1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18
19 #ifdef ART_ENABLE_CODEGEN_arm
20 #include "code_generator_arm_vixl.h"
21 #endif
22
23 #ifdef ART_ENABLE_CODEGEN_arm64
24 #include "code_generator_arm64.h"
25 #endif
26
27 #ifdef ART_ENABLE_CODEGEN_x86
28 #include "code_generator_x86.h"
29 #endif
30
31 #ifdef ART_ENABLE_CODEGEN_x86_64
32 #include "code_generator_x86_64.h"
33 #endif
34
35 #ifdef ART_ENABLE_CODEGEN_mips
36 #include "code_generator_mips.h"
37 #endif
38
39 #ifdef ART_ENABLE_CODEGEN_mips64
40 #include "code_generator_mips64.h"
41 #endif
42
43 #include "base/bit_utils.h"
44 #include "base/bit_utils_iterator.h"
45 #include "bytecode_utils.h"
46 #include "class_linker.h"
47 #include "compiled_method.h"
48 #include "dex/verified_method.h"
49 #include "driver/compiler_driver.h"
50 #include "graph_visualizer.h"
51 #include "intern_table.h"
52 #include "intrinsics.h"
53 #include "leb128.h"
54 #include "mirror/array-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/object_reference.h"
57 #include "mirror/reference.h"
58 #include "mirror/string.h"
59 #include "parallel_move_resolver.h"
60 #include "ssa_liveness_analysis.h"
61 #include "scoped_thread_state_change-inl.h"
62 #include "thread-current-inl.h"
63 #include "utils/assembler.h"
64
65 namespace art {
66
67 // If true, we record the static and direct invokes in the invoke infos.
68 static constexpr bool kEnableDexLayoutOptimizations = false;
69
70 // Return whether a location is consistent with a type.
CheckType(Primitive::Type type,Location location)71 static bool CheckType(Primitive::Type type, Location location) {
72 if (location.IsFpuRegister()
73 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
74 return (type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble);
75 } else if (location.IsRegister() ||
76 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
77 return Primitive::IsIntegralType(type) || (type == Primitive::kPrimNot);
78 } else if (location.IsRegisterPair()) {
79 return type == Primitive::kPrimLong;
80 } else if (location.IsFpuRegisterPair()) {
81 return type == Primitive::kPrimDouble;
82 } else if (location.IsStackSlot()) {
83 return (Primitive::IsIntegralType(type) && type != Primitive::kPrimLong)
84 || (type == Primitive::kPrimFloat)
85 || (type == Primitive::kPrimNot);
86 } else if (location.IsDoubleStackSlot()) {
87 return (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
88 } else if (location.IsConstant()) {
89 if (location.GetConstant()->IsIntConstant()) {
90 return Primitive::IsIntegralType(type) && (type != Primitive::kPrimLong);
91 } else if (location.GetConstant()->IsNullConstant()) {
92 return type == Primitive::kPrimNot;
93 } else if (location.GetConstant()->IsLongConstant()) {
94 return type == Primitive::kPrimLong;
95 } else if (location.GetConstant()->IsFloatConstant()) {
96 return type == Primitive::kPrimFloat;
97 } else {
98 return location.GetConstant()->IsDoubleConstant()
99 && (type == Primitive::kPrimDouble);
100 }
101 } else {
102 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
103 }
104 }
105
106 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)107 static bool CheckTypeConsistency(HInstruction* instruction) {
108 LocationSummary* locations = instruction->GetLocations();
109 if (locations == nullptr) {
110 return true;
111 }
112
113 if (locations->Out().IsUnallocated()
114 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
115 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
116 << instruction->GetType()
117 << " " << locations->InAt(0);
118 } else {
119 DCHECK(CheckType(instruction->GetType(), locations->Out()))
120 << instruction->GetType()
121 << " " << locations->Out();
122 }
123
124 HConstInputsRef inputs = instruction->GetInputs();
125 for (size_t i = 0; i < inputs.size(); ++i) {
126 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
127 << inputs[i]->GetType() << " " << locations->InAt(i);
128 }
129
130 HEnvironment* environment = instruction->GetEnvironment();
131 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
132 if (environment->GetInstructionAt(i) != nullptr) {
133 Primitive::Type type = environment->GetInstructionAt(i)->GetType();
134 DCHECK(CheckType(type, environment->GetLocationAt(i)))
135 << type << " " << environment->GetLocationAt(i);
136 } else {
137 DCHECK(environment->GetLocationAt(i).IsInvalid())
138 << environment->GetLocationAt(i);
139 }
140 }
141 return true;
142 }
143
GetCacheOffset(uint32_t index)144 size_t CodeGenerator::GetCacheOffset(uint32_t index) {
145 return sizeof(GcRoot<mirror::Object>) * index;
146 }
147
GetCachePointerOffset(uint32_t index)148 size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
149 PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
150 return static_cast<size_t>(pointer_size) * index;
151 }
152
GetArrayLengthOffset(HArrayLength * array_length)153 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
154 return array_length->IsStringLength()
155 ? mirror::String::CountOffset().Uint32Value()
156 : mirror::Array::LengthOffset().Uint32Value();
157 }
158
GetArrayDataOffset(HArrayGet * array_get)159 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
160 DCHECK(array_get->GetType() == Primitive::kPrimChar || !array_get->IsStringCharAt());
161 return array_get->IsStringCharAt()
162 ? mirror::String::ValueOffset().Uint32Value()
163 : mirror::Array::DataOffset(Primitive::ComponentSize(array_get->GetType())).Uint32Value();
164 }
165
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const166 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
167 DCHECK_EQ((*block_order_)[current_block_index_], current);
168 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
169 }
170
GetNextBlockToEmit() const171 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
172 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
173 HBasicBlock* block = (*block_order_)[i];
174 if (!block->IsSingleJump()) {
175 return block;
176 }
177 }
178 return nullptr;
179 }
180
FirstNonEmptyBlock(HBasicBlock * block) const181 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
182 while (block->IsSingleJump()) {
183 block = block->GetSuccessors()[0];
184 }
185 return block;
186 }
187
188 class DisassemblyScope {
189 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)190 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
191 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
192 if (codegen_.GetDisassemblyInformation() != nullptr) {
193 start_offset_ = codegen_.GetAssembler().CodeSize();
194 }
195 }
196
~DisassemblyScope()197 ~DisassemblyScope() {
198 // We avoid building this data when we know it will not be used.
