1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenTypes(CodeGenModule & cgm)32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36 SkippedLayout = false;
37 }
38
~CodeGenTypes()39 CodeGenTypes::~CodeGenTypes() {
40 llvm::DeleteContainerSeconds(CGRecordLayouts);
41
42 for (llvm::FoldingSet<CGFunctionInfo>::iterator
43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44 delete &*I++;
45 }
46
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
48 llvm::StructType *Ty,
49 StringRef suffix) {
50 SmallString<256> TypeName;
51 llvm::raw_svector_ostream OS(TypeName);
52 OS << RD->getKindName() << '.';
53
54 // Name the codegen type after the typedef name
55 // if there is no tag type name available
56 if (RD->getIdentifier()) {
57 // FIXME: We should not have to check for a null decl context here.
58 // Right now we do it because the implicit Obj-C decls don't have one.
59 if (RD->getDeclContext())
60 RD->printQualifiedName(OS);
61 else
62 RD->printName(OS);
63 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
64 // FIXME: We should not have to check for a null decl context here.
65 // Right now we do it because the implicit Obj-C decls don't have one.
66 if (TDD->getDeclContext())
67 TDD->printQualifiedName(OS);
68 else
69 TDD->printName(OS);
70 } else
71 OS << "anon";
72
73 if (!suffix.empty())
74 OS << suffix;
75
76 Ty->setName(OS.str());
77 }
78
79 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
80 /// ConvertType in that it is used to convert to the memory representation for
81 /// a type. For example, the scalar representation for _Bool is i1, but the
82 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
84 llvm::Type *R = ConvertType(T);
85
86 // If this is a non-bool type, don't map it.
87 if (!R->isIntegerTy(1))
88 return R;
89
90 // Otherwise, return an integer of the target-specified size.
91 return llvm::IntegerType::get(getLLVMContext(),
92 (unsigned)Context.getTypeSize(T));
93 }
94
95
96 /// isRecordLayoutComplete - Return true if the specified type is already
97 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
99 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
100 RecordDeclTypes.find(Ty);
101 return I != RecordDeclTypes.end() && !I->second->isOpaque();
102 }
103
104 static bool
105 isSafeToConvert(QualType T, CodeGenTypes &CGT,
106 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
107
108
109 /// isSafeToConvert - Return true if it is safe to convert the specified record
110 /// decl to IR and lay it out, false if doing so would cause us to get into a
111 /// recursive compilation mess.
112 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
114 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
115 // If we have already checked this type (maybe the same type is used by-value
116 // multiple times in multiple structure fields, don't check again.
117 if (!AlreadyChecked.insert(RD).second)
118 return true;
119
120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121
122 // If this type is already laid out, converting it is a noop.
123 if (CGT.isRecordLayoutComplete(Key)) return true;
124
125 // If this type is currently being laid out, we can't recursively compile it.
126 if (CGT.isRecordBeingLaidOut(Key))
127 return false;
128
129 // If this type would require laying out bases that are currently being laid
130 // out, don't do it. This includes virtual base classes which get laid out
131 // when a class is translated, even though they aren't embedded by-value into
132 // the class.
133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134 for (const auto &I : CRD->bases())
135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136 CGT, AlreadyChecked))
137 return false;
138 }
139
140 // If this type would require laying out members that are currently being laid
141 // out, don't do it.
142 for (const auto *I : RD->fields())
143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144 return false;
145
146 // If there are no problems, lets do it.
147 return true;
148 }
149
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156 // Strip off atomic type sugar.
157 if (const auto *AT = T->getAs<AtomicType>())
158 T = AT->getValueType();
159
160 // If this is a record, check it.
161 if (const auto *RT = T->getAs<RecordType>())
162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163
164 // If this is an array, check the elements, which are embedded inline.
165 if (const auto *AT = CGT.getContext().getAsArrayType(T))
166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167
168 // Otherwise, there is no concern about transforming this. We only care about
169 // things that are contained by-value in a structure that can have another
170 // structure as a member.
