1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the target machine instruction set to the code generator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H 15 #define LLVM_TARGET_TARGETINSTRINFO_H 16 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/CodeGen/MachineCombinerPattern.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/MC/MCInstrInfo.h" 23 #include "llvm/Support/BranchProbability.h" 24 #include "llvm/Target/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 27 namespace llvm { 28 29 class InstrItineraryData; 30 class LiveVariables; 31 class MCAsmInfo; 32 class MachineMemOperand; 33 class MachineRegisterInfo; 34 class MDNode; 35 class MCInst; 36 struct MCSchedModel; 37 class MCSymbolRefExpr; 38 class SDNode; 39 class ScheduleHazardRecognizer; 40 class SelectionDAG; 41 class ScheduleDAG; 42 class TargetRegisterClass; 43 class TargetRegisterInfo; 44 class TargetSubtargetInfo; 45 class TargetSchedModel; 46 class DFAPacketizer; 47 48 template<class T> class SmallVectorImpl; 49 50 //--------------------------------------------------------------------------- 51 /// 52 /// TargetInstrInfo - Interface to description of machine instruction set 53 /// 54 class TargetInstrInfo : public MCInstrInfo { 55 TargetInstrInfo(const TargetInstrInfo &) = delete; 56 void operator=(const TargetInstrInfo &) = delete; 57 public: 58 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u, 59 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u) CallFrameSetupOpcode(CFSetupOpcode)60 : CallFrameSetupOpcode(CFSetupOpcode), 61 CallFrameDestroyOpcode(CFDestroyOpcode), 62 CatchRetOpcode(CatchRetOpcode), 63 ReturnOpcode(ReturnOpcode) {} 64 65 virtual ~TargetInstrInfo(); 66 isGenericOpcode(unsigned Opc)67 static bool isGenericOpcode(unsigned Opc) { 68 return Opc <= TargetOpcode::GENERIC_OP_END; 69 } 70 71 /// Given a machine instruction descriptor, returns the register 72 /// class constraint for OpNum, or NULL. 73 const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, 74 unsigned OpNum, 75 const TargetRegisterInfo *TRI, 76 const MachineFunction &MF) const; 77 78 /// Return true if the instruction is trivially rematerializable, meaning it 79 /// has no side effects and requires no operands that aren't always available. 80 /// This means the only allowed uses are constants and unallocatable physical 81 /// registers so that the instructions result is independent of the place 82 /// in the function. 83 bool isTriviallyReMaterializable(const MachineInstr &MI, 84 AliasAnalysis *AA = nullptr) const { 85 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF || 86 (MI.getDesc().isRematerializable() && 87 (isReallyTriviallyReMaterializable(MI, AA) || 88 isReallyTriviallyReMaterializableGeneric(MI, AA))); 89 } 90 91 protected: 92 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 93 /// set, this hook lets the target specify whether the instruction is actually 94 /// trivially rematerializable, taking into consideration its operands. This 95 /// predicate must return false if the instruction has any side effects other 96 /// than producing a value, or if it requres any address registers that are 97 /// not always available. 98 /// Requirements must be check as stated in isTriviallyReMaterializable() . isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA)99 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI, 100 AliasAnalysis *AA) const { 101 return false; 102 } 103 104 /// This method commutes the operands of the given machine instruction MI. 105 /// The operands to be commuted are specified by their indices OpIdx1 and 106 /// OpIdx2. 107 /// 108 /// If a target has any instructions that are commutable but require 109 /// converting to different instructions or making non-trivial changes 110 /// to commute them, this method can be overloaded to do that. 111 /// The default implementation simply swaps the commutable operands. 112 /// 113 /// If NewMI is false, MI is modified in place and returned; otherwise, a 114 /// new machine instruction is created and returned. 115 /// 116 /// Do not call this method for a non-commutable instruction. 117 /// Even though the instruction is commutable, the method may still 118 /// fail to commute the operands, null pointer is returned in such cases. 119 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI, 120 unsigned OpIdx1, 121 unsigned OpIdx2) const; 122 123 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable 124 /// operand indices to (ResultIdx1, ResultIdx2). 125 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be 126 /// predefined to some indices or be undefined (designated by the special 127 /// value 'CommuteAnyOperandIndex'). 128 /// The predefined result indices cannot be re-defined. 129 /// The function returns true iff after the result pair redefinition 130 /// the fixed result pair is equal to or equivalent to the source pair of 131 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that 132 /// the pairs (x,y) and (y,x) are equivalent. 133 static bool fixCommutedOpIndices(unsigned &ResultIdx1, 134 unsigned &ResultIdx2, 135 unsigned CommutableOpIdx1, 136 unsigned CommutableOpIdx2); 137 138 private: 139 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is 140 /// set and the target hook isReallyTriviallyReMaterializable returns false, 141 /// this function does target-independent tests to determine if the 142 /// instruction is really trivially rematerializable. 143 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI, 144 AliasAnalysis *AA) const; 145 146 public: 147 /// These methods return the opcode of the frame setup/destroy instructions 148 /// if they exist (-1 otherwise). Some targets use pseudo instructions in 149 /// order to abstract away the difference between operating with a frame 150 /// pointer and operating without, through the use of these two instructions. 151 /// getCallFrameSetupOpcode()152 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; } getCallFrameDestroyOpcode()153 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; } 154 getCatchReturnOpcode()155 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; } getReturnOpcode()156 unsigned getReturnOpcode() const { return ReturnOpcode; } 157 158 /// Returns the actual stack pointer adjustment made by an instruction 159 /// as part of a call sequence. By default, only call frame setup/destroy 160 /// instructions adjust the stack, but targets may want to override this 161 /// to enable more fine-grained adjustment, or adjust by a different value. 162 virtual int getSPAdjust(const MachineInstr &MI) const; 163 164 /// Return true if the instruction is a "coalescable" extension instruction. 165 /// That is, it's like a copy where it's legal for the source to overlap the 166 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's 167 /// expected the pre-extension value is available as a subreg of the result 168 /// register. This also returns the sub-register index in SubIdx. isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)169 virtual bool isCoalescableExtInstr(const MachineInstr &MI, 170 unsigned &SrcReg, unsigned &DstReg, 171 unsigned &SubIdx) const { 172 return false; 173 } 174 175 /// If the specified machine instruction is a direct 176 /// load from a stack slot, return the virtual or physical register number of 177 /// the destination along with the FrameIndex of the loaded stack slot. If 178 /// not, return 0. This predicate must return 0 if the instruction has 179 /// any side effects other than loading from the stack slot. isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)180 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI, 181 int &FrameIndex) const { 182 return 0; 183 } 184 185 /// Check for post-frame ptr elimination stack locations as well. 186 /// This uses a heuristic so it isn't reliable for correctness. isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)187 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI, 188 int &FrameIndex) const { 189 return 0; 190 } 191 192 /// If the specified machine instruction has a load from a stack slot, 193 /// return true along with the FrameIndex of the loaded stack slot and the 194 /// machine mem operand containing the reference. 195 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for 196 /// any instructions that loads from the stack. This is just a hint, as some 197 /// cases may be missed. 