1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetFrameLowering.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "function-lowering-info"
46
47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
48 /// PHI nodes or outside of the basic block that defines it, or used by a
49 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
51 if (I->use_empty()) return false;
52 if (isa<PHINode>(I)) return true;
53 const BasicBlock *BB = I->getParent();
54 for (const User *U : I->users())
55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
56 return true;
57
58 return false;
59 }
60
getPreferredExtendForValue(const Value * V)61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
62 // For the users of the source value being used for compare instruction, if
63 // the number of signed predicate is greater than unsigned predicate, we
64 // prefer to use SIGN_EXTEND.
65 //
66 // With this optimization, we would be able to reduce some redundant sign or
67 // zero extension instruction, and eventually more machine CSE opportunities
68 // can be exposed.
69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
70 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
71 for (const User *U : V->users()) {
72 if (const auto *CI = dyn_cast<CmpInst>(U)) {
73 NumOfSigned += CI->isSigned();
74 NumOfUnsigned += CI->isUnsigned();
75 }
76 }
77 if (NumOfSigned > NumOfUnsigned)
78 ExtendKind = ISD::SIGN_EXTEND;
79
80 return ExtendKind;
81 }
82
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)83 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
84 SelectionDAG *DAG) {
85 Fn = &fn;
86 MF = &mf;
87 TLI = MF->getSubtarget().getTargetLowering();
88 RegInfo = &MF->getRegInfo();
89 MachineModuleInfo &MMI = MF->getMMI();
90 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
91 unsigned StackAlign = TFI->getStackAlignment();
92
93 // Check whether the function can return without sret-demotion.
94 SmallVector<ISD::OutputArg, 4> Outs;
95 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96 mf.getDataLayout());
97 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
98 Fn->isVarArg(), Outs, Fn->getContext());
99
100 // If this personality uses funclets, we need to do a bit more work.
101 DenseMap<const AllocaInst *, int *> CatchObjects;
102 EHPersonality Personality = classifyEHPersonality(
103 Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104 if (isFuncletEHPersonality(Personality)) {
105 // Calculate state numbers if we haven't already.
106 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107 if (Personality == EHPersonality::MSVC_CXX)
108 calculateWinCXXEHStateNumbers(&fn, EHInfo);
109 else if (isAsynchronousEHPersonality(Personality))
110 calculateSEHStateNumbers(&fn, EHInfo);
111 else if (Personality == EHPersonality::CoreCLR)
112 calculateClrEHStateNumbers(&fn, EHInfo);
113
114 // Map all BB references in the WinEH data to MBBs.
115 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116 for (WinEHHandlerType &H : TBME.HandlerArray) {
117 if (const AllocaInst *AI = H.CatchObj.Alloca)
118 CatchObjects.insert({AI, &H.CatchObj.FrameIndex});
119 else
120 H.CatchObj.FrameIndex = INT_MAX;
121 }
122 }
123 }
124
125 // Initialize the mapping of values to registers. This is only set up for
126 // instruction values that are used outside of the block that defines
127 // them.
128 Function::const_iterator BB = Fn->begin(), EB = Fn->end();
129 for (; BB != EB; ++BB)
130 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
131 I != E; ++I) {
132 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
133 Type *Ty = AI->getAllocatedType();
134 unsigned Align =
135 std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
136 AI->getAlignment());
137
138 // Static allocas can be folded into the initial stack frame
139 // adjustment. For targets that don't realign the stack, don't
140 // do this if there is an extra alignment requirement.
141 if (AI->isStaticAlloca() &&
142 (TFI->isStackRealignable() || (Align <= StackAlign))) {
143 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
144 uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
145
146 TySize *= CUI->getZExtValue(); // Get total allocated size.
147 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
148 int FrameIndex = INT_MAX;
149 auto Iter = CatchObjects.find(AI);
150 if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
151 FrameIndex = MF->getFrameInfo()->CreateFixedObject(
152 TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
153 MF->getFrameInfo()->setObjectAlignment(FrameIndex, Align);
154 } else {
155 FrameIndex =
156 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
157 }
158
159 StaticAllocaMap[AI] = FrameIndex;
160 // Update the catch handler information.
