1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <limits>
20 #include <memory>
21 #include <vector>
22
23 #include "android-base/stringprintf.h"
24
25 #include "allocation_listener.h"
26 #include "art_field-inl.h"
27 #include "backtrace_helper.h"
28 #include "base/allocator.h"
29 #include "base/arena_allocator.h"
30 #include "base/dumpable.h"
31 #include "base/histogram-inl.h"
32 #include "base/memory_tool.h"
33 #include "base/stl_util.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "common_throws.h"
37 #include "cutils/sched_policy.h"
38 #include "debugger.h"
39 #include "dex_file-inl.h"
40 #include "entrypoints/quick/quick_alloc_entrypoints.h"
41 #include "gc/accounting/card_table-inl.h"
42 #include "gc/accounting/heap_bitmap-inl.h"
43 #include "gc/accounting/mod_union_table-inl.h"
44 #include "gc/accounting/read_barrier_table.h"
45 #include "gc/accounting/remembered_set.h"
46 #include "gc/accounting/space_bitmap-inl.h"
47 #include "gc/collector/concurrent_copying.h"
48 #include "gc/collector/mark_compact.h"
49 #include "gc/collector/mark_sweep.h"
50 #include "gc/collector/partial_mark_sweep.h"
51 #include "gc/collector/semi_space.h"
52 #include "gc/collector/sticky_mark_sweep.h"
53 #include "gc/reference_processor.h"
54 #include "gc/scoped_gc_critical_section.h"
55 #include "gc/space/bump_pointer_space.h"
56 #include "gc/space/dlmalloc_space-inl.h"
57 #include "gc/space/image_space.h"
58 #include "gc/space/large_object_space.h"
59 #include "gc/space/region_space.h"
60 #include "gc/space/rosalloc_space-inl.h"
61 #include "gc/space/space-inl.h"
62 #include "gc/space/zygote_space.h"
63 #include "gc/task_processor.h"
64 #include "gc/verification.h"
65 #include "gc_pause_listener.h"
66 #include "gc_root.h"
67 #include "handle_scope-inl.h"
68 #include "heap-inl.h"
69 #include "heap-visit-objects-inl.h"
70 #include "image.h"
71 #include "intern_table.h"
72 #include "java_vm_ext.h"
73 #include "jit/jit.h"
74 #include "jit/jit_code_cache.h"
75 #include "mirror/class-inl.h"
76 #include "mirror/object-inl.h"
77 #include "mirror/object-refvisitor-inl.h"
78 #include "mirror/object_array-inl.h"
79 #include "mirror/reference-inl.h"
80 #include "nativehelper/ScopedLocalRef.h"
81 #include "obj_ptr-inl.h"
82 #include "os.h"
83 #include "reflection.h"
84 #include "runtime.h"
85 #include "scoped_thread_state_change-inl.h"
86 #include "thread_list.h"
87 #include "verify_object-inl.h"
88 #include "well_known_classes.h"
89
90 namespace art {
91
92 namespace gc {
93
94 static constexpr size_t kCollectorTransitionStressIterations = 0;
95 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000; // Microseconds
96 // Minimum amount of remaining bytes before a concurrent GC is triggered.
97 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
98 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
99 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
100 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
101 // threads (lower pauses, use less memory bandwidth).
102 static constexpr double kStickyGcThroughputAdjustment = 1.0;
103 // Whether or not we compact the zygote in PreZygoteFork.
104 static constexpr bool kCompactZygote = kMovingCollector;
105 // How many reserve entries are at the end of the allocation stack, these are only needed if the
106 // allocation stack overflows.
107 static constexpr size_t kAllocationStackReserveSize = 1024;
108 // Default mark stack size in bytes.
109 static const size_t kDefaultMarkStackSize = 64 * KB;
110 // Define space name.
111 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
112 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
113 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
114 static const char* kNonMovingSpaceName = "non moving space";
115 static const char* kZygoteSpaceName = "zygote space";
116 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
117 static constexpr bool kGCALotMode = false;
118 // GC alot mode uses a small allocation stack to stress test a lot of GC.
119 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
120 sizeof(mirror::HeapReference<mirror::Object>);
121 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
122 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
123 sizeof(mirror::HeapReference<mirror::Object>);
124 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
125 sizeof(mirror::HeapReference<mirror::Object>);
126 // System.runFinalization can deadlock with native allocations, to deal with this, we have a
127 // timeout on how long we wait for finalizers to run. b/21544853
128 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
129
130 // For deterministic compilation, we need the heap to be at a well-known address.
131 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
132 // Dump the rosalloc stats on SIGQUIT.
133 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
134
135 static const char* kRegionSpaceName = "main space (region space)";
136
137 // If true, we log all GCs in the both the foreground and background. Used for debugging.
138 static constexpr bool kLogAllGCs = false;
139
140 // How much we grow the TLAB if we can do it.
141 static constexpr size_t kPartialTlabSize = 16 * KB;
142 static constexpr bool kUsePartialTlabs = true;
143
144 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
145 // 300 MB (0x12c00000) - (default non-moving space capacity).
