1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/isolate.h"
6
7 #include <stdlib.h>
8
9 #include <fstream> // NOLINT(readability/streams)
10 #include <sstream>
11
12 #include "src/assembler-inl.h"
13 #include "src/ast/ast-value-factory.h"
14 #include "src/ast/context-slot-cache.h"
15 #include "src/base/hashmap.h"
16 #include "src/base/platform/platform.h"
17 #include "src/base/sys-info.h"
18 #include "src/base/utils/random-number-generator.h"
19 #include "src/basic-block-profiler.h"
20 #include "src/bootstrapper.h"
21 #include "src/cancelable-task.h"
22 #include "src/codegen.h"
23 #include "src/compilation-cache.h"
24 #include "src/compilation-statistics.h"
25 #include "src/compiler-dispatcher/compiler-dispatcher.h"
26 #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
27 #include "src/crankshaft/hydrogen.h"
28 #include "src/debug/debug.h"
29 #include "src/deoptimizer.h"
30 #include "src/elements.h"
31 #include "src/external-reference-table.h"
32 #include "src/frames-inl.h"
33 #include "src/ic/access-compiler-data.h"
34 #include "src/ic/stub-cache.h"
35 #include "src/interface-descriptors.h"
36 #include "src/interpreter/interpreter.h"
37 #include "src/isolate-inl.h"
38 #include "src/libsampler/sampler.h"
39 #include "src/log.h"
40 #include "src/messages.h"
41 #include "src/profiler/cpu-profiler.h"
42 #include "src/prototype.h"
43 #include "src/regexp/regexp-stack.h"
44 #include "src/runtime-profiler.h"
45 #include "src/simulator.h"
46 #include "src/snapshot/deserializer.h"
47 #include "src/tracing/tracing-category-observer.h"
48 #include "src/v8.h"
49 #include "src/version.h"
50 #include "src/vm-state-inl.h"
51 #include "src/wasm/wasm-module.h"
52 #include "src/wasm/wasm-objects.h"
53 #include "src/zone/accounting-allocator.h"
54
55 namespace v8 {
56 namespace internal {
57
58 base::Atomic32 ThreadId::highest_thread_id_ = 0;
59
AllocateThreadId()60 int ThreadId::AllocateThreadId() {
61 int new_id = base::NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
62 return new_id;
63 }
64
65
GetCurrentThreadId()66 int ThreadId::GetCurrentThreadId() {
67 int thread_id = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
68 if (thread_id == 0) {
69 thread_id = AllocateThreadId();
70 base::Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
71 }
72 return thread_id;
73 }
74
75
ThreadLocalTop()76 ThreadLocalTop::ThreadLocalTop() {
77 InitializeInternal();
78 }
79
80
InitializeInternal()81 void ThreadLocalTop::InitializeInternal() {
82 c_entry_fp_ = 0;
83 c_function_ = 0;
84 handler_ = 0;
85 #ifdef USE_SIMULATOR
86 simulator_ = NULL;
87 #endif
88 js_entry_sp_ = NULL;
89 external_callback_scope_ = NULL;
90 current_vm_state_ = EXTERNAL;
91 try_catch_handler_ = NULL;
92 context_ = NULL;
93 thread_id_ = ThreadId::Invalid();
94 external_caught_exception_ = false;
95 failed_access_check_callback_ = NULL;
96 save_context_ = NULL;
97 promise_on_stack_ = NULL;
98
99 // These members are re-initialized later after deserialization
100 // is complete.
101 pending_exception_ = NULL;
102 rethrowing_message_ = false;
103 pending_message_obj_ = NULL;
104 scheduled_exception_ = NULL;
105 }
106
107
Initialize()108 void ThreadLocalTop::Initialize() {
109 InitializeInternal();
110 #ifdef USE_SIMULATOR
111 simulator_ = Simulator::current(isolate_);
112 #endif
113 thread_id_ = ThreadId::Current();
114 }
115
116
Free()117 void ThreadLocalTop::Free() {
118 // Match unmatched PopPromise calls.
119 while (promise_on_stack_) isolate_->PopPromise();
120 }
121
122
123 base::Thread::LocalStorageKey Isolate::isolate_key_;
124 base::Thread::LocalStorageKey Isolate::thread_id_key_;
125 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
126 base::LazyMutex Isolate::thread_data_table_mutex_ = LAZY_MUTEX_INITIALIZER;
127 Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
128 base::Atomic32 Isolate::isolate_counter_ = 0;
129 #if DEBUG
130 base::Atomic32 Isolate::isolate_key_created_ = 0;
131 #endif
132
133 Isolate::PerIsolateThreadData*
FindOrAllocatePerThreadDataForThisThread()134 Isolate::FindOrAllocatePerThreadDataForThisThread() {
135 ThreadId thread_id = ThreadId::Current();
136 PerIsolateThreadData* per_thread = NULL;
137 {
138 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
139 per_thread = thread_data_table_->Lookup(this, thread_id);
140 if (per_thread == NULL) {
141 per_thread = new PerIsolateThreadData(this, thread_id);
142 thread_data_table_->Insert(per_thread);
143 }
144 DCHECK(thread_data_table_->Lookup(this, thread_id) == per_thread);
145 }
146 return per_thread;
147 }
148
149
DiscardPerThreadDataForThisThread()150 void Isolate::DiscardPerThreadDataForThisThread() {
151 int thread_id_int = base::Thread::GetThreadLocalInt(Isolate::thread_id_key_);
152 if (thread_id_int) {
153 ThreadId thread_id = ThreadId(thread_id_int);
154 DCHECK(!thread_manager_->mutex_owner_.Equals(thread_id));
155 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
156 PerIsolateThreadData* per_thread =
157 thread_data_table_->Lookup(this, thread_id);
158 if (per_thread) {
159 DCHECK(!per_thread->thread_state_);
160 thread_data_table_->Remove(per_thread);
161 }
162 }
163 }
164
165
FindPerThreadDataForThisThread()166 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
167 ThreadId thread_id = ThreadId::Current();
168 return FindPerThreadDataForThread(thread_id);
169 }
170
171
FindPerThreadDataForThread(ThreadId thread_id)172 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
173 ThreadId thread_id) {
174 PerIsolateThreadData* per_thread = NULL;
175 {
176 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
177 per_thread = thread_data_table_->Lookup(this, thread_id);
178 }
179 return per_thread;
180 }
181
182
InitializeOncePerProcess()183 void Isolate::InitializeOncePerProcess() {
184 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
185 CHECK(thread_data_table_ == NULL);
186 isolate_key_ = base::Thread::CreateThreadLocalKey();
187 #if DEBUG
188 base::NoBarrier_Store(&isolate_key_created_, 1);
189 #endif
190 thread_id_key_ = base::Thread::CreateThreadLocalKey();
191 per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
192 thread_data_table_ = new Isolate::ThreadDataTable();
193 }
194
195
get_address_from_id(Isolate::AddressId id)196 Address Isolate::get_address_from_id(Isolate::AddressId id) {
197 return isolate_addresses_[id];
198 }
199
200
Iterate(ObjectVisitor * v,char * thread_storage)201 char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
202 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
203 Iterate(v, thread);
204 return thread_storage + sizeof(ThreadLocalTop);
205 }
206
207
IterateThread(ThreadVisitor * v,char * t)208 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
209 ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
210 v->VisitThread(this, thread);
211 }
212
213
Iterate(ObjectVisitor * v,ThreadLocalTop * thread)214 void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
215 // Visit the roots from the top for a given thread.
216 v->VisitPointer(&thread->pending_exception_);
217 v->VisitPointer(&(thread->pending_message_obj_));
218 v->VisitPointer(bit_cast<Object**>(&(thread->context_)));
219 v->VisitPointer(&thread->scheduled_exception_);
220
221 for (v8::TryCatch* block = thread->try_catch_handler();
222 block != NULL;
223 block = block->next_) {
224 v->VisitPointer(bit_cast<Object**>(&(block->exception_)));
225 v->VisitPointer(bit_cast<Object**>(&(block->message_obj_)));
226 }
227
228 // Iterate over pointers on native execution stack.
229 for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
230 it.frame()->Iterate(v);
231 }
232 }
233
234
Iterate(ObjectVisitor * v)235 void Isolate::Iterate(ObjectVisitor* v) {
236 ThreadLocalTop* current_t = thread_local_top();
237 Iterate(v, current_t);
238 }
239
240
IterateDeferredHandles(ObjectVisitor * visitor)241 void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
242 for (DeferredHandles* deferred = deferred_handles_head_;
243 deferred != NULL;
244 deferred = deferred->next_) {
245 deferred->Iterate(visitor);
246 }
247 }
248
249
250 #ifdef DEBUG
IsDeferredHandle(Object ** handle)251 bool Isolate::IsDeferredHandle(Object** handle) {
252 // Each DeferredHandles instance keeps the handles to one job in the
253 // concurrent recompilation queue, containing a list of blocks. Each block
254 // contains kHandleBlockSize handles except for the first block, which may
255 // not be fully filled.
256 // We iterate through all the blocks to see whether the argument handle
257 // belongs to one of the blocks. If so, it is deferred.
258 for (DeferredHandles* deferred = deferred_handles_head_;
259 deferred != NULL;
260 deferred = deferred->next_) {
261 List<Object**>* blocks = &deferred->blocks_;
262 for (int i = 0; i < blocks->length(); i++) {
263 Object** block_limit = (i == 0) ? deferred->first_block_limit_
264 : blocks->at(i) + kHandleBlockSize;
265 if (blocks->at(i) <= handle && handle < block_limit) return true;
266 }
267 }
268 return false;
269 }
270 #endif // DEBUG
271
272
RegisterTryCatchHandler(v8::TryCatch * that)273 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
274 thread_local_top()->set_try_catch_handler(that);
275 }
276
277
UnregisterTryCatchHandler(v8::TryCatch * that)278 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
279 DCHECK(thread_local_top()->try_catch_handler() == that);
280 thread_local_top()->set_try_catch_handler(that->next_);
281 }
282
283
StackTraceString()284 Handle<String> Isolate::StackTraceString() {
285 if (stack_trace_nesting_level_ == 0) {
286 stack_trace_nesting_level_++;
287 HeapStringAllocator allocator;
288 StringStream::ClearMentionedObjectCache(this);
289 StringStream accumulator(&allocator);
290 incomplete_message_ = &accumulator;
291 PrintStack(&accumulator);
292 Handle<String> stack_trace = accumulator.ToString(this);
293 incomplete_message_ = NULL;
294 stack_trace_nesting_level_ = 0;
295 return stack_trace;
296 } else if (stack_trace_nesting_level_ == 1) {
297 stack_trace_nesting_level_++;
298 base::OS::PrintError(
299 "\n\nAttempt to print stack while printing stack (double fault)\n");
300 base::OS::PrintError(
301 "If you are lucky you may find a partial stack dump on stdout.\n\n");
302 incomplete_message_->OutputToStdOut();
303 return factory()->empty_string();
304 } else {
305 base::OS::Abort();
306 // Unreachable
307 return factory()->empty_string();
308 }
309 }
310
311
PushStackTraceAndDie(unsigned int magic,void * ptr1,void * ptr2,unsigned int magic2)312 void Isolate::PushStackTraceAndDie(unsigned int magic, void* ptr1, void* ptr2,
313 unsigned int magic2) {
314 const int kMaxStackTraceSize = 32 * KB;
315 Handle<String> trace = StackTraceString();
316 uint8_t buffer[kMaxStackTraceSize];
317 int length = Min(kMaxStackTraceSize - 1, trace->length());
318 String::WriteToFlat(*trace, buffer, 0, length);
319 buffer[length] = '\0';
320 // TODO(dcarney): convert buffer to utf8?
321 base::OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n", magic, magic2, ptr1,
322 ptr2, reinterpret_cast<char*>(buffer));
323 base::OS::Abort();
324 }
325
326 namespace {
327
328 class StackTraceHelper {
329 public:
StackTraceHelper(Isolate * isolate,FrameSkipMode mode,Handle<Object> caller)330 StackTraceHelper(Isolate* isolate, FrameSkipMode mode, Handle<Object> caller)
331 : isolate_(isolate),
332 mode_(mode),
333 caller_(caller),
334 skip_next_frame_(true) {
335 switch (mode_) {
336 case SKIP_FIRST:
337 skip_next_frame_ = true;
338 break;
339 case SKIP_UNTIL_SEEN:
340 DCHECK(caller_->IsJSFunction());
341 skip_next_frame_ = true;
342 break;
343 case SKIP_NONE:
344 skip_next_frame_ = false;
345 break;
346 }
347 encountered_strict_function_ = false;
348 }
349
350 // Poison stack frames below the first strict mode frame.
351 // The stack trace API should not expose receivers and function
352 // objects on frames deeper than the top-most one with a strict mode
353 // function.
IsStrictFrame(JSFunction * fun)354 bool IsStrictFrame(JSFunction* fun) {
355 if (!encountered_strict_function_) {
356 encountered_strict_function_ = is_strict(fun->shared()->language_mode());
357 }
358 return encountered_strict_function_;
359 }
360
361 // Determines whether the given stack frame should be displayed in a stack
362 // trace.
IsVisibleInStackTrace(JSFunction * fun)363 bool IsVisibleInStackTrace(JSFunction* fun) {
364 return ShouldIncludeFrame(fun) && IsNotHidden(fun) &&
365 IsInSameSecurityContext(fun);
366 }
367
368 private:
369 // This mechanism excludes a number of uninteresting frames from the stack
370 // trace. This can be be the first frame (which will be a builtin-exit frame
371 // for the error constructor builtin) or every frame until encountering a
372 // user-specified function.
ShouldIncludeFrame(JSFunction * fun)373 bool ShouldIncludeFrame(JSFunction* fun) {
374 switch (mode_) {
375 case SKIP_NONE:
376 return true;
377 case SKIP_FIRST:
378 if (!skip_next_frame_) return true;
379 skip_next_frame_ = false;
380 return false;
381 case SKIP_UNTIL_SEEN:
382 if (skip_next_frame_ && (fun == *caller_)) {
383 skip_next_frame_ = false;
384 return false;
385 }
386 return !skip_next_frame_;
387 }
388 UNREACHABLE();
389 return false;
390 }
391
IsNotHidden(JSFunction * fun)392 bool IsNotHidden(JSFunction* fun) {
393 // Functions defined not in user scripts are not visible unless directly
394 // exposed, in which case the native flag is set.
395 // The --builtins-in-stack-traces command line flag allows including
396 // internal call sites in the stack trace for debugging purposes.
397 if (!FLAG_builtins_in_stack_traces && !fun->shared()->IsUserJavaScript()) {
398 return fun->shared()->native();
399 }
400 return true;
401 }
402
IsInSameSecurityContext(JSFunction * fun)403 bool IsInSameSecurityContext(JSFunction* fun) {
404 return isolate_->context()->HasSameSecurityTokenAs(fun->context());
405 }
406
407 Isolate* isolate_;
408
409 const FrameSkipMode mode_;
410 const Handle<Object> caller_;
411 bool skip_next_frame_;
412
413 bool encountered_strict_function_;
414 };
415
416 // TODO(jgruber): Fix all cases in which frames give us a hole value (e.g. the
417 // receiver in RegExp constructor frames.
TheHoleToUndefined(Isolate * isolate,Handle<Object> in)418 Handle<Object> TheHoleToUndefined(Isolate* isolate, Handle<Object> in) {
419 return (in->IsTheHole(isolate))
420 ? Handle<Object>::cast(isolate->factory()->undefined_value())
421 : in;
422 }
423
GetStackTraceLimit(Isolate * isolate,int * result)424 bool GetStackTraceLimit(Isolate* isolate, int* result) {
425 Handle<JSObject> error = isolate->error_function();
426
427 Handle<String> key = isolate->factory()->stackTraceLimit_string();
428 Handle<Object> stack_trace_limit = JSReceiver::GetDataProperty(error, key);
429 if (!stack_trace_limit->IsNumber()) return false;
430
431 // Ensure that limit is not negative.
432 *result = Max(FastD2IChecked(stack_trace_limit->Number()), 0);
433 return true;
434 }
435
436 } // namespace
437
CaptureSimpleStackTrace(Handle<JSReceiver> error_object,FrameSkipMode mode,Handle<Object> caller)438 Handle<Object> Isolate::CaptureSimpleStackTrace(Handle<JSReceiver> error_object,
439 FrameSkipMode mode,
440 Handle<Object> caller) {
441 DisallowJavascriptExecution no_js(this);
442
443 int limit;
444 if (!GetStackTraceLimit(this, &limit)) return factory()->undefined_value();
445
446 const int initial_size = Min(limit, 10);
447 Handle<FrameArray> elements = factory()->NewFrameArray(initial_size);
448
449 StackTraceHelper helper(this, mode, caller);
450
451 for (StackFrameIterator iter(this);
452 !iter.done() && elements->FrameCount() < limit; iter.Advance()) {
453 StackFrame* frame = iter.frame();
454
455 switch (frame->type()) {
456 case StackFrame::JAVA_SCRIPT:
457 case StackFrame::OPTIMIZED:
458 case StackFrame::INTERPRETED:
459 case StackFrame::BUILTIN: {
460 JavaScriptFrame* js_frame = JavaScriptFrame::cast(frame);
461 // Set initial size to the maximum inlining level + 1 for the outermost
462 // function.
463 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
464 js_frame->Summarize(&frames);
465 for (int i = frames.length() - 1; i >= 0; i--) {
466 const auto& summ = frames[i].AsJavaScript();
467 Handle<JSFunction> fun = summ.function();
468
469 // Filter out internal frames that we do not want to show.
470 if (!helper.IsVisibleInStackTrace(*fun)) continue;
471
472 Handle<Object> recv = frames[i].receiver();
473 Handle<AbstractCode> abstract_code = summ.abstract_code();
474 const int offset = frames[i].code_offset();
475
476 bool force_constructor = false;
477 if (frame->type() == StackFrame::BUILTIN) {
478 // Help CallSite::IsConstructor correctly detect hand-written
479 // construct stubs.
480 if (Code::cast(*abstract_code)->is_construct_stub()) {
481 force_constructor = true;
482 }
483 }
484
485 int flags = 0;
486 if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict;
487 if (force_constructor) flags |= FrameArray::kForceConstructor;
488
489 elements = FrameArray::AppendJSFrame(
490 elements, TheHoleToUndefined(this, recv), fun, abstract_code,
491 offset, flags);
492 }
493 } break;
494
495 case StackFrame::BUILTIN_EXIT: {
496 BuiltinExitFrame* exit_frame = BuiltinExitFrame::cast(frame);
497 Handle<JSFunction> fun = handle(exit_frame->function(), this);
498
499 // Filter out internal frames that we do not want to show.