161 if (Iter != CatchObjects.end())
162 *Iter->second = FrameIndex;
163 } else {
164 // FIXME: Overaligned static allocas should be grouped into
165 // a single dynamic allocation instead of using a separate
166 // stack allocation for each one.
167 if (Align <= StackAlign)
168 Align = 0;
169 // Inform the Frame Information that we have variable-sized objects.
170 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
171 }
172 }
173
174 // Look for inline asm that clobbers the SP register.
175 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
176 ImmutableCallSite CS(&*I);
177 if (isa<InlineAsm>(CS.getCalledValue())) {
178 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
179 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
180 std::vector<TargetLowering::AsmOperandInfo> Ops =
181 TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
182 for (size_t I = 0, E = Ops.size(); I != E; ++I) {
183 TargetLowering::AsmOperandInfo &Op = Ops[I];
184 if (Op.Type == InlineAsm::isClobber) {
185 // Clobbers don't have SDValue operands, hence SDValue().
186 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
187 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
188 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
189 Op.ConstraintVT);
190 if (PhysReg.first == SP)
191 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
192 }
193 }
194 }
195 }
196
197 // Look for calls to the @llvm.va_start intrinsic. We can omit some
198 // prologue boilerplate for variadic functions that don't examine their
199 // arguments.
200 if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
201 if (II->getIntrinsicID() == Intrinsic::vastart)
202 MF->getFrameInfo()->setHasVAStart(true);
203 }
204
205 // If we have a musttail call in a variadic function, we need to ensure we
206 // forward implicit register parameters.
207 if (const auto *CI = dyn_cast<CallInst>(I)) {
208 if (CI->isMustTailCall() && Fn->isVarArg())
209 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
210 }
211
212 // Mark values used outside their block as exported, by allocating
213 // a virtual register for them.
214 if (isUsedOutsideOfDefiningBlock(&*I))
215 if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(I)))
216 InitializeRegForValue(&*I);
217
218 // Collect llvm.dbg.declare information. This is done now instead of
219 // during the initial isel pass through the IR so that it is done
220 // in a predictable order.
221 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
222 assert(DI->getVariable() && "Missing variable");
223 assert(DI->getDebugLoc() && "Missing location");
224 if (MMI.hasDebugInfo()) {
225 // Don't handle byval struct arguments or VLAs, for example.
226 // Non-byval arguments are handled here (they refer to the stack
227 // temporary alloca at this point).
228 const Value *Address = DI->getAddress();
229 if (Address) {
230 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
231 Address = BCI->getOperand(0);
232 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
233 DenseMap<const AllocaInst *, int>::iterator SI =
234 StaticAllocaMap.find(AI);
235 if (SI != StaticAllocaMap.end()) { // Check for VLAs.
236 int FI = SI->second;
237 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
238 FI, DI->getDebugLoc());
239 }
240 }
241 }
242 }
243 }
244
245 // Decide the preferred extend type for a value.
246 PreferredExtendType[&*I] = getPreferredExtendForValue(&*I);
247 }
248
249 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
250 // also creates the initial PHI MachineInstrs, though none of the input
251 // operands are populated.
252 for (BB = Fn->begin(); BB != EB; ++BB) {
253 // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
254 // are really data, and no instructions can live here.
255 if (BB->isEHPad()) {
256 const Instruction *I = BB->getFirstNonPHI();
257 // If this is a non-landingpad EH pad, mark this function as using
258 // funclets.
259 // FIXME: SEH catchpads do not create funclets, so we could avoid setting
260 // this in such cases in order to improve frame layout.