199 if (codegen_.GetDisassemblyInformation() != nullptr) {
200 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
201 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
202 }
203 }
204
205 private:
206 const CodeGenerator& codegen_;
207 HInstruction* instruction_;
208 size_t start_offset_;
209 };
210
211
GenerateSlowPaths()212 void CodeGenerator::GenerateSlowPaths() {
213 size_t code_start = 0;
214 for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) {
215 SlowPathCode* slow_path = slow_path_unique_ptr.get();
216 current_slow_path_ = slow_path;
217 if (disasm_info_ != nullptr) {
218 code_start = GetAssembler()->CodeSize();
219 }
220 // Record the dex pc at start of slow path (required for java line number mapping).
221 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
222 slow_path->EmitNativeCode(this);
223 if (disasm_info_ != nullptr) {
224 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
225 }
226 }
227 current_slow_path_ = nullptr;
228 }
229
Compile(CodeAllocator * allocator)230 void CodeGenerator::Compile(CodeAllocator* allocator) {
231 // The register allocator already called `InitializeCodeGeneration`,
232 // where the frame size has been computed.
233 DCHECK(block_order_ != nullptr);
234 Initialize();
235
236 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
237 DCHECK_EQ(current_block_index_, 0u);
238
239 size_t frame_start = GetAssembler()->CodeSize();
240 GenerateFrameEntry();
241 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
242 if (disasm_info_ != nullptr) {
243 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
244 }
245
246 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
247 HBasicBlock* block = (*block_order_)[current_block_index_];
248 // Don't generate code for an empty block. Its predecessors will branch to its successor
249 // directly. Also, the label of that block will not be emitted, so this helps catch
250 // errors where we reference that label.
251 if (block->IsSingleJump()) continue;
252 Bind(block);
253 // This ensures that we have correct native line mapping for all native instructions.
254 // It is necessary to make stepping over a statement work. Otherwise, any initial
255 // instructions (e.g. moves) would be assumed to be the start of next statement.
256 MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
257 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
258 HInstruction* current = it.Current();
259 if (current->HasEnvironment()) {
260 // Create stackmap for HNativeDebugInfo or any instruction which calls native code.
261 // Note that we need correct mapping for the native PC of the call instruction,
262 // so the runtime's stackmap is not sufficient since it is at PC after the call.
263 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
264 }
265 DisassemblyScope disassembly_scope(current, *this);
266 DCHECK(CheckTypeConsistency(current));
267 current->Accept(instruction_visitor);
268 }
269 }
270
271 GenerateSlowPaths();
272
273 // Emit catch stack maps at the end of the stack map stream as expected by the
274 // runtime exception handler.
275 if (graph_->HasTryCatch()) {
276 RecordCatchBlockInfo();
277 }
278
279 // Finalize instructions in assember;
280 Finalize(allocator);
281 }
282
Finalize(CodeAllocator * allocator)283 void CodeGenerator::Finalize(CodeAllocator* allocator) {
284 size_t code_size = GetAssembler()->CodeSize();
285 uint8_t* buffer = allocator->Allocate(code_size);
286
287 MemoryRegion code(buffer, code_size);
288 GetAssembler()->FinalizeInstructions(code);
289 }
290
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)291 void CodeGenerator::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
292 // No linker patches by default.
293 }
294
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)295 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
296 size_t maximum_safepoint_spill_size,
297 size_t number_of_out_slots,
298 const ArenaVector<HBasicBlock*>& block_order) {
299 block_order_ = &block_order;
300 DCHECK(!block_order.empty());
301 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
302 ComputeSpillMask();
303 first_register_slot_in_slow_path_ = RoundUp(
304 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
305
306 if (number_of_spill_slots == 0
307 && !HasAllocatedCalleeSaveRegisters()
308 && IsLeafMethod()
309 && !RequiresCurrentMethod()) {
310 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
311 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
312 } else {
313 SetFrameSize(RoundUp(
314 first_register_slot_in_slow_path_
315 + maximum_safepoint_spill_size
316 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
317 + FrameEntrySpillSize(),
318 kStackAlignment));
319 }
320 }
321
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)322 void CodeGenerator::CreateCommonInvokeLocationSummary(
323 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
324 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
325 LocationSummary* locations = new (allocator) LocationSummary(invoke,
326 LocationSummary::kCallOnMainOnly);
327
328 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
329 HInstruction* input = invoke->InputAt(i);
330 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
331 }
332
333 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
334
335 if (invoke->IsInvokeStaticOrDirect()) {
336 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
337 switch (call->GetMethodLoadKind()) {
338 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
339 locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
340 break;
341 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
342 locations->AddTemp(visitor->GetMethodLocation());
343 locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
344 break;
345 default:
346 locations->AddTemp(visitor->GetMethodLocation());
347 break;
348 }
349 } else {
350 locations->AddTemp(visitor->GetMethodLocation());
351 }
352 }
353
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)354 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
355 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
356 MoveConstant(temp, invoke->GetDexMethodIndex());
357
358 // The access check is unnecessary but we do not want to introduce
359 // extra entrypoints for the codegens that do not support some
360 // invoke type and fall back to the runtime call.
361
362 // Initialize to anything to silent compiler warnings.
363 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
364 switch (invoke->GetInvokeType()) {
365 case kStatic:
366 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
367 break;
368 case kDirect:
369 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
370 break;
371 case kSuper:
372 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
373 break;
374 case kVirtual:
375 case kInterface:
376 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
377 UNREACHABLE();
378 }
379
380 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
381 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)382 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
383 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
384
385 // Initialize to anything to silent compiler warnings.