500 if (!helper.IsVisibleInStackTrace(*fun)) continue;
501
502 Handle<Object> recv(exit_frame->receiver(), this);
503 Handle<Code> code(exit_frame->LookupCode(), this);
504 const int offset =
505 static_cast<int>(exit_frame->pc() - code->instruction_start());
506
507 int flags = 0;
508 if (helper.IsStrictFrame(*fun)) flags |= FrameArray::kIsStrict;
509 if (exit_frame->IsConstructor()) flags |= FrameArray::kForceConstructor;
510
511 elements = FrameArray::AppendJSFrame(elements, recv, fun,
512 Handle<AbstractCode>::cast(code),
513 offset, flags);
514 } break;
515
516 case StackFrame::WASM_COMPILED: {
517 WasmCompiledFrame* wasm_frame = WasmCompiledFrame::cast(frame);
518 Handle<WasmInstanceObject> instance(wasm_frame->wasm_instance(), this);
519 const int wasm_function_index = wasm_frame->function_index();
520 Code* code = wasm_frame->unchecked_code();
521 Handle<AbstractCode> abstract_code(AbstractCode::cast(code), this);
522 const int offset =
523 static_cast<int>(wasm_frame->pc() - code->instruction_start());
524
525 int flags = 0;
526 if (instance->compiled_module()->is_asm_js()) {
527 flags |= FrameArray::kIsAsmJsWasmFrame;
528 if (wasm_frame->at_to_number_conversion()) {
529 flags |= FrameArray::kAsmJsAtNumberConversion;
530 }
531 } else {
532 flags |= FrameArray::kIsWasmFrame;
533 }
534
535 elements =
536 FrameArray::AppendWasmFrame(elements, instance, wasm_function_index,
537 abstract_code, offset, flags);
538 } break;
539
540 case StackFrame::WASM_INTERPRETER_ENTRY:
541 // TODO(clemensh): Add frames.
542 break;
543
544 default:
545 break;
546 }
547 }
548
549 elements->ShrinkToFit();
550
551 // TODO(yangguo): Queue this structured stack trace for preprocessing on GC.
552 return factory()->NewJSArrayWithElements(elements);
553 }
554
CaptureAndSetDetailedStackTrace(Handle<JSReceiver> error_object)555 MaybeHandle<JSReceiver> Isolate::CaptureAndSetDetailedStackTrace(
556 Handle<JSReceiver> error_object) {
557 if (capture_stack_trace_for_uncaught_exceptions_) {
558 // Capture stack trace for a detailed exception message.
559 Handle<Name> key = factory()->detailed_stack_trace_symbol();
560 Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
561 stack_trace_for_uncaught_exceptions_frame_limit_,
562 stack_trace_for_uncaught_exceptions_options_);
563 RETURN_ON_EXCEPTION(
564 this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT),
565 JSReceiver);
566 }
567 return error_object;
568 }
569
CaptureAndSetSimpleStackTrace(Handle<JSReceiver> error_object,FrameSkipMode mode,Handle<Object> caller)570 MaybeHandle<JSReceiver> Isolate::CaptureAndSetSimpleStackTrace(
571 Handle<JSReceiver> error_object, FrameSkipMode mode,
572 Handle<Object> caller) {
573 // Capture stack trace for simple stack trace string formatting.
574 Handle<Name> key = factory()->stack_trace_symbol();
575 Handle<Object> stack_trace =
576 CaptureSimpleStackTrace(error_object, mode, caller);
577 RETURN_ON_EXCEPTION(
578 this, JSReceiver::SetProperty(error_object, key, stack_trace, STRICT),
579 JSReceiver);
580 return error_object;
581 }
582
583
GetDetailedStackTrace(Handle<JSObject> error_object)584 Handle<JSArray> Isolate::GetDetailedStackTrace(Handle<JSObject> error_object) {
585 Handle<Name> key_detailed = factory()->detailed_stack_trace_symbol();
586 Handle<Object> stack_trace =
587 JSReceiver::GetDataProperty(error_object, key_detailed);
588 if (stack_trace->IsJSArray()) return Handle<JSArray>::cast(stack_trace);
589 return Handle<JSArray>();
590 }
591
592
593 class CaptureStackTraceHelper {
594 public:
CaptureStackTraceHelper(Isolate * isolate,StackTrace::StackTraceOptions options)595 CaptureStackTraceHelper(Isolate* isolate,
596 StackTrace::StackTraceOptions options)
597 : isolate_(isolate) {
598 if (options & StackTrace::kColumnOffset) {
599 column_key_ =
600 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("column"));
601 }
602 if (options & StackTrace::kLineNumber) {
603 line_key_ =
604 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("lineNumber"));
605 }
606 if (options & StackTrace::kScriptId) {
607 script_id_key_ =
608 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptId"));
609 }
610 if (options & StackTrace::kScriptName) {
611 script_name_key_ =
612 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptName"));
613 }
614 if (options & StackTrace::kScriptNameOrSourceURL) {
615 script_name_or_source_url_key_ = factory()->InternalizeOneByteString(
616 STATIC_CHAR_VECTOR("scriptNameOrSourceURL"));
617 }
618 if (options & StackTrace::kFunctionName) {
619 function_key_ = factory()->InternalizeOneByteString(
620 STATIC_CHAR_VECTOR("functionName"));
621 }
622 if (options & StackTrace::kIsEval) {
623 eval_key_ =
624 factory()->InternalizeOneByteString(STATIC_CHAR_VECTOR("isEval"));
625 }
626 if (options & StackTrace::kIsConstructor) {
627 constructor_key_ = factory()->InternalizeOneByteString(
628 STATIC_CHAR_VECTOR("isConstructor"));
629 }
630 }
631
NewStackFrameObject(FrameSummary & summ)632 Handle<JSObject> NewStackFrameObject(FrameSummary& summ) {
633 if (summ.IsJavaScript()) return NewStackFrameObject(summ.AsJavaScript());
634 if (summ.IsWasm()) return NewStackFrameObject(summ.AsWasm());
635 UNREACHABLE();
636 return Handle<JSObject>::null();
637 }
638
NewStackFrameObject(const FrameSummary::JavaScriptFrameSummary & summ)639 Handle<JSObject> NewStackFrameObject(
640 const FrameSummary::JavaScriptFrameSummary& summ) {
641 Handle<JSObject> stack_frame =
642 factory()->NewJSObject(isolate_->object_function());
643 Handle<Script> script = Handle<Script>::cast(summ.script());
644
645 if (!line_key_.is_null()) {
646 Script::PositionInfo info;
647 bool valid_pos = Script::GetPositionInfo(script, summ.SourcePosition(),
648 &info, Script::WITH_OFFSET);
649
650 if (!column_key_.is_null() && valid_pos) {
651 JSObject::AddProperty(stack_frame, column_key_,
652 handle(Smi::FromInt(info.column + 1), isolate_),
653 NONE);
654 }
655 JSObject::AddProperty(stack_frame, line_key_,
656 handle(Smi::FromInt(info.line + 1), isolate_),
657 NONE);
658 }
659
660 if (!script_id_key_.is_null()) {
661 JSObject::AddProperty(stack_frame, script_id_key_,
662 handle(Smi::FromInt(script->id()), isolate_), NONE);
663 }
664
665 if (!script_name_key_.is_null()) {
666 JSObject::AddProperty(stack_frame, script_name_key_,
667 handle(script->name(), isolate_), NONE);
668 }
669
670 if (!script_name_or_source_url_key_.is_null()) {
671 Handle<Object> result(script->GetNameOrSourceURL(), isolate_);
672 JSObject::AddProperty(stack_frame, script_name_or_source_url_key_, result,
673 NONE);
674 }
675
676 if (!eval_key_.is_null()) {
677 Handle<Object> is_eval = factory()->ToBoolean(
678 script->compilation_type() == Script::COMPILATION_TYPE_EVAL);
679 JSObject::AddProperty(stack_frame, eval_key_, is_eval, NONE);
680 }
681
682 if (!function_key_.is_null()) {
683 Handle<String> fun_name = summ.FunctionName();
684 JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
685 }
686
687 if (!constructor_key_.is_null()) {
688 Handle<Object> is_constructor_obj =
689 factory()->ToBoolean(summ.is_constructor());
690 JSObject::AddProperty(stack_frame, constructor_key_, is_constructor_obj,
691 NONE);
692 }
693 return stack_frame;
694 }
695
NewStackFrameObject(BuiltinExitFrame * frame)696 Handle<JSObject> NewStackFrameObject(BuiltinExitFrame* frame) {
697 Handle<JSObject> stack_frame =
698 factory()->NewJSObject(isolate_->object_function());
699 Handle<JSFunction> fun = handle(frame->function(), isolate_);
700 if (!function_key_.is_null()) {
701 Handle<Object> fun_name = JSFunction::GetDebugName(fun);
702 JSObject::AddProperty(stack_frame, function_key_, fun_name, NONE);
703 }
704
705 // We don't have a script and hence cannot set line and col positions.
706 DCHECK(!fun->shared()->script()->IsScript());
707
708 return stack_frame;
709 }
710
NewStackFrameObject(const FrameSummary::WasmFrameSummary & summ)711 Handle<JSObject> NewStackFrameObject(
712 const FrameSummary::WasmFrameSummary& summ) {
713 Handle<JSObject> stack_frame =
714 factory()->NewJSObject(isolate_->object_function());
715
716 if (!function_key_.is_null()) {
717 Handle<WasmCompiledModule> compiled_module(
718 summ.wasm_instance()->compiled_module(), isolate_);
719 Handle<String> name = WasmCompiledModule::GetFunctionName(
720 isolate_, compiled_module, summ.function_index());
721 JSObject::AddProperty(stack_frame, function_key_, name, NONE);
722 }
723 // Encode the function index as line number (1-based).
724 if (!line_key_.is_null()) {
725 JSObject::AddProperty(
726 stack_frame, line_key_,
727 isolate_->factory()->NewNumberFromInt(summ.function_index() + 1),
728 NONE);
729 }
730 // Encode the byte offset as column (1-based).
731 if (!column_key_.is_null()) {
732 int position = summ.byte_offset();
733 // Make position 1-based.
734 if (position >= 0) ++position;
735 JSObject::AddProperty(stack_frame, column_key_,
736 isolate_->factory()->NewNumberFromInt(position),
737 NONE);
738 }
739 if (!script_id_key_.is_null()) {
740 int script_id = summ.script()->id();
741 JSObject::AddProperty(stack_frame, script_id_key_,
742 handle(Smi::FromInt(script_id), isolate_), NONE);
743 }
744
745 return stack_frame;
746 }
747
748 private:
factory()749 inline Factory* factory() { return isolate_->factory(); }
750
751 Isolate* isolate_;
752 Handle<String> column_key_;
753 Handle<String> line_key_;
754 Handle<String> script_id_key_;
755 Handle<String> script_name_key_;
756 Handle<String> script_name_or_source_url_key_;
757 Handle<String> function_key_;
758 Handle<String> eval_key_;
759 Handle<String> constructor_key_;
760 };
761
CaptureCurrentStackTrace(int frame_limit,StackTrace::StackTraceOptions options)762 Handle<JSArray> Isolate::CaptureCurrentStackTrace(
763 int frame_limit, StackTrace::StackTraceOptions options) {
764 DisallowJavascriptExecution no_js(this);
765 CaptureStackTraceHelper helper(this, options);
766
767 // Ensure no negative values.
768 int limit = Max(frame_limit, 0);
769 Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
770 Handle<FixedArray> stack_trace_elems(
771 FixedArray::cast(stack_trace->elements()), this);
772
773 int frames_seen = 0;
774 for (StackTraceFrameIterator it(this); !it.done() && (frames_seen < limit);
775 it.Advance()) {
776 StandardFrame* frame = it.frame();
777 // Set initial size to the maximum inlining level + 1 for the outermost
778 // function.
779 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
780 frame->Summarize(&frames);
781 for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
782 // Filter frames from other security contexts.
783 if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
784 !this->context()->HasSameSecurityTokenAs(*frames[i].native_context()))
785 continue;
786 Handle<JSObject> new_frame_obj = helper.NewStackFrameObject(frames[i]);
787 stack_trace_elems->set(frames_seen, *new_frame_obj);
788 frames_seen++;
789 }
790 }
791
792 stack_trace->set_length(Smi::FromInt(frames_seen));
793 return stack_trace;
794 }
795
796
PrintStack(FILE * out,PrintStackMode mode)797 void Isolate::PrintStack(FILE* out, PrintStackMode mode) {
798 if (stack_trace_nesting_level_ == 0) {
799 stack_trace_nesting_level_++;
800 StringStream::ClearMentionedObjectCache(this);
801 HeapStringAllocator allocator;
802 StringStream accumulator(&allocator);
803 incomplete_message_ = &accumulator;
804 PrintStack(&accumulator, mode);
805 accumulator.OutputToFile(out);
806 InitializeLoggingAndCounters();
807 accumulator.Log(this);
808 incomplete_message_ = NULL;
809 stack_trace_nesting_level_ = 0;
810 } else if (stack_trace_nesting_level_ == 1) {
811 stack_trace_nesting_level_++;
812 base::OS::PrintError(
813 "\n\nAttempt to print stack while printing stack (double fault)\n");
814 base::OS::PrintError(
815 "If you are lucky you may find a partial stack dump on stdout.\n\n");
816 incomplete_message_->OutputToFile(out);
817 }
818 }
819
820
PrintFrames(Isolate * isolate,StringStream * accumulator,StackFrame::PrintMode mode)821 static void PrintFrames(Isolate* isolate,
822 StringStream* accumulator,
823 StackFrame::PrintMode mode) {
824 StackFrameIterator it(isolate);
825 for (int i = 0; !it.done(); it.Advance()) {
826 it.frame()->Print(accumulator, mode, i++);
827 }
828 }
829
830
PrintStack(StringStream * accumulator,PrintStackMode mode)831 void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) {
832 // The MentionedObjectCache is not GC-proof at the moment.
833 DisallowHeapAllocation no_gc;
834 HandleScope scope(this);
835 DCHECK(accumulator->IsMentionedObjectCacheClear(this));
836
837 // Avoid printing anything if there are no frames.
838 if (c_entry_fp(thread_local_top()) == 0) return;
839
840 accumulator->Add(
841 "\n==== JS stack trace =========================================\n\n");
842 PrintFrames(this, accumulator, StackFrame::OVERVIEW);
843 if (mode == kPrintStackVerbose) {
844 accumulator->Add(
845 "\n==== Details ================================================\n\n");
846 PrintFrames(this, accumulator, StackFrame::DETAILS);
847 accumulator->PrintMentionedObjectCache(this);
848 }
849 accumulator->Add("=====================\n\n");
850 }
851
852
SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback)853 void Isolate::SetFailedAccessCheckCallback(
854 v8::FailedAccessCheckCallback callback) {
855 thread_local_top()->failed_access_check_callback_ = callback;
856 }
857
858
ReportFailedAccessCheck(Handle<JSObject> receiver)859 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) {
860 if (!thread_local_top()->failed_access_check_callback_) {
861 return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess));
862 }
863
864 DCHECK(receiver->IsAccessCheckNeeded());
865 DCHECK(context());
866
867 // Get the data object from access check info.
868 HandleScope scope(this);
869 Handle<Object> data;
870 { DisallowHeapAllocation no_gc;
871 AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver);
872 if (!access_check_info) {
873 AllowHeapAllocation doesnt_matter_anymore;
874 return ScheduleThrow(
875 *factory()->NewTypeError(MessageTemplate::kNoAccess));
876 }
877 data = handle(access_check_info->data(), this);
878 }
879
880 // Leaving JavaScript.
881 VMState<EXTERNAL> state(this);
882 thread_local_top()->failed_access_check_callback_(
883 v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data));
884 }
885
886
MayAccess(Handle<Context> accessing_context,Handle<JSObject> receiver)887 bool Isolate::MayAccess(Handle<Context> accessing_context,
888 Handle<JSObject> receiver) {
889 DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
890
891 // Check for compatibility between the security tokens in the
892 // current lexical context and the accessed object.
893
894 // During bootstrapping, callback functions are not enabled yet.
895 if (bootstrapper()->IsActive()) return true;
896 {
897 DisallowHeapAllocation no_gc;
898
899 if (receiver->IsJSGlobalProxy()) {
900 Object* receiver_context =
901 JSGlobalProxy::cast(*receiver)->native_context();
902 if (!receiver_context->IsContext()) return false;
903
904 // Get the native context of current top context.
905 // avoid using Isolate::native_context() because it uses Handle.
906 Context* native_context =
907 accessing_context->global_object()->native_context();
908 if (receiver_context == native_context) return true;
909
910 if (Context::cast(receiver_context)->security_token() ==
911 native_context->security_token())
912 return true;
913 }
914 }
915
916 HandleScope scope(this);
917 Handle<Object> data;
918 v8::AccessCheckCallback callback = nullptr;
919 { DisallowHeapAllocation no_gc;
920 AccessCheckInfo* access_check_info = AccessCheckInfo::Get(this, receiver);
921 if (!access_check_info) return false;
922 Object* fun_obj = access_check_info->callback();
923 callback = v8::ToCData<v8::AccessCheckCallback>(fun_obj);
924 data = handle(access_check_info->data(), this);
925 }
926
927 LOG(this, ApiSecurityCheck());
928
929 {
930 // Leaving JavaScript.