261 if (!isa<LandingPadInst>(I)) {
262 MMI.setHasEHFunclets(true);
263 MF->getFrameInfo()->setHasOpaqueSPAdjustment(true);
264 }
265 if (isa<CatchSwitchInst>(I)) {
266 assert(&*BB->begin() == I &&
267 "WinEHPrepare failed to remove PHIs from imaginary BBs");
268 continue;
269 }
270 if (isa<FuncletPadInst>(I))
271 assert(&*BB->begin() == I && "WinEHPrepare failed to demote PHIs");
272 }
273
274 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&*BB);
275 MBBMap[&*BB] = MBB;
276 MF->push_back(MBB);
277
278 // Transfer the address-taken flag. This is necessary because there could
279 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
280 // the first one should be marked.
281 if (BB->hasAddressTaken())
282 MBB->setHasAddressTaken();
283
284 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
285 // appropriate.
286 for (BasicBlock::const_iterator I = BB->begin();
287 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
288 if (PN->use_empty()) continue;
289
290 // Skip empty types
291 if (PN->getType()->isEmptyTy())
292 continue;
293
294 DebugLoc DL = PN->getDebugLoc();
295 unsigned PHIReg = ValueMap[PN];
296 assert(PHIReg && "PHI node does not have an assigned virtual register!");
297
298 SmallVector<EVT, 4> ValueVTs;
299 ComputeValueVTs(*TLI, MF->getDataLayout(), PN->getType(), ValueVTs);
300 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
301 EVT VT = ValueVTs[vti];
302 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
303 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
304 for (unsigned i = 0; i != NumRegisters; ++i)
305 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
306 PHIReg += NumRegisters;
307 }
308 }
309 }
310
311 // Mark landing pad blocks.
312 SmallVector<const LandingPadInst *, 4> LPads;
313 for (BB = Fn->begin(); BB != EB; ++BB) {
314 const Instruction *FNP = BB->getFirstNonPHI();
315 if (BB->isEHPad() && MBBMap.count(&*BB))
316 MBBMap[&*BB]->setIsEHPad();
317 if (const auto *LPI = dyn_cast<LandingPadInst>(FNP))
318 LPads.push_back(LPI);
319 }
320
321 if (!isFuncletEHPersonality(Personality))
322 return;
323
324 WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
325
326 // Map all BB references in the WinEH data to MBBs.
327 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
328 for (WinEHHandlerType &H : TBME.HandlerArray) {
329 if (H.Handler)
330 H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
331 }
332 }
333 for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
334 if (UME.Cleanup)
335 UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
336 for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
337 const BasicBlock *BB = UME.Handler.get<const BasicBlock *>();
338 UME.Handler = MBBMap[BB];
339 }
340 for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
341 const BasicBlock *BB = CME.Handler.get<const BasicBlock *>();
342 CME.Handler = MBBMap[BB];
343 }
344 }
345
346 /// clear - Clear out all the function-specific state. This returns this
347 /// FunctionLoweringInfo to an empty state, ready to be used for a
348 /// different function.
clear()349 void FunctionLoweringInfo::clear() {
350 MBBMap.clear();
351 ValueMap.clear();
352 StaticAllocaMap.clear();
353 LiveOutRegInfo.clear();
354 VisitedBBs.clear();
355 ArgDbgValues.clear();
356 ByValArgFrameIndexMap.clear();
357 RegFixups.clear();
358 StatepointStackSlots.clear();
359 StatepointSpillMaps.clear();
360 PreferredExtendType.clear();
361 }
362
363 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)364 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
365 return RegInfo->createVirtualRegister(
366 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
367 }
368
369 /// CreateRegs - Allocate the appropriate number of virtual registers of
370 /// the correctly promoted or expanded types. Assign these registers
371 /// consecutive vreg numbers and return the first assigned number.
372 ///
373 /// In the case that the given value has struct or array type, this function
374 /// will assign registers for each member or element.