171 return true;
172 }
173
174
175 /// isSafeToConvert - Return true if it is safe to convert the specified record
176 /// decl to IR and lay it out, false if doing so would cause us to get into a
177 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179 // If no structs are being laid out, we can certainly do this one.
180 if (CGT.noRecordsBeingLaidOut()) return true;
181
182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183 return isSafeToConvert(RD, CGT, AlreadyChecked);
184 }
185
186 /// isFuncParamTypeConvertible - Return true if the specified type in a
187 /// function parameter or result position can be converted to an IR type at this
188 /// point. This boils down to being whether it is complete, as well as whether
189 /// we've temporarily deferred expanding the type because we're in a recursive
190 /// context.
isFuncParamTypeConvertible(QualType Ty)191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
192 // Some ABIs cannot have their member pointers represented in IR unless
193 // certain circumstances have been reached.
194 if (const auto *MPT = Ty->getAs<MemberPointerType>())
195 return getCXXABI().isMemberPointerConvertible(MPT);
196
197 // If this isn't a tagged type, we can convert it!
198 const TagType *TT = Ty->getAs<TagType>();
199 if (!TT) return true;
200
201 // Incomplete types cannot be converted.
202 if (TT->isIncompleteType())
203 return false;
204
205 // If this is an enum, then it is always safe to convert.
206 const RecordType *RT = dyn_cast<RecordType>(TT);
207 if (!RT) return true;
208
209 // Otherwise, we have to be careful. If it is a struct that we're in the
210 // process of expanding, then we can't convert the function type. That's ok
211 // though because we must be in a pointer context under the struct, so we can
212 // just convert it to a dummy type.
213 //
214 // We decide this by checking whether ConvertRecordDeclType returns us an
215 // opaque type for a struct that we know is defined.
216 return isSafeToConvert(RT->getDecl(), *this);
217 }
218
219
220 /// Code to verify a given function type is complete, i.e. the return type
221 /// and all of the parameter types are complete. Also check to see if we are in
222 /// a RS_StructPointer context, and if so whether any struct types have been
223 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
224 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
226 if (!isFuncParamTypeConvertible(FT->getReturnType()))
227 return false;
228
229 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
230 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
231 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
232 return false;
233
234 return true;
235 }
236
237 /// UpdateCompletedType - When we find the full definition for a TagDecl,
238 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
240 // If this is an enum being completed, then we flush all non-struct types from
241 // the cache. This allows function types and other things that may be derived
242 // from the enum to be recomputed.
243 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
244 // Only flush the cache if we've actually already converted this type.
245 if (TypeCache.count(ED->getTypeForDecl())) {
246 // Okay, we formed some types based on this. We speculated that the enum
247 // would be lowered to i32, so we only need to flush the cache if this
248 // didn't happen.
249 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
250 TypeCache.clear();
251 }
252 // If necessary, provide the full definition of a type only used with a
253 // declaration so far.
254 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
255 DI->completeType(ED);
256 return;
257 }
258
259 // If we completed a RecordDecl that we previously used and converted to an
260 // anonymous type, then go ahead and complete it now.
261 const RecordDecl *RD = cast<RecordDecl>(TD);
262 if (RD->isDependentType()) return;
263
264 // Only complete it if we converted it already. If we haven't converted it
265 // yet, we'll just do it lazily.
266 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
267 ConvertRecordDeclType(RD);
268
269 // If necessary, provide the full definition of a type only used with a
270 // declaration so far.
