1 /* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
2 data. */
3
4 /* By Rod Smith, initial coding January to February, 2009 */
5
6 /* This program is copyright (c) 2009-2013 by Roderick W. Smith. It is distributed
7 under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
8
9 #define __STDC_LIMIT_MACROS
10 #ifndef __STDC_CONSTANT_MACROS
11 #define __STDC_CONSTANT_MACROS
12 #endif
13
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <stdint.h>
17 #include <fcntl.h>
18 #include <string.h>
19 #include <math.h>
20 #include <time.h>
21 #include <sys/stat.h>
22 #include <errno.h>
23 #include <iostream>
24 #include <algorithm>
25 #include "crc32.h"
26 #include "gpt.h"
27 #include "bsd.h"
28 #include "support.h"
29 #include "parttypes.h"
30 #include "attributes.h"
31 #include "diskio.h"
32
33 using namespace std;
34
35 #ifdef __FreeBSD__
36 #define log2(x) (log(x) / M_LN2)
37 #endif // __FreeBSD__
38
39 #ifdef _MSC_VER
40 #define log2(x) (log((double) x) / log(2.0))
41 #endif // Microsoft Visual C++
42
43 #ifdef EFI
44 // in UEFI mode MMX registers are not yet available so using the
45 // x86_64 ABI to move "double" values around is not an option.
46 #ifdef log2
47 #undef log2
48 #endif
49 #define log2(x) log2_32( x )
log2_32(uint32_t v)50 static inline uint32_t log2_32(uint32_t v) {
51 int r = -1;
52 while (v >= 1) {
53 r++;
54 v >>= 1;
55 }
56 return r;
57 }
58 #endif
59
60 /****************************************
61 * *
62 * GPTData class and related structures *
63 * *
64 ****************************************/
65
66 // Default constructor
GPTData(void)67 GPTData::GPTData(void) {
68 blockSize = SECTOR_SIZE; // set a default
69 diskSize = 0;
70 partitions = NULL;
71 state = gpt_valid;
72 device = "";
73 justLooking = 0;
74 syncing = 1;
75 mainCrcOk = 0;
76 secondCrcOk = 0;
77 mainPartsCrcOk = 0;
78 secondPartsCrcOk = 0;
79 apmFound = 0;
80 bsdFound = 0;
81 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
82 beQuiet = 0;
83 whichWasUsed = use_new;
84 mainHeader.numParts = 0;
85 numParts = 0;
86 SetGPTSize(NUM_GPT_ENTRIES);
87 // Initialize CRC functions...
88 chksum_crc32gentab();
89 } // GPTData default constructor
90
91 // The following constructor loads GPT data from a device file
GPTData(string filename)92 GPTData::GPTData(string filename) {
93 blockSize = SECTOR_SIZE; // set a default
94 diskSize = 0;
95 partitions = NULL;
96 state = gpt_invalid;
97 device = "";
98 justLooking = 0;
99 syncing = 1;
100 mainCrcOk = 0;
101 secondCrcOk = 0;
102 mainPartsCrcOk = 0;
103 secondPartsCrcOk = 0;
104 apmFound = 0;
105 bsdFound = 0;
106 sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
107 beQuiet = 0;
108 whichWasUsed = use_new;
109 mainHeader.numParts = 0;
110 numParts = 0;
111 // Initialize CRC functions...
112 chksum_crc32gentab();
113 if (!LoadPartitions(filename))
114 exit(2);
115 } // GPTData(string filename) constructor
116
117 // Destructor
~GPTData(void)118 GPTData::~GPTData(void) {
119 delete[] partitions;
120 } // GPTData destructor
121
122 // Assignment operator
operator =(const GPTData & orig)123 GPTData & GPTData::operator=(const GPTData & orig) {
124 uint32_t i;
125
126 mainHeader = orig.mainHeader;
127 numParts = orig.numParts;
128 secondHeader = orig.secondHeader;
129 protectiveMBR = orig.protectiveMBR;
130 device = orig.device;
131 blockSize = orig.blockSize;
132 diskSize = orig.diskSize;
133 state = orig.state;
134 justLooking = orig.justLooking;
135 syncing = orig.syncing;
136 mainCrcOk = orig.mainCrcOk;
137 secondCrcOk = orig.secondCrcOk;
138 mainPartsCrcOk = orig.mainPartsCrcOk;
139 secondPartsCrcOk = orig.secondPartsCrcOk;
140 apmFound = orig.apmFound;
141 bsdFound = orig.bsdFound;
142 sectorAlignment = orig.sectorAlignment;
143 beQuiet = orig.beQuiet;
144 whichWasUsed = orig.whichWasUsed;
145
146 myDisk.OpenForRead(orig.myDisk.GetName());
147
148 delete[] partitions;
149 partitions = new GPTPart [numParts];
150 if (partitions == NULL) {
151 cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
152 << "Terminating!\n";
153 exit(1);
154 } // if
155 for (i = 0; i < numParts; i++) {
156 partitions[i] = orig.partitions[i];
157 } // for
158
159 return *this;
160 } // GPTData::operator=()
161
162 /*********************************************************************
163 * *
164 * Begin functions that verify data, or that adjust the verification *
165 * information (compute CRCs, rebuild headers) *
166 * *
167 *********************************************************************/
168
169 // Perform detailed verification, reporting on any problems found, but
170 // do *NOT* recover from these problems. Returns the total number of
171 // problems identified.
Verify(void)172 int GPTData::Verify(void) {
173 int problems = 0, alignProbs = 0;
174 uint32_t i, numSegments;
175 uint64_t totalFree, largestSegment;
176
177 // First, check for CRC errors in the GPT data....
178 if (!mainCrcOk) {
179 problems++;
180 cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
181 << "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
182 << "header ('b' on the recovery & transformation menu). This report may be a false\n"
183 << "alarm if you've already corrected other problems.\n";
184 } // if
185 if (!mainPartsCrcOk) {
186 problems++;
187 cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
188 << "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
189 << "transformation menu). This report may be a false alarm if you've already\n"
190 << "corrected other problems.\n";
191 } // if
192 if (!secondCrcOk) {
193 problems++;
194 cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
195 << "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
196 << "header ('d' on the recovery & transformation menu). This report may be a false\n"
197 << "alarm if you've already corrected other problems.\n";
198 } // if
199 if (!secondPartsCrcOk) {
200 problems++;
201 cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
202 << "be corrupt. This program will automatically create a new backup partition\n"
203 << "table when you save your partitions.\n";
204 } // if
205
206 // Now check that the main and backup headers both point to themselves....
207 if (mainHeader.currentLBA != 1) {
208 problems++;
209 cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
210 << "is being automatically corrected, but it may be a symptom of more serious\n"
211 << "problems. Think carefully before saving changes with 'w' or using this disk.\n";
212 mainHeader.currentLBA = 1;
213 } // if
214 if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
215 problems++;
216 cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
217 << "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
218 << "option on the experts' menu to adjust the secondary header's and partition\n"
219 << "table's locations.\n";
220 } // if
221
222 // Now check that critical main and backup GPT entries match each other
223 if (mainHeader.currentLBA != secondHeader.backupLBA) {
224 problems++;
225 cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
226 << ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
227 << secondHeader.backupLBA << ").\n";
228 } // if
229 if (mainHeader.backupLBA != secondHeader.currentLBA) {
230 problems++;
231 cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
232 << ") doesn't\nmatch the backup GPT header's current LBA pointer ("
233 << secondHeader.currentLBA << ").\n"
234 << "The 'e' option on the experts' menu may fix this problem.\n";
235 } // if
236 if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
237 problems++;
238 cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
239 << ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
240 << secondHeader.firstUsableLBA << ")\n";
241 } // if
242 if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
243 problems++;
244 cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
245 << ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
246 << secondHeader.lastUsableLBA << ")\n"
247 << "The 'e' option on the experts' menu can probably fix this problem.\n";
248 } // if
249 if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
250 problems++;
251 cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
252 << ") doesn't\nmatch the backup GPT header's disk GUID ("
253 << secondHeader.diskGUID << ")\n"
254 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
255 << "select one or the other header.\n";
256 } // if
257 if (mainHeader.numParts != secondHeader.numParts) {
258 problems++;
259 cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
260 << ") doesn't\nmatch the backup GPT header's number of partitions ("
261 << secondHeader.numParts << ")\n"
262 << "Resizing the partition table ('s' on the experts' menu) may help.\n";
263 } // if
264 if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
265 problems++;
266 cout << "\nProblem: main GPT header's size of partition entries ("
267 << mainHeader.sizeOfPartitionEntries << ") doesn't\n"
268 << "match the backup GPT header's size of partition entries ("
269 << secondHeader.sizeOfPartitionEntries << ")\n"
270 << "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
271 << "select one or the other header.\n";
272 } // if
273
274 // Now check for a few other miscellaneous problems...
275 // Check that the disk size will hold the data...
276 if (mainHeader.backupLBA >= diskSize) {
277 problems++;
278 cout << "\nProblem: Disk is too small to hold all the data!\n"
279 << "(Disk size is " << diskSize << " sectors, needs to be "
280 << mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
281 << "The 'e' option on the experts' menu may fix this problem.\n";
282 } // if
283
284 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
285 problems++;
286 cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
287 << "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
288 << mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
289 << "The 'e' option on the experts' menu will probably fix this problem\n";
290 }
291
292 // Check for overlapping partitions....
293 problems += FindOverlaps();
294
295 // Check for insane partitions (start after end, hugely big, etc.)
296 problems += FindInsanePartitions();
297
298 // Check for mismatched MBR and GPT partitions...
299 problems += FindHybridMismatches();
300
301 // Check for MBR-specific problems....
302 problems += VerifyMBR();
303
304 // Check for a 0xEE protective partition that's marked as active....
305 if (protectiveMBR.IsEEActive()) {
306 cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
307 << "technically a violation of the GPT specification, and can cause some EFIs to\n"
308 << "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
309 << "computers. You can clear this flag by creating a fresh protective MBR using\n"
310 << "the 'n' option on the experts' menu.\n";
311 }
312
313 // Verify that partitions don't run into GPT data areas....
314 problems += CheckGPTSize();
315
316 if (!protectiveMBR.DoTheyFit()) {
317 cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
318 << "fresh protective or hybrid MBR is recommended.\n";
319 problems++;
320 }
321
322 // Check that partitions are aligned on proper boundaries (for WD Advanced
323 // Format and similar disks)....
324 for (i = 0; i < numParts; i++) {
325 if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % sectorAlignment) != 0) {
326 cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
327 << sectorAlignment << "-sector boundary. This may\nresult "
328 << "in degraded performance on some modern (2009 and later) hard disks.\n";
329 alignProbs++;
330 } // if
331 } // for
332 if (alignProbs > 0)
333 cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
334 << "for information on disk alignment.\n";
335
336 // Now compute available space, but only if no problems found, since
337 // problems could affect the results
338 if (problems == 0) {
339 totalFree = FindFreeBlocks(&numSegments, &largestSegment);
340 cout << "\nNo problems found. " << totalFree << " free sectors ("
341 << BytesToIeee(totalFree, blockSize) << ") available in "
342 << numSegments << "\nsegments, the largest of which is "
343 << largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
344 << ") in size.\n";
345 } else {
346 cout << "\nIdentified " << problems << " problems!\n";
347 } // if/else
348
349 return (problems);
350 } // GPTData::Verify()
351
352 // Checks to see if the GPT tables overrun existing partitions; if they
353 // do, issues a warning but takes no action. Returns number of problems
354 // detected (0 if OK, 1 to 2 if problems).