375 ///
CreateRegs(Type * Ty)376 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
377 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
378
379 SmallVector<EVT, 4> ValueVTs;
380 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
381
382 unsigned FirstReg = 0;
383 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
384 EVT ValueVT = ValueVTs[Value];
385 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
386
387 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
388 for (unsigned i = 0; i != NumRegs; ++i) {
389 unsigned R = CreateReg(RegisterVT);
390 if (!FirstReg) FirstReg = R;
391 }
392 }
393 return FirstReg;
394 }
395
396 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
397 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
398 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
399 /// the larger bit width by zero extension. The bit width must be no smaller
400 /// than the LiveOutInfo's existing bit width.
401 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)402 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
403 if (!LiveOutRegInfo.inBounds(Reg))
404 return nullptr;
405
406 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
407 if (!LOI->IsValid)
408 return nullptr;
409
410 if (BitWidth > LOI->KnownZero.getBitWidth()) {
411 LOI->NumSignBits = 1;
412 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
413 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
414 }
415
416 return LOI;
417 }
418
419 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
420 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)421 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
422 Type *Ty = PN->getType();
423 if (!Ty->isIntegerTy() || Ty->isVectorTy())
424 return;
425
426 SmallVector<EVT, 1> ValueVTs;
427 ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
428 assert(ValueVTs.size() == 1 &&
429 "PHIs with non-vector integer types should have a single VT.");
430 EVT IntVT = ValueVTs[0];
431
432 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
433 return;
434 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
435 unsigned BitWidth = IntVT.getSizeInBits();
436
437 unsigned DestReg = ValueMap[PN];
438 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
439 return;
440 LiveOutRegInfo.grow(DestReg);
441 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
442
443 Value *V = PN->getIncomingValue(0);
444 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
445 DestLOI.NumSignBits = 1;
446 APInt Zero(BitWidth, 0);
447 DestLOI.KnownZero = Zero;
448 DestLOI.KnownOne = Zero;
449 return;
450 }
451
452 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
453 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
454 DestLOI.NumSignBits = Val.getNumSignBits();
455 DestLOI.KnownZero = ~Val;
456 DestLOI.KnownOne = Val;
457 } else {
458 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
459 "CopyToReg node was created.");
460 unsigned SrcReg = ValueMap[V];
461 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
462 DestLOI.IsValid = false;
463 return;
464 }
465 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
466 if (!SrcLOI) {
467 DestLOI.IsValid = false;
468 return;
469 }
470 DestLOI = *SrcLOI;
471 }
472
473 assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
474 DestLOI.KnownOne.getBitWidth() == BitWidth &&
475 "Masks should have the same bit width as the type.");
476
477 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
478 Value *V = PN->getIncomingValue(i);
479 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
480 DestLOI.NumSignBits = 1;
481 APInt Zero(BitWidth, 0);
482 DestLOI.KnownZero = Zero;
483 DestLOI.KnownOne = Zero;
484 return;
485 }
486
487 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
488 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
489 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
490 DestLOI.KnownZero &= ~Val;
491 DestLOI.KnownOne &= Val;
492 continue;
493 }
494
495 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
496 "its CopyToReg node was created.");
497 unsigned SrcReg = ValueMap[V];
498 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
499 DestLOI.IsValid = false;
500 return;
501 }
502 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
503 if (!SrcLOI) {
504 DestLOI.IsValid = false;
505 return;
506 }
507 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
508 DestLOI.KnownZero &= SrcLOI->KnownZero;
509 DestLOI.KnownOne &= SrcLOI->KnownOne;
510 }
511 }
512
513 /// setArgumentFrameIndex - Record frame index for the byval
514 /// argument. This overrides previous frame index entry for this argument,
515 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)516 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
517 int FI) {
518 ByValArgFrameIndexMap[A] = FI;
519 }
520
521 /// getArgumentFrameIndex - Get frame index for the byval argument.