931 VMState<EXTERNAL> state(this);
932 return callback(v8::Utils::ToLocal(accessing_context),
933 v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(data));
934 }
935 }
936
937
StackOverflow()938 Object* Isolate::StackOverflow() {
939 if (FLAG_abort_on_stack_overflow) {
940 FATAL("Aborting on stack overflow");
941 }
942
943 DisallowJavascriptExecution no_js(this);
944 HandleScope scope(this);
945
946 Handle<JSFunction> fun = range_error_function();
947 Handle<Object> msg = factory()->NewStringFromAsciiChecked(
948 MessageTemplate::TemplateString(MessageTemplate::kStackOverflow));
949 Handle<Object> no_caller;
950 Handle<Object> exception;
951 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
952 this, exception,
953 ErrorUtils::Construct(this, fun, fun, msg, SKIP_NONE, no_caller, true));
954
955 Throw(*exception, nullptr);
956
957 #ifdef VERIFY_HEAP
958 if (FLAG_verify_heap && FLAG_stress_compaction) {
959 heap()->CollectAllGarbage(Heap::kNoGCFlags,
960 GarbageCollectionReason::kTesting);
961 }
962 #endif // VERIFY_HEAP
963
964 return heap()->exception();
965 }
966
967
TerminateExecution()968 Object* Isolate::TerminateExecution() {
969 return Throw(heap_.termination_exception(), nullptr);
970 }
971
972
CancelTerminateExecution()973 void Isolate::CancelTerminateExecution() {
974 if (try_catch_handler()) {
975 try_catch_handler()->has_terminated_ = false;
976 }
977 if (has_pending_exception() &&
978 pending_exception() == heap_.termination_exception()) {
979 thread_local_top()->external_caught_exception_ = false;
980 clear_pending_exception();
981 }
982 if (has_scheduled_exception() &&
983 scheduled_exception() == heap_.termination_exception()) {
984 thread_local_top()->external_caught_exception_ = false;
985 clear_scheduled_exception();
986 }
987 }
988
989
RequestInterrupt(InterruptCallback callback,void * data)990 void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
991 ExecutionAccess access(this);
992 api_interrupts_queue_.push(InterruptEntry(callback, data));
993 stack_guard()->RequestApiInterrupt();
994 }
995
996
InvokeApiInterruptCallbacks()997 void Isolate::InvokeApiInterruptCallbacks() {
998 RuntimeCallTimerScope runtimeTimer(
999 this, &RuntimeCallStats::InvokeApiInterruptCallbacks);
1000 // Note: callback below should be called outside of execution access lock.
1001 while (true) {
1002 InterruptEntry entry;
1003 {
1004 ExecutionAccess access(this);
1005 if (api_interrupts_queue_.empty()) return;
1006 entry = api_interrupts_queue_.front();
1007 api_interrupts_queue_.pop();
1008 }
1009 VMState<EXTERNAL> state(this);
1010 HandleScope handle_scope(this);
1011 entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second);
1012 }
1013 }
1014
1015
ReportBootstrappingException(Handle<Object> exception,MessageLocation * location)1016 void ReportBootstrappingException(Handle<Object> exception,
1017 MessageLocation* location) {
1018 base::OS::PrintError("Exception thrown during bootstrapping\n");
1019 if (location == NULL || location->script().is_null()) return;
1020 // We are bootstrapping and caught an error where the location is set
1021 // and we have a script for the location.
1022 // In this case we could have an extension (or an internal error
1023 // somewhere) and we print out the line number at which the error occured
1024 // to the console for easier debugging.
1025 int line_number =
1026 location->script()->GetLineNumber(location->start_pos()) + 1;
1027 if (exception->IsString() && location->script()->name()->IsString()) {
1028 base::OS::PrintError(
1029 "Extension or internal compilation error: %s in %s at line %d.\n",
1030 String::cast(*exception)->ToCString().get(),
1031 String::cast(location->script()->name())->ToCString().get(),
1032 line_number);
1033 } else if (location->script()->name()->IsString()) {
1034 base::OS::PrintError(
1035 "Extension or internal compilation error in %s at line %d.\n",
1036 String::cast(location->script()->name())->ToCString().get(),
1037 line_number);
1038 } else if (exception->IsString()) {
1039 base::OS::PrintError("Extension or internal compilation error: %s.\n",
1040 String::cast(*exception)->ToCString().get());
1041 } else {
1042 base::OS::PrintError("Extension or internal compilation error.\n");
1043 }
1044 #ifdef OBJECT_PRINT
1045 // Since comments and empty lines have been stripped from the source of
1046 // builtins, print the actual source here so that line numbers match.
1047 if (location->script()->source()->IsString()) {
1048 Handle<String> src(String::cast(location->script()->source()));
1049 PrintF("Failing script:");
1050 int len = src->length();
1051 if (len == 0) {
1052 PrintF(" <not available>\n");
1053 } else {
1054 PrintF("\n");
1055 int line_number = 1;
1056 PrintF("%5d: ", line_number);
1057 for (int i = 0; i < len; i++) {
1058 uint16_t character = src->Get(i);
1059 PrintF("%c", character);
1060 if (character == '\n' && i < len - 2) {
1061 PrintF("%5d: ", ++line_number);
1062 }
1063 }
1064 PrintF("\n");
1065 }
1066 }
1067 #endif
1068 }
1069
1070
Throw(Object * exception,MessageLocation * location)1071 Object* Isolate::Throw(Object* exception, MessageLocation* location) {
1072 DCHECK(!has_pending_exception());
1073
1074 HandleScope scope(this);
1075 Handle<Object> exception_handle(exception, this);
1076
1077 if (FLAG_print_all_exceptions) {
1078 printf("=========================================================\n");
1079 printf("Exception thrown:\n");
1080 if (location) {
1081 Handle<Script> script = location->script();
1082 Handle<Object> name(script->GetNameOrSourceURL(), this);
1083 printf("at ");
1084 if (name->IsString() && String::cast(*name)->length() > 0)
1085 String::cast(*name)->PrintOn(stdout);
1086 else
1087 printf("<anonymous>");
1088 // Script::GetLineNumber and Script::GetColumnNumber can allocate on the heap to
1089 // initialize the line_ends array, so be careful when calling them.
1090 #ifdef DEBUG
1091 if (AllowHeapAllocation::IsAllowed()) {
1092 #else
1093 if (false) {
1094 #endif
1095 printf(", %d:%d - %d:%d\n",
1096 Script::GetLineNumber(script, location->start_pos()) + 1,
1097 Script::GetColumnNumber(script, location->start_pos()),
1098 Script::GetLineNumber(script, location->end_pos()) + 1,
1099 Script::GetColumnNumber(script, location->end_pos()));
1100 } else {
1101 printf(", line %d\n", script->GetLineNumber(location->start_pos()) + 1);
1102 }
1103 }
1104 exception->Print();
1105 printf("Stack Trace:\n");
1106 PrintStack(stdout);
1107 printf("=========================================================\n");
1108 }
1109
1110 // Determine whether a message needs to be created for the given exception
1111 // depending on the following criteria:
1112 // 1) External v8::TryCatch missing: Always create a message because any
1113 // JavaScript handler for a finally-block might re-throw to top-level.
1114 // 2) External v8::TryCatch exists: Only create a message if the handler
1115 // captures messages or is verbose (which reports despite the catch).
1116 // 3) ReThrow from v8::TryCatch: The message from a previous throw still
1117 // exists and we preserve it instead of creating a new message.
1118 bool requires_message = try_catch_handler() == nullptr ||
1119 try_catch_handler()->is_verbose_ ||
1120 try_catch_handler()->capture_message_;
1121 bool rethrowing_message = thread_local_top()->rethrowing_message_;
1122
1123 thread_local_top()->rethrowing_message_ = false;
1124
1125 // Notify debugger of exception.
1126 if (is_catchable_by_javascript(exception)) {
1127 debug()->OnThrow(exception_handle);
1128 }
1129
1130 // Generate the message if required.
1131 if (requires_message && !rethrowing_message) {
1132 MessageLocation computed_location;
1133 // If no location was specified we try to use a computed one instead.
1134 if (location == NULL && ComputeLocation(&computed_location)) {
1135 location = &computed_location;
1136 }
1137
1138 if (bootstrapper()->IsActive()) {
1139 // It's not safe to try to make message objects or collect stack traces
1140 // while the bootstrapper is active since the infrastructure may not have
1141 // been properly initialized.
1142 ReportBootstrappingException(exception_handle, location);
1143 } else {
1144 Handle<Object> message_obj = CreateMessage(exception_handle, location);
1145 thread_local_top()->pending_message_obj_ = *message_obj;
1146
1147 // For any exception not caught by JavaScript, even when an external
1148 // handler is present:
1149 // If the abort-on-uncaught-exception flag is specified, and if the
1150 // embedder didn't specify a custom uncaught exception callback,
1151 // or if the custom callback determined that V8 should abort, then
1152 // abort.
1153 if (FLAG_abort_on_uncaught_exception) {
1154 CatchType prediction = PredictExceptionCatcher();
1155 if ((prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) &&
1156 (!abort_on_uncaught_exception_callback_ ||
1157 abort_on_uncaught_exception_callback_(
1158 reinterpret_cast<v8::Isolate*>(this)))) {
1159 // Prevent endless recursion.
1160 FLAG_abort_on_uncaught_exception = false;
1161 // This flag is intended for use by JavaScript developers, so
1162 // print a user-friendly stack trace (not an internal one).
1163 PrintF(stderr, "%s\n\nFROM\n",
1164 MessageHandler::GetLocalizedMessage(this, message_obj).get());
1165 PrintCurrentStackTrace(stderr);
1166 base::OS::Abort();
1167 }
1168 }
1169 }
1170 }
1171
1172 // Set the exception being thrown.
1173 set_pending_exception(*exception_handle);
1174 return heap()->exception();
1175 }
1176
1177
1178 Object* Isolate::ReThrow(Object* exception) {
1179 DCHECK(!has_pending_exception());
1180
1181 // Set the exception being re-thrown.
1182 set_pending_exception(exception);
1183 return heap()->exception();
1184 }
1185
1186
1187 Object* Isolate::UnwindAndFindHandler() {
1188 Object* exception = pending_exception();
1189
1190 Code* code = nullptr;
1191 Context* context = nullptr;
1192 intptr_t offset = 0;
1193 Address handler_sp = nullptr;
1194 Address handler_fp = nullptr;
1195
1196 // Special handling of termination exceptions, uncatchable by JavaScript and
1197 // Wasm code, we unwind the handlers until the top ENTRY handler is found.
1198 bool catchable_by_js = is_catchable_by_javascript(exception);
1199
1200 // Compute handler and stack unwinding information by performing a full walk
1201 // over the stack and dispatching according to the frame type.
1202 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1203 StackFrame* frame = iter.frame();
1204
1205 // For JSEntryStub frames we always have a handler.
1206 if (frame->is_entry() || frame->is_entry_construct()) {
1207 StackHandler* handler = frame->top_handler();
1208
1209 // Restore the next handler.
1210 thread_local_top()->handler_ = handler->next()->address();
1211
1212 // Gather information from the handler.
1213 code = frame->LookupCode();
1214 handler_sp = handler->address() + StackHandlerConstants::kSize;
1215 offset = Smi::cast(code->handler_table()->get(0))->value();
1216 break;
1217 }
1218
1219 if (FLAG_wasm_eh_prototype) {
1220 if (frame->is_wasm() && is_catchable_by_wasm(exception)) {
1221 int stack_slots = 0; // Will contain stack slot count of frame.
1222 WasmCompiledFrame* wasm_frame = static_cast<WasmCompiledFrame*>(frame);
1223 offset = wasm_frame->LookupExceptionHandlerInTable(&stack_slots);
1224 if (offset >= 0) {
1225 // Compute the stack pointer from the frame pointer. This ensures that
1226 // argument slots on the stack are dropped as returning would.
1227 Address return_sp = frame->fp() +
1228 StandardFrameConstants::kFixedFrameSizeAboveFp -
1229 stack_slots * kPointerSize;
1230
1231 // Gather information from the frame.
1232 code = frame->LookupCode();
1233
1234 handler_sp = return_sp;
1235 handler_fp = frame->fp();
1236 break;
1237 }
1238 }
1239 }
1240
1241 // For optimized frames we perform a lookup in the handler table.
1242 if (frame->is_optimized() && catchable_by_js) {
1243 OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame);
1244 int stack_slots = 0; // Will contain stack slot count of frame.
1245 offset = js_frame->LookupExceptionHandlerInTable(&stack_slots, nullptr);
1246 if (offset >= 0) {
1247 // Compute the stack pointer from the frame pointer. This ensures that
1248 // argument slots on the stack are dropped as returning would.
1249 Address return_sp = frame->fp() +
1250 StandardFrameConstants::kFixedFrameSizeAboveFp -
1251 stack_slots * kPointerSize;
1252
1253 // Gather information from the frame.
1254 code = frame->LookupCode();
1255
1256 // TODO(bmeurer): Turbofanned BUILTIN frames appear as OPTIMIZED, but
1257 // do not have a code kind of OPTIMIZED_FUNCTION.
1258 if (code->kind() == Code::OPTIMIZED_FUNCTION &&
1259 code->marked_for_deoptimization()) {
1260 // If the target code is lazy deoptimized, we jump to the original
1261 // return address, but we make a note that we are throwing, so that
1262 // the deoptimizer can do the right thing.
1263 offset = static_cast<int>(frame->pc() - code->entry());
1264 set_deoptimizer_lazy_throw(true);
1265 }
1266 handler_sp = return_sp;
1267 handler_fp = frame->fp();
1268 break;
1269 }
1270 }
1271
1272 // For interpreted frame we perform a range lookup in the handler table.
1273 if (frame->is_interpreted() && catchable_by_js) {
1274 InterpretedFrame* js_frame = static_cast<InterpretedFrame*>(frame);
1275 int register_slots = js_frame->GetBytecodeArray()->register_count();
1276 int context_reg = 0; // Will contain register index holding context.
1277 offset = js_frame->LookupExceptionHandlerInTable(&context_reg, nullptr);
1278 if (offset >= 0) {
1279 // Compute the stack pointer from the frame pointer. This ensures that
1280 // argument slots on the stack are dropped as returning would.
1281 // Note: This is only needed for interpreted frames that have been
1282 // materialized by the deoptimizer. If there is a handler frame
1283 // in between then {frame->sp()} would already be correct.
1284 Address return_sp = frame->fp() -
1285 InterpreterFrameConstants::kFixedFrameSizeFromFp -
1286 register_slots * kPointerSize;
1287
1288 // Patch the bytecode offset in the interpreted frame to reflect the
1289 // position of the exception handler. The special builtin below will
1290 // take care of continuing to dispatch at that position. Also restore
1291 // the correct context for the handler from the interpreter register.
1292 context = Context::cast(js_frame->ReadInterpreterRegister(context_reg));
1293 js_frame->PatchBytecodeOffset(static_cast<int>(offset));
1294 offset = 0;
1295
1296 // Gather information from the frame.
1297 code = *builtins()->InterpreterEnterBytecodeDispatch();
1298 handler_sp = return_sp;
1299 handler_fp = frame->fp();
1300 break;
1301 }
1302 }
1303
1304 // For JavaScript frames we are guaranteed not to find a handler.
1305 if (frame->is_java_script() && catchable_by_js) {
1306 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1307 offset = js_frame->LookupExceptionHandlerInTable(nullptr, nullptr);
1308 CHECK_EQ(-1, offset);
1309 }
1310
1311 // TODO(clemensh): Handle unwinding interpreted wasm frames (stored in the
1312 // WasmInterpreter C++ object).
1313
1314 RemoveMaterializedObjectsOnUnwind(frame);
1315 }
1316
1317 // Handler must exist.
1318 CHECK(code != nullptr);
1319
1320 // Store information to be consumed by the CEntryStub.
1321 thread_local_top()->pending_handler_context_ = context;
1322 thread_local_top()->pending_handler_code_ = code;
1323 thread_local_top()->pending_handler_offset_ = offset;
1324 thread_local_top()->pending_handler_fp_ = handler_fp;
1325 thread_local_top()->pending_handler_sp_ = handler_sp;
1326
1327 // Return and clear pending exception.
1328 clear_pending_exception();
1329 return exception;
1330 }
1331
1332 namespace {
1333 HandlerTable::CatchPrediction PredictException(JavaScriptFrame* frame) {
1334 HandlerTable::CatchPrediction prediction;
1335 if (frame->is_optimized()) {
1336 if (frame->LookupExceptionHandlerInTable(nullptr, nullptr) > 0) {
1337 // This optimized frame will catch. It's handler table does not include
1338 // exception prediction, and we need to use the corresponding handler
1339 // tables on the unoptimized code objects.
1340 List<FrameSummary> summaries;
1341 frame->Summarize(&summaries);
1342 for (const FrameSummary& summary : summaries) {
1343 Handle<AbstractCode> code = summary.AsJavaScript().abstract_code();
1344 if (code->IsCode() && code->kind() == AbstractCode::BUILTIN) {
1345 if (code->GetCode()->is_promise_rejection()) {
1346 return HandlerTable::PROMISE;
1347 }
1348
1349 // This the exception throw in PromiseHandle which doesn't
1350 // cause a promise rejection.
1351 if (code->GetCode()->is_exception_caught()) {
1352 return HandlerTable::CAUGHT;
1353 }
1354 }
1355
1356 if (code->kind() == AbstractCode::OPTIMIZED_FUNCTION) {
1357 DCHECK(summary.AsJavaScript().function()->shared()->asm_function());
1358 // asm code cannot contain try-catch.
1359 continue;
1360 }
1361 // Must have been constructed from a bytecode array.
1362 CHECK_EQ(AbstractCode::INTERPRETED_FUNCTION, code->kind());
1363 int code_offset = summary.code_offset();
1364 BytecodeArray* bytecode = code->GetBytecodeArray();
1365 HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
1366 int index = table->LookupRange(code_offset, nullptr, &prediction);
1367 if (index <= 0) continue;
1368 if (prediction == HandlerTable::UNCAUGHT) continue;
1369 return prediction;
1370 }
1371 }
1372 } else if (frame->LookupExceptionHandlerInTable(nullptr, &prediction) > 0) {
1373 return prediction;
1374 }
1375 return HandlerTable::UNCAUGHT;
1376 }
1377 } // anonymous namespace
1378
1379 Isolate::CatchType Isolate::PredictExceptionCatcher() {
1380 Address external_handler = thread_local_top()->try_catch_handler_address();
1381 Address entry_handler = Isolate::handler(thread_local_top());
1382 if (IsExternalHandlerOnTop(nullptr)) return CAUGHT_BY_EXTERNAL;
1383
1384 // Search for an exception handler by performing a full walk over the stack.
1385 for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
1386 StackFrame* frame = iter.frame();
1387
1388 // For JSEntryStub frames we update the JS_ENTRY handler.
1389 if (frame->is_entry() || frame->is_entry_construct()) {
1390 entry_handler = frame->top_handler()->next()->address();
1391 }
1392
1393 // For JavaScript frames we perform a lookup in the handler table.