386 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
387 switch (invoke->GetInvokeType()) {
388 case kStatic:
389 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
390 break;
391 case kDirect:
392 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
393 break;
394 case kVirtual:
395 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
396 break;
397 case kSuper:
398 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
399 break;
400 case kInterface:
401 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
402 break;
403 }
404 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
405 }
406
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke)407 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
408 MoveConstant(invoke->GetLocations()->GetTemp(0), static_cast<int32_t>(invoke->GetType()));
409 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
410 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
411 }
412
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,Primitive::Type field_type,const FieldAccessCallingConvention & calling_convention)413 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
414 HInstruction* field_access,
415 Primitive::Type field_type,
416 const FieldAccessCallingConvention& calling_convention) {
417 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
418 || field_access->IsUnresolvedInstanceFieldSet();
419 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
420 || field_access->IsUnresolvedStaticFieldGet();
421
422 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetArena();
423 LocationSummary* locations =
424 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
425
426 locations->AddTemp(calling_convention.GetFieldIndexLocation());
427
428 if (is_instance) {
429 // Add the `this` object for instance field accesses.
430 locations->SetInAt(0, calling_convention.GetObjectLocation());
431 }
432
433 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
434 // regardless of the the type. Because of that we forced to special case
435 // the access to floating point values.
436 if (is_get) {
437 if (Primitive::IsFloatingPointType(field_type)) {
438 // The return value will be stored in regular registers while register
439 // allocator expects it in a floating point register.
440 // Note We don't need to request additional temps because the return
441 // register(s) are already blocked due the call and they may overlap with
442 // the input or field index.
443 // The transfer between the two will be done at codegen level.
444 locations->SetOut(calling_convention.GetFpuLocation(field_type));
445 } else {
446 locations->SetOut(calling_convention.GetReturnLocation(field_type));
447 }
448 } else {
449 size_t set_index = is_instance ? 1 : 0;
450 if (Primitive::IsFloatingPointType(field_type)) {
451 // The set value comes from a float location while the calling convention
452 // expects it in a regular register location. Allocate a temp for it and
453 // make the transfer at codegen.
454 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
455 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
456 } else {
457 locations->SetInAt(set_index,
458 calling_convention.GetSetValueLocation(field_type, is_instance));
459 }
460 }
461 }
462
GenerateUnresolvedFieldAccess(HInstruction * field_access,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)463 void CodeGenerator::GenerateUnresolvedFieldAccess(
464 HInstruction* field_access,
465 Primitive::Type field_type,
466 uint32_t field_index,
467 uint32_t dex_pc,
468 const FieldAccessCallingConvention& calling_convention) {
469 LocationSummary* locations = field_access->GetLocations();
470
471 MoveConstant(locations->GetTemp(0), field_index);
472
473 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
474 || field_access->IsUnresolvedInstanceFieldSet();
475 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
476 || field_access->IsUnresolvedStaticFieldGet();
477
478 if (!is_get && Primitive::IsFloatingPointType(field_type)) {
479 // Copy the float value to be set into the calling convention register.
480 // Note that using directly the temp location is problematic as we don't
481 // support temp register pairs. To avoid boilerplate conversion code, use
482 // the location from the calling convention.
483 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
484 locations->InAt(is_instance ? 1 : 0),
485 (Primitive::Is64BitType(field_type) ? Primitive::kPrimLong : Primitive::kPrimInt));
486 }
487
488 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
489 switch (field_type) {
490 case Primitive::kPrimBoolean:
491 entrypoint = is_instance
492 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
493 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
494 break;
495 case Primitive::kPrimByte:
496 entrypoint = is_instance
497 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
498 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
499 break;
500 case Primitive::kPrimShort:
501 entrypoint = is_instance
502 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
503 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
504 break;
505 case Primitive::kPrimChar:
506 entrypoint = is_instance
507 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
508 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
509 break;
510 case Primitive::kPrimInt:
511 case Primitive::kPrimFloat:
512 entrypoint = is_instance
513 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
514 : (is_get ? kQuickGet32Static : kQuickSet32Static);
515 break;
516 case Primitive::kPrimNot:
517 entrypoint = is_instance
518 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
519 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
520 break;
521 case Primitive::kPrimLong:
522 case Primitive::kPrimDouble:
523 entrypoint = is_instance
524 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
525 : (is_get ? kQuickGet64Static : kQuickSet64Static);
526 break;
527 default:
528 LOG(FATAL) << "Invalid type " << field_type;
529 }
530 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
531
532 if (is_get && Primitive::IsFloatingPointType(field_type)) {
533 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
534 }
535 }
536
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)537 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
538 Location runtime_type_index_location,
539 Location runtime_return_location) {
540 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
541 DCHECK_EQ(cls->InputCount(), 1u);
542 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetArena()) LocationSummary(
543 cls, LocationSummary::kCallOnMainOnly);
544 locations->SetInAt(0, Location::NoLocation());
545 locations->AddTemp(runtime_type_index_location);
546 locations->SetOut(runtime_return_location);
547 }
548
GenerateLoadClassRuntimeCall(HLoadClass * cls)549 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
550 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
551 LocationSummary* locations = cls->GetLocations();
552 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
553 if (cls->NeedsAccessCheck()) {
554 CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
555 InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
556 } else if (cls->MustGenerateClinitCheck()) {
557 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
558 InvokeRuntime(kQuickInitializeStaticStorage, cls, cls->GetDexPc());
559 } else {
560 CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
561 InvokeRuntime(kQuickInitializeType, cls, cls->GetDexPc());
562 }
563 }
564
BlockIfInRegister(Location location,bool is_out) const565 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
566 // The DCHECKS below check that a register is not specified twice in
567 // the summary. The out location can overlap with an input, so we need
568 // to special case it.
569 if (location.IsRegister()) {
570 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
571 blocked_core_registers_[location.reg()] = true;
572 } else if (location.IsFpuRegister()) {
573 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
574 blocked_fpu_registers_[location.reg()] = true;
575 } else if (location.IsFpuRegisterPair()) {
576 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
577 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
578 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
579 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
580 } else if (location.IsRegisterPair()) {
581 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
582 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
583 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
584 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
585 }
586 }
587
AllocateLocations(HInstruction * instruction)588 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
589 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
590 env->AllocateLocations();
591 }
592 instruction->Accept(GetLocationBuilder());
593 DCHECK(CheckTypeConsistency(instruction));
594 LocationSummary* locations = instruction->GetLocations();
595 if (!instruction->IsSuspendCheckEntry()) {
596 if (locations != nullptr) {
597 if (locations->CanCall()) {
598 MarkNotLeaf();
599 } else if (locations->Intrinsified() &&
600 instruction->IsInvokeStaticOrDirect() &&
601 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
602 // A static method call that has been fully intrinsified, and cannot call on the slow
603 // path or refer to the current method directly, no longer needs current method.