198 virtual bool hasLoadFromStackSlot(const MachineInstr &MI, 199 const MachineMemOperand *&MMO, 200 int &FrameIndex) const; 201 202 /// If the specified machine instruction is a direct 203 /// store to a stack slot, return the virtual or physical register number of 204 /// the source reg along with the FrameIndex of the loaded stack slot. If 205 /// not, return 0. This predicate must return 0 if the instruction has 206 /// any side effects other than storing to the stack slot. isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)207 virtual unsigned isStoreToStackSlot(const MachineInstr &MI, 208 int &FrameIndex) const { 209 return 0; 210 } 211 212 /// Check for post-frame ptr elimination stack locations as well. 213 /// This uses a heuristic, so it isn't reliable for correctness. isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)214 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI, 215 int &FrameIndex) const { 216 return 0; 217 } 218 219 /// If the specified machine instruction has a store to a stack slot, 220 /// return true along with the FrameIndex of the loaded stack slot and the 221 /// machine mem operand containing the reference. 222 /// If not, return false. Unlike isStoreToStackSlot, 223 /// this returns true for any instructions that stores to the 224 /// stack. This is just a hint, as some cases may be missed. 225 virtual bool hasStoreToStackSlot(const MachineInstr &MI, 226 const MachineMemOperand *&MMO, 227 int &FrameIndex) const; 228 229 /// Return true if the specified machine instruction 230 /// is a copy of one stack slot to another and has no other effect. 231 /// Provide the identity of the two frame indices. isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)232 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex, 233 int &SrcFrameIndex) const { 234 return false; 235 } 236 237 /// Compute the size in bytes and offset within a stack slot of a spilled 238 /// register or subregister. 239 /// 240 /// \param [out] Size in bytes of the spilled value. 241 /// \param [out] Offset in bytes within the stack slot. 242 /// \returns true if both Size and Offset are successfully computed. 243 /// 244 /// Not all subregisters have computable spill slots. For example, 245 /// subregisters registers may not be byte-sized, and a pair of discontiguous 246 /// subregisters has no single offset. 247 /// 248 /// Targets with nontrivial bigendian implementations may need to override 249 /// this, particularly to support spilled vector registers. 250 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx, 251 unsigned &Size, unsigned &Offset, 252 const MachineFunction &MF) const; 253 254 /// Return true if the instruction is as cheap as a move instruction. 255 /// 256 /// Targets for different archs need to override this, and different 257 /// micro-architectures can also be finely tuned inside. isAsCheapAsAMove(const MachineInstr & MI)258 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const { 259 return MI.isAsCheapAsAMove(); 260 } 261 262 /// Return true if the instruction should be sunk by MachineSink. 263 /// 264 /// MachineSink determines on its own whether the instruction is safe to sink; 265 /// this gives the target a hook to override the default behavior with regards 266 /// to which instructions should be sunk. 267 /// The default behavior is to not sink insert_subreg, subreg_to_reg, and 268 /// reg_sequence. These are meant to be close to the source to make it easier 269 /// to coalesce. shouldSink(const MachineInstr & MI)270 virtual bool shouldSink(const MachineInstr &MI) const { 271 return !MI.isInsertSubreg() && !MI.isSubregToReg() && !MI.isRegSequence(); 272 } 273 274 /// Re-issue the specified 'original' instruction at the 275 /// specific location targeting a new destination register. 276 /// The register in Orig->getOperand(0).getReg() will be substituted by 277 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with 278 /// SubIdx. 279 virtual void reMaterialize(MachineBasicBlock &MBB, 280 MachineBasicBlock::iterator MI, unsigned DestReg, 281 unsigned SubIdx, const MachineInstr &Orig, 282 const TargetRegisterInfo &TRI) const; 283 284 /// Create a duplicate of the Orig instruction in MF. This is like 285 /// MachineFunction::CloneMachineInstr(), but the target may update operands 286 /// that are required to be unique. 287 /// 288 /// The instruction must be duplicable as indicated by isNotDuplicable(). 289 virtual MachineInstr *duplicate(MachineInstr &Orig, 290 MachineFunction &MF) const; 291 292 /// This method must be implemented by targets that 293 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target 294 /// may be able to convert a two-address instruction into one or more true 295 /// three-address instructions on demand. This allows the X86 target (for 296 /// example) to convert ADD and SHL instructions into LEA instructions if they 297 /// would require register copies due to two-addressness. 298 /// 299 /// This method returns a null pointer if the transformation cannot be 300 /// performed, otherwise it returns the last new instruction. 301 /// convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV)302 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, 303 MachineInstr &MI, 304 LiveVariables *LV) const { 305 return nullptr; 306 } 307 308 // This constant can be used as an input value of operand index passed to 309 // the method findCommutedOpIndices() to tell the method that the 310 // corresponding operand index is not pre-defined and that the method 311 // can pick any commutable operand. 312 static const unsigned CommuteAnyOperandIndex = ~0U; 313 314 /// This method commutes the operands of the given machine instruction MI. 315 /// 316 /// The operands to be commuted are specified by their indices OpIdx1 and 317 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value 318 /// 'CommuteAnyOperandIndex', which means that the method is free to choose 319 /// any arbitrarily chosen commutable operand. If both arguments are set to 320 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable 321 /// operands; then commutes them if such operands could be found. 322 /// 323 /// If NewMI is false, MI is modified in place and returned; otherwise, a 324 /// new machine instruction is created and returned. 325 /// 326 /// Do not call this method for a non-commutable instruction or 327 /// for non-commuable operands. 328 /// Even though the instruction is commutable, the method may still 329 /// fail to commute the operands, null pointer is returned in such cases. 330 MachineInstr * 331 commuteInstruction(MachineInstr &MI, bool NewMI = false, 332 unsigned OpIdx1 = CommuteAnyOperandIndex, 333 unsigned OpIdx2 = CommuteAnyOperandIndex) const; 334 335 /// Returns true iff the routine could find two commutable operands in the 336 /// given machine instruction. 337 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. 338 /// If any of the INPUT values is set to the special value 339 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable 340 /// operand, then returns its index in the corresponding argument. 341 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method 342 /// looks for 2 commutable operands. 343 /// If INPUT values refer to some operands of MI, then the method simply 344 /// returns true if the corresponding operands are commutable and returns 345 /// false otherwise. 346 /// 347 /// For example, calling this method this way: 348 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; 349 /// findCommutedOpIndices(MI, Op1, Op2); 350 /// can be interpreted as a query asking to find an operand that would be 351 /// commutable with the operand#1. 352 virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, 353 unsigned &SrcOpIdx2) const; 354 355 /// A pair composed of a register and a sub-register index. 356 /// Used to give some type checking when modeling Reg:SubReg. 357 struct RegSubRegPair { 358 unsigned Reg; 359 unsigned SubReg; 360 RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0) RegRegSubRegPair361 : Reg(Reg), SubReg(SubReg) {} 362 }; 363 /// A pair composed of a pair of a register and a sub-register index, 364 /// and another sub-register index. 365 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2. 366 struct RegSubRegPairAndIdx : RegSubRegPair { 367 unsigned SubIdx; 368 RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0, 369 unsigned SubIdx = 0) RegSubRegPairRegSubRegPairAndIdx370 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {} 371 }; 372 373 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI 374 /// and \p DefIdx. 375 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of 376 /// the list is modeled as <Reg:SubReg, SubIdx>. 377 /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce 378 /// two elements: 379 /// - vreg1:sub1, sub0 380 /// - vreg2<:0>, sub1 381 /// 382 /// \returns true if it is possible to build such an input sequence 383 /// with the pair \p MI, \p DefIdx. False otherwise. 384 /// 385 /// \pre MI.isRegSequence() or MI.isRegSequenceLike(). 