271 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
272 DI->completeType(RD);
273 }
274
RefreshTypeCacheForClass(const CXXRecordDecl * RD)275 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
276 QualType T = Context.getRecordType(RD);
277 T = Context.getCanonicalType(T);
278
279 const Type *Ty = T.getTypePtr();
280 if (RecordsWithOpaqueMemberPointers.count(Ty)) {
281 TypeCache.clear();
282 RecordsWithOpaqueMemberPointers.clear();
283 }
284 }
285
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)286 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
287 const llvm::fltSemantics &format,
288 bool UseNativeHalf = false) {
289 if (&format == &llvm::APFloat::IEEEhalf) {
290 if (UseNativeHalf)
291 return llvm::Type::getHalfTy(VMContext);
292 else
293 return llvm::Type::getInt16Ty(VMContext);
294 }
295 if (&format == &llvm::APFloat::IEEEsingle)
296 return llvm::Type::getFloatTy(VMContext);
297 if (&format == &llvm::APFloat::IEEEdouble)
298 return llvm::Type::getDoubleTy(VMContext);
299 if (&format == &llvm::APFloat::IEEEquad)
300 return llvm::Type::getFP128Ty(VMContext);
301 if (&format == &llvm::APFloat::PPCDoubleDouble)
302 return llvm::Type::getPPC_FP128Ty(VMContext);
303 if (&format == &llvm::APFloat::x87DoubleExtended)
304 return llvm::Type::getX86_FP80Ty(VMContext);
305 llvm_unreachable("Unknown float format!");
306 }
307
ConvertFunctionType(QualType QFT,const FunctionDecl * FD)308 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT,
309 const FunctionDecl *FD) {
310 assert(QFT.isCanonical());
311 const Type *Ty = QFT.getTypePtr();
312 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
313 // First, check whether we can build the full function type. If the
314 // function type depends on an incomplete type (e.g. a struct or enum), we
315 // cannot lower the function type.
316 if (!isFuncTypeConvertible(FT)) {
317 // This function's type depends on an incomplete tag type.
318
319 // Force conversion of all the relevant record types, to make sure
320 // we re-convert the FunctionType when appropriate.
321 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
322 ConvertRecordDeclType(RT->getDecl());
323 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
324 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
325 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
326 ConvertRecordDeclType(RT->getDecl());
327
328 SkippedLayout = true;
329
330 // Return a placeholder type.
331 return llvm::StructType::get(getLLVMContext());
332 }
333
334 // While we're converting the parameter types for a function, we don't want
335 // to recursively convert any pointed-to structs. Converting directly-used
336 // structs is ok though.
337 if (!RecordsBeingLaidOut.insert(Ty).second) {
338 SkippedLayout = true;
339 return llvm::StructType::get(getLLVMContext());
340 }
341
342 // The function type can be built; call the appropriate routines to
343 // build it.
344 const CGFunctionInfo *FI;
345 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
346 FI = &arrangeFreeFunctionType(
347 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD);
348 } else {
349 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
350 FI = &arrangeFreeFunctionType(
351 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
352 }
353
354 llvm::Type *ResultType = nullptr;
355 // If there is something higher level prodding our CGFunctionInfo, then
356 // don't recurse into it again.
357 if (FunctionsBeingProcessed.count(FI)) {
358
359 ResultType = llvm::StructType::get(getLLVMContext());
360 SkippedLayout = true;
361 } else {
362
363 // Otherwise, we're good to go, go ahead and convert it.
364 ResultType = GetFunctionType(*FI);
365 }
366
367 RecordsBeingLaidOut.erase(Ty);
368
369 if (SkippedLayout)
370 TypeCache.clear();
371
372 if (RecordsBeingLaidOut.empty())
373 while (!DeferredRecords.empty())
374 ConvertRecordDeclType(DeferredRecords.pop_back_val());
375 return ResultType;
376 }
377
378 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)379 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
380 T = Context.getCanonicalType(T);
381
382 const Type *Ty = T.getTypePtr();
383
384 // RecordTypes are cached and processed specially.
385 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
386 return ConvertRecordDeclType(RT->getDecl());
387
388 // See if type is already cached.
389 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
390 // If type is found in map then use it. Otherwise, convert type T.
391 if (TCI != TypeCache.end())
392 return TCI->second;
393
394 // If we don't have it in the cache, convert it now.
395 llvm::Type *ResultType = nullptr;
396 switch (Ty->getTypeClass()) {
397 case Type::Record: // Handled above.