CheckGPTSize(void)355 int GPTData::CheckGPTSize(void) {
356 uint64_t overlap, firstUsedBlock, lastUsedBlock;
357 uint32_t i;
358 int numProbs = 0;
359
360 // first, locate the first & last used blocks
361 firstUsedBlock = UINT64_MAX;
362 lastUsedBlock = 0;
363 for (i = 0; i < numParts; i++) {
364 if (partitions[i].IsUsed()) {
365 if (partitions[i].GetFirstLBA() < firstUsedBlock)
366 firstUsedBlock = partitions[i].GetFirstLBA();
367 if (partitions[i].GetLastLBA() > lastUsedBlock) {
368 lastUsedBlock = partitions[i].GetLastLBA();
369 } // if
370 } // if
371 } // for
372
373 // If the disk size is 0 (the default), then it means that various
374 // variables aren't yet set, so the below tests will be useless;
375 // therefore we should skip everything
376 if (diskSize != 0) {
377 if (mainHeader.firstUsableLBA > firstUsedBlock) {
378 overlap = mainHeader.firstUsableLBA - firstUsedBlock;
379 cout << "Warning! Main partition table overlaps the first partition by "
380 << overlap << " blocks!\n";
381 if (firstUsedBlock > 2) {
382 cout << "Try reducing the partition table size by " << overlap * 4
383 << " entries.\n(Use the 's' item on the experts' menu.)\n";
384 } else {
385 cout << "You will need to delete this partition or resize it in another utility.\n";
386 } // if/else
387 numProbs++;
388 } // Problem at start of disk
389 if (mainHeader.lastUsableLBA < lastUsedBlock) {
390 overlap = lastUsedBlock - mainHeader.lastUsableLBA;
391 cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
392 << overlap << " blocks!\n";
393 if (lastUsedBlock > (diskSize - 2)) {
394 cout << "You will need to delete this partition or resize it in another utility.\n";
395 } else {
396 cout << "Try reducing the partition table size by " << overlap * 4
397 << " entries.\n(Use the 's' item on the experts' menu.)\n";
398 } // if/else
399 numProbs++;
400 } // Problem at end of disk
401 } // if (diskSize != 0)
402 return numProbs;
403 } // GPTData::CheckGPTSize()
404
405 // Check the validity of the GPT header. Returns 1 if the main header
406 // is valid, 2 if the backup header is valid, 3 if both are valid, and
407 // 0 if neither is valid. Note that this function checks the GPT signature,
408 // revision value, and CRCs in both headers.
CheckHeaderValidity(void)409 int GPTData::CheckHeaderValidity(void) {
410 int valid = 3;
411
412 cout.setf(ios::uppercase);
413 cout.fill('0');
414
415 // Note: failed GPT signature checks produce no error message because
416 // a message is displayed in the ReversePartitionBytes() function
417 if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
418 valid -= 1;
419 } else if ((mainHeader.revision != 0x00010000) && valid) {
420 valid -= 1;
421 cout << "Unsupported GPT version in main header; read 0x";
422 cout.width(8);
423 cout << hex << mainHeader.revision << ", should be\n0x";
424 cout.width(8);
425 cout << UINT32_C(0x00010000) << dec << "\n";
426 } // if/else/if
427
428 if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
429 valid -= 2;
430 } else if ((secondHeader.revision != 0x00010000) && valid) {
431 valid -= 2;
432 cout << "Unsupported GPT version in backup header; read 0x";
433 cout.width(8);
434 cout << hex << secondHeader.revision << ", should be\n0x";
435 cout.width(8);
436 cout << UINT32_C(0x00010000) << dec << "\n";
437 } // if/else/if
438
439 // Check for an Apple disk signature
440 if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
441 (mainHeader.signature << 32) == APM_SIGNATURE2) {
442 apmFound = 1; // Will display warning message later
443 } // if
444 cout.fill(' ');
445
446 return valid;
447 } // GPTData::CheckHeaderValidity()
448
449 // Check the header CRC to see if it's OK...
450 // Note: Must be called with header in platform-ordered byte order.
451 // Returns 1 if header's computed CRC matches the stored value, 0 if the
452 // computed and stored values don't match
CheckHeaderCRC(struct GPTHeader * header,int warn)453 int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
454 uint32_t oldCRC, newCRC, hSize;
455 uint8_t *temp;
456
457 // Back up old header CRC and then blank it, since it must be 0 for
458 // computation to be valid
459 oldCRC = header->headerCRC;
460 header->headerCRC = UINT32_C(0);
461
462 hSize = header->headerSize;
463
464 if (IsLittleEndian() == 0)
465 ReverseHeaderBytes(header);
466
467 if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
468 if (warn) {
469 cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
470 cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
471 } // if
472 hSize = HEADER_SIZE;
473 } else if ((hSize > sizeof(GPTHeader)) && warn) {
474 cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
475 cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
476 << "which may result in a CRC false alarm.\n";
477 } // if/elseif
478 temp = new uint8_t[hSize];
479 if (temp != NULL) {
480 memset(temp, 0, hSize);
481 if (hSize < sizeof(GPTHeader))
482 memcpy(temp, header, hSize);
483 else
484 memcpy(temp, header, sizeof(GPTHeader));
485
486 newCRC = chksum_crc32((unsigned char*) temp, hSize);
487 delete[] temp;
488 } else {
489 cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
490 exit(1);
491 }
492 if (IsLittleEndian() == 0)
493 ReverseHeaderBytes(header);
494 header->headerCRC = oldCRC;
495 return (oldCRC == newCRC);
496 } // GPTData::CheckHeaderCRC()
497
498 // Recompute all the CRCs. Must be called before saving if any changes have
499 // been made. Must be called on platform-ordered data (this function reverses
500 // byte order and then undoes that reversal.)
RecomputeCRCs(void)501 void GPTData::RecomputeCRCs(void) {
502 uint32_t crc, hSize;
503 int littleEndian = 1;
504
505 // If the header size is bigger than the GPT header data structure, reset it;
506 // otherwise, set both header sizes to whatever the main one is....
507 if (mainHeader.headerSize > sizeof(GPTHeader))
508 hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
509 else
510 hSize = secondHeader.headerSize = mainHeader.headerSize;
511
512 if ((littleEndian = IsLittleEndian()) == 0) {
513 ReversePartitionBytes();
514 ReverseHeaderBytes(&mainHeader);
515 ReverseHeaderBytes(&secondHeader);
516 } // if
517
518 // Compute CRC of partition tables & store in main and secondary headers
519 crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
520 mainHeader.partitionEntriesCRC = crc;
521 secondHeader.partitionEntriesCRC = crc;
522 if (littleEndian == 0) {
523 ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
524 ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
525 } // if
526
527 // Zero out GPT headers' own CRCs (required for correct computation)
528 mainHeader.headerCRC = 0;
529 secondHeader.headerCRC = 0;
530
531 crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
532 if (littleEndian == 0)
533 ReverseBytes(&crc, 4);
534 mainHeader.headerCRC = crc;
535 crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
536 if (littleEndian == 0)
537 ReverseBytes(&crc, 4);
538 secondHeader.headerCRC = crc;
539
540 if (littleEndian == 0) {
541 ReverseHeaderBytes(&mainHeader);
542 ReverseHeaderBytes(&secondHeader);
543 ReversePartitionBytes();
544 } // if
545 } // GPTData::RecomputeCRCs()
546
547 // Rebuild the main GPT header, using the secondary header as a model.
548 // Typically called when the main header has been found to be corrupt.
RebuildMainHeader(void)549 void GPTData::RebuildMainHeader(void) {
550 mainHeader.signature = GPT_SIGNATURE;
551 mainHeader.revision = secondHeader.revision;
552 mainHeader.headerSize = secondHeader.headerSize;
553 mainHeader.headerCRC = UINT32_C(0);
554 mainHeader.reserved = secondHeader.reserved;
555 mainHeader.currentLBA = secondHeader.backupLBA;
556 mainHeader.backupLBA = secondHeader.currentLBA;
557 mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
558 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
559 mainHeader.diskGUID = secondHeader.diskGUID;
560 mainHeader.partitionEntriesLBA = UINT64_C(2);
561 mainHeader.numParts = secondHeader.numParts;
562 mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
563 mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
564 memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
565 mainCrcOk = secondCrcOk;
566 SetGPTSize(mainHeader.numParts, 0);
567 } // GPTData::RebuildMainHeader()
568
569 // Rebuild the secondary GPT header, using the main header as a model.
RebuildSecondHeader(void)570 void GPTData::RebuildSecondHeader(void) {
571 secondHeader.signature = GPT_SIGNATURE;
572 secondHeader.revision = mainHeader.revision;
573 secondHeader.headerSize = mainHeader.headerSize;
574 secondHeader.headerCRC = UINT32_C(0);
575 secondHeader.reserved = mainHeader.reserved;
576 secondHeader.currentLBA = mainHeader.backupLBA;
577 secondHeader.backupLBA = mainHeader.currentLBA;
578 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
579 secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
580 secondHeader.diskGUID = mainHeader.diskGUID;
581 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
582 secondHeader.numParts = mainHeader.numParts;
583 secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
584 secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
585 memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
586 secondCrcOk = mainCrcOk;
587 SetGPTSize(secondHeader.numParts, 0);
588 } // GPTData::RebuildSecondHeader()
589
590 // Search for hybrid MBR entries that have no corresponding GPT partition.
591 // Returns number of such mismatches found
FindHybridMismatches(void)592 int GPTData::FindHybridMismatches(void) {
593 int i, found, numFound = 0;
594 uint32_t j;
595 uint64_t mbrFirst, mbrLast;
596
597 for (i = 0; i < 4; i++) {
598 if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
599 j = 0;
600 found = 0;
601 mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
602 mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
603 do {
604 if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
605 (partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
606 found = 1;
607 j++;
608 } while ((!found) && (j < numParts));
609 if (!found) {
610 numFound++;
611 cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
612 << i + 1 << ", of type 0x";
613 cout.fill('0');
614 cout.setf(ios::uppercase);
615 cout.width(2);
616 cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
617 << "has no corresponding GPT partition! You may continue, but this condition\n"
618 << "might cause data loss in the future!\a\n" << dec;
619 cout.fill(' ');
620 } // if
621 } // if
622 } // for
623 return numFound;
624 } // GPTData::FindHybridMismatches
625
626 // Find overlapping partitions and warn user about them. Returns number of
627 // overlapping partitions.
628 // Returns number of overlapping segments found.
FindOverlaps(void)629 int GPTData::FindOverlaps(void) {
630 int problems = 0;
631 uint32_t i, j;
632
633 for (i = 1; i < numParts; i++) {
634 for (j = 0; j < i; j++) {
635 if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
636 (partitions[i].DoTheyOverlap(partitions[j]))) {
637 problems++;
638 cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
639 cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
640 << " to " << partitions[i].GetLastLBA() << "\n";
641 cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
642 << " to " << partitions[j].GetLastLBA() << "\n";
643 } // if
644 } // for j...
645 } // for i...
646 return problems;
647 } // GPTData::FindOverlaps()
648
649 // Find partitions that are insane -- they start after they end or are too
650 // big for the disk. (The latter should duplicate detection of overlaps
651 // with GPT backup data structures, but better to err on the side of
652 // redundant tests than to miss something....)
653 // Returns number of problems found.