386 /// 387 /// \note The generic implementation does not provide any support for 388 /// MI.isRegSequenceLike(). In other words, one has to override 389 /// getRegSequenceLikeInputs for target specific instructions. 390 bool 391 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx, 392 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const; 393 394 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI 395 /// and \p DefIdx. 396 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG. 397 /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce: 398 /// - vreg1:sub1, sub0 399 /// 400 /// \returns true if it is possible to build such an input sequence 401 /// with the pair \p MI, \p DefIdx. False otherwise. 402 /// 403 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike(). 404 /// 405 /// \note The generic implementation does not provide any support for 406 /// MI.isExtractSubregLike(). In other words, one has to override 407 /// getExtractSubregLikeInputs for target specific instructions. 408 bool 409 getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx, 410 RegSubRegPairAndIdx &InputReg) const; 411 412 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI 413 /// and \p DefIdx. 414 /// \p [out] BaseReg and \p [out] InsertedReg contain 415 /// the equivalent inputs of INSERT_SUBREG. 416 /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce: 417 /// - BaseReg: vreg0:sub0 418 /// - InsertedReg: vreg1:sub1, sub3 419 /// 420 /// \returns true if it is possible to build such an input sequence 421 /// with the pair \p MI, \p DefIdx. False otherwise. 422 /// 423 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike(). 424 /// 425 /// \note The generic implementation does not provide any support for 426 /// MI.isInsertSubregLike(). In other words, one has to override 427 /// getInsertSubregLikeInputs for target specific instructions. 428 bool 429 getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx, 430 RegSubRegPair &BaseReg, 431 RegSubRegPairAndIdx &InsertedReg) const; 432 433 434 /// Return true if two machine instructions would produce identical values. 435 /// By default, this is only true when the two instructions 436 /// are deemed identical except for defs. If this function is called when the 437 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for 438 /// aggressive checks. 439 virtual bool produceSameValue(const MachineInstr &MI0, 440 const MachineInstr &MI1, 441 const MachineRegisterInfo *MRI = nullptr) const; 442 443 /// Analyze the branching code at the end of MBB, returning 444 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't 445 /// implemented for a target). Upon success, this returns false and returns 446 /// with the following information in various cases: 447 /// 448 /// 1. If this block ends with no branches (it just falls through to its succ) 449 /// just return false, leaving TBB/FBB null. 450 /// 2. If this block ends with only an unconditional branch, it sets TBB to be 451 /// the destination block. 452 /// 3. If this block ends with a conditional branch and it falls through to a 453 /// successor block, it sets TBB to be the branch destination block and a 454 /// list of operands that evaluate the condition. These operands can be 455 /// passed to other TargetInstrInfo methods to create new branches. 456 /// 4. If this block ends with a conditional branch followed by an 457 /// unconditional branch, it returns the 'true' destination in TBB, the 458 /// 'false' destination in FBB, and a list of operands that evaluate the 459 /// condition. These operands can be passed to other TargetInstrInfo 460 /// methods to create new branches. 461 /// 462 /// Note that RemoveBranch and InsertBranch must be implemented to support 463 /// cases where this method returns success. 464 /// 465 /// If AllowModify is true, then this routine is allowed to modify the basic 466 /// block (e.g. delete instructions after the unconditional branch). 467 /// 468 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 469 /// before calling this function. 470 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, 471 MachineBasicBlock *&FBB, 472 SmallVectorImpl<MachineOperand> &Cond, 473 bool AllowModify = false) const { 474 return true; 475 } 476 477 /// Represents a predicate at the MachineFunction level. The control flow a 478 /// MachineBranchPredicate represents is: 479 /// 480 /// Reg <def>= LHS `Predicate` RHS == ConditionDef 481 /// if Reg then goto TrueDest else goto FalseDest 482 /// 483 struct MachineBranchPredicate { 484 enum ComparePredicate { 485 PRED_EQ, // True if two values are equal 486 PRED_NE, // True if two values are not equal 487 PRED_INVALID // Sentinel value 488 }; 489 490 ComparePredicate Predicate; 491 MachineOperand LHS; 492 MachineOperand RHS; 493 MachineBasicBlock *TrueDest; 494 MachineBasicBlock *FalseDest; 495 MachineInstr *ConditionDef; 496 497 /// SingleUseCondition is true if ConditionDef is dead except for the 498 /// branch(es) at the end of the basic block. 499 /// 500 bool SingleUseCondition; 501 MachineBranchPredicateMachineBranchPredicate502 explicit MachineBranchPredicate() 503 : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)), 504 RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr), 505 FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) { 506 } 507 }; 508 509 /// Analyze the branching code at the end of MBB and parse it into the 510 /// MachineBranchPredicate structure if possible. Returns false on success 511 /// and true on failure. 512 /// 513 /// If AllowModify is true, then this routine is allowed to modify the basic 514 /// block (e.g. delete instructions after the unconditional branch). 515 /// 516 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB, 517 MachineBranchPredicate &MBP, 518 bool AllowModify = false) const { 519 return true; 520 } 521 522 /// Remove the branching code at the end of the specific MBB. 523 /// This is only invoked in cases where AnalyzeBranch returns success. It 524 /// returns the number of instructions that were removed. RemoveBranch(MachineBasicBlock & MBB)525 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { 526 llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!"); 527 } 528 529 /// Insert branch code into the end of the specified MachineBasicBlock. 530 /// The operands to this method are the same as those 531 /// returned by AnalyzeBranch. This is only invoked in cases where 532 /// AnalyzeBranch returns success. It returns the number of instructions 533 /// inserted. 534 /// 535 /// It is also invoked by tail merging to add unconditional branches in 536 /// cases where AnalyzeBranch doesn't apply because there was no original 537 /// branch to analyze. At least this much must be implemented, else tail 538 /// merging needs to be disabled. 539 /// 540 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid 541 /// before calling this function. InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL)542 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 543 MachineBasicBlock *FBB, 544 ArrayRef<MachineOperand> Cond, 545 const DebugLoc &DL) const { 546 llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!"); 547 } 548 549 /// Analyze the loop code, return true if it cannot be understoo. Upon 550 /// success, this function returns false and returns information about the 551 /// induction variable and compare instruction used at the end. analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)552 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst, 553 MachineInstr *&CmpInst) const { 554 return true; 555 } 556 557 /// Generate code to reduce the loop iteration by one and check if the loop is 558 /// finished. Return the value/register of the the new loop count. We need 559 /// this function when peeling off one or more iterations of a loop. This 560 /// function assumes the nth iteration is peeled first. reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr * Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)561 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB, 562 MachineInstr *IndVar, MachineInstr *Cmp, 563 SmallVectorImpl<MachineOperand> &Cond, 564 SmallVectorImpl<MachineInstr *> &PrevInsts, 565 unsigned Iter, unsigned MaxIter) const { 566 llvm_unreachable("Target didn't implement ReduceLoopCount"); 567 } 568 569 /// Delete the instruction OldInst and everything after it, replacing it with 570 /// an unconditional branch to NewDest. This is used by the tail merging pass. 571 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 572 MachineBasicBlock *NewDest) const; 573 574 /// Get an instruction that performs an unconditional branch to the given 575 /// symbol. 