1394 if (frame->is_java_script()) {
1395 JavaScriptFrame* js_frame = static_cast<JavaScriptFrame*>(frame);
1396 HandlerTable::CatchPrediction prediction = PredictException(js_frame);
1397 if (prediction == HandlerTable::DESUGARING) return CAUGHT_BY_DESUGARING;
1398 if (prediction == HandlerTable::ASYNC_AWAIT) return CAUGHT_BY_ASYNC_AWAIT;
1399 if (prediction == HandlerTable::PROMISE) return CAUGHT_BY_PROMISE;
1400 if (prediction != HandlerTable::UNCAUGHT) return CAUGHT_BY_JAVASCRIPT;
1401 }
1402
1403 // The exception has been externally caught if and only if there is an
1404 // external handler which is on top of the top-most JS_ENTRY handler.
1405 if (external_handler != nullptr && !try_catch_handler()->is_verbose_) {
1406 if (entry_handler == nullptr || entry_handler > external_handler) {
1407 return CAUGHT_BY_EXTERNAL;
1408 }
1409 }
1410 }
1411
1412 // Handler not found.
1413 return NOT_CAUGHT;
1414 }
1415
1416
1417 void Isolate::RemoveMaterializedObjectsOnUnwind(StackFrame* frame) {
1418 if (frame->is_optimized()) {
1419 bool removed = materialized_object_store_->Remove(frame->fp());
1420 USE(removed);
1421 // If there were any materialized objects, the code should be
1422 // marked for deopt.
1423 DCHECK(!removed || frame->LookupCode()->marked_for_deoptimization());
1424 }
1425 }
1426
1427
1428 Object* Isolate::ThrowIllegalOperation() {
1429 if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
1430 return Throw(heap()->illegal_access_string());
1431 }
1432
1433
1434 void Isolate::ScheduleThrow(Object* exception) {
1435 // When scheduling a throw we first throw the exception to get the
1436 // error reporting if it is uncaught before rescheduling it.
1437 Throw(exception);
1438 PropagatePendingExceptionToExternalTryCatch();
1439 if (has_pending_exception()) {
1440 thread_local_top()->scheduled_exception_ = pending_exception();
1441 thread_local_top()->external_caught_exception_ = false;
1442 clear_pending_exception();
1443 }
1444 }
1445
1446
1447 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
1448 DCHECK(handler == try_catch_handler());
1449 DCHECK(handler->HasCaught());
1450 DCHECK(handler->rethrow_);
1451 DCHECK(handler->capture_message_);
1452 Object* message = reinterpret_cast<Object*>(handler->message_obj_);
1453 DCHECK(message->IsJSMessageObject() || message->IsTheHole(this));
1454 thread_local_top()->pending_message_obj_ = message;
1455 }
1456
1457
1458 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
1459 DCHECK(has_scheduled_exception());
1460 if (scheduled_exception() == handler->exception_) {
1461 DCHECK(scheduled_exception() != heap()->termination_exception());
1462 clear_scheduled_exception();
1463 }
1464 if (thread_local_top_.pending_message_obj_ == handler->message_obj_) {
1465 clear_pending_message();
1466 }
1467 }
1468
1469
1470 Object* Isolate::PromoteScheduledException() {
1471 Object* thrown = scheduled_exception();
1472 clear_scheduled_exception();
1473 // Re-throw the exception to avoid getting repeated error reporting.
1474 return ReThrow(thrown);
1475 }
1476
1477
1478 void Isolate::PrintCurrentStackTrace(FILE* out) {
1479 for (StackTraceFrameIterator it(this); !it.done(); it.Advance()) {
1480 if (!it.is_javascript()) continue;
1481
1482 HandleScope scope(this);
1483 JavaScriptFrame* frame = it.javascript_frame();
1484
1485 Handle<Object> receiver(frame->receiver(), this);
1486 Handle<JSFunction> function(frame->function(), this);
1487 Handle<AbstractCode> code(AbstractCode::cast(frame->LookupCode()), this);
1488 const int offset =
1489 static_cast<int>(frame->pc() - code->instruction_start());
1490
1491 JSStackFrame site(this, receiver, function, code, offset);
1492 Handle<String> line = site.ToString().ToHandleChecked();
1493 if (line->length() > 0) {
1494 line->PrintOn(out);
1495 PrintF(out, "\n");
1496 }
1497 }
1498 }
1499
1500 bool Isolate::ComputeLocation(MessageLocation* target) {
1501 StackTraceFrameIterator it(this);
1502 if (it.done()) return false;
1503 StandardFrame* frame = it.frame();
1504 // Compute the location from the function and the relocation info of the
1505 // baseline code. For optimized code this will use the deoptimization
1506 // information to get canonical location information.
1507 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
1508 frame->Summarize(&frames);
1509 FrameSummary& summary = frames.last();
1510 int pos = summary.SourcePosition();
1511 Handle<SharedFunctionInfo> shared;
1512 Handle<Object> script = summary.script();
1513 if (!script->IsScript() ||
1514 (Script::cast(*script)->source()->IsUndefined(this))) {
1515 return false;
1516 }
1517
1518 // TODO(wasm): Remove this once trap-if is always on.
1519 // Background: Without trap-if, the information on the stack trace is
1520 // incomplete (see bug v8:5007).
1521 if (summary.IsWasmCompiled() && !FLAG_wasm_trap_if) return false;
1522
1523 if (summary.IsJavaScript()) {
1524 shared = handle(summary.AsJavaScript().function()->shared());
1525 }
1526 *target = MessageLocation(Handle<Script>::cast(script), pos, pos + 1, shared);
1527 return true;
1528 }
1529
1530 bool Isolate::ComputeLocationFromException(MessageLocation* target,
1531 Handle<Object> exception) {
1532 if (!exception->IsJSObject()) return false;
1533
1534 Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol();
1535 Handle<Object> start_pos = JSReceiver::GetDataProperty(
1536 Handle<JSObject>::cast(exception), start_pos_symbol);
1537 if (!start_pos->IsSmi()) return false;
1538 int start_pos_value = Handle<Smi>::cast(start_pos)->value();
1539
1540 Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol();
1541 Handle<Object> end_pos = JSReceiver::GetDataProperty(
1542 Handle<JSObject>::cast(exception), end_pos_symbol);
1543 if (!end_pos->IsSmi()) return false;
1544 int end_pos_value = Handle<Smi>::cast(end_pos)->value();
1545
1546 Handle<Name> script_symbol = factory()->error_script_symbol();
1547 Handle<Object> script = JSReceiver::GetDataProperty(
1548 Handle<JSObject>::cast(exception), script_symbol);
1549 if (!script->IsScript()) return false;
1550
1551 Handle<Script> cast_script(Script::cast(*script));
1552 *target = MessageLocation(cast_script, start_pos_value, end_pos_value);
1553 return true;
1554 }
1555
1556
1557 bool Isolate::ComputeLocationFromStackTrace(MessageLocation* target,
1558 Handle<Object> exception) {
1559 if (!exception->IsJSObject()) return false;
1560 Handle<Name> key = factory()->stack_trace_symbol();
1561 Handle<Object> property =
1562 JSReceiver::GetDataProperty(Handle<JSObject>::cast(exception), key);
1563 if (!property->IsJSArray()) return false;
1564 Handle<JSArray> simple_stack_trace = Handle<JSArray>::cast(property);
1565
1566 Handle<FrameArray> elements(FrameArray::cast(simple_stack_trace->elements()));
1567
1568 const int frame_count = elements->FrameCount();
1569 for (int i = 0; i < frame_count; i++) {
1570 if (elements->IsWasmFrame(i) || elements->IsAsmJsWasmFrame(i)) {
1571 Handle<WasmCompiledModule> compiled_module(
1572 WasmInstanceObject::cast(elements->WasmInstance(i))
1573 ->compiled_module());
1574 int func_index = elements->WasmFunctionIndex(i)->value();
1575 int code_offset = elements->Offset(i)->value();
1576 // TODO(wasm): Clean this up (bug 5007).
1577 int pos = code_offset < 0
1578 ? (-1 - code_offset)
1579 : elements->Code(i)->SourcePosition(code_offset);
1580 if (elements->IsAsmJsWasmFrame(i)) {
1581 // For asm.js frames, make an additional translation step to get the
1582 // asm.js source position.
1583 bool at_to_number_conversion =
1584 elements->Flags(i)->value() & FrameArray::kAsmJsAtNumberConversion;
1585 pos = WasmCompiledModule::GetAsmJsSourcePosition(
1586 compiled_module, func_index, pos, at_to_number_conversion);
1587 } else {
1588 // For pure wasm, make the function-local position module-relative by
1589 // adding the function offset.
1590 pos += compiled_module->GetFunctionOffset(func_index);
1591 }
1592 Handle<Script> script(compiled_module->script());
1593
1594 *target = MessageLocation(script, pos, pos + 1);
1595 return true;
1596 }
1597
1598 Handle<JSFunction> fun = handle(elements->Function(i), this);
1599 if (!fun->shared()->IsSubjectToDebugging()) continue;
1600
1601 Object* script = fun->shared()->script();
1602 if (script->IsScript() &&
1603 !(Script::cast(script)->source()->IsUndefined(this))) {
1604 AbstractCode* abstract_code = elements->Code(i);
1605 const int code_offset = elements->Offset(i)->value();
1606 const int pos = abstract_code->SourcePosition(code_offset);
1607
1608 Handle<Script> casted_script(Script::cast(script));
1609 *target = MessageLocation(casted_script, pos, pos + 1);
1610 return true;
1611 }
1612 }
1613 return false;
1614 }
1615
1616
1617 Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception,
1618 MessageLocation* location) {
1619 Handle<JSArray> stack_trace_object;
1620 if (capture_stack_trace_for_uncaught_exceptions_) {
1621 if (exception->IsJSError()) {
1622 // We fetch the stack trace that corresponds to this error object.
1623 // If the lookup fails, the exception is probably not a valid Error
1624 // object. In that case, we fall through and capture the stack trace
1625 // at this throw site.
1626 stack_trace_object =
1627 GetDetailedStackTrace(Handle<JSObject>::cast(exception));
1628 }
1629 if (stack_trace_object.is_null()) {
1630 // Not an error object, we capture stack and location at throw site.
1631 stack_trace_object = CaptureCurrentStackTrace(
1632 stack_trace_for_uncaught_exceptions_frame_limit_,
1633 stack_trace_for_uncaught_exceptions_options_);
1634 }
1635 }
1636 MessageLocation computed_location;
1637 if (location == NULL &&
1638 (ComputeLocationFromException(&computed_location, exception) ||
1639 ComputeLocationFromStackTrace(&computed_location, exception) ||
1640 ComputeLocation(&computed_location))) {
1641 location = &computed_location;
1642 }
1643
1644 return MessageHandler::MakeMessageObject(
1645 this, MessageTemplate::kUncaughtException, location, exception,
1646 stack_trace_object);
1647 }
1648
1649
1650 bool Isolate::IsJavaScriptHandlerOnTop(Object* exception) {
1651 DCHECK_NE(heap()->the_hole_value(), exception);
1652
1653 // For uncatchable exceptions, the JavaScript handler cannot be on top.
1654 if (!is_catchable_by_javascript(exception)) return false;
1655
1656 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1657 Address entry_handler = Isolate::handler(thread_local_top());
1658 if (entry_handler == nullptr) return false;
1659
1660 // Get the address of the external handler so we can compare the address to
1661 // determine which one is closer to the top of the stack.
1662 Address external_handler = thread_local_top()->try_catch_handler_address();
1663 if (external_handler == nullptr) return true;
1664
1665 // The exception has been externally caught if and only if there is an
1666 // external handler which is on top of the top-most JS_ENTRY handler.
1667 //
1668 // Note, that finally clauses would re-throw an exception unless it's aborted
1669 // by jumps in control flow (like return, break, etc.) and we'll have another
1670 // chance to set proper v8::TryCatch later.
1671 return (entry_handler < external_handler);
1672 }
1673
1674
1675 bool Isolate::IsExternalHandlerOnTop(Object* exception) {
1676 DCHECK_NE(heap()->the_hole_value(), exception);
1677
1678 // Get the address of the external handler so we can compare the address to
1679 // determine which one is closer to the top of the stack.
1680 Address external_handler = thread_local_top()->try_catch_handler_address();
1681 if (external_handler == nullptr) return false;
1682
1683 // For uncatchable exceptions, the external handler is always on top.
1684 if (!is_catchable_by_javascript(exception)) return true;
1685
1686 // Get the top-most JS_ENTRY handler, cannot be on top if it doesn't exist.
1687 Address entry_handler = Isolate::handler(thread_local_top());
1688 if (entry_handler == nullptr) return true;
1689
1690 // The exception has been externally caught if and only if there is an
1691 // external handler which is on top of the top-most JS_ENTRY handler.
1692 //
1693 // Note, that finally clauses would re-throw an exception unless it's aborted
1694 // by jumps in control flow (like return, break, etc.) and we'll have another
1695 // chance to set proper v8::TryCatch later.
1696 return (entry_handler > external_handler);
1697 }
1698
1699
1700 void Isolate::ReportPendingMessages() {
1701 DCHECK(AllowExceptions::IsAllowed(this));
1702
1703 Object* exception = pending_exception();
1704
1705 // Try to propagate the exception to an external v8::TryCatch handler. If
1706 // propagation was unsuccessful, then we will get another chance at reporting
1707 // the pending message if the exception is re-thrown.
1708 bool has_been_propagated = PropagatePendingExceptionToExternalTryCatch();
1709 if (!has_been_propagated) return;
1710
1711 // Clear the pending message object early to avoid endless recursion.
1712 Object* message_obj = thread_local_top_.pending_message_obj_;
1713 clear_pending_message();
1714
1715 // For uncatchable exceptions we do nothing. If needed, the exception and the
1716 // message have already been propagated to v8::TryCatch.
1717 if (!is_catchable_by_javascript(exception)) return;
1718
1719 // Determine whether the message needs to be reported to all message handlers
1720 // depending on whether and external v8::TryCatch or an internal JavaScript
1721 // handler is on top.
1722 bool should_report_exception;
1723 if (IsExternalHandlerOnTop(exception)) {
1724 // Only report the exception if the external handler is verbose.
1725 should_report_exception = try_catch_handler()->is_verbose_;
1726 } else {
1727 // Report the exception if it isn't caught by JavaScript code.
1728 should_report_exception = !IsJavaScriptHandlerOnTop(exception);
1729 }
1730
1731 // Actually report the pending message to all message handlers.
1732 if (!message_obj->IsTheHole(this) && should_report_exception) {
1733 HandleScope scope(this);
1734 Handle<JSMessageObject> message(JSMessageObject::cast(message_obj), this);
1735 Handle<JSValue> script_wrapper(JSValue::cast(message->script()), this);
1736 Handle<Script> script(Script::cast(script_wrapper->value()), this);
1737 int start_pos = message->start_position();
1738 int end_pos = message->end_position();
1739 MessageLocation location(script, start_pos, end_pos);
1740 MessageHandler::ReportMessage(this, &location, message);
1741 }
1742 }
1743
1744
1745 MessageLocation Isolate::GetMessageLocation() {
1746 DCHECK(has_pending_exception());
1747
1748 if (thread_local_top_.pending_exception_ != heap()->termination_exception() &&
1749 !thread_local_top_.pending_message_obj_->IsTheHole(this)) {
1750 Handle<JSMessageObject> message_obj(
1751 JSMessageObject::cast(thread_local_top_.pending_message_obj_), this);
1752 Handle<JSValue> script_wrapper(JSValue::cast(message_obj->script()), this);
1753 Handle<Script> script(Script::cast(script_wrapper->value()), this);
1754 int start_pos = message_obj->start_position();
1755 int end_pos = message_obj->end_position();
1756 return MessageLocation(script, start_pos, end_pos);
1757 }
1758
1759 return MessageLocation();
1760 }
1761
1762
1763 bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
1764 DCHECK(has_pending_exception());
1765 PropagatePendingExceptionToExternalTryCatch();
1766
1767 bool is_termination_exception =
1768 pending_exception() == heap_.termination_exception();
1769
1770 // Do not reschedule the exception if this is the bottom call.
1771 bool clear_exception = is_bottom_call;
1772
1773 if (is_termination_exception) {
1774 if (is_bottom_call) {
1775 thread_local_top()->external_caught_exception_ = false;
1776 clear_pending_exception();
1777 return false;
1778 }
1779 } else if (thread_local_top()->external_caught_exception_) {
1780 // If the exception is externally caught, clear it if there are no
1781 // JavaScript frames on the way to the C++ frame that has the
1782 // external handler.
1783 DCHECK(thread_local_top()->try_catch_handler_address() != NULL);
1784 Address external_handler_address =
1785 thread_local_top()->try_catch_handler_address();
1786 JavaScriptFrameIterator it(this);
1787 if (it.done() || (it.frame()->sp() > external_handler_address)) {
1788 clear_exception = true;
1789 }
1790 }
1791
1792 // Clear the exception if needed.
1793 if (clear_exception) {
1794 thread_local_top()->external_caught_exception_ = false;
1795 clear_pending_exception();
1796 return false;
1797 }
1798
1799 // Reschedule the exception.
1800 thread_local_top()->scheduled_exception_ = pending_exception();
1801 clear_pending_exception();
1802 return true;
1803 }
1804
1805 void Isolate::PushPromise(Handle<JSObject> promise) {
1806 ThreadLocalTop* tltop = thread_local_top();
1807 PromiseOnStack* prev = tltop->promise_on_stack_;
1808 Handle<JSObject> global_promise =
1809 Handle<JSObject>::cast(global_handles()->Create(*promise));
1810 tltop->promise_on_stack_ = new PromiseOnStack(global_promise, prev);
1811 }
1812
1813
1814 void Isolate::PopPromise() {
1815 ThreadLocalTop* tltop = thread_local_top();
1816 if (tltop->promise_on_stack_ == NULL) return;
1817 PromiseOnStack* prev = tltop->promise_on_stack_->prev();
1818 Handle<Object> global_promise = tltop->promise_on_stack_->promise();
1819 delete tltop->promise_on_stack_;
1820 tltop->promise_on_stack_ = prev;
1821 global_handles()->Destroy(global_promise.location());
1822 }
1823
1824 namespace {
1825 bool InternalPromiseHasUserDefinedRejectHandler(Isolate* isolate,
1826 Handle<JSPromise> promise);
1827
1828 bool PromiseHandlerCheck(Isolate* isolate, Handle<JSReceiver> handler,
1829 Handle<JSReceiver> deferred_promise) {
1830 // Recurse to the forwarding Promise, if any. This may be due to
1831 // - await reaction forwarding to the throwaway Promise, which has
1832 // a dependency edge to the outer Promise.
1833 // - PromiseIdResolveHandler forwarding to the output of .then
1834 // - Promise.all/Promise.race forwarding to a throwaway Promise, which
1835 // has a dependency edge to the generated outer Promise.