FindInsanePartitions(void)654 int GPTData::FindInsanePartitions(void) {
655 uint32_t i;
656 int problems = 0;
657
658 for (i = 0; i < numParts; i++) {
659 if (partitions[i].IsUsed()) {
660 if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
661 problems++;
662 cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
663 } // if
664 if (partitions[i].GetLastLBA() >= diskSize) {
665 problems++;
666 cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
667 } // if
668 } // if
669 } // for
670 return problems;
671 } // GPTData::FindInsanePartitions(void)
672
673
674 /******************************************************************
675 * *
676 * Begin functions that load data from disk or save data to disk. *
677 * *
678 ******************************************************************/
679
680 // Change the filename associated with the GPT. Used for duplicating
681 // the partition table to a new disk and saving backups.
682 // Returns 1 on success, 0 on failure.
SetDisk(const string & deviceFilename)683 int GPTData::SetDisk(const string & deviceFilename) {
684 int err, allOK = 1;
685
686 device = deviceFilename;
687 if (allOK && myDisk.OpenForRead(deviceFilename)) {
688 // store disk information....
689 diskSize = myDisk.DiskSize(&err);
690 blockSize = (uint32_t) myDisk.GetBlockSize();
691 } // if
692 protectiveMBR.SetDisk(&myDisk);
693 protectiveMBR.SetDiskSize(diskSize);
694 protectiveMBR.SetBlockSize(blockSize);
695 return allOK;
696 } // GPTData::SetDisk()
697
698 // Scan for partition data. This function loads the MBR data (regular MBR or
699 // protective MBR) and loads BSD disklabel data (which is probably invalid).
700 // It also looks for APM data, forces a load of GPT data, and summarizes
701 // the results.
PartitionScan(void)702 void GPTData::PartitionScan(void) {
703 BSDData bsdDisklabel;
704
705 // Read the MBR & check for BSD disklabel
706 protectiveMBR.ReadMBRData(&myDisk);
707 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
708
709 // Load the GPT data, whether or not it's valid
710 ForceLoadGPTData();
711
712 // Some tools create a 0xEE partition that's too big. If this is detected,
713 // normalize it....
714 if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
715 if (!beQuiet) {
716 cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
717 } // if
718 protectiveMBR.MakeProtectiveMBR();
719 } // if
720
721 if (!beQuiet) {
722 cout << "Partition table scan:\n";
723 protectiveMBR.ShowState();
724 bsdDisklabel.ShowState();
725 ShowAPMState(); // Show whether there's an Apple Partition Map present
726 ShowGPTState(); // Show GPT status
727 cout << "\n";
728 } // if
729
730 if (apmFound) {
731 cout << "\n*******************************************************************\n"
732 << "This disk appears to contain an Apple-format (APM) partition table!\n";
733 if (!justLooking) {
734 cout << "It will be destroyed if you continue!\n";
735 } // if
736 cout << "*******************************************************************\n\n\a";
737 } // if
738 } // GPTData::PartitionScan()
739
740 // Read GPT data from a disk.
LoadPartitions(const string & deviceFilename)741 int GPTData::LoadPartitions(const string & deviceFilename) {
742 BSDData bsdDisklabel;
743 int err, allOK = 1;
744 MBRValidity mbrState;
745
746 if (myDisk.OpenForRead(deviceFilename)) {
747 err = myDisk.OpenForWrite(deviceFilename);
748 if ((err == 0) && (!justLooking)) {
749 cout << "\aNOTE: Write test failed with error number " << errno
750 << ". It will be impossible to save\nchanges to this disk's partition table!\n";
751 #if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
752 cout << "You may be able to enable writes by exiting this program, typing\n"
753 << "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
754 << "program.\n";
755 #endif
756 cout << "\n";
757 } // if
758 myDisk.Close(); // Close and re-open read-only in case of bugs
759 } else allOK = 0; // if
760
761 if (allOK && myDisk.OpenForRead(deviceFilename)) {
762 // store disk information....
763 diskSize = myDisk.DiskSize(&err);
764 blockSize = (uint32_t) myDisk.GetBlockSize();
765 device = deviceFilename;
766 PartitionScan(); // Check for partition types, load GPT, & print summary
767
768 whichWasUsed = UseWhichPartitions();
769 switch (whichWasUsed) {
770 case use_mbr:
771 XFormPartitions();
772 break;
773 case use_bsd:
774 bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
775 // bsdDisklabel.DisplayBSDData();
776 ClearGPTData();
777 protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
778 XFormDisklabel(&bsdDisklabel);
779 break;
780 case use_gpt:
781 mbrState = protectiveMBR.GetValidity();
782 if ((mbrState == invalid) || (mbrState == mbr))
783 protectiveMBR.MakeProtectiveMBR();
784 break;
785 case use_new:
786 ClearGPTData();
787 protectiveMBR.MakeProtectiveMBR();
788 break;
789 case use_abort:
790 allOK = 0;
791 cerr << "Invalid partition data!\n";
792 break;
793 } // switch
794
795 if (allOK)
796 CheckGPTSize();
797 myDisk.Close();
798 ComputeAlignment();
799 } else {
800 allOK = 0;
801 } // if/else
802 return (allOK);
803 } // GPTData::LoadPartitions()
804
805 // Loads the GPT, as much as possible. Returns 1 if this seems to have
806 // succeeded, 0 if there are obvious problems....
ForceLoadGPTData(void)807 int GPTData::ForceLoadGPTData(void) {
808 int allOK, validHeaders, loadedTable = 1;
809
810 allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
811
812 if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
813 allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
814 } else {
815 allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
816 if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
817 cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
818 << "secondary header from the last sector of the disk! You should use 'v' to\n"
819 << "verify disk integrity, and perhaps options on the experts' menu to repair\n"
820 << "the disk.\n";
821 } // if/else
822 if (!allOK)
823 state = gpt_invalid;
824
825 // Return valid headers code: 0 = both headers bad; 1 = main header
826 // good, backup bad; 2 = backup header good, main header bad;
827 // 3 = both headers good. Note these codes refer to valid GPT
828 // signatures, version numbers, and CRCs.
829 validHeaders = CheckHeaderValidity();
830
831 // Read partitions (from primary array)
832 if (validHeaders > 0) { // if at least one header is OK....
833 // GPT appears to be valid....
834 state = gpt_valid;
835
836 // We're calling the GPT valid, but there's a possibility that one
837 // of the two headers is corrupt. If so, use the one that seems to
838 // be in better shape to regenerate the bad one
839 if (validHeaders == 1) { // valid main header, invalid backup header
840 cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
841 << "backup header from main header.\n\n";
842 RebuildSecondHeader();
843 state = gpt_corrupt;
844 secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
845 } else if (validHeaders == 2) { // valid backup header, invalid main header
846 cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
847 << "from backup!\n\n";
848 RebuildMainHeader();
849 state = gpt_corrupt;
850 mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
851 } // if/else/if
852
853 // Figure out which partition table to load....
854 // Load the main partition table, since either its header's CRC is OK or the
855 // backup header's CRC is not OK....
856 if (mainCrcOk || !secondCrcOk) {
857 if (LoadMainTable() == 0)
858 allOK = 0;
859 } else { // bad main header CRC and backup header CRC is OK
860 state = gpt_corrupt;
861 if (LoadSecondTableAsMain()) {
862 loadedTable = 2;
863 cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
864 } else { // backup table bad, bad main header CRC, but try main table in desperation....
865 if (LoadMainTable() == 0) {
866 allOK = 0;
867 loadedTable = 0;
868 cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
869 } // if
870 } // if/else (LoadSecondTableAsMain())
871 } // if/else (load partition table)
872
873 if (loadedTable == 1)
874 secondPartsCrcOk = CheckTable(&secondHeader);
875 else if (loadedTable == 2)
876 mainPartsCrcOk = CheckTable(&mainHeader);
877 else
878 mainPartsCrcOk = secondPartsCrcOk = 0;
879
880 // Problem with main partition table; if backup is OK, use it instead....
881 if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
882 state = gpt_corrupt;
883 allOK = allOK && LoadSecondTableAsMain();
884 mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
885 cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
886 << "partition table\ninstead of main partition table!\n\n";
887 } // if */
888
889 // Check for valid CRCs and warn if there are problems
890 if ((mainCrcOk == 0) || (secondCrcOk == 0) || (mainPartsCrcOk == 0) ||
891 (secondPartsCrcOk == 0)) {
892 cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n\n";
893 state = gpt_corrupt;
894 } // if
895 } else {
896 state = gpt_invalid;
897 } // if/else
898 return allOK;
899 } // GPTData::ForceLoadGPTData()
900
901 // Loads the partition table pointed to by the main GPT header. The
902 // main GPT header in memory MUST be valid for this call to do anything
903 // sensible!
904 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadMainTable(void)905 int GPTData::LoadMainTable(void) {
906 return LoadPartitionTable(mainHeader, myDisk);
907 } // GPTData::LoadMainTable()
908
909 // Load the second (backup) partition table as the primary partition
910 // table. Used in repair functions, and when starting up if the main
911 // partition table is damaged.
912 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadSecondTableAsMain(void)913 int GPTData::LoadSecondTableAsMain(void) {
914 return LoadPartitionTable(secondHeader, myDisk);
915 } // GPTData::LoadSecondTableAsMain()
916
917 // Load a single GPT header (main or backup) from the specified disk device and
918 // sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
919 // value appropriately.
920 // Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
921 // failure.
LoadHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector,int * crcOk)922 int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
923 int allOK = 1;
924 GPTHeader tempHeader;
925
926 disk.Seek(sector);
927 if (disk.Read(&tempHeader, 512) != 512) {
928 cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
929 allOK = 0;
930 } // if
931
932 // Reverse byte order, if necessary
933 if (IsLittleEndian() == 0) {
934 ReverseHeaderBytes(&tempHeader);
935 } // if
936 *crcOk = CheckHeaderCRC(&tempHeader);
937
938 if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
939 allOK = SetGPTSize(tempHeader.numParts, 0);
940 }
941
942 *header = tempHeader;
943 return allOK;
944 } // GPTData::LoadHeader
945
946 // Load a partition table (either main or secondary) from the specified disk,
947 // using header as a reference for what to load. If sector != 0 (the default
948 // is 0), loads from the specified sector; otherwise loads from the sector
949 // indicated in header.
950 // Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
LoadPartitionTable(const struct GPTHeader & header,DiskIO & disk,uint64_t sector)951 int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
952 uint32_t sizeOfParts, newCRC;
953 int retval;
954
955 if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
956 cerr << "Error! GPT header contains invalid partition entry size!\n";
957 retval = 0;
958 } else if (disk.OpenForRead()) {
959 if (sector == 0) {
960 retval = disk.Seek(header.partitionEntriesLBA);
961 } else {
962 retval = disk.Seek(sector);
963 } // if/else
964 if (retval == 1)
965 retval = SetGPTSize(header.numParts, 0);
966 if (retval == 1) {
967 sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
968 if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
969 cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
970 retval = 0;
971 } // if
972 newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
973 mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
974 if (IsLittleEndian() == 0)
975 ReversePartitionBytes();
976 if (!mainPartsCrcOk) {
977 cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
978 } // if
979 } else {
980 cerr << "Error! Couldn't seek to partition table!\n";
981 } // if/else
982 } else {
983 cerr << "Error! Couldn't open device " << device
984 << " when reading partition table!\n";
985 retval = 0;
986 } // if/else
987 return retval;
988 } // GPTData::LoadPartitionsTable()
989
990 // Check the partition table pointed to by header, but don't keep it
991 // around.