576 virtual void getUnconditionalBranch(MCInst & MI,const MCSymbolRefExpr * BranchTarget)577 getUnconditionalBranch(MCInst &MI, 578 const MCSymbolRefExpr *BranchTarget) const { 579 llvm_unreachable("Target didn't implement " 580 "TargetInstrInfo::getUnconditionalBranch!"); 581 } 582 583 /// Get a machine trap instruction. getTrap(MCInst & MI)584 virtual void getTrap(MCInst &MI) const { 585 llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!"); 586 } 587 588 /// Get a number of bytes that suffices to hold 589 /// either the instruction returned by getUnconditionalBranch or the 590 /// instruction returned by getTrap. This only makes sense because 591 /// getUnconditionalBranch returns a single, specific instruction. This 592 /// information is needed by the jumptable construction code, since it must 593 /// decide how many bytes to use for a jumptable entry so it can generate the 594 /// right mask. 595 /// 596 /// Note that if the jumptable instruction requires alignment, then that 597 /// alignment should be factored into this required bound so that the 598 /// resulting bound gives the right alignment for the instruction. getJumpInstrTableEntryBound()599 virtual unsigned getJumpInstrTableEntryBound() const { 600 // This method gets called by LLVMTargetMachine always, so it can't fail 601 // just because there happens to be no implementation for this target. 602 // Any code that tries to use a jumptable annotation without defining 603 // getUnconditionalBranch on the appropriate Target will fail anyway, and 604 // the value returned here won't matter in that case. 605 return 0; 606 } 607 608 /// Return true if it's legal to split the given basic 609 /// block at the specified instruction (i.e. instruction would be the start 610 /// of a new basic block). isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)611 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB, 612 MachineBasicBlock::iterator MBBI) const { 613 return true; 614 } 615 616 /// Return true if it's profitable to predicate 617 /// instructions with accumulated instruction latency of "NumCycles" 618 /// of the specified basic block, where the probability of the instructions 619 /// being executed is given by Probability, and Confidence is a measure 620 /// of our confidence that it will be properly predicted. 621 virtual isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)622 bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 623 unsigned ExtraPredCycles, 624 BranchProbability Probability) const { 625 return false; 626 } 627 628 /// Second variant of isProfitableToIfCvt. This one 629 /// checks for the case where two basic blocks from true and false path 630 /// of a if-then-else (diamond) are predicated on mutally exclusive 631 /// predicates, where the probability of the true path being taken is given 632 /// by Probability, and Confidence is a measure of our confidence that it 633 /// will be properly predicted. 634 virtual bool isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)635 isProfitableToIfCvt(MachineBasicBlock &TMBB, 636 unsigned NumTCycles, unsigned ExtraTCycles, 637 MachineBasicBlock &FMBB, 638 unsigned NumFCycles, unsigned ExtraFCycles, 639 BranchProbability Probability) const { 640 return false; 641 } 642 643 /// Return true if it's profitable for if-converter to duplicate instructions 644 /// of specified accumulated instruction latencies in the specified MBB to 645 /// enable if-conversion. 646 /// The probability of the instructions being executed is given by 647 /// Probability, and Confidence is a measure of our confidence that it 648 /// will be properly predicted. 649 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)650 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 651 BranchProbability Probability) const { 652 return false; 653 } 654 655 /// Return true if it's profitable to unpredicate 656 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually 657 /// exclusive predicates. 658 /// e.g. 659 /// subeq r0, r1, #1 660 /// addne r0, r1, #1 661 /// => 662 /// sub r0, r1, #1 663 /// addne r0, r1, #1 664 /// 665 /// This may be profitable is conditional instructions are always executed. isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)666 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB, 667 MachineBasicBlock &FMBB) const { 668 return false; 669 } 670 671 /// Return true if it is possible to insert a select 672 /// instruction that chooses between TrueReg and FalseReg based on the 673 /// condition code in Cond. 674 /// 675 /// When successful, also return the latency in cycles from TrueReg, 676 /// FalseReg, and Cond to the destination register. In most cases, a select 677 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1 678 /// 679 /// Some x86 implementations have 2-cycle cmov instructions. 680 /// 681 /// @param MBB Block where select instruction would be inserted. 682 /// @param Cond Condition returned by AnalyzeBranch. 683 /// @param TrueReg Virtual register to select when Cond is true. 684 /// @param FalseReg Virtual register to select when Cond is false. 685 /// @param CondCycles Latency from Cond+Branch to select output. 686 /// @param TrueCycles Latency from TrueReg to select output. 687 /// @param FalseCycles Latency from FalseReg to select output. canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)688 virtual bool canInsertSelect(const MachineBasicBlock &MBB, 689 ArrayRef<MachineOperand> Cond, 690 unsigned TrueReg, unsigned FalseReg, 691 int &CondCycles, 692 int &TrueCycles, int &FalseCycles) const { 693 return false; 694 } 695 696 /// Insert a select instruction into MBB before I that will copy TrueReg to 697 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false. 698 /// 699 /// This function can only be called after canInsertSelect() returned true. 700 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed 701 /// that the same flags or registers required by Cond are available at the 702 /// insertion point. 703 /// 704 /// @param MBB Block where select instruction should be inserted. 705 /// @param I Insertion point. 706 /// @param DL Source location for debugging. 707 /// @param DstReg Virtual register to be defined by select instruction. 708 /// @param Cond Condition as computed by AnalyzeBranch. 709 /// @param TrueReg Virtual register to copy when Cond is true. 710 /// @param FalseReg Virtual register to copy when Cons is false. insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)711 virtual void insertSelect(MachineBasicBlock &MBB, 712 MachineBasicBlock::iterator I, const DebugLoc &DL, 713 unsigned DstReg, ArrayRef<MachineOperand> Cond, 714 unsigned TrueReg, unsigned FalseReg) const { 715 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!"); 716 } 717 718 /// Analyze the given select instruction, returning true if 719 /// it cannot be understood. It is assumed that MI->isSelect() is true. 720 /// 721 /// When successful, return the controlling condition and the operands that 722 /// determine the true and false result values. 723 /// 724 /// Result = SELECT Cond, TrueOp, FalseOp 725 /// 726 /// Some targets can optimize select instructions, for example by predicating 727 /// the instruction defining one of the operands. Such targets should set 728 /// Optimizable. 729 /// 730 /// @param MI Select instruction to analyze. 731 /// @param Cond Condition controlling the select. 732 /// @param TrueOp Operand number of the value selected when Cond is true. 733 /// @param FalseOp Operand number of the value selected when Cond is false. 734 /// @param Optimizable Returned as true if MI is optimizable. 735 /// @returns False on success. analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)736 virtual bool analyzeSelect(const MachineInstr &MI, 737 SmallVectorImpl<MachineOperand> &Cond, 738 unsigned &TrueOp, unsigned &FalseOp, 739 bool &Optimizable) const { 740 assert(MI.getDesc().isSelect() && "MI must be a select instruction"); 741 return true; 742 } 743 744 /// Given a select instruction that was understood by 745 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by 746 /// merging it with one of its operands. Returns NULL on failure. 747 /// 748 /// When successful, returns the new select instruction. The client is 749 /// responsible for deleting MI. 750 /// 751 /// If both sides of the select can be optimized, PreferFalse is used to pick 752 /// a side. 753 /// 754 /// @param MI Optimizable select instruction. 755 /// @param NewMIs Set that record all MIs in the basic block up to \p 756 /// MI. Has to be updated with any newly created MI or deleted ones. 757 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp. 758 /// @returns Optimized instruction or NULL. 759 virtual MachineInstr *optimizeSelect(MachineInstr &MI, 760 SmallPtrSetImpl<MachineInstr *> &NewMIs, 761 bool PreferFalse = false) const { 762 // This function must be implemented if Optimizable is ever set. 763 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!"); 764 } 765 766 /// Emit instructions to copy a pair of physical registers. 