1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the classes used to generate code from scalar expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H 15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H 16 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 19 #include "llvm/Analysis/TargetFolder.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/IR/ValueHandle.h" 22 #include <set> 23 24 namespace llvm { 25 class TargetTransformInfo; 26 27 /// Return true if the given expression is safe to expand in the sense that 28 /// all materialized values are safe to speculate. 29 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE); 30 31 /// This class uses information about analyze scalars to 32 /// rewrite expressions in canonical form. 33 /// 34 /// Clients should create an instance of this class when rewriting is needed, 35 /// and destroy it when finished to allow the release of the associated 36 /// memory. 37 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> { 38 ScalarEvolution &SE; 39 const DataLayout &DL; 40 41 // New instructions receive a name to identifies them with the current pass. 42 const char* IVName; 43 44 // InsertedExpressions caches Values for reuse, so must track RAUW. 45 std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> > 46 InsertedExpressions; 47 // InsertedValues only flags inserted instructions so needs no RAUW. 48 std::set<AssertingVH<Value> > InsertedValues; 49 std::set<AssertingVH<Value> > InsertedPostIncValues; 50 51 /// A memoization of the "relevant" loop for a given SCEV. 52 DenseMap<const SCEV *, const Loop *> RelevantLoops; 53 54 /// \brief Addrecs referring to any of the given loops are expanded 55 /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode 56 /// returns the add instruction that adds one to the phi for {0,+,1}<L>, 57 /// as opposed to a new phi starting at 1. This is only supported in 58 /// non-canonical mode. 59 PostIncLoopSet PostIncLoops; 60 61 /// \brief When this is non-null, addrecs expanded in the loop it indicates 62 /// should be inserted with increments at IVIncInsertPos. 63 const Loop *IVIncInsertLoop; 64 65 /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV 66 /// increment at this position. 67 Instruction *IVIncInsertPos; 68 69 /// \brief Phis that complete an IV chain. Reuse 70 std::set<AssertingVH<PHINode> > ChainedPhis; 71 72 /// \brief When true, expressions are expanded in "canonical" form. In 73 /// particular, addrecs are expanded as arithmetic based on a canonical 74 /// induction variable. When false, expression are expanded in a more 75 /// literal form. 76 bool CanonicalMode; 77 78 /// \brief When invoked from LSR, the expander is in "strength reduction" 79 /// mode. The only difference is that phi's are only reused if they are 80 /// already in "expanded" form. 81 bool LSRMode; 82 83 typedef IRBuilder<TargetFolder> BuilderType; 84 BuilderType Builder; 85 86 // RAII object that stores the current insertion point and restores it when 87 // the object is destroyed. This includes the debug location. Duplicated 88 // from InsertPointGuard to add SetInsertPoint() which is used to updated 89 // InsertPointGuards stack when insert points are moved during SCEV 90 // expansion. 91 class SCEVInsertPointGuard { 92 IRBuilderBase &Builder; 93 AssertingVH<BasicBlock> Block; 94 BasicBlock::iterator Point; 95 DebugLoc DbgLoc; 96 SCEVExpander *SE; 97 98 SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; 99 SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; 100 101 public: SCEVInsertPointGuard(IRBuilderBase & B,SCEVExpander * SE)102 SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) 103 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), 104 DbgLoc(B.getCurrentDebugLocation()), SE(SE) { 105 SE->InsertPointGuards.push_back(this); 106 } 107 ~SCEVInsertPointGuard()108 ~SCEVInsertPointGuard() { 109 // These guards should always created/destroyed in FIFO order since they 110 // are used to guard lexically scoped blocks of code in 111 // ScalarEvolutionExpander. 112 assert(SE->InsertPointGuards.back() == this); 113 SE->InsertPointGuards.pop_back(); 114 Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); 115 Builder.SetCurrentDebugLocation(DbgLoc); 116 } 117 GetInsertPoint()118 BasicBlock::iterator GetInsertPoint() const { return Point; } SetInsertPoint(BasicBlock::iterator I)119 void SetInsertPoint(BasicBlock::iterator I) { Point = I; } 120 }; 121 122 /// Stack of pointers to saved insert points, used to keep insert points 123 /// consistent when instructions are moved. 