992 // Returns 1 if the CRC is OK & this table matches the one already in memory,
993 // 0 if not or if there was a read error.
CheckTable(struct GPTHeader * header)994 int GPTData::CheckTable(struct GPTHeader *header) {
995 uint32_t sizeOfParts, newCRC;
996 GPTPart *partsToCheck;
997 GPTHeader *otherHeader;
998 int allOK = 0;
999
1000 // Load partition table into temporary storage to check
1001 // its CRC and store the results, then discard this temporary
1002 // storage, since we don't use it in any but recovery operations
1003 if (myDisk.Seek(header->partitionEntriesLBA)) {
1004 partsToCheck = new GPTPart[header->numParts];
1005 sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
1006 if (partsToCheck == NULL) {
1007 cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
1008 exit(1);
1009 } // if
1010 if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
1011 cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
1012 } else {
1013 newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
1014 allOK = (newCRC == header->partitionEntriesCRC);
1015 if (header == &mainHeader)
1016 otherHeader = &secondHeader;
1017 else
1018 otherHeader = &mainHeader;
1019 if (newCRC != otherHeader->partitionEntriesCRC) {
1020 cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
1021 << "on the recovery & transformation menu to examine the two tables.\n\n";
1022 allOK = 0;
1023 } // if
1024 } // if/else
1025 delete[] partsToCheck;
1026 } // if
1027 return allOK;
1028 } // GPTData::CheckTable()
1029
1030 // Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
1031 // header later on the disk without asking for permission, if necessary, and
1032 // doesn't confirm the operation before writing. If quiet==0, asks permission
1033 // before moving the second header and asks for final confirmation of any
1034 // write.
1035 // Returns 1 on successful write, 0 if there was a problem.
SaveGPTData(int quiet)1036 int GPTData::SaveGPTData(int quiet) {
1037 int allOK = 1, syncIt = 1;
1038 char answer;
1039
1040 // First do some final sanity checks....
1041
1042 // This test should only fail on read-only disks....
1043 if (justLooking) {
1044 cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
1045 allOK = 0;
1046 } // if
1047
1048 // Check that disk is really big enough to handle the second header...
1049 if (mainHeader.backupLBA >= diskSize) {
1050 cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
1051 << "header, but other problems may occur!\n";
1052 MoveSecondHeaderToEnd();
1053 } // if
1054
1055 // Is there enough space to hold the GPT headers and partition tables,
1056 // given the partition sizes?
1057 if (CheckGPTSize() > 0) {
1058 allOK = 0;
1059 } // if
1060
1061 // Check that second header is properly placed. Warn and ask if this should
1062 // be corrected if the test fails....
1063 if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
1064 if (quiet == 0) {
1065 cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
1066 << "correct this problem? ";
1067 if (GetYN() == 'Y') {
1068 MoveSecondHeaderToEnd();
1069 cout << "Have moved second header and partition table to correct location.\n";
1070 } else {
1071 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1072 } // if correction requested
1073 } else { // Go ahead and do correction automatically
1074 MoveSecondHeaderToEnd();
1075 } // if/else quiet
1076 } // if
1077
1078 if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
1079 if (quiet == 0) {
1080 cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
1081 << "this problem? ";
1082 if (GetYN() == 'Y') {
1083 MoveSecondHeaderToEnd();
1084 cout << "Have adjusted the second header and last usable sector value.\n";
1085 } else {
1086 cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
1087 } // if correction requested
1088 } else { // go ahead and do correction automatically
1089 MoveSecondHeaderToEnd();
1090 } // if/else quiet
1091 } // if
1092
1093 // Check for overlapping or insane partitions....
1094 if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
1095 allOK = 0;
1096 cerr << "Aborting write operation!\n";
1097 } // if
1098
1099 // Check that protective MBR fits, and warn if it doesn't....
1100 if (!protectiveMBR.DoTheyFit()) {
1101 cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
1102 << "fresh protective or hybrid MBR is recommended.\n";
1103 }
1104
1105 // Check for mismatched MBR and GPT data, but let it pass if found
1106 // (function displays warning message)
1107 FindHybridMismatches();
1108
1109 RecomputeCRCs();
1110
1111 if ((allOK) && (!quiet)) {
1112 cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
1113 << "PARTITIONS!!\n\nDo you want to proceed? ";
1114 answer = GetYN();
1115 if (answer == 'Y') {
1116 cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
1117 } else {
1118 allOK = 0;
1119 } // if/else
1120 } // if
1121
1122 // Do it!
1123 if (allOK) {
1124 if (myDisk.OpenForWrite()) {
1125 // As per UEFI specs, write the secondary table and GPT first....
1126 allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
1127 if (!allOK) {
1128 cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
1129 << "menu will resolve this problem.\n";
1130 syncIt = 0;
1131 } // if
1132
1133 // Now write the secondary GPT header...
1134 allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
1135
1136 // Now write the main partition tables...
1137 allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
1138
1139 // Now write the main GPT header...
1140 allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
1141
1142 // To top it off, write the protective MBR...
1143 allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
1144
1145 // re-read the partition table
1146 // Note: Done even if some write operations failed, but not if all of them failed.
1147 // Done this way because I've received one problem report from a user one whose
1148 // system the MBR write failed but everything else was OK (on a GPT disk under
1149 // Windows), and the failure to sync therefore caused Windows to restore the
1150 // original partition table from its cache. OTOH, such restoration might be
1151 // desirable if the error occurs later; but that seems unlikely unless the initial
1152 // write fails....
1153 if (syncIt && syncing)
1154 myDisk.DiskSync();
1155
1156 if (allOK) { // writes completed OK
1157 cout << "The operation has completed successfully.\n";
1158 } else {
1159 cerr << "Warning! An error was reported when writing the partition table! This error\n"
1160 << "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
1161 } // if/else
1162
1163 myDisk.Close();
1164 } else {
1165 cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
1166 << errno << "! Aborting write!\n";
1167 allOK = 0;
1168 } // if/else
1169 } else {
1170 cout << "Aborting write of new partition table.\n";
1171 } // if
1172
1173 return (allOK);
1174 } // GPTData::SaveGPTData()
1175
1176 // Save GPT data to a backup file. This function does much less error
1177 // checking than SaveGPTData(). It can therefore preserve many types of
1178 // corruption for later analysis; however, it preserves only the MBR,
1179 // the main GPT header, the backup GPT header, and the main partition
1180 // table; it discards the backup partition table, since it should be
1181 // identical to the main partition table on healthy disks.
SaveGPTBackup(const string & filename)1182 int GPTData::SaveGPTBackup(const string & filename) {
1183 int allOK = 1;
1184 DiskIO backupFile;
1185
1186 if (backupFile.OpenForWrite(filename)) {
1187 // Recomputing the CRCs is likely to alter them, which could be bad
1188 // if the intent is to save a potentially bad GPT for later analysis;
1189 // but if we don't do this, we get bogus errors when we load the
1190 // backup. I'm favoring misses over false alarms....
1191 RecomputeCRCs();
1192
1193 protectiveMBR.WriteMBRData(&backupFile);
1194 protectiveMBR.SetDisk(&myDisk);
1195
1196 if (allOK) {
1197 // MBR write closed disk, so re-open and seek to end....
1198 backupFile.OpenForWrite();
1199 allOK = SaveHeader(&mainHeader, backupFile, 1);
1200 } // if (allOK)
1201
1202 if (allOK)
1203 allOK = SaveHeader(&secondHeader, backupFile, 2);
1204
1205 if (allOK)
1206 allOK = SavePartitionTable(backupFile, 3);
1207
1208 if (allOK) { // writes completed OK
1209 cout << "The operation has completed successfully.\n";
1210 } else {
1211 cerr << "Warning! An error was reported when writing the backup file.\n"
1212 << "It may not be usable!\n";
1213 } // if/else
1214 backupFile.Close();
1215 } else {
1216 cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
1217 allOK = 0;
1218 } // if/else
1219 return allOK;
1220 } // GPTData::SaveGPTBackup()
1221
1222 // Write a GPT header (main or backup) to the specified sector. Used by both
1223 // the SaveGPTData() and SaveGPTBackup() functions.
1224 // Should be passed an architecture-appropriate header (DO NOT call
1225 // ReverseHeaderBytes() on the header before calling this function)
1226 // Returns 1 on success, 0 on failure
SaveHeader(struct GPTHeader * header,DiskIO & disk,uint64_t sector)1227 int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
1228 int littleEndian, allOK = 1;
1229
1230 littleEndian = IsLittleEndian();
1231 if (!littleEndian)
1232 ReverseHeaderBytes(header);
1233 if (disk.Seek(sector)) {
1234 if (disk.Write(header, 512) == -1)
1235 allOK = 0;
1236 } else allOK = 0; // if (disk.Seek()...)
1237 if (!littleEndian)
1238 ReverseHeaderBytes(header);
1239 return allOK;
1240 } // GPTData::SaveHeader()
1241
1242 // Save the partitions to the specified sector. Used by both the SaveGPTData()
1243 // and SaveGPTBackup() functions.
1244 // Should be passed an architecture-appropriate header (DO NOT call
1245 // ReverseHeaderBytes() on the header before calling this function)
1246 // Returns 1 on success, 0 on failure
SavePartitionTable(DiskIO & disk,uint64_t sector)1247 int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
1248 int littleEndian, allOK = 1;
1249
1250 littleEndian = IsLittleEndian();
1251 if (disk.Seek(sector)) {
1252 if (!littleEndian)
1253 ReversePartitionBytes();
1254 if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
1255 allOK = 0;
1256 if (!littleEndian)
1257 ReversePartitionBytes();
1258 } else allOK = 0; // if (myDisk.Seek()...)
1259 return allOK;
1260 } // GPTData::SavePartitionTable()
1261
1262 // Load GPT data from a backup file created by SaveGPTBackup(). This function
1263 // does minimal error checking. It returns 1 if it completed successfully,
1264 // 0 if there was a problem. In the latter case, it creates a new empty
1265 // set of partitions.
LoadGPTBackup(const string & filename)1266 int GPTData::LoadGPTBackup(const string & filename) {
1267 int allOK = 1, val, err;
1268 int shortBackup = 0;
1269 DiskIO backupFile;
1270
1271 if (backupFile.OpenForRead(filename)) {
1272 // Let the MBRData class load the saved MBR...
1273 protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
1274 protectiveMBR.SetDisk(&myDisk);
1275
1276 LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
1277
1278 // Check backup file size and rebuild second header if file is right
1279 // size to be direct dd copy of MBR, main header, and main partition
1280 // table; if other size, treat it like a GPT fdisk-generated backup
1281 // file
1282 shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
1283 (mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
1284 if (shortBackup) {
1285 RebuildSecondHeader();
1286 secondCrcOk = mainCrcOk;
1287 } else {
1288 LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
1289 } // if/else
1290
1291 // Return valid headers code: 0 = both headers bad; 1 = main header
1292 // good, backup bad; 2 = backup header good, main header bad;
1293 // 3 = both headers good. Note these codes refer to valid GPT
1294 // signatures and version numbers; more subtle problems will elude
1295 // this check!