767 /// 768 /// This function should support copies within any legal register class as 769 /// well as any cross-class copies created during instruction selection. 770 /// 771 /// The source and destination registers may overlap, which may require a 772 /// careful implementation when multiple copy instructions are required for 773 /// large registers. See for example the ARM target. copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)774 virtual void copyPhysReg(MachineBasicBlock &MBB, 775 MachineBasicBlock::iterator MI, const DebugLoc &DL, 776 unsigned DestReg, unsigned SrcReg, 777 bool KillSrc) const { 778 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!"); 779 } 780 781 /// Store the specified register of the given register class to the specified 782 /// stack frame index. The store instruction is to be added to the given 783 /// machine basic block before the specified machine instruction. If isKill 784 /// is true, the register operand is the last use and must be marked kill. storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)785 virtual void storeRegToStackSlot(MachineBasicBlock &MBB, 786 MachineBasicBlock::iterator MI, 787 unsigned SrcReg, bool isKill, int FrameIndex, 788 const TargetRegisterClass *RC, 789 const TargetRegisterInfo *TRI) const { 790 llvm_unreachable("Target didn't implement " 791 "TargetInstrInfo::storeRegToStackSlot!"); 792 } 793 794 /// Load the specified register of the given register class from the specified 795 /// stack frame index. The load instruction is to be added to the given 796 /// machine basic block before the specified machine instruction. loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)797 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, 798 MachineBasicBlock::iterator MI, 799 unsigned DestReg, int FrameIndex, 800 const TargetRegisterClass *RC, 801 const TargetRegisterInfo *TRI) const { 802 llvm_unreachable("Target didn't implement " 803 "TargetInstrInfo::loadRegFromStackSlot!"); 804 } 805 806 /// This function is called for all pseudo instructions 807 /// that remain after register allocation. Many pseudo instructions are 808 /// created to help register allocation. This is the place to convert them 809 /// into real instructions. The target can edit MI in place, or it can insert 810 /// new instructions and erase MI. The function should return true if 811 /// anything was changed. expandPostRAPseudo(MachineInstr & MI)812 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; } 813 814 /// Attempt to fold a load or store of the specified stack 815 /// slot into the specified machine instruction for the specified operand(s). 816 /// If this is possible, a new instruction is returned with the specified 817 /// operand folded, otherwise NULL is returned. 818 /// The new instruction is inserted before MI, and the client is responsible 819 /// for removing the old instruction. 820 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 821 int FrameIndex, 822 LiveIntervals *LIS = nullptr) const; 823 824 /// Same as the previous version except it allows folding of any load and 825 /// store from / to any address, not just from a specific stack slot. 826 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops, 827 MachineInstr &LoadMI, 828 LiveIntervals *LIS = nullptr) const; 829 830 /// Return true when there is potentially a faster code sequence 831 /// for an instruction chain ending in \p Root. All potential patterns are 832 /// returned in the \p Pattern vector. Pattern should be sorted in priority 833 /// order since the pattern evaluator stops checking as soon as it finds a 834 /// faster sequence. 835 /// \param Root - Instruction that could be combined with one of its operands 836 /// \param Patterns - Vector of possible combination patterns 837 virtual bool getMachineCombinerPatterns( 838 MachineInstr &Root, 839 SmallVectorImpl<MachineCombinerPattern> &Patterns) const; 840 841 /// Return true when a code sequence can improve throughput. It 842 /// should be called only for instructions in loops. 843 /// \param Pattern - combiner pattern 844 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const; 845 846 /// Return true if the input \P Inst is part of a chain of dependent ops 847 /// that are suitable for reassociation, otherwise return false. 848 /// If the instruction's operands must be commuted to have a previous 849 /// instruction of the same type define the first source operand, \P Commuted 850 /// will be set to true. 851 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const; 852 853 /// Return true when \P Inst is both associative and commutative. isAssociativeAndCommutative(const MachineInstr & Inst)854 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const { 855 return false; 856 } 857 858 /// Return true when \P Inst has reassociable operands in the same \P MBB. 859 virtual bool hasReassociableOperands(const MachineInstr &Inst, 860 const MachineBasicBlock *MBB) const; 861 862 /// Return true when \P Inst has reassociable sibling. 863 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const; 864 865 /// When getMachineCombinerPatterns() finds patterns, this function generates 866 /// the instructions that could replace the original code sequence. The client 867 /// has to decide whether the actual replacement is beneficial or not. 868 /// \param Root - Instruction that could be combined with one of its operands 869 /// \param Pattern - Combination pattern for Root 870 /// \param InsInstrs - Vector of new instructions that implement P 871 /// \param DelInstrs - Old instructions, including Root, that could be 872 /// replaced by InsInstr 873 /// \param InstrIdxForVirtReg - map of virtual register to instruction in 874 /// InsInstr that defines it 875 virtual void genAlternativeCodeSequence( 876 MachineInstr &Root, MachineCombinerPattern Pattern, 877 SmallVectorImpl<MachineInstr *> &InsInstrs, 878 SmallVectorImpl<MachineInstr *> &DelInstrs, 879 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 880 881 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to 882 /// reduce critical path length. 883 void reassociateOps(MachineInstr &Root, MachineInstr &Prev, 884 MachineCombinerPattern Pattern, 885 SmallVectorImpl<MachineInstr *> &InsInstrs, 886 SmallVectorImpl<MachineInstr *> &DelInstrs, 887 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const; 888 889 /// This is an architecture-specific helper function of reassociateOps. 890 /// Set special operand attributes for new instructions after reassociation. setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)891 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, 892 MachineInstr &NewMI1, 893 MachineInstr &NewMI2) const { 894 } 895 896 /// Return true when a target supports MachineCombiner. useMachineCombiner()897 virtual bool useMachineCombiner() const { return false; } 898 899 protected: 900 /// Target-dependent implementation for foldMemoryOperand. 901 /// Target-independent code in foldMemoryOperand will 902 /// take care of adding a MachineMemOperand to the newly created instruction. 903 /// The instruction and any auxiliary instructions necessary will be inserted 904 /// at InsertPt. 905 virtual MachineInstr * 906 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, 907 ArrayRef<unsigned> Ops, 908 MachineBasicBlock::iterator InsertPt, int FrameIndex, 909 LiveIntervals *LIS = nullptr) const { 910 return nullptr; 911 } 912 913 /// Target-dependent implementation for foldMemoryOperand. 914 /// Target-independent code in foldMemoryOperand will 915 /// take care of adding a MachineMemOperand to the newly created instruction. 916 /// The instruction and any auxiliary instructions necessary will be inserted 917 /// at InsertPt. 918 virtual MachineInstr *foldMemoryOperandImpl( 919 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 920 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 921 LiveIntervals *LIS = nullptr) const { 922 return nullptr; 923 } 924 925 /// \brief Target-dependent implementation of getRegSequenceInputs. 926 /// 927 /// \returns true if it is possible to build the equivalent 928 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise. 929 /// 930 /// \pre MI.isRegSequenceLike(). 931 /// 932 /// \see TargetInstrInfo::getRegSequenceInputs. getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)933 virtual bool getRegSequenceLikeInputs( 934 const MachineInstr &MI, unsigned DefIdx, 935 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 936 return false; 937 } 938 939 /// \brief Target-dependent implementation of getExtractSubregInputs. 