124 SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; 125 126 #ifndef NDEBUG 127 const char *DebugType; 128 #endif 129 130 friend struct SCEVVisitor<SCEVExpander, Value*>; 131 132 public: 133 /// \brief Construct a SCEVExpander in "canonical" mode. 134 explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, 135 const char *name) 136 : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr), 137 IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false), 138 Builder(se.getContext(), TargetFolder(DL)) { 139 #ifndef NDEBUG 140 DebugType = ""; 141 #endif 142 } 143 144 ~SCEVExpander() { 145 // Make sure the insert point guard stack is consistent. 146 assert(InsertPointGuards.empty()); 147 } 148 149 #ifndef NDEBUG 150 void setDebugType(const char* s) { DebugType = s; } 151 #endif 152 153 /// \brief Erase the contents of the InsertedExpressions map so that users 154 /// trying to expand the same expression into multiple BasicBlocks or 155 /// different places within the same BasicBlock can do so. 156 void clear() { 157 InsertedExpressions.clear(); 158 InsertedValues.clear(); 159 InsertedPostIncValues.clear(); 160 ChainedPhis.clear(); 161 } 162 163 /// \brief Return true for expressions that may incur non-trivial cost to 164 /// evaluate at runtime. 165 /// 166 /// At is an optional parameter which specifies point in code where user is 167 /// going to expand this expression. Sometimes this knowledge can lead to a 168 /// more accurate cost estimation. 169 bool isHighCostExpansion(const SCEV *Expr, Loop *L, 170 const Instruction *At = nullptr) { 171 SmallPtrSet<const SCEV *, 8> Processed; 172 return isHighCostExpansionHelper(Expr, L, At, Processed); 173 } 174 175 /// \brief This method returns the canonical induction variable of the 176 /// specified type for the specified loop (inserting one if there is none). 177 /// A canonical induction variable starts at zero and steps by one on each 178 /// iteration. 179 PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty); 180 181 /// \brief Return the induction variable increment's IV operand. 182 Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, 183 bool allowScale); 184 185 /// \brief Utility for hoisting an IV increment. 186 bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); 187 188 /// \brief replace congruent phis with their most canonical 189 /// representative. Return the number of phis eliminated. 190 unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, 191 SmallVectorImpl<WeakVH> &DeadInsts, 192 const TargetTransformInfo *TTI = nullptr); 193 194 /// \brief Insert code to directly compute the specified SCEV expression 195 /// into the program. The inserted code is inserted into the specified 196 /// block. 197 Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I); 198 199 /// \brief Generates a code sequence that evaluates this predicate. 200 /// The inserted instructions will be at position \p Loc. 201 /// The result will be of type i1 and will have a value of 0 when the 202 /// predicate is false and 1 otherwise. 203 Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); 204 205 /// \brief A specialized variant of expandCodeForPredicate, handling the 206 /// case when we are expanding code for a SCEVEqualPredicate. 207 Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, 208 Instruction *Loc); 209 210 /// \brief Generates code that evaluates if the \p AR expression will 211 /// overflow. 212 Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, 213 bool Signed); 214 215 /// \brief A specialized variant of expandCodeForPredicate, handling the 216 /// case when we are expanding code for a SCEVWrapPredicate. 217 Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); 218 219 /// \brief A specialized variant of expandCodeForPredicate, handling the 220 /// case when we are expanding code for a SCEVUnionPredicate. 221 Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, 222 Instruction *Loc); 223 224 /// \brief Set the current IV increment loop and position. 225 void setIVIncInsertPos(const Loop *L, Instruction *Pos) { 226 assert(!CanonicalMode && 227 "IV increment positions are not supported in CanonicalMode"); 228 IVIncInsertLoop = L; 229 IVIncInsertPos = Pos; 230 } 231 232 /// \brief Enable post-inc expansion for addrecs referring to the given 233 /// loops. Post-inc expansion is only supported in non-canonical mode. 234 void setPostInc(const PostIncLoopSet &L) { 235 assert(!CanonicalMode && 236 "Post-inc expansion is not supported in CanonicalMode"); 237 PostIncLoops = L; 238 } 239 240 /// \brief Disable all post-inc expansion. 241 void clearPostInc() { 242 PostIncLoops.clear(); 243 244 // When we change the post-inc loop set, cached expansions may no 245 // longer be valid. 