604 return;
605 }
606 }
607 if (instruction->NeedsCurrentMethod()) {
608 SetRequiresCurrentMethod();
609 }
610 }
611 }
612
MaybeRecordStat(MethodCompilationStat compilation_stat,size_t count) const613 void CodeGenerator::MaybeRecordStat(MethodCompilationStat compilation_stat, size_t count) const {
614 if (stats_ != nullptr) {
615 stats_->RecordStat(compilation_stat, count);
616 }
617 }
618
Create(HGraph * graph,InstructionSet instruction_set,const InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)619 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
620 InstructionSet instruction_set,
621 const InstructionSetFeatures& isa_features,
622 const CompilerOptions& compiler_options,
623 OptimizingCompilerStats* stats) {
624 ArenaAllocator* arena = graph->GetArena();
625 switch (instruction_set) {
626 #ifdef ART_ENABLE_CODEGEN_arm
627 case kArm:
628 case kThumb2: {
629 return std::unique_ptr<CodeGenerator>(
630 new (arena) arm::CodeGeneratorARMVIXL(graph,
631 *isa_features.AsArmInstructionSetFeatures(),
632 compiler_options,
633 stats));
634 }
635 #endif
636 #ifdef ART_ENABLE_CODEGEN_arm64
637 case kArm64: {
638 return std::unique_ptr<CodeGenerator>(
639 new (arena) arm64::CodeGeneratorARM64(graph,
640 *isa_features.AsArm64InstructionSetFeatures(),
641 compiler_options,
642 stats));
643 }
644 #endif
645 #ifdef ART_ENABLE_CODEGEN_mips
646 case kMips: {
647 return std::unique_ptr<CodeGenerator>(
648 new (arena) mips::CodeGeneratorMIPS(graph,
649 *isa_features.AsMipsInstructionSetFeatures(),
650 compiler_options,
651 stats));
652 }
653 #endif
654 #ifdef ART_ENABLE_CODEGEN_mips64
655 case kMips64: {
656 return std::unique_ptr<CodeGenerator>(
657 new (arena) mips64::CodeGeneratorMIPS64(graph,
658 *isa_features.AsMips64InstructionSetFeatures(),
659 compiler_options,
660 stats));
661 }
662 #endif
663 #ifdef ART_ENABLE_CODEGEN_x86
664 case kX86: {
665 return std::unique_ptr<CodeGenerator>(
666 new (arena) x86::CodeGeneratorX86(graph,
667 *isa_features.AsX86InstructionSetFeatures(),
668 compiler_options,
669 stats));
670 }
671 #endif
672 #ifdef ART_ENABLE_CODEGEN_x86_64
673 case kX86_64: {
674 return std::unique_ptr<CodeGenerator>(
675 new (arena) x86_64::CodeGeneratorX86_64(graph,
676 *isa_features.AsX86_64InstructionSetFeatures(),
677 compiler_options,
678 stats));
679 }
680 #endif
681 default:
682 return nullptr;
683 }
684 }
685
ComputeStackMapAndMethodInfoSize(size_t * stack_map_size,size_t * method_info_size)686 void CodeGenerator::ComputeStackMapAndMethodInfoSize(size_t* stack_map_size,
687 size_t* method_info_size) {
688 DCHECK(stack_map_size != nullptr);
689 DCHECK(method_info_size != nullptr);
690 *stack_map_size = stack_map_stream_.PrepareForFillIn();
691 *method_info_size = stack_map_stream_.ComputeMethodInfoSize();
692 }
693
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)694 static void CheckCovers(uint32_t dex_pc,
695 const HGraph& graph,
696 const CodeInfo& code_info,
697 const ArenaVector<HSuspendCheck*>& loop_headers,
698 ArenaVector<size_t>* covered) {
699 CodeInfoEncoding encoding = code_info.ExtractEncoding();
700 for (size_t i = 0; i < loop_headers.size(); ++i) {
701 if (loop_headers[i]->GetDexPc() == dex_pc) {
702 if (graph.IsCompilingOsr()) {
703 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
704 }
705 ++(*covered)[i];
706 }
707 }
708 }
709
710 // Debug helper to ensure loop entries in compiled code are matched by
711 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const DexFile::CodeItem & code_item)712 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
713 const CodeInfo& code_info,
714 const DexFile::CodeItem& code_item) {
715 if (graph.HasTryCatch()) {
716 // One can write loops through try/catch, which we do not support for OSR anyway.
717 return;
718 }
719 ArenaVector<HSuspendCheck*> loop_headers(graph.GetArena()->Adapter(kArenaAllocMisc));
720 for (HBasicBlock* block : graph.GetReversePostOrder()) {
721 if (block->IsLoopHeader()) {
722 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
723 if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
724 loop_headers.push_back(suspend_check);
725 }
726 }
727 }
728 ArenaVector<size_t> covered(loop_headers.size(), 0, graph.GetArena()->Adapter(kArenaAllocMisc));
729 const uint16_t* code_ptr = code_item.insns_;
730 const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
731
732 size_t dex_pc = 0;
733 while (code_ptr < code_end) {
734 const Instruction& instruction = *Instruction::At(code_ptr);
735 if (instruction.IsBranch()) {
736 uint32_t target = dex_pc + instruction.GetTargetOffset();
737 CheckCovers(target, graph, code_info, loop_headers, &covered);
738 } else if (instruction.IsSwitch()) {
739 DexSwitchTable table(instruction, dex_pc);
740 uint16_t num_entries = table.GetNumEntries();
741 size_t offset = table.GetFirstValueIndex();
742
743 // Use a larger loop counter type to avoid overflow issues.