940 /// 941 /// \returns true if it is possible to build the equivalent 942 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 943 /// 944 /// \pre MI.isExtractSubregLike(). 945 /// 946 /// \see TargetInstrInfo::getExtractSubregInputs. getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)947 virtual bool getExtractSubregLikeInputs( 948 const MachineInstr &MI, unsigned DefIdx, 949 RegSubRegPairAndIdx &InputReg) const { 950 return false; 951 } 952 953 /// \brief Target-dependent implementation of getInsertSubregInputs. 954 /// 955 /// \returns true if it is possible to build the equivalent 956 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise. 957 /// 958 /// \pre MI.isInsertSubregLike(). 959 /// 960 /// \see TargetInstrInfo::getInsertSubregInputs. 961 virtual bool getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)962 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx, 963 RegSubRegPair &BaseReg, 964 RegSubRegPairAndIdx &InsertedReg) const { 965 return false; 966 } 967 968 public: 969 /// unfoldMemoryOperand - Separate a single instruction which folded a load or 970 /// a store or a load and a store into two or more instruction. If this is 971 /// possible, returns true as well as the new instructions by reference. 972 virtual bool unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)973 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg, 974 bool UnfoldLoad, bool UnfoldStore, 975 SmallVectorImpl<MachineInstr *> &NewMIs) const { 976 return false; 977 } 978 unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)979 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 980 SmallVectorImpl<SDNode*> &NewNodes) const { 981 return false; 982 } 983 984 /// Returns the opcode of the would be new 985 /// instruction after load / store are unfolded from an instruction of the 986 /// specified opcode. It returns zero if the specified unfolding is not 987 /// possible. If LoadRegIndex is non-null, it is filled in with the operand 988 /// index of the operand which will hold the register holding the loaded 989 /// value. 990 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, 991 bool UnfoldLoad, bool UnfoldStore, 992 unsigned *LoadRegIndex = nullptr) const { 993 return 0; 994 } 995 996 /// This is used by the pre-regalloc scheduler to determine if two loads are 997 /// loading from the same base address. It should only return true if the base 998 /// pointers are the same and the only differences between the two addresses 999 /// are the offset. It also returns the offsets by reference. areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1000 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1001 int64_t &Offset1, int64_t &Offset2) const { 1002 return false; 1003 } 1004 1005 /// This is a used by the pre-regalloc scheduler to determine (in conjunction 1006 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together. 1007 /// On some targets if two loads are loading from 1008 /// addresses in the same cache line, it's better if they are scheduled 1009 /// together. This function takes two integers that represent the load offsets 1010 /// from the common base address. It returns true if it decides it's desirable 1011 /// to schedule the two loads together. "NumLoads" is the number of loads that 1012 /// have already been scheduled after Load1. shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1013 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1014 int64_t Offset1, int64_t Offset2, 1015 unsigned NumLoads) const { 1016 return false; 1017 } 1018 1019 /// Get the base register and byte offset of an instruction that reads/writes 1020 /// memory. getMemOpBaseRegImmOfs(MachineInstr & MemOp,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI)1021 virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, 1022 int64_t &Offset, 1023 const TargetRegisterInfo *TRI) const { 1024 return false; 1025 } 1026 1027 /// Return true if the instruction contains a base register and offset. If 1028 /// true, the function also sets the operand position in the instruction 1029 /// for the base register and offset. getBaseAndOffsetPosition(const MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos)1030 virtual bool getBaseAndOffsetPosition(const MachineInstr *MI, 1031 unsigned &BasePos, 1032 unsigned &OffsetPos) const { 1033 return false; 1034 } 1035 1036 /// If the instruction is an increment of a constant value, return the amount. getIncrementValue(const MachineInstr * MI,int & Value)1037 virtual bool getIncrementValue(const MachineInstr *MI, int &Value) const { 1038 return false; 1039 } 1040 enableClusterLoads()1041 virtual bool enableClusterLoads() const { return false; } 1042 enableClusterStores()1043 virtual bool enableClusterStores() const { return false; } 1044 shouldClusterMemOps(MachineInstr & FirstLdSt,MachineInstr & SecondLdSt,unsigned NumLoads)1045 virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt, 1046 MachineInstr &SecondLdSt, 1047 unsigned NumLoads) const { 1048 return false; 1049 } 1050 1051 /// Can this target fuse the given instructions if they are scheduled 1052 /// adjacent. shouldScheduleAdjacent(MachineInstr & First,MachineInstr & Second)1053 virtual bool shouldScheduleAdjacent(MachineInstr &First, 1054 MachineInstr &Second) const { 1055 return false; 1056 } 1057 1058 /// Reverses the branch condition of the specified condition list, 1059 /// returning false on success and true if it cannot be reversed. 1060 virtual ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1061 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 1062 return true; 1063 } 1064 1065 /// Insert a noop into the instruction stream at the specified point. 1066 virtual void insertNoop(MachineBasicBlock &MBB, 1067 MachineBasicBlock::iterator MI) const; 1068 1069 1070 /// Return the noop instruction to use for a noop. 1071 virtual void getNoopForMachoTarget(MCInst &NopInst) const; 1072 1073 /// Return true for post-incremented instructions. isPostIncrement(const MachineInstr * MI)1074 virtual bool isPostIncrement(const MachineInstr* MI) const { 1075 return false; 1076 } 1077 1078 /// Returns true if the instruction is already predicated. isPredicated(const MachineInstr & MI)1079 virtual bool isPredicated(const MachineInstr &MI) const { 1080 return false; 1081 } 1082 1083 /// Returns true if the instruction is a 1084 /// terminator instruction that has not been predicated. 1085 virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const; 1086 1087 /// Convert the instruction into a predicated instruction. 1088 /// It returns true if the operation was successful. 1089 virtual bool PredicateInstruction(MachineInstr &MI, 1090 ArrayRef<MachineOperand> Pred) const; 1091 1092 /// Returns true if the first specified predicate 1093 /// subsumes the second, e.g. GE subsumes GT. 1094 virtual SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1095 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 1096 ArrayRef<MachineOperand> Pred2) const { 1097 return false; 1098 } 1099 1100 /// If the specified instruction defines any predicate 1101 /// or condition code register(s) used for predication, returns true as well 1102 /// as the definition predicate(s) by reference. DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred)1103 virtual bool DefinesPredicate(MachineInstr &MI, 1104 std::vector<MachineOperand> &Pred) const { 1105 return false; 1106 } 1107 1108 /// Return true if the specified instruction can be predicated. 1109 /// By default, this returns true for every instruction with a 1110 /// PredicateOperand. isPredicable(MachineInstr & MI)1111 virtual bool isPredicable(MachineInstr &MI) const { 1112 return MI.getDesc().isPredicable(); 1113 } 1114 1115 /// Return true if it's safe to move a machine 1116 /// instruction that defines the specified register class. isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1117 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { 1118 return true; 1119 } 1120 1121 /// Test if the given instruction should be considered a scheduling boundary. 1122 /// This primarily includes labels and terminators. 1123 virtual bool isSchedulingBoundary(const MachineInstr &MI, 1124 const MachineBasicBlock *MBB, 1125 const MachineFunction &MF) const; 1126 1127 /// Measure the specified inline asm to determine an approximation of its 1128 /// length. 1129 virtual unsigned getInlineAsmLength(const char *Str, 1130 const MCAsmInfo &MAI) const; 1131 1132 /// Allocate and return a hazard recognizer to use for this target when 1133 /// scheduling the machine instructions before register allocation. 