246 InsertedPostIncValues.clear(); 247 } 248 249 /// \brief Disable the behavior of expanding expressions in canonical form 250 /// rather than in a more literal form. Non-canonical mode is useful for 251 /// late optimization passes. 252 void disableCanonicalMode() { CanonicalMode = false; } 253 254 void enableLSRMode() { LSRMode = true; } 255 256 /// \brief Clear the current insertion point. This is useful if the 257 /// instruction that had been serving as the insertion point may have been 258 /// deleted. 259 void clearInsertPoint() { 260 Builder.ClearInsertionPoint(); 261 } 262 263 /// \brief Return true if the specified instruction was inserted by the code 264 /// rewriter. If so, the client should not modify the instruction. 265 bool isInsertedInstruction(Instruction *I) const { 266 return InsertedValues.count(I) || InsertedPostIncValues.count(I); 267 } 268 269 void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } 270 271 /// \brief Try to find LLVM IR value for S available at the point At. 272 /// 273 /// L is a hint which tells in which loop to look for the suitable value. 274 /// On success return value which is equivalent to the expanded S at point 275 /// At. Return nullptr if value was not found. 276 /// 277 /// Note that this function does not perform an exhaustive search. I.e if it 278 /// didn't find any value it does not mean that there is no such value. 279 Value *findExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); 280 281 private: 282 LLVMContext &getContext() const { return SE.getContext(); } 283 284 /// \brief Recursive helper function for isHighCostExpansion. 285 bool isHighCostExpansionHelper(const SCEV *S, Loop *L, 286 const Instruction *At, 287 SmallPtrSetImpl<const SCEV *> &Processed); 288 289 /// \brief Insert the specified binary operator, doing a small amount 290 /// of work to avoid inserting an obviously redundant operation. 291 Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS); 292 293 /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an 294 /// existing cast if a suitable one exists, moving an existing cast if a 295 /// suitable one exists but isn't in the right place, or or creating a new 296 /// one. 297 Value *ReuseOrCreateCast(Value *V, Type *Ty, 298 Instruction::CastOps Op, 299 BasicBlock::iterator IP); 300 301 /// \brief Insert a cast of V to the specified type, which must be possible 302 /// with a noop cast, doing what we can to share the casts. 303 Value *InsertNoopCastOfTo(Value *V, Type *Ty); 304 305 /// \brief Expand a SCEVAddExpr with a pointer type into a GEP 306 /// instead of using ptrtoint+arithmetic+inttoptr. 307 Value *expandAddToGEP(const SCEV *const *op_begin, 308 const SCEV *const *op_end, 309 PointerType *PTy, Type *Ty, Value *V); 310 311 /// \brief Find a previous Value in ExprValueMap for expand. 312 Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); 313 314 Value *expand(const SCEV *S); 315 316 /// \brief Insert code to directly compute the specified SCEV expression 317 /// into the program. The inserted code is inserted into the SCEVExpander's 318 /// current insertion point. If a type is specified, the result will be 319 /// expanded to have that type, with a cast if necessary. 320 Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr); 321 322 /// \brief Determine the most "relevant" loop for the given SCEV. 323 const Loop *getRelevantLoop(const SCEV *); 324 325 Value *visitConstant(const SCEVConstant *S) { 326 return S->getValue(); 327 } 328 329 Value *visitTruncateExpr(const SCEVTruncateExpr *S); 330 331 Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); 332 333 Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); 334 335 Value *visitAddExpr(const SCEVAddExpr *S); 336 337 Value *visitMulExpr(const SCEVMulExpr *S); 338 339 Value *visitUDivExpr(const SCEVUDivExpr *S); 340 341 Value *visitAddRecExpr(const SCEVAddRecExpr *S); 342 343 Value *visitSMaxExpr(const SCEVSMaxExpr *S); 344 345 Value *visitUMaxExpr(const SCEVUMaxExpr *S); 346 347 Value *visitUnknown(const SCEVUnknown *S) { 348 return S->getValue(); 349 } 350 351 void rememberInstruction(Value *I); 352 353 bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 354 355 bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); 356 357 Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); 358 PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 359 const Loop *L, 360 Type *ExpandTy, 361 Type *IntTy, 362 Type *&TruncTy, 363 bool &InvertStep); 364 Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 365 Type *ExpandTy, Type *IntTy, bool useSubtract); 366 367 void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 368 Instruction *Pos, PHINode *LoopPhi); 369 370 void fixupInsertPoints(Instruction *I); 371 }; 372 } 373 374 #endif 375