744 for (size_t i = 0; i < num_entries; ++i) {
745 // The target of the case.
746 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
747 CheckCovers(target, graph, code_info, loop_headers, &covered);
748 }
749 }
750 dex_pc += instruction.SizeInCodeUnits();
751 code_ptr += instruction.SizeInCodeUnits();
752 }
753
754 for (size_t i = 0; i < covered.size(); ++i) {
755 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
756 }
757 }
758
BuildStackMaps(MemoryRegion stack_map_region,MemoryRegion method_info_region,const DexFile::CodeItem & code_item)759 void CodeGenerator::BuildStackMaps(MemoryRegion stack_map_region,
760 MemoryRegion method_info_region,
761 const DexFile::CodeItem& code_item) {
762 stack_map_stream_.FillInCodeInfo(stack_map_region);
763 stack_map_stream_.FillInMethodInfo(method_info_region);
764 if (kIsDebugBuild) {
765 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map_region), code_item);
766 }
767 }
768
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)769 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
770 uint32_t dex_pc,
771 SlowPathCode* slow_path) {
772 if (instruction != nullptr) {
773 // The code generated for some type conversions
774 // may call the runtime, thus normally requiring a subsequent
775 // call to this method. However, the method verifier does not
776 // produce PC information for certain instructions, which are
777 // considered "atomic" (they cannot join a GC).
778 // Therefore we do not currently record PC information for such
779 // instructions. As this may change later, we added this special
780 // case so that code generators may nevertheless call
781 // CodeGenerator::RecordPcInfo without triggering an error in
782 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
783 // thereafter.
784 if (instruction->IsTypeConversion()) {
785 return;
786 }
787 if (instruction->IsRem()) {
788 Primitive::Type type = instruction->AsRem()->GetResultType();
789 if ((type == Primitive::kPrimFloat) || (type == Primitive::kPrimDouble)) {
790 return;
791 }
792 }
793 }
794
795 uint32_t outer_dex_pc = dex_pc;
796 uint32_t outer_environment_size = 0;
797 uint32_t inlining_depth = 0;
798 if (instruction != nullptr) {
799 for (HEnvironment* environment = instruction->GetEnvironment();
800 environment != nullptr;
801 environment = environment->GetParent()) {
802 outer_dex_pc = environment->GetDexPc();
803 outer_environment_size = environment->Size();
804 if (environment != instruction->GetEnvironment()) {
805 inlining_depth++;
806 }
807 }
808 }
809
810 // Collect PC infos for the mapping table.
811 uint32_t native_pc = GetAssembler()->CodePosition();
812
813 if (instruction == nullptr) {
814 // For stack overflow checks and native-debug-info entries without dex register
815 // mapping (i.e. start of basic block or start of slow path).
816 stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0);
817 stack_map_stream_.EndStackMapEntry();
818 return;
819 }
820 LocationSummary* locations = instruction->GetLocations();
821
822 uint32_t register_mask = locations->GetRegisterMask();
823 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
824 if (locations->OnlyCallsOnSlowPath()) {
825 // In case of slow path, we currently set the location of caller-save registers
826 // to register (instead of their stack location when pushed before the slow-path
827 // call). Therefore register_mask contains both callee-save and caller-save
828 // registers that hold objects. We must remove the spilled caller-save from the
829 // mask, since they will be overwritten by the callee.
830 uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true);
831 register_mask &= ~spills;
832 } else {
833 // The register mask must be a subset of callee-save registers.
834 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
835 }
836 stack_map_stream_.BeginStackMapEntry(outer_dex_pc,
837 native_pc,
838 register_mask,
839 locations->GetStackMask(),
840 outer_environment_size,
841 inlining_depth);
842
843 HEnvironment* const environment = instruction->GetEnvironment();
844 EmitEnvironment(environment, slow_path);
845 // Record invoke info, the common case for the trampoline is super and static invokes. Only
846 // record these to reduce oat file size.
847 if (kEnableDexLayoutOptimizations) {
848 if (environment != nullptr &&
849 instruction->IsInvoke() &&
850 instruction->IsInvokeStaticOrDirect()) {
851 HInvoke* const invoke = instruction->AsInvoke();
852 stack_map_stream_.AddInvoke(invoke->GetInvokeType(), invoke->GetDexMethodIndex());
853 }
854 }
855 stack_map_stream_.EndStackMapEntry();
856
857 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
858 if (instruction->IsSuspendCheck() &&
859 (info != nullptr) &&
860 graph_->IsCompilingOsr() &&
861 (inlining_depth == 0)) {
862 DCHECK_EQ(info->GetSuspendCheck(), instruction);
863 // We duplicate the stack map as a marker that this stack map can be an OSR entry.
864 // Duplicating it avoids having the runtime recognize and skip an OSR stack map.
865 DCHECK(info->IsIrreducible());
866 stack_map_stream_.BeginStackMapEntry(
867 dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
868 EmitEnvironment(instruction->GetEnvironment(), slow_path);
869 stack_map_stream_.EndStackMapEntry();
870 if (kIsDebugBuild) {
871 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
872 HInstruction* in_environment = environment->GetInstructionAt(i);
873 if (in_environment != nullptr) {
874 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
875 Location location = environment->GetLocationAt(i);
876 DCHECK(location.IsStackSlot() ||
877 location.IsDoubleStackSlot() ||
878 location.IsConstant() ||
879 location.IsInvalid());
880 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
881 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
882 }
883 }
884 }
885 }
886 } else if (kIsDebugBuild) {
887 // Ensure stack maps are unique, by checking that the native pc in the stack map
888 // last emitted is different than the native pc of the stack map just emitted.
889 size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps();
890 if (number_of_stack_maps > 1) {
891 DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_code_offset,
892 stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_code_offset);
893 }
894 }
895 }
896
HasStackMapAtCurrentPc()897 bool CodeGenerator::HasStackMapAtCurrentPc() {
898 uint32_t pc = GetAssembler()->CodeSize();
899 size_t count = stack_map_stream_.GetNumberOfStackMaps();
900 if (count == 0) {
901 return false;
902 }
903 CodeOffset native_pc_offset = stack_map_stream_.GetStackMap(count - 1).native_pc_code_offset;
904 return (native_pc_offset.Uint32Value(GetInstructionSet()) == pc);
905 }
906
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)907 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
908 uint32_t dex_pc,
909 SlowPathCode* slow_path) {
910 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
911 if (HasStackMapAtCurrentPc()) {
912 // Ensure that we do not collide with the stack map of the previous instruction.