1134 virtual ScheduleHazardRecognizer* 1135 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1136 const ScheduleDAG *DAG) const; 1137 1138 /// Allocate and return a hazard recognizer to use for this target when 1139 /// scheduling the machine instructions before register allocation. 1140 virtual ScheduleHazardRecognizer* 1141 CreateTargetMIHazardRecognizer(const InstrItineraryData*, 1142 const ScheduleDAG *DAG) const; 1143 1144 /// Allocate and return a hazard recognizer to use for this target when 1145 /// scheduling the machine instructions after register allocation. 1146 virtual ScheduleHazardRecognizer* 1147 CreateTargetPostRAHazardRecognizer(const InstrItineraryData*, 1148 const ScheduleDAG *DAG) const; 1149 1150 /// Allocate and return a hazard recognizer to use for by non-scheduling 1151 /// passes. 1152 virtual ScheduleHazardRecognizer* CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1153 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { 1154 return nullptr; 1155 } 1156 1157 /// Provide a global flag for disabling the PreRA hazard recognizer that 1158 /// targets may choose to honor. 1159 bool usePreRAHazardRecognizer() const; 1160 1161 /// For a comparison instruction, return the source registers 1162 /// in SrcReg and SrcReg2 if having two register operands, and the value it 1163 /// compares against in CmpValue. Return true if the comparison instruction 1164 /// can be analyzed. analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1165 virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 1166 unsigned &SrcReg2, int &Mask, int &Value) const { 1167 return false; 1168 } 1169 1170 /// See if the comparison instruction can be converted 1171 /// into something more efficient. E.g., on ARM most instructions can set the 1172 /// flags register, obviating the need for a separate CMP. optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1173 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, 1174 unsigned SrcReg2, int Mask, int Value, 1175 const MachineRegisterInfo *MRI) const { 1176 return false; 1177 } optimizeCondBranch(MachineInstr & MI)1178 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; } 1179 1180 /// Try to remove the load by folding it to a register operand at the use. 1181 /// We fold the load instructions if and only if the 1182 /// def and use are in the same BB. We only look at one load and see 1183 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register 1184 /// defined by the load we are trying to fold. DefMI returns the machine 1185 /// instruction that defines FoldAsLoadDefReg, and the function returns 1186 /// the machine instruction generated due to folding. optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1187 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI, 1188 const MachineRegisterInfo *MRI, 1189 unsigned &FoldAsLoadDefReg, 1190 MachineInstr *&DefMI) const { 1191 return nullptr; 1192 } 1193 1194 /// 'Reg' is known to be defined by a move immediate instruction, 1195 /// try to fold the immediate into the use instruction. 1196 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true, 1197 /// then the caller may assume that DefMI has been erased from its parent 1198 /// block. The caller may assume that it will not be erased by this 1199 /// function otherwise. FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI)1200 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 1201 unsigned Reg, MachineRegisterInfo *MRI) const { 1202 return false; 1203 } 1204 1205 /// Return the number of u-operations the given machine 1206 /// instruction will be decoded to on the target cpu. The itinerary's 1207 /// IssueWidth is the number of microops that can be dispatched each 1208 /// cycle. An instruction with zero microops takes no dispatch resources. 1209 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData, 1210 const MachineInstr &MI) const; 1211 1212 /// Return true for pseudo instructions that don't consume any 1213 /// machine resources in their current form. These are common cases that the 1214 /// scheduler should consider free, rather than conservatively handling them 1215 /// as instructions with no itinerary. isZeroCost(unsigned Opcode)1216 bool isZeroCost(unsigned Opcode) const { 1217 return Opcode <= TargetOpcode::COPY; 1218 } 1219 1220 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1221 SDNode *DefNode, unsigned DefIdx, 1222 SDNode *UseNode, unsigned UseIdx) const; 1223 1224 /// Compute and return the use operand latency of a given pair of def and use. 1225 /// In most cases, the static scheduling itinerary was enough to determine the 1226 /// operand latency. But it may not be possible for instructions with variable 1227 /// number of defs / uses. 1228 /// 1229 /// This is a raw interface to the itinerary that may be directly overridden 1230 /// by a target. Use computeOperandLatency to get the best estimate of 1231 /// latency. 1232 virtual int getOperandLatency(const InstrItineraryData *ItinData, 1233 const MachineInstr &DefMI, unsigned DefIdx, 1234 const MachineInstr &UseMI, 1235 unsigned UseIdx) const; 1236 1237 /// Compute and return the latency of the given data dependent def and use 1238 /// when the operand indices are already known. UseMI may be \c nullptr for 1239 /// an unknown use. 1240 /// 1241 /// FindMin may be set to get the minimum vs. expected latency. Minimum 1242 /// latency is used for scheduling groups, while expected latency is for 1243 /// instruction cost and critical path. 1244 /// 1245 /// Depending on the subtarget's itinerary properties, this may or may not 1246 /// need to call getOperandLatency(). For most subtargets, we don't need 1247 /// DefIdx or UseIdx to compute min latency. 1248 unsigned computeOperandLatency(const InstrItineraryData *ItinData, 1249 const MachineInstr &DefMI, unsigned DefIdx, 1250 const MachineInstr *UseMI, 1251 unsigned UseIdx) const; 1252 1253 /// Compute the instruction latency of a given instruction. 1254 /// If the instruction has higher cost when predicated, it's returned via 1255 /// PredCost. 1256 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData, 1257 const MachineInstr &MI, 1258 unsigned *PredCost = nullptr) const; 1259 1260 virtual unsigned getPredicationCost(const MachineInstr &MI) const; 1261 1262 virtual int getInstrLatency(const InstrItineraryData *ItinData, 1263 SDNode *Node) const; 1264 1265 /// Return the default expected latency for a def based on its opcode. 1266 unsigned defaultDefLatency(const MCSchedModel &SchedModel, 1267 const MachineInstr &DefMI) const; 1268 1269 int computeDefOperandLatency(const InstrItineraryData *ItinData, 1270 const MachineInstr &DefMI) const; 1271 1272 /// Return true if this opcode has high latency to its result. isHighLatencyDef(int opc)1273 virtual bool isHighLatencyDef(int opc) const { return false; } 1274 1275 /// Compute operand latency between a def of 'Reg' 1276 /// and a use in the current loop. Return true if the target considered 1277 /// it 'high'. This is used by optimization passes such as machine LICM to 1278 /// determine whether it makes sense to hoist an instruction out even in a 1279 /// high register pressure situation. hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1280 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel, 1281 const MachineRegisterInfo *MRI, 1282 const MachineInstr &DefMI, unsigned DefIdx, 1283 const MachineInstr &UseMI, 1284 unsigned UseIdx) const { 1285 return false; 1286 } 1287 1288 /// Compute operand latency of a def of 'Reg'. Return true 1289 /// if the target considered it 'low'. 1290 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel, 1291 const MachineInstr &DefMI, 1292 unsigned DefIdx) const; 1293 1294 /// Perform target-specific instruction verification. verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1295 virtual bool verifyInstruction(const MachineInstr &MI, 1296 StringRef &ErrInfo) const { 1297 return true; 1298 } 1299 1300 /// Return the current execution domain and bit mask of 1301 /// possible domains for instruction. 1302 /// 1303 /// Some micro-architectures have multiple execution domains, and multiple 1304 /// opcodes that perform the same operation in different domains. For 1305 /// example, the x86 architecture provides the por, orps, and orpd 1306 /// instructions that all do the same thing. There is a latency penalty if a 1307 /// register is written in one domain and read in another. 1308 /// 1309 /// This function returns a pair (domain, mask) containing the execution 1310 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain 1311 /// function can be used to change the opcode to one of the domains in the 1312 /// bit mask. Instructions whose execution domain can't be changed should 1313 /// return a 0 mask. 1314 /// 1315 /// The execution domain numbers don't have any special meaning except domain 1316 /// 0 is used for instructions that are not associated with any interesting 1317 /// execution domain. 