522 /// If the argument does not have any assigned frame index then 0 is
523 /// returned.
getArgumentFrameIndex(const Argument * A)524 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
525 DenseMap<const Argument *, int>::iterator I =
526 ByValArgFrameIndexMap.find(A);
527 if (I != ByValArgFrameIndexMap.end())
528 return I->second;
529 DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
530 return 0;
531 }
532
getCatchPadExceptionPointerVReg(const Value * CPI,const TargetRegisterClass * RC)533 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
534 const Value *CPI, const TargetRegisterClass *RC) {
535 MachineRegisterInfo &MRI = MF->getRegInfo();
536 auto I = CatchPadExceptionPointers.insert({CPI, 0});
537 unsigned &VReg = I.first->second;
538 if (I.second)
539 VReg = MRI.createVirtualRegister(RC);
540 assert(VReg && "null vreg in exception pointer table!");
541 return VReg;
542 }
543
544 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
545 /// being passed to this variadic function, and set the MachineModuleInfo's
546 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
547 /// reference to _fltused on Windows, which will link in MSVCRT's
548 /// floating-point support.
ComputeUsesVAFloatArgument(const CallInst & I,MachineModuleInfo * MMI)549 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
550 MachineModuleInfo *MMI)
551 {
552 FunctionType *FT = cast<FunctionType>(
553 I.getCalledValue()->getType()->getContainedType(0));
554 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
555 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
556 Type* T = I.getArgOperand(i)->getType();
557 for (auto i : post_order(T)) {
558 if (i->isFloatingPointTy()) {
559 MMI->setUsesVAFloatArgument(true);
560 return;
561 }
562 }
563 }
564 }
565 }
566
567 /// AddLandingPadInfo - Extract the exception handling information from the
568 /// landingpad instruction and add them to the specified machine module info.
AddLandingPadInfo(const LandingPadInst & I,MachineModuleInfo & MMI,MachineBasicBlock * MBB)569 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
570 MachineBasicBlock *MBB) {
571 if (const auto *PF = dyn_cast<Function>(
572 I.getParent()->getParent()->getPersonalityFn()->stripPointerCasts()))
573 MMI.addPersonality(PF);
574
575 if (I.isCleanup())
576 MMI.addCleanup(MBB);
577
578 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
579 // but we need to do it this way because of how the DWARF EH emitter
580 // processes the clauses.
581 for (unsigned i = I.getNumClauses(); i != 0; --i) {
582 Value *Val = I.getClause(i - 1);
583 if (I.isCatch(i - 1)) {
584 MMI.addCatchTypeInfo(MBB,
585 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
586 } else {
587 // Add filters in a list.
588 Constant *CVal = cast<Constant>(Val);
589 SmallVector<const GlobalValue*, 4> FilterList;
590 for (User::op_iterator
591 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
592 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
593
594 MMI.addFilterTypeInfo(MBB, FilterList);
595 }
596 }
597 }
598
findSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val) const599 unsigned FunctionLoweringInfo::findSwiftErrorVReg(const MachineBasicBlock *MBB,
600 const Value* Val) const {
601 // Find the index in SwiftErrorVals.
602 SwiftErrorValues::const_iterator I =
603 std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
604 assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
605 return SwiftErrorMap.lookup(MBB)[I - SwiftErrorVals.begin()];
606 }
607
setSwiftErrorVReg(const MachineBasicBlock * MBB,const Value * Val,unsigned VReg)608 void FunctionLoweringInfo::setSwiftErrorVReg(const MachineBasicBlock *MBB,
609 const Value* Val, unsigned VReg) {
610 // Find the index in SwiftErrorVals.
611 SwiftErrorValues::iterator I =
612 std::find(SwiftErrorVals.begin(), SwiftErrorVals.end(), Val);
613 assert(I != SwiftErrorVals.end() && "Can't find value in SwiftErrorVals");
614 SwiftErrorMap[MBB][I - SwiftErrorVals.begin()] = VReg;
615 }
616