913 GenerateNop();
914 }
915 RecordPcInfo(instruction, dex_pc, slow_path);
916 }
917 }
918
RecordCatchBlockInfo()919 void CodeGenerator::RecordCatchBlockInfo() {
920 ArenaAllocator* arena = graph_->GetArena();
921
922 for (HBasicBlock* block : *block_order_) {
923 if (!block->IsCatchBlock()) {
924 continue;
925 }
926
927 uint32_t dex_pc = block->GetDexPc();
928 uint32_t num_vregs = graph_->GetNumberOfVRegs();
929 uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment.
930 uint32_t native_pc = GetAddressOf(block);
931 uint32_t register_mask = 0; // Not used.
932
933 // The stack mask is not used, so we leave it empty.
934 ArenaBitVector* stack_mask =
935 ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator);
936
937 stack_map_stream_.BeginStackMapEntry(dex_pc,
938 native_pc,
939 register_mask,
940 stack_mask,
941 num_vregs,
942 inlining_depth);
943
944 HInstruction* current_phi = block->GetFirstPhi();
945 for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
946 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
947 HInstruction* next_phi = current_phi->GetNext();
948 DCHECK(next_phi == nullptr ||
949 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
950 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
951 current_phi = next_phi;
952 }
953
954 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
955 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
956 } else {
957 Location location = current_phi->GetLiveInterval()->ToLocation();
958 switch (location.GetKind()) {
959 case Location::kStackSlot: {
960 stack_map_stream_.AddDexRegisterEntry(
961 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
962 break;
963 }
964 case Location::kDoubleStackSlot: {
965 stack_map_stream_.AddDexRegisterEntry(
966 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
967 stack_map_stream_.AddDexRegisterEntry(
968 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
969 ++vreg;
970 DCHECK_LT(vreg, num_vregs);
971 break;
972 }
973 default: {
974 // All catch phis must be allocated to a stack slot.
975 LOG(FATAL) << "Unexpected kind " << location.GetKind();
976 UNREACHABLE();
977 }
978 }
979 }
980 }
981
982 stack_map_stream_.EndStackMapEntry();
983 }
984 }
985
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path)986 void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
987 if (environment == nullptr) return;
988
989 if (environment->GetParent() != nullptr) {
990 // We emit the parent environment first.
991 EmitEnvironment(environment->GetParent(), slow_path);
992 stack_map_stream_.BeginInlineInfoEntry(environment->GetMethod(),
993 environment->GetDexPc(),
994 environment->Size(),
995 &graph_->GetDexFile());
996 }
997
998 // Walk over the environment, and record the location of dex registers.
999 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1000 HInstruction* current = environment->GetInstructionAt(i);
1001 if (current == nullptr) {
1002 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1003 continue;
1004 }
1005
1006 Location location = environment->GetLocationAt(i);
1007 switch (location.GetKind()) {
1008 case Location::kConstant: {
1009 DCHECK_EQ(current, location.GetConstant());
1010 if (current->IsLongConstant()) {
1011 int64_t value = current->AsLongConstant()->GetValue();
1012 stack_map_stream_.AddDexRegisterEntry(
1013 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
1014 stack_map_stream_.AddDexRegisterEntry(
1015 DexRegisterLocation::Kind::kConstant, High32Bits(value));
1016 ++i;
1017 DCHECK_LT(i, environment_size);
1018 } else if (current->IsDoubleConstant()) {
1019 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1020 stack_map_stream_.AddDexRegisterEntry(
1021 DexRegisterLocation::Kind::kConstant, Low32Bits(value));
1022 stack_map_stream_.AddDexRegisterEntry(
1023 DexRegisterLocation::Kind::kConstant, High32Bits(value));
1024 ++i;
1025 DCHECK_LT(i, environment_size);
1026 } else if (current->IsIntConstant()) {
1027 int32_t value = current->AsIntConstant()->GetValue();
1028 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
1029 } else if (current->IsNullConstant()) {
1030 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
1031 } else {
1032 DCHECK(current->IsFloatConstant()) << current->DebugName();
1033 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1034 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
1035 }
1036 break;
1037 }
1038
1039 case Location::kStackSlot: {
1040 stack_map_stream_.AddDexRegisterEntry(
1041 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1042 break;
1043 }
1044
1045 case Location::kDoubleStackSlot: {
1046 stack_map_stream_.AddDexRegisterEntry(
1047 DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
1048 stack_map_stream_.AddDexRegisterEntry(
1049 DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1050 ++i;
1051 DCHECK_LT(i, environment_size);
1052 break;
1053 }
1054
1055 case Location::kRegister : {
1056 int id = location.reg();
1057 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1058 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1059 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1060 if (current->GetType() == Primitive::kPrimLong) {
1061 stack_map_stream_.AddDexRegisterEntry(
1062 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
1063 ++i;
1064 DCHECK_LT(i, environment_size);
1065 }
1066 } else {
1067 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
1068 if (current->GetType() == Primitive::kPrimLong) {
1069 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
1070 ++i;
1071 DCHECK_LT(i, environment_size);
1072 }
1073 }
1074 break;
1075 }
1076
1077 case Location::kFpuRegister : {
1078 int id = location.reg();
1079 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1080 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1081 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1082 if (current->GetType() == Primitive::kPrimDouble) {
1083 stack_map_stream_.AddDexRegisterEntry(
1084 DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
1085 ++i;
1086 DCHECK_LT(i, environment_size);
1087 }
1088 } else {
1089 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
1090 if (current->GetType() == Primitive::kPrimDouble) {
1091 stack_map_stream_.AddDexRegisterEntry(
1092 DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
1093 ++i;
1094 DCHECK_LT(i, environment_size);
1095 }
1096 }
1097 break;
1098 }
1099
1100 case Location::kFpuRegisterPair : {
1101 int low = location.low();
1102 int high = location.high();
1103 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1104 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1105 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1106 } else {
1107 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
1108 }
1109 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1110 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1111 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1112 ++i;
1113 } else {
1114 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
1115 ++i;
1116 }
1117 DCHECK_LT(i, environment_size);
1118 break;
1119 }
1120
1121 case Location::kRegisterPair : {
1122 int low = location.low();
1123 int high = location.high();
1124 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1125 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1126 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1127 } else {
1128 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
1129 }
1130 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1131 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1132 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
1133 } else {
1134 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
1135 }
1136 ++i;
1137 DCHECK_LT(i, environment_size);
1138 break;
1139 }
1140
1141 case Location::kInvalid: {
1142 stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1143 break;
1144 }
1145
1146 default:
1147 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1148 }
1149 }
1150
1151 if (environment->GetParent() != nullptr) {
1152 stack_map_stream_.EndInlineInfoEntry();
1153 }
1154 }
1155
CanMoveNullCheckToUser(HNullCheck * null_check)1156 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1157 HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
1158
1159 return (first_next_not_move != nullptr)
1160 && first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
1161 }
1162
MaybeRecordImplicitNullCheck(HInstruction * instr)1163 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1164 if (!compiler_options_.GetImplicitNullChecks()) {
1165 return;
1166 }
1167
1168 // If we are from a static path don't record the pc as we can't throw NPE.