1836 // Otherwise, this is a real reject handler for the Promise.
1837 Handle<Symbol> key = isolate->factory()->promise_forwarding_handler_symbol();
1838 Handle<Object> forwarding_handler = JSReceiver::GetDataProperty(handler, key);
1839 if (forwarding_handler->IsUndefined(isolate)) {
1840 return true;
1841 }
1842
1843 if (!deferred_promise->IsJSPromise()) {
1844 return true;
1845 }
1846
1847 return InternalPromiseHasUserDefinedRejectHandler(
1848 isolate, Handle<JSPromise>::cast(deferred_promise));
1849 }
1850
1851 bool InternalPromiseHasUserDefinedRejectHandler(Isolate* isolate,
1852 Handle<JSPromise> promise) {
1853 // If this promise was marked as being handled by a catch block
1854 // in an async function, then it has a user-defined reject handler.
1855 if (promise->handled_hint()) return true;
1856
1857 // If this Promise is subsumed by another Promise (a Promise resolved
1858 // with another Promise, or an intermediate, hidden, throwaway Promise
1859 // within async/await), then recurse on the outer Promise.
1860 // In this case, the dependency is one possible way that the Promise
1861 // could be resolved, so it does not subsume the other following cases.
1862 Handle<Symbol> key = isolate->factory()->promise_handled_by_symbol();
1863 Handle<Object> outer_promise_obj = JSObject::GetDataProperty(promise, key);
1864 if (outer_promise_obj->IsJSPromise() &&
1865 InternalPromiseHasUserDefinedRejectHandler(
1866 isolate, Handle<JSPromise>::cast(outer_promise_obj))) {
1867 return true;
1868 }
1869
1870 Handle<Object> queue(promise->reject_reactions(), isolate);
1871 Handle<Object> deferred_promise(promise->deferred_promise(), isolate);
1872
1873 if (queue->IsUndefined(isolate)) {
1874 return false;
1875 }
1876
1877 if (queue->IsCallable()) {
1878 return PromiseHandlerCheck(isolate, Handle<JSReceiver>::cast(queue),
1879 Handle<JSReceiver>::cast(deferred_promise));
1880 }
1881
1882 if (queue->IsSymbol()) {
1883 return InternalPromiseHasUserDefinedRejectHandler(
1884 isolate, Handle<JSPromise>::cast(deferred_promise));
1885 }
1886
1887 Handle<FixedArray> queue_arr = Handle<FixedArray>::cast(queue);
1888 Handle<FixedArray> deferred_promise_arr =
1889 Handle<FixedArray>::cast(deferred_promise);
1890 for (int i = 0; i < deferred_promise_arr->length(); i++) {
1891 Handle<JSReceiver> queue_item(JSReceiver::cast(queue_arr->get(i)));
1892 Handle<JSReceiver> deferred_promise_item(
1893 JSReceiver::cast(deferred_promise_arr->get(i)));
1894 if (PromiseHandlerCheck(isolate, queue_item, deferred_promise_item)) {
1895 return true;
1896 }
1897 }
1898
1899 return false;
1900 }
1901
1902 } // namespace
1903
1904 bool Isolate::PromiseHasUserDefinedRejectHandler(Handle<Object> promise) {
1905 if (!promise->IsJSPromise()) return false;
1906 return InternalPromiseHasUserDefinedRejectHandler(
1907 this, Handle<JSPromise>::cast(promise));
1908 }
1909
1910 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
1911 Handle<Object> undefined = factory()->undefined_value();
1912 ThreadLocalTop* tltop = thread_local_top();
1913 if (tltop->promise_on_stack_ == NULL) return undefined;
1914 // Find the top-most try-catch or try-finally handler.
1915 CatchType prediction = PredictExceptionCatcher();
1916 if (prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) {
1917 return undefined;
1918 }
1919 Handle<Object> retval = undefined;
1920 PromiseOnStack* promise_on_stack = tltop->promise_on_stack_;
1921 for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) {
1922 switch (PredictException(it.frame())) {
1923 case HandlerTable::UNCAUGHT:
1924 continue;
1925 case HandlerTable::CAUGHT:
1926 case HandlerTable::DESUGARING:
1927 if (retval->IsJSPromise()) {
1928 // Caught the result of an inner async/await invocation.
1929 // Mark the inner promise as caught in the "synchronous case" so
1930 // that Debug::OnException will see. In the synchronous case,
1931 // namely in the code in an async function before the first
1932 // await, the function which has this exception event has not yet
1933 // returned, so the generated Promise has not yet been marked
1934 // by AsyncFunctionAwaitCaught with promiseHandledHintSymbol.
1935 Handle<JSPromise>::cast(retval)->set_handled_hint(true);
1936 }
1937 return retval;
1938 case HandlerTable::PROMISE:
1939 return promise_on_stack
1940 ? Handle<Object>::cast(promise_on_stack->promise())
1941 : undefined;
1942 case HandlerTable::ASYNC_AWAIT: {
1943 // If in the initial portion of async/await, continue the loop to pop up
1944 // successive async/await stack frames until an asynchronous one with
1945 // dependents is found, or a non-async stack frame is encountered, in
1946 // order to handle the synchronous async/await catch prediction case:
1947 // assume that async function calls are awaited.
1948 if (!promise_on_stack) return retval;
1949 retval = promise_on_stack->promise();
1950 if (PromiseHasUserDefinedRejectHandler(retval)) {
1951 return retval;
1952 }
1953 promise_on_stack = promise_on_stack->prev();
1954 continue;
1955 }
1956 }
1957 }
1958 return retval;
1959 }
1960
1961
1962 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
1963 bool capture,
1964 int frame_limit,
1965 StackTrace::StackTraceOptions options) {
1966 capture_stack_trace_for_uncaught_exceptions_ = capture;
1967 stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
1968 stack_trace_for_uncaught_exceptions_options_ = options;
1969 }
1970
1971
1972 void Isolate::SetAbortOnUncaughtExceptionCallback(
1973 v8::Isolate::AbortOnUncaughtExceptionCallback callback) {
1974 abort_on_uncaught_exception_callback_ = callback;
1975 }
1976
1977
1978 Handle<Context> Isolate::GetCallingNativeContext() {
1979 JavaScriptFrameIterator it(this);
1980 if (debug_->in_debug_scope()) {
1981 while (!it.done()) {
1982 JavaScriptFrame* frame = it.frame();
1983 Context* context = Context::cast(frame->context());
1984 if (context->native_context() == *debug_->debug_context()) {
1985 it.Advance();
1986 } else {
1987 break;
1988 }
1989 }
1990 }
1991 if (it.done()) return Handle<Context>::null();
1992 JavaScriptFrame* frame = it.frame();
1993 Context* context = Context::cast(frame->context());
1994 return Handle<Context>(context->native_context(), this);
1995 }
1996
1997
1998 char* Isolate::ArchiveThread(char* to) {
1999 MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
2000 sizeof(ThreadLocalTop));
2001 InitializeThreadLocal();
2002 clear_pending_exception();
2003 clear_pending_message();
2004 clear_scheduled_exception();
2005 return to + sizeof(ThreadLocalTop);
2006 }
2007
2008
2009 char* Isolate::RestoreThread(char* from) {
2010 MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
2011 sizeof(ThreadLocalTop));
2012 // This might be just paranoia, but it seems to be needed in case a
2013 // thread_local_top_ is restored on a separate OS thread.
2014 #ifdef USE_SIMULATOR
2015 thread_local_top()->simulator_ = Simulator::current(this);
2016 #endif
2017 DCHECK(context() == NULL || context()->IsContext());
2018 return from + sizeof(ThreadLocalTop);
2019 }
2020
2021
2022 Isolate::ThreadDataTable::ThreadDataTable()
2023 : list_(NULL) {
2024 }
2025
2026
2027 Isolate::ThreadDataTable::~ThreadDataTable() {
2028 // TODO(svenpanne) The assertion below would fire if an embedder does not
2029 // cleanly dispose all Isolates before disposing v8, so we are conservative
2030 // and leave it out for now.
2031 // DCHECK_NULL(list_);
2032 }
2033
2034 void Isolate::ReleaseManagedObjects() {
2035 Isolate::ManagedObjectFinalizer* current =
2036 managed_object_finalizers_list_.next_;
2037 while (current != nullptr) {
2038 Isolate::ManagedObjectFinalizer* next = current->next_;
2039 current->Dispose();
2040 delete current;
2041 current = next;
2042 }
2043 }
2044
2045 Isolate::ManagedObjectFinalizer* Isolate::RegisterForReleaseAtTeardown(
2046 void* value, Isolate::ManagedObjectFinalizer::Deleter deleter) {
2047 DCHECK_NOT_NULL(value);
2048 DCHECK_NOT_NULL(deleter);
2049
2050 Isolate::ManagedObjectFinalizer* ret = new Isolate::ManagedObjectFinalizer();
2051 ret->value_ = value;
2052 ret->deleter_ = deleter;
2053 // Insert at head. We keep the head alive for the lifetime of the Isolate
2054 // because otherwise we can't reset the head, should we delete it before
2055 // the isolate expires
2056 Isolate::ManagedObjectFinalizer* next = managed_object_finalizers_list_.next_;
2057 managed_object_finalizers_list_.next_ = ret;
2058 ret->prev_ = &managed_object_finalizers_list_;
2059 ret->next_ = next;
2060 if (next != nullptr) next->prev_ = ret;
2061 return ret;
2062 }
2063
2064 void Isolate::UnregisterFromReleaseAtTeardown(
2065 Isolate::ManagedObjectFinalizer** finalizer_ptr) {
2066 DCHECK_NOT_NULL(finalizer_ptr);
2067 Isolate::ManagedObjectFinalizer* finalizer = *finalizer_ptr;
2068 DCHECK_NOT_NULL(finalizer->prev_);
2069
2070 finalizer->prev_->next_ = finalizer->next_;
2071 if (finalizer->next_ != nullptr) finalizer->next_->prev_ = finalizer->prev_;
2072 delete finalizer;
2073 *finalizer_ptr = nullptr;
2074 }
2075
2076 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
2077 #if defined(USE_SIMULATOR)
2078 delete simulator_;
2079 #endif
2080 }
2081
2082
2083 Isolate::PerIsolateThreadData*
2084 Isolate::ThreadDataTable::Lookup(Isolate* isolate,
2085 ThreadId thread_id) {
2086 for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
2087 if (data->Matches(isolate, thread_id)) return data;
2088 }
2089 return NULL;
2090 }
2091
2092
2093 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
2094 if (list_ != NULL) list_->prev_ = data;
2095 data->next_ = list_;
2096 list_ = data;
2097 }
2098
2099
2100 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
2101 if (list_ == data) list_ = data->next_;
2102 if (data->next_ != NULL) data->next_->prev_ = data->prev_;
2103 if (data->prev_ != NULL) data->prev_->next_ = data->next_;
2104 delete data;
2105 }
2106
2107
2108 void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
2109 PerIsolateThreadData* data = list_;
2110 while (data != NULL) {
2111 PerIsolateThreadData* next = data->next_;
2112 if (data->isolate() == isolate) Remove(data);
2113 data = next;
2114 }
2115 }
2116
2117
2118 #ifdef DEBUG
2119 #define TRACE_ISOLATE(tag) \
2120 do { \
2121 if (FLAG_trace_isolates) { \
2122 PrintF("Isolate %p (id %d)" #tag "\n", \
2123 reinterpret_cast<void*>(this), id()); \
2124 } \
2125 } while (false)
2126 #else
2127 #define TRACE_ISOLATE(tag)
2128 #endif
2129
2130 class VerboseAccountingAllocator : public AccountingAllocator {
2131 public:
2132 VerboseAccountingAllocator(Heap* heap, size_t allocation_sample_bytes,
2133 size_t pool_sample_bytes)
2134 : heap_(heap),
2135 last_memory_usage_(0),
2136 last_pool_size_(0),
2137 nesting_deepth_(0),
2138 allocation_sample_bytes_(allocation_sample_bytes),
2139 pool_sample_bytes_(pool_sample_bytes) {}
2140
2141 v8::internal::Segment* GetSegment(size_t size) override {
2142 v8::internal::Segment* memory = AccountingAllocator::GetSegment(size);
2143 if (memory) {
2144 size_t malloced_current = GetCurrentMemoryUsage();
2145 size_t pooled_current = GetCurrentPoolSize();
2146
2147 if (last_memory_usage_.Value() + allocation_sample_bytes_ <
2148 malloced_current ||
2149 last_pool_size_.Value() + pool_sample_bytes_ < pooled_current) {
2150 PrintMemoryJSON(malloced_current, pooled_current);
2151 last_memory_usage_.SetValue(malloced_current);
2152 last_pool_size_.SetValue(pooled_current);
2153 }
2154 }
2155 return memory;
2156 }
2157
2158 void ReturnSegment(v8::internal::Segment* memory) override {
2159 AccountingAllocator::ReturnSegment(memory);
2160 size_t malloced_current = GetCurrentMemoryUsage();
2161 size_t pooled_current = GetCurrentPoolSize();
2162
2163 if (malloced_current + allocation_sample_bytes_ <
2164 last_memory_usage_.Value() ||
2165 pooled_current + pool_sample_bytes_ < last_pool_size_.Value()) {
2166 PrintMemoryJSON(malloced_current, pooled_current);
2167 last_memory_usage_.SetValue(malloced_current);
2168 last_pool_size_.SetValue(pooled_current);
2169 }
2170 }
2171
2172 void ZoneCreation(const Zone* zone) override {
2173 double time = heap_->isolate()->time_millis_since_init();
2174 PrintF(
2175 "{"
2176 "\"type\": \"zonecreation\", "
2177 "\"isolate\": \"%p\", "
2178 "\"time\": %f, "
2179 "\"ptr\": \"%p\", "
2180 "\"name\": \"%s\","
2181 "\"nesting\": %" PRIuS "}\n",
2182 reinterpret_cast<void*>(heap_->isolate()), time,
2183 reinterpret_cast<const void*>(zone), zone->name(),
2184 nesting_deepth_.Value());
2185 nesting_deepth_.Increment(1);
2186 }
2187
2188 void ZoneDestruction(const Zone* zone) override {
2189 nesting_deepth_.Decrement(1);
2190 double time = heap_->isolate()->time_millis_since_init();
2191 PrintF(
2192 "{"
2193 "\"type\": \"zonedestruction\", "
2194 "\"isolate\": \"%p\", "
2195 "\"time\": %f, "
2196 "\"ptr\": \"%p\", "
2197 "\"name\": \"%s\", "
2198 "\"size\": %" PRIuS
2199 ","
2200 "\"nesting\": %" PRIuS "}\n",
2201 reinterpret_cast<void*>(heap_->isolate()), time,
2202 reinterpret_cast<const void*>(zone), zone->name(),
2203 zone->allocation_size(), nesting_deepth_.Value());
2204 }
2205
2206 private:
2207 void PrintMemoryJSON(size_t malloced, size_t pooled) {
2208 // Note: Neither isolate, nor heap is locked, so be careful with accesses
2209 // as the allocator is potentially used on a concurrent thread.
2210 double time = heap_->isolate()->time_millis_since_init();
2211 PrintF(
2212 "{"
2213 "\"type\": \"zone\", "
2214 "\"isolate\": \"%p\", "
2215 "\"time\": %f, "
2216 "\"allocated\": %" PRIuS
2217 ","
2218 "\"pooled\": %" PRIuS "}\n",
2219 reinterpret_cast<void*>(heap_->isolate()), time, malloced, pooled);
2220 }
2221
2222 Heap* heap_;
2223 base::AtomicNumber<size_t> last_memory_usage_;
2224 base::AtomicNumber<size_t> last_pool_size_;
2225 base::AtomicNumber<size_t> nesting_deepth_;
2226 size_t allocation_sample_bytes_, pool_sample_bytes_;
2227 };
2228
2229 Isolate::Isolate(bool enable_serializer)
2230 : embedder_data_(),
2231 entry_stack_(NULL),
2232 stack_trace_nesting_level_(0),
2233 incomplete_message_(NULL),
2234 bootstrapper_(NULL),
2235 runtime_profiler_(NULL),
2236 compilation_cache_(NULL),
2237 counters_(NULL),
2238 logger_(NULL),
2239 stats_table_(NULL),
2240 load_stub_cache_(NULL),
2241 store_stub_cache_(NULL),
2242 code_aging_helper_(NULL),
2243 deoptimizer_data_(NULL),
2244 deoptimizer_lazy_throw_(false),
2245 materialized_object_store_(NULL),
2246 capture_stack_trace_for_uncaught_exceptions_(false),
2247 stack_trace_for_uncaught_exceptions_frame_limit_(0),
2248 stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
2249 context_slot_cache_(NULL),
2250 descriptor_lookup_cache_(NULL),
2251 handle_scope_implementer_(NULL),
2252 unicode_cache_(NULL),
2253 allocator_(FLAG_trace_gc_object_stats ? new VerboseAccountingAllocator(
2254 &heap_, 256 * KB, 128 * KB)
2255 : new AccountingAllocator()),
2256 inner_pointer_to_code_cache_(NULL),
2257 global_handles_(NULL),
2258 eternal_handles_(NULL),
2259 thread_manager_(NULL),
2260 regexp_stack_(NULL),
2261 date_cache_(NULL),
2262 call_descriptor_data_(NULL),
2263 // TODO(bmeurer) Initialized lazily because it depends on flags; can
2264 // be fixed once the default isolate cleanup is done.
2265 random_number_generator_(NULL),
2266 rail_mode_(PERFORMANCE_ANIMATION),
2267 promise_hook_or_debug_is_active_(false),
2268 promise_hook_(NULL),
2269 load_start_time_ms_(0),
2270 serializer_enabled_(enable_serializer),
2271 has_fatal_error_(false),
2272 initialized_from_snapshot_(false),
2273 is_tail_call_elimination_enabled_(true),
2274 is_isolate_in_background_(false),
2275 cpu_profiler_(NULL),
2276 heap_profiler_(NULL),
2277 code_event_dispatcher_(new CodeEventDispatcher()),
2278 function_entry_hook_(NULL),
2279 deferred_handles_head_(NULL),
2280 optimizing_compile_dispatcher_(NULL),
2281 stress_deopt_count_(0),
2282 next_optimization_id_(0),
2283 #if TRACE_MAPS
2284 next_unique_sfi_id_(0),
2285 #endif
2286 is_running_microtasks_(false),
2287 use_counter_callback_(NULL),
2288 basic_block_profiler_(NULL),
2289 cancelable_task_manager_(new CancelableTaskManager()),
2290 abort_on_uncaught_exception_callback_(NULL),
2291 total_regexp_code_generated_(0) {
2292 {
2293 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
2294 CHECK(thread_data_table_);
2295 }
2296 id_ = base::NoBarrier_AtomicIncrement(&isolate_counter_, 1);
2297 TRACE_ISOLATE(constructor);
2298
2299 memset(isolate_addresses_, 0,
2300 sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
2301
2302 heap_.isolate_ = this;
2303 stack_guard_.isolate_ = this;
2304
2305 // ThreadManager is initialized early to support locking an isolate
2306 // before it is entered.
