedule() without 300 /// overriding enterRegion() or exitRegion(). 301 virtual void schedule() = 0; 302 303 /// finalizeSchedule - Allow targets to perform final scheduling actions at 304 /// the level of the whole MachineFunction. By default does nothing. finalizeSchedule()305 virtual void finalizeSchedule() {} 306 307 void dumpNode(const SUnit *SU) const override; 308 309 /// Return a label for a DAG node that points to an instruction. 310 std::string getGraphNodeLabel(const SUnit *SU) const override; 311 312 /// Return a label for the region of code covered by the DAG. 313 std::string getDAGName() const override; 314 315 /// \brief Fix register kill flags that scheduling has made invalid. 316 void fixupKills(MachineBasicBlock *MBB); 317 protected: 318 void initSUnits(); 319 void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); 320 void addPhysRegDeps(SUnit *SU, unsigned OperIdx); 321 void addVRegDefDeps(SUnit *SU, unsigned OperIdx); 322 void addVRegUseDeps(SUnit *SU, unsigned OperIdx); 323 324 /// \brief PostRA helper for rewriting kill flags. 325 void startBlockForKills(MachineBasicBlock *BB); 326 327 /// \brief Toggle a register operand kill flag. 328 /// 329 /// Other adjustments may be made to the instruction if necessary. Return 330 /// true if the operand has been deleted, false if not. 331 bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO); 332 333 /// Returns a mask for which lanes get read/written by the given (register) 334 /// machine operand. 335 LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const; 336 337 void collectVRegUses(SUnit *SU); 338 }; 339 340 /// newSUnit - Creates a new SUnit and return a ptr to it. newSUnit(MachineInstr * MI)341 inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { 342 #ifndef NDEBUG 343 const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; 344 #endif 345 SUnits.emplace_back(MI, (unsigned)SUnits.size()); 346 assert((Addr == nullptr || Addr == &SUnits[0]) && 347 "SUnits std::vector reallocated on the fly!"); 348 SUnits.back().OrigNode = &SUnits.back(); 349 return &SUnits.back(); 350 } 351 352 /// getSUnit - Return an existing SUnit for this MI, or NULL. getSUnit(MachineInstr * MI)353 inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { 354 DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI); 355 if (I == MISUnitMap.end()) 356 return nullptr; 357 return I->second; 358 } 359 } // namespace llvm 360 361 #endif 362