1296 if ((val = CheckHeaderValidity()) > 0) {
1297 if (val == 2) { // only backup header seems to be good
1298 SetGPTSize(secondHeader.numParts, 0);
1299 } else { // main header is OK
1300 SetGPTSize(mainHeader.numParts, 0);
1301 } // if/else
1302
1303 if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
1304 cout << "Warning! Current disk size doesn't match that of the backup!\n"
1305 << "Adjusting sizes to match, but subsequent problems are possible!\n";
1306 MoveSecondHeaderToEnd();
1307 } // if
1308
1309 if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
1310 cerr << "Warning! Read error " << errno
1311 << " loading partition table; strange behavior now likely!\n";
1312 } else {
1313 allOK = 0;
1314 } // if/else
1315 // Something went badly wrong, so blank out partitions
1316 if (allOK == 0) {
1317 cerr << "Improper backup file! Clearing all partition data!\n";
1318 ClearGPTData();
1319 protectiveMBR.MakeProtectiveMBR();
1320 } // if
1321 } else {
1322 allOK = 0;
1323 cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
1324 } // if/else
1325
1326 return allOK;
1327 } // GPTData::LoadGPTBackup()
1328
SaveMBR(void)1329 int GPTData::SaveMBR(void) {
1330 return protectiveMBR.WriteMBRData(&myDisk);
1331 } // GPTData::SaveMBR()
1332
1333 // This function destroys the on-disk GPT structures, but NOT the on-disk
1334 // MBR.
1335 // Returns 1 if the operation succeeds, 0 if not.
DestroyGPT(void)1336 int GPTData::DestroyGPT(void) {
1337 int sum, tableSize, allOK = 1;
1338 uint8_t blankSector[512];
1339 uint8_t* emptyTable;
1340
1341 memset(blankSector, 0, sizeof(blankSector));
1342 ClearGPTData();
1343
1344 if (myDisk.OpenForWrite()) {
1345 if (!myDisk.Seek(mainHeader.currentLBA))
1346 allOK = 0;
1347 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1348 cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
1349 allOK = 0;
1350 } // if
1351 if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
1352 allOK = 0;
1353 tableSize = numParts * mainHeader.sizeOfPartitionEntries;
1354 emptyTable = new uint8_t[tableSize];
1355 if (emptyTable == NULL) {
1356 cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
1357 exit(1);
1358 } // if
1359 memset(emptyTable, 0, tableSize);
1360 if (allOK) {
1361 sum = myDisk.Write(emptyTable, tableSize);
1362 if (sum != tableSize) {
1363 cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
1364 allOK = 0;
1365 } // if write failed
1366 } // if
1367 if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
1368 allOK = 0;
1369 if (allOK) {
1370 sum = myDisk.Write(emptyTable, tableSize);
1371 if (sum != tableSize) {
1372 cerr << "Warning! GPT backup partition table not overwritten! Error is "
1373 << errno << "\n";
1374 allOK = 0;
1375 } // if wrong size written
1376 } // if
1377 if (!myDisk.Seek(secondHeader.currentLBA))
1378 allOK = 0;
1379 if (allOK) {
1380 if (myDisk.Write(blankSector, 512) != 512) { // blank it out
1381 cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
1382 allOK = 0;
1383 } // if
1384 } // if
1385 if (syncing) {
1386 myDisk.DiskSync();
1387 }
1388 myDisk.Close();
1389 cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
1390 << "other utilities.\n";
1391 delete[] emptyTable;
1392 } else {
1393 cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
1394 } // if/else (fd != -1)
1395 return (allOK);
1396 } // GPTDataTextUI::DestroyGPT()
1397
1398 // Wipe MBR data from the disk (zero it out completely)
1399 // Returns 1 on success, 0 on failure.
DestroyMBR(void)1400 int GPTData::DestroyMBR(void) {
1401 int allOK;
1402 uint8_t blankSector[512];
1403
1404 memset(blankSector, 0, sizeof(blankSector));
1405
1406 allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
1407
1408 if (!allOK)
1409 cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
1410 return allOK;
1411 } // GPTData::DestroyMBR(void)
1412
1413 // Tell user whether Apple Partition Map (APM) was discovered....
ShowAPMState(void)1414 void GPTData::ShowAPMState(void) {
1415 if (apmFound)
1416 cout << " APM: present\n";
1417 else
1418 cout << " APM: not present\n";
1419 } // GPTData::ShowAPMState()
1420
1421 // Tell user about the state of the GPT data....
ShowGPTState(void)1422 void GPTData::ShowGPTState(void) {
1423 switch (state) {
1424 case gpt_invalid:
1425 cout << " GPT: not present\n";
1426 break;
1427 case gpt_valid:
1428 cout << " GPT: present\n";
1429 break;
1430 case gpt_corrupt:
1431 cout << " GPT: damaged\n";
1432 break;
1433 default:
1434 cout << "\a GPT: unknown -- bug!\n";
1435 break;
1436 } // switch
1437 } // GPTData::ShowGPTState()
1438
1439 // Display the basic GPT data
DisplayGPTData(void)1440 void GPTData::DisplayGPTData(void) {
1441 uint32_t i;
1442 uint64_t temp, totalFree;
1443
1444 cout << "Disk " << device << ": " << diskSize << " sectors, "
1445 << BytesToIeee(diskSize, blockSize) << "\n";
1446 cout << "Logical sector size: " << blockSize << " bytes\n";
1447 cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
1448 cout << "Partition table holds up to " << numParts << " entries\n";
1449 cout << "First usable sector is " << mainHeader.firstUsableLBA
1450 << ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
1451 totalFree = FindFreeBlocks(&i, &temp);
1452 cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
1453 cout << "Total free space is " << totalFree << " sectors ("
1454 << BytesToIeee(totalFree, blockSize) << ")\n";
1455 cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
1456 for (i = 0; i < numParts; i++) {
1457 partitions[i].ShowSummary(i, blockSize);
1458 } // for
1459 } // GPTData::DisplayGPTData()
1460
1461 // Show detailed information on the specified partition
ShowPartDetails(uint32_t partNum)1462 void GPTData::ShowPartDetails(uint32_t partNum) {
1463 if ((partNum < numParts) && !IsFreePartNum(partNum)) {
1464 partitions[partNum].ShowDetails(blockSize);
1465 } else {
1466 cout << "Partition #" << partNum + 1 << " does not exist.\n";
1467 } // if
1468 } // GPTData::ShowPartDetails()
1469
1470 /**************************************************************************
1471 * *
1472 * Partition table transformation functions (MBR or BSD disklabel to GPT) *
1473 * (some of these functions may require user interaction) *
1474 * *
1475 **************************************************************************/
1476
1477 // Examines the MBR & GPT data to determine which set of data to use: the
1478 // MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
1479 // a new set of partitions (use_new). A return value of use_abort indicates
1480 // that this function couldn't determine what to do. Overriding functions
1481 // in derived classes may ask users questions in such cases.
UseWhichPartitions(void)1482 WhichToUse GPTData::UseWhichPartitions(void) {
1483 WhichToUse which = use_new;
1484 MBRValidity mbrState;
1485
1486 mbrState = protectiveMBR.GetValidity();
1487
1488 if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
1489 cout << "\n***************************************************************\n"
1490 << "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
1491 << "in memory. ";
1492 if (!justLooking) {
1493 cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
1494 << "typing 'q' if you don't want to convert your MBR partitions\n"
1495 << "to GPT format!";
1496 } // if
1497 cout << "\n***************************************************************\n\n";
1498 which = use_mbr;
1499 } // if
1500
1501 if ((state == gpt_invalid) && bsdFound) {
1502 cout << "\n**********************************************************************\n"
1503 << "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
1504 << "to GPT format.";
1505 if ((!justLooking) && (!beQuiet)) {
1506 cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
1507 << "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
1508 << "want to convert your BSD partitions to GPT format!";
1509 } // if
1510 cout << "\n**********************************************************************\n\n";
1511 which = use_bsd;
1512 } // if
1513
1514 if ((state == gpt_valid) && (mbrState == gpt)) {
1515 which = use_gpt;
1516 if (!beQuiet)
1517 cout << "Found valid GPT with protective MBR; using GPT.\n";
1518 } // if
1519 if ((state == gpt_valid) && (mbrState == hybrid)) {
1520 which = use_gpt;
1521 if (!beQuiet)
1522 cout << "Found valid GPT with hybrid MBR; using GPT.\n";
1523 } // if
1524 if ((state == gpt_valid) && (mbrState == invalid)) {
1525 cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
1526 << "protective MBR on save.\n";
1527 which = use_gpt;
1528 } // if
1529 if ((state == gpt_valid) && (mbrState == mbr)) {
1530 which = use_abort;
1531 } // if
1532
1533 if (state == gpt_corrupt) {
1534 if (mbrState == gpt) {
1535 cout << "\a\a****************************************************************************\n"
1536 << "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
1537 << "verification and recovery are STRONGLY recommended.\n"
1538 << "****************************************************************************\n";
1539 which = use_gpt;
1540 } else {
1541 which = use_abort;
1542 } // if/else MBR says disk is GPT
1543 } // if GPT corrupt
1544
1545 if (which == use_new)
1546 cout << "Creating new GPT entries.\n";
1547
1548 return which;
1549 } // UseWhichPartitions()
1550
1551 // Convert MBR partition table into GPT form.
XFormPartitions(void)1552 void GPTData::XFormPartitions(void) {
1553 int i, numToConvert;
1554 uint8_t origType;
1555
1556 // Clear out old data & prepare basics....
1557 ClearGPTData();
1558
1559 // Convert the smaller of the # of GPT or MBR partitions
1560 if (numParts > MAX_MBR_PARTS)
1561 numToConvert = MAX_MBR_PARTS;
1562 else
1563 numToConvert = numParts;
1564
1565 for (i = 0; i < numToConvert; i++) {
1566 origType = protectiveMBR.GetType(i);
1567 // don't waste CPU time trying to convert extended, hybrid protective, or
1568 // null (non-existent) partitions
1569 if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
1570 (origType != 0x00) && (origType != 0xEE))
1571 partitions[i] = protectiveMBR.AsGPT(i);
1572 } // for
1573
1574 // Convert MBR into protective MBR
1575 protectiveMBR.MakeProtectiveMBR();
1576
1577 // Record that all original CRCs were OK so as not to raise flags
1578 // when doing a disk verification
1579 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1580 } // GPTData::XFormPartitions()
1581
1582 // Transforms BSD disklabel on the specified partition (numbered from 0).
1583 // If an invalid partition number is given, the program does nothing.
1584 // Returns the number of new partitions created.
XFormDisklabel(uint32_t partNum)1585 int GPTData::XFormDisklabel(uint32_t partNum) {
1586 uint32_t low, high;
1587 int goOn = 1, numDone = 0;
1588 BSDData disklabel;
1589
1590 if (GetPartRange(&low, &high) == 0) {
1591 goOn = 0;
1592 cout << "No partitions!\n";
1593 } // if
1594 if (partNum > high) {
1595 goOn = 0;
1596 cout << "Specified partition is invalid!\n";
1597 } // if
1598
1599 // If all is OK, read the disklabel and convert it.
1600 if (goOn) {
1601 goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
1602 partitions[partNum].GetLastLBA());
1603 if ((goOn) && (disklabel.IsDisklabel())) {
1604 numDone = XFormDisklabel(&disklabel);
1605 if (numDone == 1)
1606 cout << "Converted 1 BSD partition.\n";
1607 else
1608 cout << "Converted " << numDone << " BSD partitions.\n";
1609 } else {
1610 cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
1611 } // if/else
1612 } // if
1613 if (numDone > 0) { // converted partitions; delete carrier
1614 partitions[partNum].BlankPartition();
1615 } // if
1616 return numDone;
1617 } // GPTData::XFormDisklabel(uint32_t i)
1618
1619 // Transform the partitions on an already-loaded BSD disklabel...