1169 // NB: having the checks here makes the code much less verbose in the arch
1170 // specific code generators.
1171 if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
1172 return;
1173 }
1174
1175 if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
1176 return;
1177 }
1178
1179 // Find the first previous instruction which is not a move.
1180 HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
1181
1182 // If the instruction is a null check it means that `instr` is the first user
1183 // and needs to record the pc.
1184 if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
1185 HNullCheck* null_check = first_prev_not_move->AsNullCheck();
1186 // TODO: The parallel moves modify the environment. Their changes need to be
1187 // reverted otherwise the stack maps at the throw point will not be correct.
1188 RecordPcInfo(null_check, null_check->GetDexPc());
1189 }
1190 }
1191
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1192 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1193 RegisterSet caller_saves) {
1194 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1195 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1196 // because the HNullCheck needs an environment.
1197 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1198 // When throwing from a try block, we may need to retrieve dalvik registers from
1199 // physical registers and we also need to set up stack mask for GC. This is
1200 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1201 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1202 if (can_throw_into_catch_block) {
1203 call_kind = LocationSummary::kCallOnSlowPath;
1204 }
1205 LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
1206 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1207 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1208 }
1209 DCHECK(!instruction->HasUses());
1210 return locations;
1211 }
1212
GenerateNullCheck(HNullCheck * instruction)1213 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1214 if (compiler_options_.GetImplicitNullChecks()) {
1215 MaybeRecordStat(kImplicitNullCheckGenerated);
1216 GenerateImplicitNullCheck(instruction);
1217 } else {
1218 MaybeRecordStat(kExplicitNullCheckGenerated);
1219 GenerateExplicitNullCheck(instruction);
1220 }
1221 }
1222
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check) const1223 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
1224 LocationSummary* locations = suspend_check->GetLocations();
1225 HBasicBlock* block = suspend_check->GetBlock();
1226 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1227 DCHECK(block->IsLoopHeader());
1228
1229 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1230 HInstruction* current = it.Current();
1231 LiveInterval* interval = current->GetLiveInterval();
1232 // We only need to clear bits of loop phis containing objects and allocated in register.
1233 // Loop phis allocated on stack already have the object in the stack.
1234 if (current->GetType() == Primitive::kPrimNot
1235 && interval->HasRegister()
1236 && interval->HasSpillSlot()) {
1237 locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
1238 }
1239 }
1240 }
1241
EmitParallelMoves(Location from1,Location to1,Primitive::Type type1,Location from2,Location to2,Primitive::Type type2)1242 void CodeGenerator::EmitParallelMoves(Location from1,
1243 Location to1,
1244 Primitive::Type type1,
1245 Location from2,
1246 Location to2,
1247 Primitive::Type type2) {
1248 HParallelMove parallel_move(GetGraph()->GetArena());
1249 parallel_move.AddMove(from1, to1, type1, nullptr);
1250 parallel_move.AddMove(from2, to2, type2, nullptr);
1251 GetMoveResolver()->EmitNativeCode(¶llel_move);
1252 }
1253
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1254 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1255 HInstruction* instruction,
1256 SlowPathCode* slow_path) {
1257 // Ensure that the call kind indication given to the register allocator is
1258 // coherent with the runtime call generated.
1259 if (slow_path == nullptr) {
1260 DCHECK(instruction->GetLocations()->WillCall())
1261 << "instruction->DebugName()=" << instruction->DebugName();
1262 } else {
1263 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1264 << "instruction->DebugName()=" << instruction->DebugName()
1265 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1266 }
1267
1268 // Check that the GC side effect is set when required.
1269 // TODO: Reverse EntrypointCanTriggerGC
1270 if (EntrypointCanTriggerGC(entrypoint)) {
1271 if (slow_path == nullptr) {
1272 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1273 << "instruction->DebugName()=" << instruction->DebugName()
1274 << " instruction->GetSideEffects().ToString()="
1275 << instruction->GetSideEffects().ToString();
1276 } else {
1277 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1278 // When (non-Baker) read barriers are enabled, some instructions
1279 // use a slow path to emit a read barrier, which does not trigger
1280 // GC.
1281 (kEmitCompilerReadBarrier &&
1282 !kUseBakerReadBarrier &&
1283 (instruction->IsInstanceFieldGet() ||
1284 instruction->IsStaticFieldGet() ||
1285 instruction->IsArrayGet() ||
1286 instruction->IsLoadClass() ||
1287 instruction->IsLoadString() ||
1288 instruction->IsInstanceOf() ||
1289 instruction->IsCheckCast() ||
1290 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1291 << "instruction->DebugName()=" << instruction->DebugName()
1292 << " instruction->GetSideEffects().ToString()="
1293 << instruction->GetSideEffects().ToString()
1294 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1295 }
1296 } else {
1297 // The GC side effect is not required for the instruction. But the instruction might still have
1298 // it, for example if it calls other entrypoints requiring it.