398 #define TYPE(Class, Base)
399 #define ABSTRACT_TYPE(Class, Base)
400 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
401 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
402 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
403 #include "clang/AST/TypeNodes.def"
404 llvm_unreachable("Non-canonical or dependent types aren't possible.");
405
406 case Type::Builtin: {
407 switch (cast<BuiltinType>(Ty)->getKind()) {
408 case BuiltinType::Void:
409 case BuiltinType::ObjCId:
410 case BuiltinType::ObjCClass:
411 case BuiltinType::ObjCSel:
412 // LLVM void type can only be used as the result of a function call. Just
413 // map to the same as char.
414 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
415 break;
416
417 case BuiltinType::Bool:
418 // Note that we always return bool as i1 for use as a scalar type.
419 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
420 break;
421
422 case BuiltinType::Char_S:
423 case BuiltinType::Char_U:
424 case BuiltinType::SChar:
425 case BuiltinType::UChar:
426 case BuiltinType::Short:
427 case BuiltinType::UShort:
428 case BuiltinType::Int:
429 case BuiltinType::UInt:
430 case BuiltinType::Long:
431 case BuiltinType::ULong:
432 case BuiltinType::LongLong:
433 case BuiltinType::ULongLong:
434 case BuiltinType::WChar_S:
435 case BuiltinType::WChar_U:
436 case BuiltinType::Char16:
437 case BuiltinType::Char32:
438 ResultType = llvm::IntegerType::get(getLLVMContext(),
439 static_cast<unsigned>(Context.getTypeSize(T)));
440 break;
441
442 case BuiltinType::Half:
443 // Half FP can either be storage-only (lowered to i16) or native.
444 ResultType =
445 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
446 Context.getLangOpts().NativeHalfType ||
447 Context.getLangOpts().HalfArgsAndReturns);
448 break;
449 case BuiltinType::Float:
450 case BuiltinType::Double:
451 case BuiltinType::LongDouble:
452 case BuiltinType::Float128:
453 ResultType = getTypeForFormat(getLLVMContext(),
454 Context.getFloatTypeSemantics(T),
455 /* UseNativeHalf = */ false);
456 break;
457
458 case BuiltinType::NullPtr:
459 // Model std::nullptr_t as i8*
460 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
461 break;
462
463 case BuiltinType::UInt128:
464 case BuiltinType::Int128:
465 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
466 break;
467
468 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
469 case BuiltinType::Id:
470 #include "clang/Basic/OpenCLImageTypes.def"
471 case BuiltinType::OCLSampler:
472 case BuiltinType::OCLEvent:
473 case BuiltinType::OCLClkEvent:
474 case BuiltinType::OCLQueue:
475 case BuiltinType::OCLNDRange:
476 case BuiltinType::OCLReserveID:
477 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
478 break;
479
480 case BuiltinType::Dependent:
481 #define BUILTIN_TYPE(Id, SingletonId)
482 #define PLACEHOLDER_TYPE(Id, SingletonId) \
483 case BuiltinType::Id:
484 #include "clang/AST/BuiltinTypes.def"
485 llvm_unreachable("Unexpected placeholder builtin type!");
486 }
487 break;
488 }
489 case Type::Auto:
490 llvm_unreachable("Unexpected undeduced auto type!");
491 case Type::Complex: {
492 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
493 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
494 break;
495 }
496 case Type::LValueReference:
497 case Type::RValueReference: {
498 const ReferenceType *RTy = cast<ReferenceType>(Ty);
499 QualType ETy = RTy->getPointeeType();
500 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
501 unsigned AS = Context.getTargetAddressSpace(ETy);
502 ResultType = llvm::PointerType::get(PointeeType, AS);
503 break;
504 }
505 case Type::Pointer: {
506 const PointerType *PTy = cast<PointerType>(Ty);
507 QualType ETy = PTy->getPointeeType();
508 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
509 if (PointeeType->isVoidTy())
510 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
511 unsigned AS = Context.getTargetAddressSpace(ETy);
512 ResultType = llvm::PointerType::get(PointeeType, AS);
513 break;
514 }
515
516 case Type::VariableArray: {
517 const VariableArrayType *A = cast<VariableArrayType>(Ty);
518 assert(A->getIndexTypeCVRQualifiers() == 0 &&
519 "FIXME: We only handle trivial array types so far!");
520 // VLAs resolve to the innermost element type; this matches
521 // the return of alloca, and there isn't any obviously better choice.