2307 thread_manager_ = new ThreadManager();
2308 thread_manager_->isolate_ = this;
2309
2310 #ifdef DEBUG
2311 // heap_histograms_ initializes itself.
2312 memset(&js_spill_information_, 0, sizeof(js_spill_information_));
2313 #endif
2314
2315 handle_scope_data_.Initialize();
2316
2317 #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
2318 name##_ = (initial_value);
2319 ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
2320 #undef ISOLATE_INIT_EXECUTE
2321
2322 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
2323 memset(name##_, 0, sizeof(type) * length);
2324 ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
2325 #undef ISOLATE_INIT_ARRAY_EXECUTE
2326
2327 InitializeLoggingAndCounters();
2328 debug_ = new Debug(this);
2329
2330 init_memcopy_functions(this);
2331 }
2332
2333
2334 void Isolate::TearDown() {
2335 TRACE_ISOLATE(tear_down);
2336
2337 // Temporarily set this isolate as current so that various parts of
2338 // the isolate can access it in their destructors without having a
2339 // direct pointer. We don't use Enter/Exit here to avoid
2340 // initializing the thread data.
2341 PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
2342 DCHECK(base::NoBarrier_Load(&isolate_key_created_) == 1);
2343 Isolate* saved_isolate =
2344 reinterpret_cast<Isolate*>(base::Thread::GetThreadLocal(isolate_key_));
2345 SetIsolateThreadLocals(this, NULL);
2346
2347 Deinit();
2348
2349 {
2350 base::LockGuard<base::Mutex> lock_guard(thread_data_table_mutex_.Pointer());
2351 thread_data_table_->RemoveAllThreads(this);
2352 }
2353
2354 delete this;
2355
2356 // Restore the previous current isolate.
2357 SetIsolateThreadLocals(saved_isolate, saved_data);
2358 }
2359
2360
2361 void Isolate::GlobalTearDown() {
2362 delete thread_data_table_;
2363 thread_data_table_ = NULL;
2364 }
2365
2366
2367 void Isolate::ClearSerializerData() {
2368 delete external_reference_table_;
2369 external_reference_table_ = NULL;
2370 delete external_reference_map_;
2371 external_reference_map_ = NULL;
2372 }
2373
2374
2375 void Isolate::Deinit() {
2376 TRACE_ISOLATE(deinit);
2377
2378 debug()->Unload();
2379
2380 FreeThreadResources();
2381
2382 if (concurrent_recompilation_enabled()) {
2383 optimizing_compile_dispatcher_->Stop();
2384 delete optimizing_compile_dispatcher_;
2385 optimizing_compile_dispatcher_ = NULL;
2386 }
2387
2388 heap_.mark_compact_collector()->EnsureSweepingCompleted();
2389
2390 DumpAndResetCompilationStats();
2391
2392 if (FLAG_print_deopt_stress) {
2393 PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
2394 }
2395
2396 if (cpu_profiler_) {
2397 cpu_profiler_->DeleteAllProfiles();
2398 }
2399
2400 // We must stop the logger before we tear down other components.
2401 sampler::Sampler* sampler = logger_->sampler();
2402 if (sampler && sampler->IsActive()) sampler->Stop();
2403
2404 delete deoptimizer_data_;
2405 deoptimizer_data_ = NULL;
2406 builtins_.TearDown();
2407 bootstrapper_->TearDown();
2408
2409 if (runtime_profiler_ != NULL) {
2410 delete runtime_profiler_;
2411 runtime_profiler_ = NULL;
2412 }
2413
2414 delete basic_block_profiler_;
2415 basic_block_profiler_ = NULL;
2416
2417 delete heap_profiler_;
2418 heap_profiler_ = NULL;
2419
2420 compiler_dispatcher_->AbortAll(CompilerDispatcher::BlockingBehavior::kBlock);
2421 delete compiler_dispatcher_;
2422 compiler_dispatcher_ = nullptr;
2423
2424 cancelable_task_manager()->CancelAndWait();
2425
2426 heap_.TearDown();
2427 logger_->TearDown();
2428
2429 delete interpreter_;
2430 interpreter_ = NULL;
2431
2432 delete ast_string_constants_;
2433 ast_string_constants_ = nullptr;
2434
2435 delete cpu_profiler_;
2436 cpu_profiler_ = NULL;
2437
2438 code_event_dispatcher_.reset();
2439
2440 delete root_index_map_;
2441 root_index_map_ = NULL;
2442
2443 ClearSerializerData();
2444 ReleaseManagedObjects();
2445 }
2446
2447
2448 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
2449 PerIsolateThreadData* data) {
2450 base::Thread::SetThreadLocal(isolate_key_, isolate);
2451 base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
2452 }
2453
2454
2455 Isolate::~Isolate() {
2456 TRACE_ISOLATE(destructor);
2457
2458 // The entry stack must be empty when we get here.
2459 DCHECK(entry_stack_ == NULL || entry_stack_->previous_item == NULL);
2460
2461 delete entry_stack_;
2462 entry_stack_ = NULL;
2463
2464 delete unicode_cache_;
2465 unicode_cache_ = NULL;
2466
2467 delete date_cache_;
2468 date_cache_ = NULL;
2469
2470 delete[] call_descriptor_data_;
2471 call_descriptor_data_ = NULL;
2472
2473 delete access_compiler_data_;
2474 access_compiler_data_ = NULL;
2475
2476 delete regexp_stack_;
2477 regexp_stack_ = NULL;
2478
2479 delete descriptor_lookup_cache_;
2480 descriptor_lookup_cache_ = NULL;
2481 delete context_slot_cache_;
2482 context_slot_cache_ = NULL;
2483
2484 delete load_stub_cache_;
2485 load_stub_cache_ = NULL;
2486 delete store_stub_cache_;
2487 store_stub_cache_ = NULL;
2488 delete code_aging_helper_;
2489 code_aging_helper_ = NULL;
2490 delete stats_table_;
2491 stats_table_ = NULL;
2492
2493 delete materialized_object_store_;
2494 materialized_object_store_ = NULL;
2495
2496 delete logger_;
2497 logger_ = NULL;
2498
2499 delete counters_;
2500 counters_ = NULL;
2501
2502 delete handle_scope_implementer_;
2503 handle_scope_implementer_ = NULL;
2504
2505 delete code_tracer();
2506 set_code_tracer(NULL);
2507
2508 delete compilation_cache_;
2509 compilation_cache_ = NULL;
2510 delete bootstrapper_;
2511 bootstrapper_ = NULL;
2512 delete inner_pointer_to_code_cache_;
2513 inner_pointer_to_code_cache_ = NULL;
2514
2515 delete thread_manager_;
2516 thread_manager_ = NULL;
2517
2518 delete global_handles_;
2519 global_handles_ = NULL;
2520 delete eternal_handles_;
2521 eternal_handles_ = NULL;
2522
2523 delete string_stream_debug_object_cache_;
2524 string_stream_debug_object_cache_ = NULL;
2525
2526 delete random_number_generator_;
2527 random_number_generator_ = NULL;
2528
2529 delete debug_;
2530 debug_ = NULL;
2531
2532 delete cancelable_task_manager_;
2533 cancelable_task_manager_ = nullptr;
2534
2535 delete allocator_;
2536 allocator_ = nullptr;
2537
2538 #if USE_SIMULATOR
2539 Simulator::TearDown(simulator_i_cache_, simulator_redirection_);
2540 simulator_i_cache_ = nullptr;
2541 simulator_redirection_ = nullptr;
2542 #endif
2543 }
2544
2545
2546 void Isolate::InitializeThreadLocal() {
2547 thread_local_top_.isolate_ = this;
2548 thread_local_top_.Initialize();
2549 }
2550
2551
2552 bool Isolate::PropagatePendingExceptionToExternalTryCatch() {
2553 Object* exception = pending_exception();
2554
2555 if (IsJavaScriptHandlerOnTop(exception)) {
2556 thread_local_top_.external_caught_exception_ = false;
2557 return false;
2558 }
2559
2560 if (!IsExternalHandlerOnTop(exception)) {
2561 thread_local_top_.external_caught_exception_ = false;
2562 return true;
2563 }
2564
2565 thread_local_top_.external_caught_exception_ = true;
2566 if (!is_catchable_by_javascript(exception)) {
2567 try_catch_handler()->can_continue_ = false;
2568 try_catch_handler()->has_terminated_ = true;
2569 try_catch_handler()->exception_ = heap()->null_value();
2570 } else {
2571 v8::TryCatch* handler = try_catch_handler();
2572 DCHECK(thread_local_top_.pending_message_obj_->IsJSMessageObject() ||
2573 thread_local_top_.pending_message_obj_->IsTheHole(this));
2574 handler->can_continue_ = true;
2575 handler->has_terminated_ = false;
2576 handler->exception_ = pending_exception();
2577 // Propagate to the external try-catch only if we got an actual message.
2578 if (thread_local_top_.pending_message_obj_->IsTheHole(this)) return true;
2579
2580 handler->message_obj_ = thread_local_top_.pending_message_obj_;
2581 }
2582 return true;
2583 }
2584
2585
2586 void Isolate::InitializeLoggingAndCounters() {
2587 if (logger_ == NULL) {
2588 logger_ = new Logger(this);
2589 }
2590 if (counters_ == NULL) {
2591 counters_ = new Counters(this);
2592 }
2593 }
2594
2595
2596 bool Isolate::Init(Deserializer* des) {
2597 TRACE_ISOLATE(init);
2598
2599 stress_deopt_count_ = FLAG_deopt_every_n_times;
2600
2601 has_fatal_error_ = false;
2602
2603 if (function_entry_hook() != NULL) {
2604 // When function entry hooking is in effect, we have to create the code
2605 // stubs from scratch to get entry hooks, rather than loading the previously
2606 // generated stubs from disk.
2607 // If this assert fires, the initialization path has regressed.
2608 DCHECK(des == NULL);
2609 }
2610
2611 // The initialization process does not handle memory exhaustion.
2612 AlwaysAllocateScope always_allocate(this);
2613
2614 // Safe after setting Heap::isolate_, and initializing StackGuard
2615 heap_.SetStackLimits();
2616
2617 #define ASSIGN_ELEMENT(CamelName, hacker_name) \
2618 isolate_addresses_[Isolate::k##CamelName##Address] = \
2619 reinterpret_cast<Address>(hacker_name##_address());
2620 FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
2621 #undef ASSIGN_ELEMENT
2622
2623 compilation_cache_ = new CompilationCache(this);
2624 context_slot_cache_ = new ContextSlotCache();
2625 descriptor_lookup_cache_ = new DescriptorLookupCache();
2626 unicode_cache_ = new UnicodeCache();
2627 inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
2628 global_handles_ = new GlobalHandles(this);
2629 eternal_handles_ = new EternalHandles();
2630 bootstrapper_ = new Bootstrapper(this);
2631 handle_scope_implementer_ = new HandleScopeImplementer(this);
2632 load_stub_cache_ = new StubCache(this, Code::LOAD_IC);
2633 store_stub_cache_ = new StubCache(this, Code::STORE_IC);
2634 materialized_object_store_ = new MaterializedObjectStore(this);
2635 regexp_stack_ = new RegExpStack();
2636 regexp_stack_->isolate_ = this;
2637 date_cache_ = new DateCache();
2638 call_descriptor_data_ =
2639 new CallInterfaceDescriptorData[CallDescriptors::NUMBER_OF_DESCRIPTORS];
2640 access_compiler_data_ = new AccessCompilerData();
2641 cpu_profiler_ = new CpuProfiler(this);
2642 heap_profiler_ = new HeapProfiler(heap());
2643 interpreter_ = new interpreter::Interpreter(this);
2644 compiler_dispatcher_ =
2645 new CompilerDispatcher(this, V8::GetCurrentPlatform(), FLAG_stack_size);
2646
2647 // Enable logging before setting up the heap
2648 logger_->SetUp(this);
2649
2650 // Initialize other runtime facilities
2651 #if defined(USE_SIMULATOR)
2652 #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \
2653 V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_S390
2654 Simulator::Initialize(this);
2655 #endif
2656 #endif
2657
2658 code_aging_helper_ = new CodeAgingHelper(this);
2659
2660 { // NOLINT
2661 // Ensure that the thread has a valid stack guard. The v8::Locker object
2662 // will ensure this too, but we don't have to use lockers if we are only
2663 // using one thread.
2664 ExecutionAccess lock(this);
2665 stack_guard_.InitThread(lock);
2666 }
2667
2668 // SetUp the object heap.
2669 DCHECK(!heap_.HasBeenSetUp());
2670 if (!heap_.SetUp()) {
2671 V8::FatalProcessOutOfMemory("heap setup");
2672 return false;
2673 }
2674
2675 // Initialize the interface descriptors ahead of time.
2676 #define INTERFACE_DESCRIPTOR(V) \
2677 { V##Descriptor(this); }
2678 INTERFACE_DESCRIPTOR_LIST(INTERFACE_DESCRIPTOR)
2679 #undef INTERFACE_DESCRIPTOR
2680
2681 deoptimizer_data_ = new DeoptimizerData(heap()->memory_allocator());
2682
2683 const bool create_heap_objects = (des == NULL);
2684 if (create_heap_objects && !heap_.CreateHeapObjects()) {
2685 V8::FatalProcessOutOfMemory("heap object creation");
2686 return false;
2687 }
2688
2689 if (create_heap_objects) {
2690 // Terminate the partial snapshot cache so we can iterate.
2691 partial_snapshot_cache_.Add(heap_.undefined_value());
2692 }
2693
2694 InitializeThreadLocal();
2695
2696 bootstrapper_->Initialize(create_heap_objects);
2697 builtins_.SetUp(this, create_heap_objects);
2698 if (create_heap_objects) heap_.CreateFixedStubs();
2699
2700 if (FLAG_log_internal_timer_events) {
2701 set_event_logger(Logger::DefaultEventLoggerSentinel);
2702 }
2703
2704 if (FLAG_trace_hydrogen || FLAG_trace_hydrogen_stubs || FLAG_trace_turbo ||
2705 FLAG_trace_turbo_graph) {
2706 PrintF("Concurrent recompilation has been disabled for tracing.\n");
2707 } else if (OptimizingCompileDispatcher::Enabled()) {
2708 optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this);
2709 }
2710
2711 // Initialize runtime profiler before deserialization, because collections may
2712 // occur, clearing/updating ICs.
2713 runtime_profiler_ = new RuntimeProfiler(this);
2714
2715 // If we are deserializing, read the state into the now-empty heap.
2716 {
2717 AlwaysAllocateScope always_allocate(this);
2718
2719 if (!create_heap_objects) {
2720 des->Deserialize(this);
2721 }
2722 load_stub_cache_->Initialize();
2723 store_stub_cache_->Initialize();
2724 interpreter_->Initialize();
2725
2726 heap_.NotifyDeserializationComplete();
2727 }
2728
2729 // Finish initialization of ThreadLocal after deserialization is done.
2730 clear_pending_exception();
2731 clear_pending_message();
2732 clear_scheduled_exception();
2733
2734 // Deserializing may put strange things in the root array's copy of the
2735 // stack guard.
2736 heap_.SetStackLimits();
2737
2738 // Quiet the heap NaN if needed on target platform.
2739 if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
2740
2741 if (FLAG_trace_turbo) {
2742 // Create an empty file.
2743 std::ofstream(GetTurboCfgFileName().c_str(), std::ios_base::trunc);
2744 }
2745
2746 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
2747 Internals::kIsolateEmbedderDataOffset);
2748 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
2749 Internals::kIsolateRootsOffset);
2750 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_)),
2751 Internals::kExternalMemoryOffset);
2752 CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.external_memory_limit_)),
2753 Internals::kExternalMemoryLimitOffset);
2754
2755 time_millis_at_init_ = heap_.MonotonicallyIncreasingTimeInMs();
2756
2757 {
2758 HandleScope scope(this);
2759 ast_string_constants_ = new AstStringConstants(this, heap()->HashSeed());
2760 }
2761
2762 if (!create_heap_objects) {
2763 // Now that the heap is consistent, it's OK to generate the code for the
2764 // deopt entry table that might have been referred to by optimized code in
2765 // the snapshot.
2766 HandleScope scope(this);
2767 Deoptimizer::EnsureCodeForDeoptimizationEntry(
2768 this, Deoptimizer::LAZY,
2769 ExternalReferenceTable::kDeoptTableSerializeEntryCount - 1);
2770 }
2771
2772 if (!serializer_enabled()) {
2773 // Ensure that all stubs which need to be generated ahead of time, but
2774 // cannot be serialized into the snapshot have been generated.
2775 HandleScope scope(this);
2776 CodeStub::GenerateFPStubs(this);
2777 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
2778 StubFailureTrampolineStub::GenerateAheadOfTime(this);
2779 }
2780
2781 initialized_from_snapshot_ = (des != NULL);
2782
2783 if (!FLAG_inline_new) heap_.DisableInlineAllocation();
2784
2785 return true;
2786 }
2787
2788
2789 // Initialized lazily to allow early
2790 // v8::V8::SetAddHistogramSampleFunction calls.
2791 StatsTable* Isolate::stats_table() {
2792 if (stats_table_ == NULL) {
2793 stats_table_ = new StatsTable;
2794 }
2795 return stats_table_;
2796 }
2797
2798
2799 void Isolate::Enter() {
2800 Isolate* current_isolate = NULL;
2801 PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
2802 if (current_data != NULL) {
2803 current_isolate = current_data->isolate_;
2804 DCHECK(current_isolate != NULL);
2805 if (current_isolate == this) {
2806 DCHECK(Current() == this);
2807 DCHECK(entry_stack_ != NULL);
2808 DCHECK(entry_stack_->previous_thread_data == NULL ||
2809 entry_stack_->previous_thread_data->thread_id().Equals(
2810 ThreadId::Current()));
2811 // Same thread re-enters the isolate, no need to re-init anything.