XFormDisklabel(BSDData * disklabel)1620 int GPTData::XFormDisklabel(BSDData* disklabel) {
1621 int i, partNum = 0, numDone = 0;
1622
1623 if (disklabel->IsDisklabel()) {
1624 for (i = 0; i < disklabel->GetNumParts(); i++) {
1625 partNum = FindFirstFreePart();
1626 if (partNum >= 0) {
1627 partitions[partNum] = disklabel->AsGPT(i);
1628 if (partitions[partNum].IsUsed())
1629 numDone++;
1630 } // if
1631 } // for
1632 if (partNum == -1)
1633 cerr << "Warning! Too many partitions to convert!\n";
1634 } // if
1635
1636 // Record that all original CRCs were OK so as not to raise flags
1637 // when doing a disk verification
1638 mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
1639
1640 return numDone;
1641 } // GPTData::XFormDisklabel(BSDData* disklabel)
1642
1643 // Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
1644 // partition has the active/bootable flag UNset and uses the GPT fdisk
1645 // type code divided by 0x0100 as the MBR type code.
1646 // Returns 1 if operation was 100% successful, 0 if there were ANY
1647 // problems.
OnePartToMBR(uint32_t gptPart,int mbrPart)1648 int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
1649 int allOK = 1;
1650
1651 if ((mbrPart < 0) || (mbrPart > 3)) {
1652 cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
1653 allOK = 0;
1654 } // if
1655 if (gptPart >= numParts) {
1656 cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
1657 allOK = 0;
1658 } // if
1659 if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
1660 cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
1661 allOK = 0;
1662 } // if
1663 if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
1664 (partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
1665 if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
1666 cout << "Caution: Partition end point past 32-bit pointer boundary;"
1667 << " some OSes may\nreact strangely.\n";
1668 } // if
1669 protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
1670 (uint32_t) partitions[gptPart].GetLengthLBA(),
1671 partitions[gptPart].GetHexType() / 256, 0);
1672 } else { // partition out of range
1673 if (allOK) // Display only if "else" triggered by out-of-bounds condition
1674 cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
1675 << "partitions, or is\n too big; omitting it.\n";
1676 allOK = 0;
1677 } // if/else
1678 return allOK;
1679 } // GPTData::OnePartToMBR()
1680
1681
1682 /**********************************************************************
1683 * *
1684 * Functions that adjust GPT data structures WITHOUT user interaction *
1685 * (they may display information for the user's benefit, though) *
1686 * *
1687 **********************************************************************/
1688
1689 // Resizes GPT to specified number of entries. Creates a new table if
1690 // necessary, copies data if it already exists. If fillGPTSectors is 1
1691 // (the default), rounds numEntries to fill all the sectors necessary to
1692 // hold the GPT.
1693 // Returns 1 if all goes well, 0 if an error is encountered.
SetGPTSize(uint32_t numEntries,int fillGPTSectors)1694 int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
1695 GPTPart* newParts;
1696 uint32_t i, high, copyNum, entriesPerSector;
1697 int allOK = 1;
1698
1699 // First, adjust numEntries upward, if necessary, to get a number
1700 // that fills the allocated sectors
1701 entriesPerSector = blockSize / GPT_SIZE;
1702 if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
1703 cout << "Adjusting GPT size from " << numEntries << " to ";
1704 numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
1705 cout << numEntries << " to fill the sector\n";
1706 } // if
1707
1708 // Do the work only if the # of partitions is changing. Along with being
1709 // efficient, this prevents mucking with the location of the secondary
1710 // partition table, which causes problems when loading data from a RAID
1711 // array that's been expanded because this function is called when loading
1712 // data.
1713 if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
1714 newParts = new GPTPart [numEntries];
1715 if (newParts != NULL) {
1716 if (partitions != NULL) { // existing partitions; copy them over
1717 GetPartRange(&i, &high);
1718 if (numEntries < (high + 1)) { // Highest entry too high for new #
1719 cout << "The highest-numbered partition is " << high + 1
1720 << ", which is greater than the requested\n"
1721 << "partition table size of " << numEntries
1722 << "; cannot resize. Perhaps sorting will help.\n";
1723 allOK = 0;
1724 delete[] newParts;
1725 } else { // go ahead with copy
1726 if (numEntries < numParts)
1727 copyNum = numEntries;
1728 else
1729 copyNum = numParts;
1730 for (i = 0; i < copyNum; i++) {
1731 newParts[i] = partitions[i];
1732 } // for
1733 delete[] partitions;
1734 partitions = newParts;
1735 } // if
1736 } else { // No existing partition table; just create it
1737 partitions = newParts;
1738 } // if/else existing partitions
1739 numParts = numEntries;
1740 mainHeader.firstUsableLBA = ((numEntries * GPT_SIZE) / blockSize) + (((numEntries * GPT_SIZE) % blockSize) != 0) + 2 ;
1741 secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
1742 MoveSecondHeaderToEnd();
1743 if (diskSize > 0)
1744 CheckGPTSize();
1745 } else { // Bad memory allocation
1746 cerr << "Error allocating memory for partition table! Size is unchanged!\n";
1747 allOK = 0;
1748 } // if/else
1749 } // if/else
1750 mainHeader.numParts = numParts;
1751 secondHeader.numParts = numParts;
1752 return (allOK);
1753 } // GPTData::SetGPTSize()
1754
1755 // Blank the partition array
BlankPartitions(void)1756 void GPTData::BlankPartitions(void) {
1757 uint32_t i;
1758
1759 for (i = 0; i < numParts; i++) {
1760 partitions[i].BlankPartition();
1761 } // for
1762 } // GPTData::BlankPartitions()
1763
1764 // Delete a partition by number. Returns 1 if successful,
1765 // 0 if there was a problem. Returns 1 if partition was in
1766 // range, 0 if it was out of range.
DeletePartition(uint32_t partNum)1767 int GPTData::DeletePartition(uint32_t partNum) {
1768 uint64_t startSector, length;
1769 uint32_t low, high, numUsedParts, retval = 1;;
1770
1771 numUsedParts = GetPartRange(&low, &high);
1772 if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
1773 // In case there's a protective MBR, look for & delete matching
1774 // MBR partition....
1775 startSector = partitions[partNum].GetFirstLBA();
1776 length = partitions[partNum].GetLengthLBA();
1777 protectiveMBR.DeleteByLocation(startSector, length);
1778
1779 // Now delete the GPT partition
1780 partitions[partNum].BlankPartition();
1781 } else {
1782 cerr << "Partition number " << partNum + 1 << " out of range!\n";
1783 retval = 0;
1784 } // if/else
1785 return retval;
1786 } // GPTData::DeletePartition(uint32_t partNum)
1787
1788 // Non-interactively create a partition.
1789 // Returns 1 if the operation was successful, 0 if a problem was discovered.
CreatePartition(uint32_t partNum,uint64_t startSector,uint64_t endSector)1790 uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
1791 int retval = 1; // assume there'll be no problems
1792 uint64_t origSector = startSector;
1793
1794 if (IsFreePartNum(partNum)) {
1795 if (Align(&startSector)) {
1796 cout << "Information: Moved requested sector from " << origSector << " to "
1797 << startSector << " in\norder to align on " << sectorAlignment
1798 << "-sector boundaries.\n";
1799 } // if
1800 if (IsFree(startSector) && (startSector <= endSector)) {
1801 if (FindLastInFree(startSector) >= endSector) {
1802 partitions[partNum].SetFirstLBA(startSector);
1803 partitions[partNum].SetLastLBA(endSector);
1804 partitions[partNum].SetType(DEFAULT_GPT_TYPE);
1805 partitions[partNum].RandomizeUniqueGUID();
1806 } else retval = 0; // if free space until endSector
1807 } else retval = 0; // if startSector is free
1808 } else retval = 0; // if legal partition number
1809 return retval;
1810 } // GPTData::CreatePartition(partNum, startSector, endSector)
1811
1812 // Sort the GPT entries, eliminating gaps and making for a logical
1813 // ordering.
SortGPT(void)1814 void GPTData::SortGPT(void) {
1815 if (numParts > 0)
1816 sort(partitions, partitions + numParts);
1817 } // GPTData::SortGPT()
1818
1819 // Swap the contents of two partitions.
1820 // Returns 1 if successful, 0 if either partition is out of range
1821 // (that is, not a legal number; either or both can be empty).
1822 // Note that if partNum1 = partNum2 and this number is in range,
1823 // it will be considered successful.
SwapPartitions(uint32_t partNum1,uint32_t partNum2)1824 int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
1825 GPTPart temp;
1826 int allOK = 1;
1827
1828 if ((partNum1 < numParts) && (partNum2 < numParts)) {
1829 if (partNum1 != partNum2) {
1830 temp = partitions[partNum1];
1831 partitions[partNum1] = partitions[partNum2];
1832 partitions[partNum2] = temp;
1833 } // if
1834 } else allOK = 0; // partition numbers are valid
1835 return allOK;
1836 } // GPTData::SwapPartitions()
1837
1838 // Set up data structures for entirely new set of partitions on the
1839 // specified device. Returns 1 if OK, 0 if there were problems.
1840 // Note that this function does NOT clear the protectiveMBR data
1841 // structure, since it may hold the original MBR partitions if the
1842 // program was launched on an MBR disk, and those may need to be
1843 // converted to GPT format.
ClearGPTData(void)1844 int GPTData::ClearGPTData(void) {
1845 int goOn = 1, i;
1846
1847 // Set up the partition table....
1848 delete[] partitions;
1849 partitions = NULL;
1850 SetGPTSize(NUM_GPT_ENTRIES);
1851
1852 // Now initialize a bunch of stuff that's static....
1853 mainHeader.signature = GPT_SIGNATURE;
1854 mainHeader.revision = 0x00010000;
1855 mainHeader.headerSize = HEADER_SIZE;
1856 mainHeader.reserved = 0;
1857 mainHeader.currentLBA = UINT64_C(1);
1858 mainHeader.partitionEntriesLBA = (uint64_t) 2;
1859 mainHeader.sizeOfPartitionEntries = GPT_SIZE;
1860 for (i = 0; i < GPT_RESERVED; i++) {
1861 mainHeader.reserved2[i] = '\0';
1862 } // for
1863 if (blockSize > 0)
1864 sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
1865 else
1866 sectorAlignment = DEFAULT_ALIGNMENT;
1867
1868 // Now some semi-static items (computed based on end of disk)
1869 mainHeader.backupLBA = diskSize - UINT64_C(1);
1870 mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1871
1872 // Set a unique GUID for the disk, based on random numbers
1873 mainHeader.diskGUID.Randomize();
1874
1875 // Copy main header to backup header
1876 RebuildSecondHeader();
1877
1878 // Blank out the partitions array....
1879 BlankPartitions();
1880
1881 // Flag all CRCs as being OK....
1882 mainCrcOk = 1;
1883 secondCrcOk = 1;
1884 mainPartsCrcOk = 1;
1885 secondPartsCrcOk = 1;
1886
1887 return (goOn);
1888 } // GPTData::ClearGPTData()
1889
1890 // Set the location of the second GPT header data to the end of the disk.
1891 // If the disk size has actually changed, this also adjusts the protective
1892 // entry in the MBR, since it's probably no longer correct.