522 ResultType = ConvertTypeForMem(A->getElementType());
523 break;
524 }
525 case Type::IncompleteArray: {
526 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
527 assert(A->getIndexTypeCVRQualifiers() == 0 &&
528 "FIXME: We only handle trivial array types so far!");
529 // int X[] -> [0 x int], unless the element type is not sized. If it is
530 // unsized (e.g. an incomplete struct) just use [0 x i8].
531 ResultType = ConvertTypeForMem(A->getElementType());
532 if (!ResultType->isSized()) {
533 SkippedLayout = true;
534 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
535 }
536 ResultType = llvm::ArrayType::get(ResultType, 0);
537 break;
538 }
539 case Type::ConstantArray: {
540 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
541 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
542
543 // Lower arrays of undefined struct type to arrays of i8 just to have a
544 // concrete type.
545 if (!EltTy->isSized()) {
546 SkippedLayout = true;
547 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
548 }
549
550 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
551 break;
552 }
553 case Type::ExtVector:
554 case Type::Vector: {
555 const VectorType *VT = cast<VectorType>(Ty);
556 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
557 VT->getNumElements());
558 break;
559 }
560 case Type::FunctionNoProto:
561 case Type::FunctionProto:
562 ResultType = ConvertFunctionType(T);
563 break;
564 case Type::ObjCObject:
565 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
566 break;
567
568 case Type::ObjCInterface: {
569 // Objective-C interfaces are always opaque (outside of the
570 // runtime, which can do whatever it likes); we never refine
571 // these.
572 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
573 if (!T)
574 T = llvm::StructType::create(getLLVMContext());
575 ResultType = T;
576 break;
577 }
578
579 case Type::ObjCObjectPointer: {
580 // Protocol qualifications do not influence the LLVM type, we just return a
581 // pointer to the underlying interface type. We don't need to worry about
582 // recursive conversion.
583 llvm::Type *T =
584 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
585 ResultType = T->getPointerTo();
586 break;
587 }
588
589 case Type::Enum: {
590 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
591 if (ED->isCompleteDefinition() || ED->isFixed())
592 return ConvertType(ED->getIntegerType());
593 // Return a placeholder 'i32' type. This can be changed later when the
594 // type is defined (see UpdateCompletedType), but is likely to be the
595 // "right" answer.
596 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
597 break;
598 }
599
600 case Type::BlockPointer: {
601 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
602 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
603 unsigned AS = Context.getTargetAddressSpace(FTy);
604 ResultType = llvm::PointerType::get(PointeeType, AS);
605 break;
606 }
607
608 case Type::MemberPointer: {
609 auto *MPTy = cast<MemberPointerType>(Ty);
610 if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
611 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
612 ResultType = llvm::StructType::create(getLLVMContext());
613 } else {
614 ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
615 }
616 break;
617 }
618
619 case Type::Atomic: {
620 QualType valueType = cast<AtomicType>(Ty)->getValueType();
621 ResultType = ConvertTypeForMem(valueType);
622
623 // Pad out to the inflated size if necessary.