2812 entry_stack_->entry_count++;
2813 return;
2814 }
2815 }
2816
2817 PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
2818 DCHECK(data != NULL);
2819 DCHECK(data->isolate_ == this);
2820
2821 EntryStackItem* item = new EntryStackItem(current_data,
2822 current_isolate,
2823 entry_stack_);
2824 entry_stack_ = item;
2825
2826 SetIsolateThreadLocals(this, data);
2827
2828 // In case it's the first time some thread enters the isolate.
2829 set_thread_id(data->thread_id());
2830 }
2831
2832
2833 void Isolate::Exit() {
2834 DCHECK(entry_stack_ != NULL);
2835 DCHECK(entry_stack_->previous_thread_data == NULL ||
2836 entry_stack_->previous_thread_data->thread_id().Equals(
2837 ThreadId::Current()));
2838
2839 if (--entry_stack_->entry_count > 0) return;
2840
2841 DCHECK(CurrentPerIsolateThreadData() != NULL);
2842 DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
2843
2844 // Pop the stack.
2845 EntryStackItem* item = entry_stack_;
2846 entry_stack_ = item->previous_item;
2847
2848 PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
2849 Isolate* previous_isolate = item->previous_isolate;
2850
2851 delete item;
2852
2853 // Reinit the current thread for the isolate it was running before this one.
2854 SetIsolateThreadLocals(previous_isolate, previous_thread_data);
2855 }
2856
2857
2858 void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
2859 deferred->next_ = deferred_handles_head_;
2860 if (deferred_handles_head_ != NULL) {
2861 deferred_handles_head_->previous_ = deferred;
2862 }
2863 deferred_handles_head_ = deferred;
2864 }
2865
2866
2867 void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
2868 #ifdef DEBUG
2869 // In debug mode assert that the linked list is well-formed.
2870 DeferredHandles* deferred_iterator = deferred;
2871 while (deferred_iterator->previous_ != NULL) {
2872 deferred_iterator = deferred_iterator->previous_;
2873 }
2874 DCHECK(deferred_handles_head_ == deferred_iterator);
2875 #endif
2876 if (deferred_handles_head_ == deferred) {
2877 deferred_handles_head_ = deferred_handles_head_->next_;
2878 }
2879 if (deferred->next_ != NULL) {
2880 deferred->next_->previous_ = deferred->previous_;
2881 }
2882 if (deferred->previous_ != NULL) {
2883 deferred->previous_->next_ = deferred->next_;
2884 }
2885 }
2886
2887
2888 void Isolate::DumpAndResetCompilationStats() {
2889 if (turbo_statistics() != nullptr) {
2890 DCHECK(FLAG_turbo_stats || FLAG_turbo_stats_nvp);
2891
2892 OFStream os(stdout);
2893 if (FLAG_turbo_stats) {
2894 AsPrintableStatistics ps = {*turbo_statistics(), false};
2895 os << ps << std::endl;
2896 }
2897 if (FLAG_turbo_stats_nvp) {
2898 AsPrintableStatistics ps = {*turbo_statistics(), true};
2899 os << ps << std::endl;
2900 }
2901 }
2902 if (hstatistics() != nullptr) hstatistics()->Print();
2903 delete turbo_statistics_;
2904 turbo_statistics_ = nullptr;
2905 delete hstatistics_;
2906 hstatistics_ = nullptr;
2907 if (V8_UNLIKELY(FLAG_runtime_stats ==
2908 v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) {
2909 OFStream os(stdout);
2910 counters()->runtime_call_stats()->Print(os);
2911 counters()->runtime_call_stats()->Reset();
2912 }
2913 }
2914
2915
2916 HStatistics* Isolate::GetHStatistics() {
2917 if (hstatistics() == NULL) set_hstatistics(new HStatistics());
2918 return hstatistics();
2919 }
2920
2921
2922 CompilationStatistics* Isolate::GetTurboStatistics() {
2923 if (turbo_statistics() == NULL)
2924 set_turbo_statistics(new CompilationStatistics());
2925 return turbo_statistics();
2926 }
2927
2928
2929 HTracer* Isolate::GetHTracer() {
2930 if (htracer() == NULL) set_htracer(new HTracer(id()));
2931 return htracer();
2932 }
2933
2934
2935 CodeTracer* Isolate::GetCodeTracer() {
2936 if (code_tracer() == NULL) set_code_tracer(new CodeTracer(id()));
2937 return code_tracer();
2938 }
2939
2940 Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
2941 if (IsFastElementsKind(kind)) {
2942 DisallowHeapAllocation no_gc;
2943 Object* const initial_js_array_map =
2944 context()->native_context()->get(Context::ArrayMapIndex(kind));
2945 if (!initial_js_array_map->IsUndefined(this)) {
2946 return Map::cast(initial_js_array_map);
2947 }
2948 }
2949 return nullptr;
2950 }
2951
2952 bool Isolate::use_crankshaft() {
2953 return FLAG_opt && FLAG_crankshaft && !serializer_enabled_ &&
2954 CpuFeatures::SupportsCrankshaft() && !IsCodeCoverageEnabled();
2955 }
2956
2957 bool Isolate::NeedsSourcePositionsForProfiling() const {
2958 return FLAG_trace_deopt || FLAG_trace_turbo || FLAG_trace_turbo_graph ||
2959 FLAG_turbo_profiling || FLAG_perf_prof || is_profiling() ||
2960 debug_->is_active() || logger_->is_logging();
2961 }
2962
2963 bool Isolate::IsCodeCoverageEnabled() {
2964 return heap()->code_coverage_list()->IsArrayList();
2965 }
2966
2967 void Isolate::SetCodeCoverageList(Object* value) {
2968 DCHECK(value->IsUndefined(this) || value->IsArrayList());
2969 heap()->set_code_coverage_list(value);
2970 }
2971
2972 bool Isolate::IsArrayOrObjectPrototype(Object* object) {
2973 Object* context = heap()->native_contexts_list();
2974 while (!context->IsUndefined(this)) {
2975 Context* current_context = Context::cast(context);
2976 if (current_context->initial_object_prototype() == object ||
2977 current_context->initial_array_prototype() == object) {
2978 return true;
2979 }
2980 context = current_context->next_context_link();
2981 }
2982 return false;
2983 }
2984
2985 void Isolate::ClearOSROptimizedCode() {
2986 DisallowHeapAllocation no_gc;
2987 Object* context = heap()->native_contexts_list();
2988 while (!context->IsUndefined(this)) {
2989 Context* current_context = Context::cast(context);
2990 current_context->ClearOptimizedCodeMap();
2991 context = current_context->next_context_link();
2992 }
2993 }
2994
2995 void Isolate::EvictOSROptimizedCode(Code* code, const char* reason) {
2996 DisallowHeapAllocation no_gc;
2997 Object* context = heap()->native_contexts_list();
2998 while (!context->IsUndefined(this)) {
2999 Context* current_context = Context::cast(context);
3000 current_context->EvictFromOptimizedCodeMap(code, reason);
3001 context = current_context->next_context_link();
3002 }
3003 }
3004
3005 bool Isolate::IsInAnyContext(Object* object, uint32_t index) {
3006 DisallowHeapAllocation no_gc;
3007 Object* context = heap()->native_contexts_list();
3008 while (!context->IsUndefined(this)) {
3009 Context* current_context = Context::cast(context);
3010 if (current_context->get(index) == object) {
3011 return true;
3012 }
3013 context = current_context->next_context_link();
3014 }
3015 return false;
3016 }
3017
3018 bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
3019 PropertyCell* no_elements_cell = heap()->array_protector();
3020 bool cell_reports_intact =
3021 no_elements_cell->value()->IsSmi() &&
3022 Smi::cast(no_elements_cell->value())->value() == kProtectorValid;
3023
3024 #ifdef DEBUG
3025 Map* root_array_map =
3026 get_initial_js_array_map(GetInitialFastElementsKind());
3027 Context* native_context = context()->native_context();
3028 JSObject* initial_array_proto = JSObject::cast(
3029 native_context->get(Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
3030 JSObject* initial_object_proto = JSObject::cast(
3031 native_context->get(Context::INITIAL_OBJECT_PROTOTYPE_INDEX));
3032
3033 if (root_array_map == NULL || initial_array_proto == initial_object_proto) {
3034 // We are in the bootstrapping process, and the entire check sequence
3035 // shouldn't be performed.
3036 return cell_reports_intact;
3037 }
3038
3039 // Check that the array prototype hasn't been altered WRT empty elements.
3040 if (root_array_map->prototype() != initial_array_proto) {
3041 DCHECK_EQ(false, cell_reports_intact);
3042 return cell_reports_intact;
3043 }
3044
3045 FixedArrayBase* elements = initial_array_proto->elements();
3046 if (elements != heap()->empty_fixed_array() &&
3047 elements != heap()->empty_slow_element_dictionary()) {
3048 DCHECK_EQ(false, cell_reports_intact);
3049 return cell_reports_intact;
3050 }
3051
3052 // Check that the object prototype hasn't been altered WRT empty elements.
3053 PrototypeIterator iter(this, initial_array_proto);
3054 if (iter.IsAtEnd() || iter.GetCurrent() != initial_object_proto) {
3055 DCHECK_EQ(false, cell_reports_intact);
3056 return cell_reports_intact;
3057 }
3058
3059 elements = initial_object_proto->elements();
3060 if (elements != heap()->empty_fixed_array() &&
3061 elements != heap()->empty_slow_element_dictionary()) {
3062 DCHECK_EQ(false, cell_reports_intact);
3063 return cell_reports_intact;
3064 }
3065
3066 iter.Advance();
3067 if (!iter.IsAtEnd()) {
3068 DCHECK_EQ(false, cell_reports_intact);
3069 return cell_reports_intact;
3070 }
3071
3072 #endif
3073
3074 return cell_reports_intact;
3075 }
3076
3077 bool Isolate::IsIsConcatSpreadableLookupChainIntact() {
3078 Cell* is_concat_spreadable_cell = heap()->is_concat_spreadable_protector();
3079 bool is_is_concat_spreadable_set =
3080 Smi::cast(is_concat_spreadable_cell->value())->value() ==
3081 kProtectorInvalid;
3082 #ifdef DEBUG
3083 Map* root_array_map = get_initial_js_array_map(GetInitialFastElementsKind());
3084 if (root_array_map == NULL) {
3085 // Ignore the value of is_concat_spreadable during bootstrap.
3086 return !is_is_concat_spreadable_set;
3087 }
3088 Handle<Object> array_prototype(array_function()->prototype(), this);
3089 Handle<Symbol> key = factory()->is_concat_spreadable_symbol();
3090 Handle<Object> value;
3091 LookupIterator it(array_prototype, key);
3092 if (it.IsFound() && !JSReceiver::GetDataProperty(&it)->IsUndefined(this)) {
3093 // TODO(cbruni): Currently we do not revert if we unset the
3094 // @@isConcatSpreadable property on Array.prototype or Object.prototype
3095 // hence the reverse implication doesn't hold.
3096 DCHECK(is_is_concat_spreadable_set);
3097 return false;
3098 }
3099 #endif // DEBUG
3100
3101 return !is_is_concat_spreadable_set;
3102 }
3103
3104 bool Isolate::IsIsConcatSpreadableLookupChainIntact(JSReceiver* receiver) {
3105 if (!IsIsConcatSpreadableLookupChainIntact()) return false;
3106 return !receiver->HasProxyInPrototype(this);
3107 }
3108
3109 void Isolate::UpdateArrayProtectorOnSetElement(Handle<JSObject> object) {
3110 DisallowHeapAllocation no_gc;
3111 if (!object->map()->is_prototype_map()) return;
3112 if (!IsFastArrayConstructorPrototypeChainIntact()) return;
3113 if (!IsArrayOrObjectPrototype(*object)) return;
3114 PropertyCell::SetValueWithInvalidation(
3115 factory()->array_protector(),
3116 handle(Smi::FromInt(kProtectorInvalid), this));
3117 }
3118
3119 void Isolate::InvalidateIsConcatSpreadableProtector() {
3120 DCHECK(factory()->is_concat_spreadable_protector()->value()->IsSmi());
3121 DCHECK(IsIsConcatSpreadableLookupChainIntact());
3122 factory()->is_concat_spreadable_protector()->set_value(
3123 Smi::FromInt(kProtectorInvalid));
3124 DCHECK(!IsIsConcatSpreadableLookupChainIntact());
3125 }
3126
3127 void Isolate::InvalidateArraySpeciesProtector() {
3128 DCHECK(factory()->species_protector()->value()->IsSmi());
3129 DCHECK(IsArraySpeciesLookupChainIntact());
3130 factory()->species_protector()->set_value(Smi::FromInt(kProtectorInvalid));
3131 DCHECK(!IsArraySpeciesLookupChainIntact());
3132 }
3133
3134 void Isolate::InvalidateStringLengthOverflowProtector() {
3135 DCHECK(factory()->string_length_protector()->value()->IsSmi());
3136 DCHECK(IsStringLengthOverflowIntact());
3137 PropertyCell::SetValueWithInvalidation(
3138 factory()->string_length_protector(),
3139 handle(Smi::FromInt(kProtectorInvalid), this));
3140 DCHECK(!IsStringLengthOverflowIntact());
3141 }
3142
3143 void Isolate::InvalidateArrayIteratorProtector() {
3144 DCHECK(factory()->array_iterator_protector()->value()->IsSmi());
3145 DCHECK(IsArrayIteratorLookupChainIntact());
3146 PropertyCell::SetValueWithInvalidation(
3147 factory()->array_iterator_protector(),
3148 handle(Smi::FromInt(kProtectorInvalid), this));
3149 DCHECK(!IsArrayIteratorLookupChainIntact());
3150 }
3151
3152 void Isolate::InvalidateArrayBufferNeuteringProtector() {
3153 DCHECK(factory()->array_buffer_neutering_protector()->value()->IsSmi());
3154 DCHECK(IsArrayBufferNeuteringIntact());
3155 PropertyCell::SetValueWithInvalidation(
3156 factory()->array_buffer_neutering_protector(),
3157 handle(Smi::FromInt(kProtectorInvalid), this));
3158 DCHECK(!IsArrayBufferNeuteringIntact());
3159 }
3160
3161 bool Isolate::IsAnyInitialArrayPrototype(Handle<JSArray> array) {
3162 DisallowHeapAllocation no_gc;
3163 return IsInAnyContext(*array, Context::INITIAL_ARRAY_PROTOTYPE_INDEX);
3164 }
3165
3166
3167 CallInterfaceDescriptorData* Isolate::call_descriptor_data(int index) {
3168 DCHECK(0 <= index && index < CallDescriptors::NUMBER_OF_DESCRIPTORS);
3169 return &call_descriptor_data_[index];
3170 }
3171
3172
3173 base::RandomNumberGenerator* Isolate::random_number_generator() {
3174 if (random_number_generator_ == NULL) {
3175 if (FLAG_random_seed != 0) {
3176 random_number_generator_ =
3177 new base::RandomNumberGenerator(FLAG_random_seed);
3178 } else {
3179 random_number_generator_ = new base::RandomNumberGenerator();
3180 }
3181 }
3182 return random_number_generator_;
3183 }
3184
3185 int Isolate::GenerateIdentityHash(uint32_t mask) {
3186 int hash;
3187 int attempts = 0;
3188 do {
3189 hash = random_number_generator()->NextInt() & mask;
3190 } while (hash == 0 && attempts++ < 30);
3191 return hash != 0 ? hash : 1;
3192 }
3193
3194 Code* Isolate::FindCodeObject(Address a) {
3195 return inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(a);
3196 }
3197
3198
3199 #ifdef DEBUG
3200 #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
3201 const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
3202 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
3203 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
3204 #undef ISOLATE_FIELD_OFFSET
3205 #endif
3206
3207 Handle<Symbol> Isolate::SymbolFor(Heap::RootListIndex dictionary_index,
3208 Handle<String> name, bool private_symbol) {
3209 Handle<String> key = factory()->InternalizeString(name);
3210 Handle<NameDictionary> dictionary =
3211 Handle<NameDictionary>::cast(heap()->root_handle(dictionary_index));
3212 int entry = dictionary->FindEntry(key);
3213 Handle<Symbol> symbol;
3214 if (entry == NameDictionary::kNotFound) {
3215 symbol =
3216 private_symbol ? factory()->NewPrivateSymbol() : factory()->NewSymbol();
3217 symbol->set_name(*key);
3218 dictionary = NameDictionary::Add(dictionary, key, symbol,
3219 PropertyDetails::Empty(), &entry);
3220 switch (dictionary_index) {
3221 case Heap::kPublicSymbolTableRootIndex:
3222 symbol->set_is_public(true);
3223 heap()->set_public_symbol_table(*dictionary);
3224 break;
3225 case Heap::kApiSymbolTableRootIndex:
3226 heap()->set_api_symbol_table(*dictionary);
3227 break;
3228 case Heap::kApiPrivateSymbolTableRootIndex:
3229 heap()->set_api_private_symbol_table(*dictionary);
3230 break;
3231 default:
3232 UNREACHABLE();
3233 }
3234 } else {
3235 symbol = Handle<Symbol>(Symbol::cast(dictionary->ValueAt(entry)));
3236 }
3237 return symbol;
3238 }
3239
3240 void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) {
3241 for (int i = 0; i < before_call_entered_callbacks_.length(); i++) {
3242 if (callback == before_call_entered_callbacks_.at(i)) return;
3243 }
3244 before_call_entered_callbacks_.Add(callback);
3245 }
3246
3247
3248 void Isolate::RemoveBeforeCallEnteredCallback(
3249 BeforeCallEnteredCallback callback) {
3250 for (int i = 0; i < before_call_entered_callbacks_.length(); i++) {
3251 if (callback == before_call_entered_callbacks_.at(i)) {
3252 before_call_entered_callbacks_.Remove(i);
3253 }
3254 }
3255 }
3256
3257
3258 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
3259 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3260 if (callback == call_completed_callbacks_.at(i)) return;
3261 }
3262 call_completed_callbacks_.Add(callback);
3263 }
3264
3265
3266 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
3267 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3268 if (callback == call_completed_callbacks_.at(i)) {
3269 call_completed_callbacks_.Remove(i);
3270 }
3271 }
3272 }
3273
3274
3275 void Isolate::FireCallCompletedCallback() {
3276 if (!handle_scope_implementer()->CallDepthIsZero()) return;
3277
3278 bool run_microtasks =
3279 pending_microtask_count() &&
3280 !handle_scope_implementer()->HasMicrotasksSuppressions() &&
3281 handle_scope_implementer()->microtasks_policy() ==
3282 v8::MicrotasksPolicy::kAuto;
3283
3284 if (run_microtasks) RunMicrotasks();
3285 // Prevent stepping from spilling into the next call made by the embedder.