1893 // Used internally and called by the 'e' option on the recovery &
1894 // transformation menu, to help users of RAID arrays who add disk space
1895 // to their arrays or to adjust data structures in restore operations
1896 // involving unequal-sized disks.
MoveSecondHeaderToEnd()1897 void GPTData::MoveSecondHeaderToEnd() {
1898 mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
1899 if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
1900 if (protectiveMBR.GetValidity() == hybrid) {
1901 protectiveMBR.OptimizeEESize();
1902 RecomputeCHS();
1903 } // if
1904 if (protectiveMBR.GetValidity() == gpt)
1905 MakeProtectiveMBR();
1906 } // if
1907 mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
1908 secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
1909 } // GPTData::FixSecondHeaderLocation()
1910
1911 // Sets the partition's name to the specified UnicodeString without
1912 // user interaction.
1913 // Returns 1 on success, 0 on failure (invalid partition number).
SetName(uint32_t partNum,const UnicodeString & theName)1914 int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
1915 int retval = 1;
1916
1917 if (IsUsedPartNum(partNum))
1918 partitions[partNum].SetName(theName);
1919 else
1920 retval = 0;
1921
1922 return retval;
1923 } // GPTData::SetName
1924
1925 // Set the disk GUID to the specified value. Note that the header CRCs must
1926 // be recomputed after calling this function.
SetDiskGUID(GUIDData newGUID)1927 void GPTData::SetDiskGUID(GUIDData newGUID) {
1928 mainHeader.diskGUID = newGUID;
1929 secondHeader.diskGUID = newGUID;
1930 } // SetDiskGUID()
1931
1932 // Set the unique GUID of the specified partition. Returns 1 on
1933 // successful completion, 0 if there were problems (invalid
1934 // partition number).
SetPartitionGUID(uint32_t pn,GUIDData theGUID)1935 int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
1936 int retval = 0;
1937
1938 if (pn < numParts) {
1939 if (partitions[pn].IsUsed()) {
1940 partitions[pn].SetUniqueGUID(theGUID);
1941 retval = 1;
1942 } // if
1943 } // if
1944 return retval;
1945 } // GPTData::SetPartitionGUID()
1946
1947 // Set new random GUIDs for the disk and all partitions. Intended to be used
1948 // after disk cloning or similar operations that don't randomize the GUIDs.
RandomizeGUIDs(void)1949 void GPTData::RandomizeGUIDs(void) {
1950 uint32_t i;
1951
1952 mainHeader.diskGUID.Randomize();
1953 secondHeader.diskGUID = mainHeader.diskGUID;
1954 for (i = 0; i < numParts; i++)
1955 if (partitions[i].IsUsed())
1956 partitions[i].RandomizeUniqueGUID();
1957 } // GPTData::RandomizeGUIDs()
1958
1959 // Change partition type code non-interactively. Returns 1 if
1960 // successful, 0 if not....
ChangePartType(uint32_t partNum,PartType theGUID)1961 int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
1962 int retval = 1;
1963
1964 if (!IsFreePartNum(partNum)) {
1965 partitions[partNum].SetType(theGUID);
1966 } else retval = 0;
1967 return retval;
1968 } // GPTData::ChangePartType()
1969
1970 // Recompute the CHS values of all the MBR partitions. Used to reset
1971 // CHS values that some BIOSes require, despite the fact that the
1972 // resulting CHS values violate the GPT standard.
RecomputeCHS(void)1973 void GPTData::RecomputeCHS(void) {
1974 int i;
1975
1976 for (i = 0; i < 4; i++)
1977 protectiveMBR.RecomputeCHS(i);
1978 } // GPTData::RecomputeCHS()
1979
1980 // Adjust sector number so that it falls on a sector boundary that's a
1981 // multiple of sectorAlignment. This is done to improve the performance
1982 // of Western Digital Advanced Format disks and disks with similar
1983 // technology from other companies, which use 4096-byte sectors
1984 // internally although they translate to 512-byte sectors for the
1985 // benefit of the OS. If partitions aren't properly aligned on these
1986 // disks, some filesystem data structures can span multiple physical
1987 // sectors, degrading performance. This function should be called
1988 // only on the FIRST sector of the partition, not the last!
1989 // This function returns 1 if the alignment was altered, 0 if it
1990 // was unchanged.
Align(uint64_t * sector)1991 int GPTData::Align(uint64_t* sector) {
1992 int retval = 0, sectorOK = 0;
1993 uint64_t earlier, later, testSector;
1994
1995 if ((*sector % sectorAlignment) != 0) {
1996 earlier = (*sector / sectorAlignment) * sectorAlignment;
1997 later = earlier + (uint64_t) sectorAlignment;
1998
1999 // Check to see that every sector between the earlier one and the
2000 // requested one is clear, and that it's not too early....
2001 if (earlier >= mainHeader.firstUsableLBA) {
2002 sectorOK = 1;
2003 testSector = earlier;
2004 do {
2005 sectorOK = IsFree(testSector++);
2006 } while ((sectorOK == 1) && (testSector < *sector));
2007 if (sectorOK == 1) {
2008 *sector = earlier;
2009 retval = 1;
2010 } // if
2011 } // if firstUsableLBA check
2012
2013 // If couldn't move the sector earlier, try to move it later instead....
2014 if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
2015 sectorOK = 1;
2016 testSector = later;
2017 do {
2018 sectorOK = IsFree(testSector--);
2019 } while ((sectorOK == 1) && (testSector > *sector));
2020 if (sectorOK == 1) {
2021 *sector = later;
2022 retval = 1;
2023 } // if
2024 } // if
2025 } // if
2026 return retval;
2027 } // GPTData::Align()
2028
2029 /********************************************************
2030 * *
2031 * Functions that return data about GPT data structures *
2032 * (most of these are inline in gpt.h) *
2033 * *
2034 ********************************************************/
2035
2036 // Find the low and high used partition numbers (numbered from 0).
2037 // Return value is the number of partitions found. Note that the
2038 // *low and *high values are both set to 0 when no partitions
2039 // are found, as well as when a single partition in the first
2040 // position exists. Thus, the return value is the only way to
2041 // tell when no partitions exist.
GetPartRange(uint32_t * low,uint32_t * high)2042 int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
2043 uint32_t i;
2044 int numFound = 0;
2045
2046 *low = numParts + 1; // code for "not found"
2047 *high = 0;
2048 for (i = 0; i < numParts; i++) {
2049 if (partitions[i].IsUsed()) { // it exists
2050 *high = i; // since we're counting up, set the high value
2051 // Set the low value only if it's not yet found...
2052 if (*low == (numParts + 1)) *low = i;
2053 numFound++;
2054 } // if
2055 } // for
2056
2057 // Above will leave *low pointing to its "not found" value if no partitions
2058 // are defined, so reset to 0 if this is the case....
2059 if (*low == (numParts + 1))
2060 *low = 0;
2061 return numFound;
2062 } // GPTData::GetPartRange()
2063
2064 // Returns the value of the first free partition, or -1 if none is
2065 // unused.
FindFirstFreePart(void)2066 int GPTData::FindFirstFreePart(void) {
2067 int i = 0;
2068
2069 if (partitions != NULL) {
2070 while ((i < (int) numParts) && (partitions[i].IsUsed()))
2071 i++;
2072 if (i >= (int) numParts)
2073 i = -1;
2074 } else i = -1;
2075 return i;
2076 } // GPTData::FindFirstFreePart()
2077
2078 // Returns the number of defined partitions.
CountParts(void)2079 uint32_t GPTData::CountParts(void) {
2080 uint32_t i, counted = 0;
2081
2082 for (i = 0; i < numParts; i++) {
2083 if (partitions[i].IsUsed())
2084 counted++;
2085 } // for
2086 return counted;
2087 } // GPTData::CountParts()
2088
2089 /****************************************************
2090 * *
2091 * Functions that return data about disk free space *
2092 * *
2093 ****************************************************/
2094
2095 // Find the first available block after the starting point; returns 0 if
2096 // there are no available blocks left
FindFirstAvailable(uint64_t start)2097 uint64_t GPTData::FindFirstAvailable(uint64_t start) {
2098 uint64_t first;
2099 uint32_t i;
2100 int firstMoved = 0;
2101
2102 // Begin from the specified starting point or from the first usable
2103 // LBA, whichever is greater...
2104 if (start < mainHeader.firstUsableLBA)
2105 first = mainHeader.firstUsableLBA;
2106 else
2107 first = start;
2108
2109 // ...now search through all partitions; if first is within an
2110 // existing partition, move it to the next sector after that
2111 // partition and repeat. If first was moved, set firstMoved
2112 // flag; repeat until firstMoved is not set, so as to catch
2113 // cases where partitions are out of sequential order....
2114 do {
2115 firstMoved = 0;
2116 for (i = 0; i < numParts; i++) {
2117 if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
2118 (first <= partitions[i].GetLastLBA())) { // in existing part.
2119 first = partitions[i].GetLastLBA() + 1;
2120 firstMoved = 1;
2121 } // if
2122 } // for
2123 } while (firstMoved == 1);
2124 if (first > mainHeader.lastUsableLBA)
2125 first = 0;
2126 return (first);
2127 } // GPTData::FindFirstAvailable()
2128
2129 // Finds the first available sector in the largest block of unallocated
2130 // space on the disk. Returns 0 if there are no available blocks left
FindFirstInLargest(void)2131 uint64_t GPTData::FindFirstInLargest(void) {
2132 uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
2133
2134 start = 0;
2135 do {
2136 firstBlock = FindFirstAvailable(start);
2137 if (firstBlock != UINT32_C(0)) { // something's free...
2138 lastBlock = FindLastInFree(firstBlock);
2139 segmentSize = lastBlock - firstBlock + UINT32_C(1);
2140 if (segmentSize > selectedSize) {
2141 selectedSize = segmentSize;
2142 selectedSegment = firstBlock;
2143 } // if
2144 start = lastBlock + 1;
2145 } // if
2146 } while (firstBlock != 0);
2147 return selectedSegment;
2148 } // GPTData::FindFirstInLargest()
2149
2150 // Find the last available block on the disk.
2151 // Returns 0 if there are no available sectors
FindLastAvailable(void)2152 uint64_t GPTData::FindLastAvailable(void) {
2153 uint64_t last;
2154 uint32_t i;
2155 int lastMoved = 0;
2156
2157 // Start by assuming the last usable LBA is available....
2158 last = mainHeader.lastUsableLBA;
2159
2160 // ...now, similar to algorithm in FindFirstAvailable(), search
2161 // through all partitions, moving last when it's in an existing
2162 // partition. Set the lastMoved flag so we repeat to catch cases
2163 // where partitions are out of logical order.
2164 do {
2165 lastMoved = 0;
2166 for (i = 0; i < numParts; i++) {
2167 if ((last >= partitions[i].GetFirstLBA()) &&
2168 (last <= partitions[i].GetLastLBA())) { // in existing part.
2169 last = partitions[i].GetFirstLBA() - 1;
2170 lastMoved = 1;
2171 } // if
2172 } // for
2173 } while (lastMoved == 1);
2174 if (last < mainHeader.firstUsableLBA)
2175 last = 0;
2176 return (last);
2177 } // GPTData::FindLastAvailable()
2178
2179 // Find the last available block in the free space pointed to by start.