624 uint64_t valueSize = Context.getTypeSize(valueType);
625 uint64_t atomicSize = Context.getTypeSize(Ty);
626 if (valueSize != atomicSize) {
627 assert(valueSize < atomicSize);
628 llvm::Type *elts[] = {
629 ResultType,
630 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
631 };
632 ResultType = llvm::StructType::get(getLLVMContext(),
633 llvm::makeArrayRef(elts));
634 }
635 break;
636 }
637 case Type::Pipe: {
638 ResultType = CGM.getOpenCLRuntime().getPipeType();
639 break;
640 }
641 }
642
643 assert(ResultType && "Didn't convert a type?");
644
645 TypeCache[Ty] = ResultType;
646 return ResultType;
647 }
648
isPaddedAtomicType(QualType type)649 bool CodeGenModule::isPaddedAtomicType(QualType type) {
650 return isPaddedAtomicType(type->castAs<AtomicType>());
651 }
652
isPaddedAtomicType(const AtomicType * type)653 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
654 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
655 }
656
657 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)658 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
659 // TagDecl's are not necessarily unique, instead use the (clang)
660 // type connected to the decl.
661 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
662
663 llvm::StructType *&Entry = RecordDeclTypes[Key];
664
665 // If we don't have a StructType at all yet, create the forward declaration.
666 if (!Entry) {
667 Entry = llvm::StructType::create(getLLVMContext());
668 addRecordTypeName(RD, Entry, "");
669 }
670 llvm::StructType *Ty = Entry;
671
672 // If this is still a forward declaration, or the LLVM type is already
673 // complete, there's nothing more to do.
674 RD = RD->getDefinition();
675 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
676 return Ty;
677
678 // If converting this type would cause us to infinitely loop, don't do it!
679 if (!isSafeToConvert(RD, *this)) {
680 DeferredRecords.push_back(RD);
681 return Ty;
682 }
683
684 // Okay, this is a definition of a type. Compile the implementation now.
685 bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
686 (void)InsertResult;
687 assert(InsertResult && "Recursively compiling a struct?");
688
689 // Force conversion of non-virtual base classes recursively.
690 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
691 for (const auto &I : CRD->bases()) {
692 if (I.isVirtual()) continue;
693
694 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
695 }
696 }
697
698 // Layout fields.
699 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
700 CGRecordLayouts[Key] = Layout;
701
702 // We're done laying out this struct.
703 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
704 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
705
706 // If this struct blocked a FunctionType conversion, then recompute whatever
707 // was derived from that.
708 // FIXME: This is hugely overconservative.
709 if (SkippedLayout)
710 TypeCache.clear();
711
712 // If we're done converting the outer-most record, then convert any deferred
713 // structs as well.
714 if (RecordsBeingLaidOut.empty())
715 while (!DeferredRecords.empty())
716 ConvertRecordDeclType(DeferredRecords.pop_back_val());
717
718 return Ty;
719 }
720
721 /// getCGRecordLayout - Return record layout info for the given record decl.
722 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)723 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
724 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
725
726 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
727 if (!Layout) {
728 // Compute the type information.
729 ConvertRecordDeclType(RD);
730
731 // Now try again.
732 Layout = CGRecordLayouts.lookup(Key);
733 }
734
735 assert(Layout && "Unable to find record layout information for type");
736 return *Layout;
737 }
738
isZeroInitializable(QualType T)739 bool CodeGenTypes::isZeroInitializable(QualType T) {
740 // No need to check for member pointers when not compiling C++.
741 if (!Context.getLangOpts().CPlusPlus)
742 return true;
743
744 if (const auto *AT = Context.getAsArrayType(T)) {
745 if (isa<IncompleteArrayType>(AT))
746 return true;
747 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
748 if (Context.getConstantArrayElementCount(CAT) == 0)
749 return true;
750 T = Context.getBaseElementType(T);
751 }
752
753 // Records are non-zero-initializable if they contain any
754 // non-zero-initializable subobjects.
755 if (const RecordType *RT = T->getAs<RecordType>()) {
756 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
757 return isZeroInitializable(RD);
758 }
759
760 // We have to ask the ABI about member pointers.
761 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
762 return getCXXABI().isZeroInitializable(MPT);
763
764 // Everything else is okay.
765 return true;
766 }
767
isZeroInitializable(const RecordDecl * RD)768 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
769 return getCGRecordLayout(RD).isZeroInitializable();
770 }
771