3286 if (debug()->is_active()) debug()->ClearStepping();
3287
3288 if (call_completed_callbacks_.is_empty()) return;
3289 // Fire callbacks. Increase call depth to prevent recursive callbacks.
3290 v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this);
3291 v8::Isolate::SuppressMicrotaskExecutionScope suppress(isolate);
3292 for (int i = 0; i < call_completed_callbacks_.length(); i++) {
3293 call_completed_callbacks_.at(i)(isolate);
3294 }
3295 }
3296
3297 void Isolate::DebugStateUpdated() {
3298 promise_hook_or_debug_is_active_ = promise_hook_ || debug()->is_active();
3299 }
3300
3301 void Isolate::SetPromiseHook(PromiseHook hook) {
3302 promise_hook_ = hook;
3303 DebugStateUpdated();
3304 }
3305
3306 void Isolate::RunPromiseHook(PromiseHookType type, Handle<JSPromise> promise,
3307 Handle<Object> parent) {
3308 if (debug()->is_active()) debug()->RunPromiseHook(type, promise, parent);
3309 if (promise_hook_ == nullptr) return;
3310 promise_hook_(type, v8::Utils::PromiseToLocal(promise),
3311 v8::Utils::ToLocal(parent));
3312 }
3313
3314 void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
3315 promise_reject_callback_ = callback;
3316 }
3317
3318
3319 void Isolate::ReportPromiseReject(Handle<JSObject> promise,
3320 Handle<Object> value,
3321 v8::PromiseRejectEvent event) {
3322 if (promise_reject_callback_ == NULL) return;
3323 Handle<JSArray> stack_trace;
3324 if (event == v8::kPromiseRejectWithNoHandler && value->IsJSObject()) {
3325 stack_trace = GetDetailedStackTrace(Handle<JSObject>::cast(value));
3326 }
3327 promise_reject_callback_(v8::PromiseRejectMessage(
3328 v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value),
3329 v8::Utils::StackTraceToLocal(stack_trace)));
3330 }
3331
3332 void Isolate::PromiseReactionJob(Handle<PromiseReactionJobInfo> info,
3333 MaybeHandle<Object>* result,
3334 MaybeHandle<Object>* maybe_exception) {
3335 Handle<Object> value(info->value(), this);
3336 Handle<Object> tasks(info->tasks(), this);
3337 Handle<JSFunction> promise_handle_fn = promise_handle();
3338 Handle<Object> undefined = factory()->undefined_value();
3339 Handle<Object> deferred_promise(info->deferred_promise(), this);
3340
3341 if (deferred_promise->IsFixedArray()) {
3342 DCHECK(tasks->IsFixedArray());
3343 Handle<FixedArray> deferred_promise_arr =
3344 Handle<FixedArray>::cast(deferred_promise);
3345 Handle<FixedArray> deferred_on_resolve_arr(
3346 FixedArray::cast(info->deferred_on_resolve()), this);
3347 Handle<FixedArray> deferred_on_reject_arr(
3348 FixedArray::cast(info->deferred_on_reject()), this);
3349 Handle<FixedArray> tasks_arr = Handle<FixedArray>::cast(tasks);
3350 for (int i = 0; i < deferred_promise_arr->length(); i++) {
3351 Handle<Object> argv[] = {value, handle(tasks_arr->get(i), this),
3352 handle(deferred_promise_arr->get(i), this),
3353 handle(deferred_on_resolve_arr->get(i), this),
3354 handle(deferred_on_reject_arr->get(i), this)};
3355 *result = Execution::TryCall(
3356 this, promise_handle_fn, undefined, arraysize(argv), argv,
3357 Execution::MessageHandling::kReport, maybe_exception);
3358 // If execution is terminating, just bail out.
3359 if (result->is_null() && maybe_exception->is_null()) {
3360 return;
3361 }
3362 }
3363 } else {
3364 Handle<Object> argv[] = {value, tasks, deferred_promise,
3365 handle(info->deferred_on_resolve(), this),
3366 handle(info->deferred_on_reject(), this)};
3367 *result = Execution::TryCall(
3368 this, promise_handle_fn, undefined, arraysize(argv), argv,
3369 Execution::MessageHandling::kReport, maybe_exception);
3370 }
3371 }
3372
3373 void Isolate::PromiseResolveThenableJob(
3374 Handle<PromiseResolveThenableJobInfo> info, MaybeHandle<Object>* result,
3375 MaybeHandle<Object>* maybe_exception) {
3376 Handle<JSReceiver> thenable(info->thenable(), this);
3377 Handle<JSFunction> resolve(info->resolve(), this);
3378 Handle<JSFunction> reject(info->reject(), this);
3379 Handle<JSReceiver> then(info->then(), this);
3380 Handle<Object> argv[] = {resolve, reject};
3381 *result =
3382 Execution::TryCall(this, then, thenable, arraysize(argv), argv,
3383 Execution::MessageHandling::kReport, maybe_exception);
3384
3385 Handle<Object> reason;
3386 if (maybe_exception->ToHandle(&reason)) {
3387 DCHECK(result->is_null());
3388 Handle<Object> reason_arg[] = {reason};
3389 *result = Execution::TryCall(
3390 this, reject, factory()->undefined_value(), arraysize(reason_arg),
3391 reason_arg, Execution::MessageHandling::kReport, maybe_exception);
3392 }
3393 }
3394
3395 void Isolate::EnqueueMicrotask(Handle<Object> microtask) {
3396 DCHECK(microtask->IsJSFunction() || microtask->IsCallHandlerInfo() ||
3397 microtask->IsPromiseResolveThenableJobInfo() ||
3398 microtask->IsPromiseReactionJobInfo());
3399 Handle<FixedArray> queue(heap()->microtask_queue(), this);
3400 int num_tasks = pending_microtask_count();
3401 DCHECK(num_tasks <= queue->length());
3402 if (num_tasks == 0) {
3403 queue = factory()->NewFixedArray(8);
3404 heap()->set_microtask_queue(*queue);
3405 } else if (num_tasks == queue->length()) {
3406 queue = factory()->CopyFixedArrayAndGrow(queue, num_tasks);
3407 heap()->set_microtask_queue(*queue);
3408 }
3409 DCHECK(queue->get(num_tasks)->IsUndefined(this));
3410 queue->set(num_tasks, *microtask);
3411 set_pending_microtask_count(num_tasks + 1);
3412 }
3413
3414
3415 void Isolate::RunMicrotasks() {
3416 // Increase call depth to prevent recursive callbacks.
3417 v8::Isolate::SuppressMicrotaskExecutionScope suppress(
3418 reinterpret_cast<v8::Isolate*>(this));
3419 is_running_microtasks_ = true;
3420 RunMicrotasksInternal();
3421 is_running_microtasks_ = false;
3422 FireMicrotasksCompletedCallback();
3423 }
3424
3425
3426 void Isolate::RunMicrotasksInternal() {
3427 if (!pending_microtask_count()) return;
3428 TRACE_EVENT0("v8.execute", "RunMicrotasks");
3429 TRACE_EVENT_CALL_STATS_SCOPED(this, "v8", "V8.RunMicrotasks");
3430 while (pending_microtask_count() > 0) {
3431 HandleScope scope(this);
3432 int num_tasks = pending_microtask_count();
3433 Handle<FixedArray> queue(heap()->microtask_queue(), this);
3434 DCHECK(num_tasks <= queue->length());
3435 set_pending_microtask_count(0);
3436 heap()->set_microtask_queue(heap()->empty_fixed_array());
3437
3438 Isolate* isolate = this;
3439 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < num_tasks, i++, {
3440 Handle<Object> microtask(queue->get(i), this);
3441
3442 if (microtask->IsCallHandlerInfo()) {
3443 Handle<CallHandlerInfo> callback_info =
3444 Handle<CallHandlerInfo>::cast(microtask);
3445 v8::MicrotaskCallback callback =
3446 v8::ToCData<v8::MicrotaskCallback>(callback_info->callback());
3447 void* data = v8::ToCData<void*>(callback_info->data());
3448 callback(data);
3449 } else {
3450 SaveContext save(this);
3451 Context* context;
3452 if (microtask->IsJSFunction()) {
3453 context = Handle<JSFunction>::cast(microtask)->context();
3454 } else if (microtask->IsPromiseResolveThenableJobInfo()) {
3455 context =
3456 Handle<PromiseResolveThenableJobInfo>::cast(microtask)->context();
3457 } else {
3458 context = Handle<PromiseReactionJobInfo>::cast(microtask)->context();
3459 }
3460
3461 set_context(context->native_context());
3462 handle_scope_implementer_->EnterMicrotaskContext(
3463 Handle<Context>(context, this));
3464
3465 MaybeHandle<Object> result;
3466 MaybeHandle<Object> maybe_exception;
3467
3468 if (microtask->IsJSFunction()) {
3469 Handle<JSFunction> microtask_function =
3470 Handle<JSFunction>::cast(microtask);
3471 result = Execution::TryCall(
3472 this, microtask_function, factory()->undefined_value(), 0,
3473 nullptr, Execution::MessageHandling::kReport, &maybe_exception);
3474 } else if (microtask->IsPromiseResolveThenableJobInfo()) {
3475 PromiseResolveThenableJob(
3476 Handle<PromiseResolveThenableJobInfo>::cast(microtask), &result,
3477 &maybe_exception);
3478 } else {
3479 PromiseReactionJob(Handle<PromiseReactionJobInfo>::cast(microtask),
3480 &result, &maybe_exception);
3481 }
3482
3483 handle_scope_implementer_->LeaveMicrotaskContext();
3484
3485 // If execution is terminating, just bail out.
3486 if (result.is_null() && maybe_exception.is_null()) {
3487 // Clear out any remaining callbacks in the queue.
3488 heap()->set_microtask_queue(heap()->empty_fixed_array());
3489 set_pending_microtask_count(0);
3490 return;
3491 }
3492 }
3493 });
3494 }
3495 }
3496
3497
3498 void Isolate::AddMicrotasksCompletedCallback(
3499 MicrotasksCompletedCallback callback) {
3500 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3501 if (callback == microtasks_completed_callbacks_.at(i)) return;
3502 }
3503 microtasks_completed_callbacks_.Add(callback);
3504 }
3505
3506
3507 void Isolate::RemoveMicrotasksCompletedCallback(
3508 MicrotasksCompletedCallback callback) {
3509 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3510 if (callback == microtasks_completed_callbacks_.at(i)) {
3511 microtasks_completed_callbacks_.Remove(i);
3512 }
3513 }
3514 }
3515
3516
3517 void Isolate::FireMicrotasksCompletedCallback() {
3518 for (int i = 0; i < microtasks_completed_callbacks_.length(); i++) {
3519 microtasks_completed_callbacks_.at(i)(reinterpret_cast<v8::Isolate*>(this));
3520 }
3521 }
3522
3523
3524 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
3525 DCHECK(!use_counter_callback_);
3526 use_counter_callback_ = callback;
3527 }
3528
3529
3530 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
3531 // The counter callback may cause the embedder to call into V8, which is not
3532 // generally possible during GC.
3533 if (heap_.gc_state() == Heap::NOT_IN_GC) {
3534 if (use_counter_callback_) {
3535 HandleScope handle_scope(this);
3536 use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
3537 }
3538 } else {
3539 heap_.IncrementDeferredCount(feature);
3540 }
3541 }
3542
3543
3544 BasicBlockProfiler* Isolate::GetOrCreateBasicBlockProfiler() {
3545 if (basic_block_profiler_ == NULL) {
3546 basic_block_profiler_ = new BasicBlockProfiler();
3547 }
3548 return basic_block_profiler_;
3549 }
3550
3551
3552 std::string Isolate::GetTurboCfgFileName() {
3553 if (FLAG_trace_turbo_cfg_file == NULL) {
3554 std::ostringstream os;
3555 os << "turbo-" << base::OS::GetCurrentProcessId() << "-" << id() << ".cfg";
3556 return os.str();
3557 } else {
3558 return FLAG_trace_turbo_cfg_file;
3559 }
3560 }
3561
3562 void Isolate::SetTailCallEliminationEnabled(bool enabled) {
3563 if (is_tail_call_elimination_enabled_ == enabled) return;
3564 is_tail_call_elimination_enabled_ = enabled;
3565 // TODO(ishell): Introduce DependencyGroup::kTailCallChangedGroup to
3566 // deoptimize only those functions that are affected by the change of this
3567 // flag.
3568 internal::Deoptimizer::DeoptimizeAll(this);
3569 }
3570
3571 // Heap::detached_contexts tracks detached contexts as pairs
3572 // (number of GC since the context was detached, the context).
3573 void Isolate::AddDetachedContext(Handle<Context> context) {
3574 HandleScope scope(this);
3575 Handle<WeakCell> cell = factory()->NewWeakCell(context);
3576 Handle<FixedArray> detached_contexts = factory()->detached_contexts();
3577 int length = detached_contexts->length();
3578 detached_contexts = factory()->CopyFixedArrayAndGrow(detached_contexts, 2);
3579 detached_contexts->set(length, Smi::kZero);
3580 detached_contexts->set(length + 1, *cell);
3581 heap()->set_detached_contexts(*detached_contexts);
3582 }
3583
3584
3585 void Isolate::CheckDetachedContextsAfterGC() {
3586 HandleScope scope(this);
3587 Handle<FixedArray> detached_contexts = factory()->detached_contexts();
3588 int length = detached_contexts->length();
3589 if (length == 0) return;
3590 int new_length = 0;
3591 for (int i = 0; i < length; i += 2) {
3592 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
3593 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
3594 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
3595 if (!cell->cleared()) {
3596 detached_contexts->set(new_length, Smi::FromInt(mark_sweeps + 1));
3597 detached_contexts->set(new_length + 1, cell);
3598 new_length += 2;
3599 }
3600 counters()->detached_context_age_in_gc()->AddSample(mark_sweeps + 1);
3601 }
3602 if (FLAG_trace_detached_contexts) {
3603 PrintF("%d detached contexts are collected out of %d\n",
3604 length - new_length, length);
3605 for (int i = 0; i < new_length; i += 2) {
3606 int mark_sweeps = Smi::cast(detached_contexts->get(i))->value();
3607 DCHECK(detached_contexts->get(i + 1)->IsWeakCell());
3608 WeakCell* cell = WeakCell::cast(detached_contexts->get(i + 1));
3609 if (mark_sweeps > 3) {
3610 PrintF("detached context %p\n survived %d GCs (leak?)\n",
3611 static_cast<void*>(cell->value()), mark_sweeps);
3612 }
3613 }
3614 }
3615 if (new_length == 0) {
3616 heap()->set_detached_contexts(heap()->empty_fixed_array());
3617 } else if (new_length < length) {
3618 heap()->RightTrimFixedArray(*detached_contexts, length - new_length);
3619 }
3620 }
3621
3622 double Isolate::LoadStartTimeMs() {
3623 base::LockGuard<base::Mutex> guard(&rail_mutex_);
3624 return load_start_time_ms_;
3625 }
3626
3627 void Isolate::SetRAILMode(RAILMode rail_mode) {
3628 RAILMode old_rail_mode = rail_mode_.Value();
3629 if (old_rail_mode != PERFORMANCE_LOAD && rail_mode == PERFORMANCE_LOAD) {
3630 base::LockGuard<base::Mutex> guard(&rail_mutex_);
3631 load_start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs();
3632 }
3633 rail_mode_.SetValue(rail_mode);
3634 if (old_rail_mode == PERFORMANCE_LOAD && rail_mode != PERFORMANCE_LOAD) {
3635 heap()->incremental_marking()->incremental_marking_job()->ScheduleTask(
3636 heap());
3637 }
3638 if (FLAG_trace_rail) {
3639 PrintIsolate(this, "RAIL mode: %s\n", RAILModeName(rail_mode));
3640 }
3641 }
3642
3643 void Isolate::IsolateInBackgroundNotification() {
3644 is_isolate_in_background_ = true;
3645 heap()->ActivateMemoryReducerIfNeeded();
3646 }
3647
3648 void Isolate::IsolateInForegroundNotification() {
3649 is_isolate_in_background_ = false;
3650 }
3651
3652 void Isolate::PrintWithTimestamp(const char* format, ...) {
3653 base::OS::Print("[%d:%p] %8.0f ms: ", base::OS::GetCurrentProcessId(),
3654 static_cast<void*>(this), time_millis_since_init());
3655 va_list arguments;
3656 va_start(arguments, format);
3657 base::OS::VPrint(format, arguments);
3658 va_end(arguments);
3659 }
3660
3661 bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const {
3662 StackGuard* stack_guard = isolate_->stack_guard();
3663 #ifdef USE_SIMULATOR
3664 // The simulator uses a separate JS stack.
3665 Address jssp_address = Simulator::current(isolate_)->get_sp();
3666 uintptr_t jssp = reinterpret_cast<uintptr_t>(jssp_address);
3667 if (jssp - gap < stack_guard->real_jslimit()) return true;
3668 #endif // USE_SIMULATOR
3669 return GetCurrentStackPosition() - gap < stack_guard->real_climit();
3670 }
3671
3672 SaveContext::SaveContext(Isolate* isolate)
3673 : isolate_(isolate), prev_(isolate->save_context()) {
3674 if (isolate->context() != NULL) {
3675 context_ = Handle<Context>(isolate->context());
3676 }
3677 isolate->set_save_context(this);
3678
3679 c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top());
3680 }
3681
3682 SaveContext::~SaveContext() {
3683 isolate_->set_context(context_.is_null() ? NULL : *context_);
3684 isolate_->set_save_context(prev_);
3685 }
3686
3687 #ifdef DEBUG
3688 AssertNoContextChange::AssertNoContextChange(Isolate* isolate)
3689 : isolate_(isolate), context_(isolate->context(), isolate) {}
3690 #endif // DEBUG
3691
3692
3693 bool PostponeInterruptsScope::Intercept(StackGuard::InterruptFlag flag) {
3694 // First check whether the previous scope intercepts.
3695 if (prev_ && prev_->Intercept(flag)) return true;
3696 // Then check whether this scope intercepts.
3697 if ((flag & intercept_mask_)) {
3698 intercepted_flags_ |= flag;
3699 return true;
3700 }
3701 return false;
3702 }
3703
3704 } // namespace internal
3705 } // namespace v8
3706