FindLastInFree(uint64_t start)2180 uint64_t GPTData::FindLastInFree(uint64_t start) {
2181 uint64_t nearestStart;
2182 uint32_t i;
2183
2184 nearestStart = mainHeader.lastUsableLBA;
2185 for (i = 0; i < numParts; i++) {
2186 if ((nearestStart > partitions[i].GetFirstLBA()) &&
2187 (partitions[i].GetFirstLBA() > start)) {
2188 nearestStart = partitions[i].GetFirstLBA() - 1;
2189 } // if
2190 } // for
2191 return (nearestStart);
2192 } // GPTData::FindLastInFree()
2193
2194 // Finds the total number of free blocks, the number of segments in which
2195 // they reside, and the size of the largest of those segments
FindFreeBlocks(uint32_t * numSegments,uint64_t * largestSegment)2196 uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
2197 uint64_t start = UINT64_C(0); // starting point for each search
2198 uint64_t totalFound = UINT64_C(0); // running total
2199 uint64_t firstBlock; // first block in a segment
2200 uint64_t lastBlock; // last block in a segment
2201 uint64_t segmentSize; // size of segment in blocks
2202 uint32_t num = 0;
2203
2204 *largestSegment = UINT64_C(0);
2205 if (diskSize > 0) {
2206 do {
2207 firstBlock = FindFirstAvailable(start);
2208 if (firstBlock != UINT64_C(0)) { // something's free...
2209 lastBlock = FindLastInFree(firstBlock);
2210 segmentSize = lastBlock - firstBlock + UINT64_C(1);
2211 if (segmentSize > *largestSegment) {
2212 *largestSegment = segmentSize;
2213 } // if
2214 totalFound += segmentSize;
2215 num++;
2216 start = lastBlock + 1;
2217 } // if
2218 } while (firstBlock != 0);
2219 } // if
2220 *numSegments = num;
2221 return totalFound;
2222 } // GPTData::FindFreeBlocks()
2223
2224 // Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
2225 // If it's allocated, return the partition number to which it's allocated
2226 // in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
2227 // returned in partNum if the sector is in use by basic GPT data structures.)
IsFree(uint64_t sector,uint32_t * partNum)2228 int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
2229 int isFree = 1;
2230 uint32_t i;
2231
2232 for (i = 0; i < numParts; i++) {
2233 if ((sector >= partitions[i].GetFirstLBA()) &&
2234 (sector <= partitions[i].GetLastLBA())) {
2235 isFree = 0;
2236 if (partNum != NULL)
2237 *partNum = i;
2238 } // if
2239 } // for
2240 if ((sector < mainHeader.firstUsableLBA) ||
2241 (sector > mainHeader.lastUsableLBA)) {
2242 isFree = 0;
2243 if (partNum != NULL)
2244 *partNum = UINT32_MAX;
2245 } // if
2246 return (isFree);
2247 } // GPTData::IsFree()
2248
2249 // Returns 1 if partNum is unused AND if it's a legal value.
IsFreePartNum(uint32_t partNum)2250 int GPTData::IsFreePartNum(uint32_t partNum) {
2251 return ((partNum < numParts) && (partitions != NULL) &&
2252 (!partitions[partNum].IsUsed()));
2253 } // GPTData::IsFreePartNum()
2254
2255 // Returns 1 if partNum is in use.
IsUsedPartNum(uint32_t partNum)2256 int GPTData::IsUsedPartNum(uint32_t partNum) {
2257 return ((partNum < numParts) && (partitions != NULL) &&
2258 (partitions[partNum].IsUsed()));
2259 } // GPTData::IsUsedPartNum()
2260
2261 /***********************************************************
2262 * *
2263 * Change how functions work or return information on them *
2264 * *
2265 ***********************************************************/
2266
2267 // Set partition alignment value; partitions will begin on multiples of
2268 // the specified value
SetAlignment(uint32_t n)2269 void GPTData::SetAlignment(uint32_t n) {
2270 if (n > 0)
2271 sectorAlignment = n;
2272 else
2273 cerr << "Attempt to set partition alignment to 0!\n";
2274 } // GPTData::SetAlignment()
2275
2276 // Compute sector alignment based on the current partitions (if any). Each
2277 // partition's starting LBA is examined, and if it's divisible by a power-of-2
2278 // value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
2279 // sector size), but not by the previously-located alignment value, then the
2280 // alignment value is adjusted down. If the computed alignment is less than 8
2281 // and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
2282 // is a safety measure for Advanced Format drives. If no partitions are
2283 // defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
2284 // adjustment of that based on the current sector size). The result is that new
2285 // drives are aligned to 2048-sector multiples but the program won't complain
2286 // about other alignments on existing disks unless a smaller-than-8 alignment
2287 // is used on big disks (as safety for Advanced Format drives).
2288 // Returns the computed alignment value.
ComputeAlignment(void)2289 uint32_t GPTData::ComputeAlignment(void) {
2290 uint32_t i = 0, found, exponent = 31;
2291 uint32_t align = DEFAULT_ALIGNMENT;
2292
2293 if (blockSize > 0)
2294 align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
2295 exponent = (uint32_t) log2(align);
2296 for (i = 0; i < numParts; i++) {
2297 if (partitions[i].IsUsed()) {
2298 found = 0;
2299 while (!found) {
2300 align = UINT64_C(1) << exponent;
2301 if ((partitions[i].GetFirstLBA() % align) == 0) {
2302 found = 1;
2303 } else {
2304 exponent--;
2305 } // if/else
2306 } // while
2307 } // if
2308 } // for
2309 if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
2310 align = MIN_AF_ALIGNMENT;
2311 sectorAlignment = align;
2312 return align;
2313 } // GPTData::ComputeAlignment()
2314
2315 /********************************
2316 * *
2317 * Endianness support functions *
2318 * *
2319 ********************************/
2320
ReverseHeaderBytes(struct GPTHeader * header)2321 void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
2322 ReverseBytes(&header->signature, 8);
2323 ReverseBytes(&header->revision, 4);
2324 ReverseBytes(&header->headerSize, 4);
2325 ReverseBytes(&header->headerCRC, 4);
2326 ReverseBytes(&header->reserved, 4);
2327 ReverseBytes(&header->currentLBA, 8);
2328 ReverseBytes(&header->backupLBA, 8);
2329 ReverseBytes(&header->firstUsableLBA, 8);
2330 ReverseBytes(&header->lastUsableLBA, 8);
2331 ReverseBytes(&header->partitionEntriesLBA, 8);
2332 ReverseBytes(&header->numParts, 4);
2333 ReverseBytes(&header->sizeOfPartitionEntries, 4);
2334 ReverseBytes(&header->partitionEntriesCRC, 4);
2335 ReverseBytes(header->reserved2, GPT_RESERVED);
2336 } // GPTData::ReverseHeaderBytes()
2337
2338 // Reverse byte order for all partitions.
ReversePartitionBytes()2339 void GPTData::ReversePartitionBytes() {
2340 uint32_t i;
2341
2342 for (i = 0; i < numParts; i++) {
2343 partitions[i].ReversePartBytes();
2344 } // for
2345 } // GPTData::ReversePartitionBytes()
2346
2347 // Validate partition number
ValidPartNum(const uint32_t partNum)2348 bool GPTData::ValidPartNum (const uint32_t partNum) {
2349 if (partNum >= numParts) {
2350 cerr << "Partition number out of range: " << partNum << "\n";
2351 return false;
2352 } // if
2353 return true;
2354 } // GPTData::ValidPartNum
2355
2356 // Return a single partition for inspection (not modification!) by other
2357 // functions.
operator [](uint32_t partNum) const2358 const GPTPart & GPTData::operator[](uint32_t partNum) const {
2359 if (partNum >= numParts) {
2360 cerr << "Partition number out of range (" << partNum << " requested, but only "
2361 << numParts << " available)\n";
2362 exit(1);
2363 } // if
2364 if (partitions == NULL) {
2365 cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
2366 exit(1);
2367 } // if
2368 return partitions[partNum];
2369 } // operator[]
2370
2371 // Return (not for modification!) the disk's GUID value
GetDiskGUID(void) const2372 const GUIDData & GPTData::GetDiskGUID(void) const {
2373 return mainHeader.diskGUID;
2374 } // GPTData::GetDiskGUID()
2375
2376 // Manage attributes for a partition, based on commands passed to this function.
2377 // (Function is non-interactive.)
2378 // Returns 1 if a modification command succeeded, 0 if the command should not have
2379 // modified data, and -1 if a modification command failed.
ManageAttributes(int partNum,const string & command,const string & bits)2380 int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
2381 int retval = 0;
2382 Attributes theAttr;
2383
2384 if (partNum >= (int) numParts) {
2385 cerr << "Invalid partition number (" << partNum + 1 << ")\n";
2386 retval = -1;
2387 } else {
2388 if (command == "show") {
2389 ShowAttributes(partNum);
2390 } else if (command == "get") {
2391 GetAttribute(partNum, bits);
2392 } else {
2393 theAttr = partitions[partNum].GetAttributes();
2394 if (theAttr.OperateOnAttributes(partNum, command, bits)) {
2395 partitions[partNum].SetAttributes(theAttr.GetAttributes());
2396 retval = 1;
2397 } else {
2398 retval = -1;
2399 } // if/else
2400 } // if/elseif/else
2401 } // if/else invalid partition #
2402
2403 return retval;
2404 } // GPTData::ManageAttributes()
2405
2406 // Show all attributes for a specified partition....
ShowAttributes(const uint32_t partNum)2407 void GPTData::ShowAttributes(const uint32_t partNum) {
2408 if ((partNum < numParts) && partitions[partNum].IsUsed())
2409 partitions[partNum].ShowAttributes(partNum);
2410 } // GPTData::ShowAttributes
2411
2412 // Show whether a single attribute bit is set (terse output)...
GetAttribute(const uint32_t partNum,const string & attributeBits)2413 void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
2414 if (partNum < numParts)
2415 partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
2416 } // GPTData::GetAttribute
2417
2418
2419 /******************************************
2420 * *
2421 * Additional non-class support functions *
2422 * *
2423 ******************************************/
2424
2425 // Check to be sure that data type sizes are correct. The basic types (uint*_t) should
2426 // never fail these tests, but the struct types may fail depending on compile options.
2427 // Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
2428 // sizes.
SizesOK(void)2429 int SizesOK(void) {
2430 int allOK = 1;
2431
2432 if (sizeof(uint8_t) != 1) {
2433 cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
2434 allOK = 0;
2435 } // if
2436 if (sizeof(uint16_t) != 2) {
2437 cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
2438 allOK = 0;
2439 } // if
2440 if (sizeof(uint32_t) != 4) {
2441 cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
2442 allOK = 0;
2443 } // if
2444 if (sizeof(uint64_t) != 8) {
2445 cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
2446 allOK = 0;
2447 } // if
2448 if (sizeof(struct MBRRecord) != 16) {
2449 cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
2450 allOK = 0;
2451 } // if
2452 if (sizeof(struct TempMBR) != 512) {
2453 cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
2454 allOK = 0;
2455 } // if
2456 if (sizeof(struct GPTHeader) != 512) {
2457 cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
2458 allOK = 0;
2459 } // if
2460 if (sizeof(GPTPart) != 128) {
2461 cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
2462 allOK = 0;
2463 } // if
2464 if (sizeof(GUIDData) != 16) {
2465 cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
2466 allOK = 0;
2467 } // if
2468 if (sizeof(PartType) != 16) {
2469 cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
2470 allOK = 0;
2471 } // if
2472 return (allOK);
2473 } // SizesOK()
2474
2475