1299 }
1300
1301 // Check the coherency of leaf information.
1302 DCHECK(instruction->IsSuspendCheck()
1303 || ((slow_path != nullptr) && slow_path->IsFatal())
1304 || instruction->GetLocations()->CanCall()
1305 || !IsLeafMethod())
1306 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1307 }
1308
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1309 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1310 SlowPathCode* slow_path) {
1311 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1312 << "instruction->DebugName()=" << instruction->DebugName()
1313 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1314 // Only the Baker read barrier marking slow path used by certains
1315 // instructions is expected to invoke the runtime without recording
1316 // PC-related information.
1317 DCHECK(kUseBakerReadBarrier);
1318 DCHECK(instruction->IsInstanceFieldGet() ||
1319 instruction->IsStaticFieldGet() ||
1320 instruction->IsArrayGet() ||
1321 instruction->IsArraySet() ||
1322 instruction->IsLoadClass() ||
1323 instruction->IsLoadString() ||
1324 instruction->IsInstanceOf() ||
1325 instruction->IsCheckCast() ||
1326 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
1327 (instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
1328 << "instruction->DebugName()=" << instruction->DebugName()
1329 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1330 }
1331
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1332 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1333 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1334
1335 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1336 for (uint32_t i : LowToHighBits(core_spills)) {
1337 // If the register holds an object, update the stack mask.
1338 if (locations->RegisterContainsObject(i)) {
1339 locations->SetStackBit(stack_offset / kVRegSize);
1340 }
1341 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1342 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1343 saved_core_stack_offsets_[i] = stack_offset;
1344 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1345 }
1346
1347 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1348 for (uint32_t i : LowToHighBits(fp_spills)) {
1349 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1350 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1351 saved_fpu_stack_offsets_[i] = stack_offset;
1352 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1353 }
1354 }
1355
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1356 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1357 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1358
1359 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
1360 for (uint32_t i : LowToHighBits(core_spills)) {
1361 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1362 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1363 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1364 }
1365
1366 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
1367 for (uint32_t i : LowToHighBits(fp_spills)) {
1368 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1369 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1370 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1371 }
1372 }
1373
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1374 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1375 // Check to see if we have known failures that will cause us to have to bail out
1376 // to the runtime, and just generate the runtime call directly.
1377 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1378 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1379
1380 // The positions must be non-negative.
1381 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1382 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1383 // We will have to fail anyways.
1384 return;
1385 }
1386
1387 // The length must be >= 0.
1388 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1389 if (length != nullptr) {
1390 int32_t len = length->GetValue();
1391 if (len < 0) {
1392 // Just call as normal.
1393 return;
1394 }
1395 }
1396
1397 SystemArrayCopyOptimizations optimizations(invoke);
1398
1399 if (optimizations.GetDestinationIsSource()) {
1400 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1401 // We only support backward copying if source and destination are the same.
1402 return;
1403 }
1404 }
1405
1406 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1407 // We currently don't intrinsify primitive copying.
1408 return;
1409 }
1410
1411 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
1412 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1413 LocationSummary::kCallOnSlowPath,
1414 kIntrinsified);
1415 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1416 locations->SetInAt(0, Location::RequiresRegister());
1417 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1418 locations->SetInAt(2, Location::RequiresRegister());
1419 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1420 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1421
1422 locations->AddTemp(Location::RequiresRegister());
1423 locations->AddTemp(Location::RequiresRegister());
1424 locations->AddTemp(Location::RequiresRegister());
1425 }
1426
EmitJitRoots(uint8_t * code,Handle<mirror::ObjectArray<mirror::Object>> roots,const uint8_t * roots_data)1427 void CodeGenerator::EmitJitRoots(uint8_t* code,
1428 Handle<mirror::ObjectArray<mirror::Object>> roots,
1429 const uint8_t* roots_data) {
1430 DCHECK_EQ(static_cast<size_t>(roots->GetLength()), GetNumberOfJitRoots());
1431 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1432 size_t index = 0;
1433 for (auto& entry : jit_string_roots_) {
1434 // Update the `roots` with the string, and replace the address temporarily
1435 // stored to the index in the table.
1436 uint64_t address = entry.second;
1437 roots->Set(index, reinterpret_cast<StackReference<mirror::String>*>(address)->AsMirrorPtr());
1438 DCHECK(roots->Get(index) != nullptr);
1439 entry.second = index;
1440 // Ensure the string is strongly interned. This is a requirement on how the JIT
1441 // handles strings. b/32995596
1442 class_linker->GetInternTable()->InternStrong(
1443 reinterpret_cast<mirror::String*>(roots->Get(index)));
1444 ++index;
1445 }
1446 for (auto& entry : jit_class_roots_) {
1447 // Update the `roots` with the class, and replace the address temporarily
1448 // stored to the index in the table.
1449 uint64_t address = entry.second;
1450 roots->Set(index, reinterpret_cast<StackReference<mirror::Class>*>(address)->AsMirrorPtr());
1451 DCHECK(roots->Get(index) != nullptr);
1452 entry.second = index;
1453 ++index;
1454 }
1455 EmitJitRootPatches(code, roots_data);
1456 }
1457
GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass)1458 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass) {
1459 ScopedObjectAccess soa(Thread::Current());
1460 if (array_klass == nullptr) {
1461 // This can only happen for non-primitive arrays, as primitive arrays can always
1462 // be resolved.
1463 return kQuickAllocArrayResolved32;
1464 }
1465
1466 switch (array_klass->GetComponentSize()) {
1467 case 1: return kQuickAllocArrayResolved8;
1468 case 2: return kQuickAllocArrayResolved16;
1469 case 4: return kQuickAllocArrayResolved32;
1470 case 8: return kQuickAllocArrayResolved64;
1471 }
1472 LOG(FATAL) << "Unreachable";
1473 return kQuickAllocArrayResolved;
1474 }
1475
1476 } // namespace art
1477