1318 /// 1319 virtual std::pair<uint16_t, uint16_t> getExecutionDomain(const MachineInstr & MI)1320 getExecutionDomain(const MachineInstr &MI) const { 1321 return std::make_pair(0, 0); 1322 } 1323 1324 /// Change the opcode of MI to execute in Domain. 1325 /// 1326 /// The bit (1 << Domain) must be set in the mask returned from 1327 /// getExecutionDomain(MI). setExecutionDomain(MachineInstr & MI,unsigned Domain)1328 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {} 1329 1330 /// Returns the preferred minimum clearance 1331 /// before an instruction with an unwanted partial register update. 1332 /// 1333 /// Some instructions only write part of a register, and implicitly need to 1334 /// read the other parts of the register. This may cause unwanted stalls 1335 /// preventing otherwise unrelated instructions from executing in parallel in 1336 /// an out-of-order CPU. 1337 /// 1338 /// For example, the x86 instruction cvtsi2ss writes its result to bits 1339 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so 1340 /// the instruction needs to wait for the old value of the register to become 1341 /// available: 1342 /// 1343 /// addps %xmm1, %xmm0 1344 /// movaps %xmm0, (%rax) 1345 /// cvtsi2ss %rbx, %xmm0 1346 /// 1347 /// In the code above, the cvtsi2ss instruction needs to wait for the addps 1348 /// instruction before it can issue, even though the high bits of %xmm0 1349 /// probably aren't needed. 1350 /// 1351 /// This hook returns the preferred clearance before MI, measured in 1352 /// instructions. Other defs of MI's operand OpNum are avoided in the last N 1353 /// instructions before MI. It should only return a positive value for 1354 /// unwanted dependencies. If the old bits of the defined register have 1355 /// useful values, or if MI is determined to otherwise read the dependency, 1356 /// the hook should return 0. 1357 /// 1358 /// The unwanted dependency may be handled by: 1359 /// 1360 /// 1. Allocating the same register for an MI def and use. That makes the 1361 /// unwanted dependency identical to a required dependency. 1362 /// 1363 /// 2. Allocating a register for the def that has no defs in the previous N 1364 /// instructions. 1365 /// 1366 /// 3. Calling breakPartialRegDependency() with the same arguments. This 1367 /// allows the target to insert a dependency breaking instruction. 1368 /// 1369 virtual unsigned getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1370 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum, 1371 const TargetRegisterInfo *TRI) const { 1372 // The default implementation returns 0 for no partial register dependency. 1373 return 0; 1374 } 1375 1376 /// \brief Return the minimum clearance before an instruction that reads an 1377 /// unused register. 1378 /// 1379 /// For example, AVX instructions may copy part of a register operand into 1380 /// the unused high bits of the destination register. 1381 /// 1382 /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14 1383 /// 1384 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a 1385 /// false dependence on any previous write to %xmm0. 1386 /// 1387 /// This hook works similarly to getPartialRegUpdateClearance, except that it 1388 /// does not take an operand index. Instead sets \p OpNum to the index of the 1389 /// unused register. getUndefRegClearance(const MachineInstr & MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1390 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, 1391 const TargetRegisterInfo *TRI) const { 1392 // The default implementation returns 0 for no undef register dependency. 1393 return 0; 1394 } 1395 1396 /// Insert a dependency-breaking instruction 1397 /// before MI to eliminate an unwanted dependency on OpNum. 1398 /// 1399 /// If it wasn't possible to avoid a def in the last N instructions before MI 1400 /// (see getPartialRegUpdateClearance), this hook will be called to break the 1401 /// unwanted dependency. 1402 /// 1403 /// On x86, an xorps instruction can be used as a dependency breaker: 1404 /// 1405 /// addps %xmm1, %xmm0 1406 /// movaps %xmm0, (%rax) 1407 /// xorps %xmm0, %xmm0 1408 /// cvtsi2ss %rbx, %xmm0 1409 /// 1410 /// An <imp-kill> operand should be added to MI if an instruction was 1411 /// inserted. This ties the instructions together in the post-ra scheduler. 1412 /// breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1413 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum, 1414 const TargetRegisterInfo *TRI) const {} 1415 1416 /// Create machine specific model for scheduling. 1417 virtual DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &)1418 CreateTargetScheduleState(const TargetSubtargetInfo &) const { 1419 return nullptr; 1420 } 1421 1422 // Sometimes, it is possible for the target 1423 // to tell, even without aliasing information, that two MIs access different 1424 // memory addresses. This function returns true if two MIs access different 1425 // memory addresses and false otherwise. 1426 virtual bool 1427 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1428 AliasAnalysis *AA = nullptr) const { 1429 assert((MIa.mayLoad() || MIa.mayStore()) && 1430 "MIa must load from or modify a memory location"); 1431 assert((MIb.mayLoad() || MIb.mayStore()) && 1432 "MIb must load from or modify a memory location"); 1433 return false; 1434 } 1435 1436 /// \brief Return the value to use for the MachineCSE's LookAheadLimit, 1437 /// which is a heuristic used for CSE'ing phys reg defs. getMachineCSELookAheadLimit()1438 virtual unsigned getMachineCSELookAheadLimit () const { 1439 // The default lookahead is small to prevent unprofitable quadratic 1440 // behavior. 1441 return 5; 1442 } 1443 1444 /// Return an array that contains the ids of the target indices (used for the 1445 /// TargetIndex machine operand) and their names. 1446 /// 1447 /// MIR Serialization is able to serialize only the target indices that are 1448 /// defined by this method. 1449 virtual ArrayRef<std::pair<int, const char *>> getSerializableTargetIndices()1450 getSerializableTargetIndices() const { 1451 return None; 1452 } 1453 1454 /// Decompose the machine operand's target flags into two values - the direct 1455 /// target flag value and any of bit flags that are applied. 1456 virtual std::pair<unsigned, unsigned> decomposeMachineOperandsTargetFlags(unsigned)1457 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const { 1458 return std::make_pair(0u, 0u); 1459 } 1460 1461 /// Return an array that contains the direct target flag values and their 1462 /// names. 1463 /// 1464 /// MIR Serialization is able to serialize only the target flags that are 1465 /// defined by this method. 1466 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableDirectMachineOperandTargetFlags()1467 getSerializableDirectMachineOperandTargetFlags() const { 1468 return None; 1469 } 1470 1471 /// Return an array that contains the bitmask target flag values and their 1472 /// names. 1473 /// 1474 /// MIR Serialization is able to serialize only the target flags that are 1475 /// defined by this method. 1476 virtual ArrayRef<std::pair<unsigned, const char *>> getSerializableBitmaskMachineOperandTargetFlags()1477 getSerializableBitmaskMachineOperandTargetFlags() const { 1478 return None; 1479 } 1480 1481 private: 1482 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode; 1483 unsigned CatchRetOpcode; 1484 unsigned ReturnOpcode; 1485 }; 1486 1487 /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair. 1488 template<> 1489 struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> { 1490 typedef DenseMapInfo<unsigned> RegInfo; 1491 1492 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() { 1493 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(), 1494 RegInfo::getEmptyKey()); 1495 } 1496 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() { 1497 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(), 1498 RegInfo::getTombstoneKey()); 1499 } 1500 /// \brief Reuse getHashValue implementation from 1501 /// std::pair<unsigned, unsigned>. 1502 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) { 1503 std::pair<unsigned, unsigned> PairVal = 1504 std::make_pair(Val.Reg, Val.SubReg); 1505 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal); 1506 } 1507 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS, 1508 const TargetInstrInfo::RegSubRegPair &RHS) { 1509 return RegInfo::isEqual(LHS.Reg, RHS.Reg) && 1510 RegInfo::isEqual(LHS.SubReg, RHS.SubReg); 1511 } 1512 }; 1513 1514 } // end namespace llvm 1515 1516 #endif // LLVM_TARGET_TARGETINSTRINFO_H 1517