146 static uint8_t* const kPreferredAllocSpaceBegin =
147 reinterpret_cast<uint8_t*>(300 * MB - Heap::kDefaultNonMovingSpaceCapacity);
148 #else
149 #ifdef __ANDROID__
150 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
151 static uint8_t* const kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
152 #else
153 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
154 static uint8_t* const kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
155 #endif
156 #endif
157
CareAboutPauseTimes()158 static inline bool CareAboutPauseTimes() {
159 return Runtime::Current()->InJankPerceptibleProcessState();
160 }
161
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_max_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,uint64_t min_interval_homogeneous_space_compaction_by_oom)162 Heap::Heap(size_t initial_size,
163 size_t growth_limit,
164 size_t min_free,
165 size_t max_free,
166 double target_utilization,
167 double foreground_heap_growth_multiplier,
168 size_t capacity,
169 size_t non_moving_space_capacity,
170 const std::string& image_file_name,
171 const InstructionSet image_instruction_set,
172 CollectorType foreground_collector_type,
173 CollectorType background_collector_type,
174 space::LargeObjectSpaceType large_object_space_type,
175 size_t large_object_threshold,
176 size_t parallel_gc_threads,
177 size_t conc_gc_threads,
178 bool low_memory_mode,
179 size_t long_pause_log_threshold,
180 size_t long_gc_log_threshold,
181 bool ignore_max_footprint,
182 bool use_tlab,
183 bool verify_pre_gc_heap,
184 bool verify_pre_sweeping_heap,
185 bool verify_post_gc_heap,
186 bool verify_pre_gc_rosalloc,
187 bool verify_pre_sweeping_rosalloc,
188 bool verify_post_gc_rosalloc,
189 bool gc_stress_mode,
190 bool measure_gc_performance,
191 bool use_homogeneous_space_compaction_for_oom,
192 uint64_t min_interval_homogeneous_space_compaction_by_oom)
193 : non_moving_space_(nullptr),
194 rosalloc_space_(nullptr),
195 dlmalloc_space_(nullptr),
196 main_space_(nullptr),
197 collector_type_(kCollectorTypeNone),
198 foreground_collector_type_(foreground_collector_type),
199 background_collector_type_(background_collector_type),
200 desired_collector_type_(foreground_collector_type_),
201 pending_task_lock_(nullptr),
202 parallel_gc_threads_(parallel_gc_threads),
203 conc_gc_threads_(conc_gc_threads),
204 low_memory_mode_(low_memory_mode),
205 long_pause_log_threshold_(long_pause_log_threshold),
206 long_gc_log_threshold_(long_gc_log_threshold),
207 ignore_max_footprint_(ignore_max_footprint),
208 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
209 zygote_space_(nullptr),
210 large_object_threshold_(large_object_threshold),
211 disable_thread_flip_count_(0),
212 thread_flip_running_(false),
213 collector_type_running_(kCollectorTypeNone),
214 last_gc_cause_(kGcCauseNone),
215 thread_running_gc_(nullptr),
216 last_gc_type_(collector::kGcTypeNone),
217 next_gc_type_(collector::kGcTypePartial),
218 capacity_(capacity),
219 growth_limit_(growth_limit),
220 max_allowed_footprint_(initial_size),
221 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
222 total_bytes_freed_ever_(0),
223 total_objects_freed_ever_(0),
224 num_bytes_allocated_(0),
225 new_native_bytes_allocated_(0),
226 old_native_bytes_allocated_(0),
227 num_bytes_freed_revoke_(0),
228 verify_missing_card_marks_(false),
229 verify_system_weaks_(false),
230 verify_pre_gc_heap_(verify_pre_gc_heap),
231 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
232 verify_post_gc_heap_(verify_post_gc_heap),
233 verify_mod_union_table_(false),
234 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
235 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
236 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
237 gc_stress_mode_(gc_stress_mode),
238 /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
239 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
240 * verification is enabled, we limit the size of allocation stacks to speed up their
241 * searching.
242 */
243 max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
244 : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
245 kDefaultAllocationStackSize),
246 current_allocator_(kAllocatorTypeDlMalloc),
247 current_non_moving_allocator_(kAllocatorTypeNonMoving),
248 bump_pointer_space_(nullptr),
249 temp_space_(nullptr),
250 region_space_(nullptr),
251 min_free_(min_free),
252 max_free_(max_free),
253 target_utilization_(target_utilization),
254 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
255 total_wait_time_(0),
256 verify_object_mode_(kVerifyObjectModeDisabled),
257 disable_moving_gc_count_(0),
258 semi_space_collector_(nullptr),
259 mark_compact_collector_(nullptr),
260 concurrent_copying_collector_(nullptr),
261 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
262 use_tlab_(use_tlab),
263 main_space_backup_(nullptr),
264 min_interval_homogeneous_space_compaction_by_oom_(
265 min_interval_homogeneous_space_compaction_by_oom),
266 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
267 pending_collector_transition_(nullptr),
268 pending_heap_trim_(nullptr),
269 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
270 running_collection_is_blocking_(false),
271 blocking_gc_count_(0U),
272 blocking_gc_time_(0U),
273 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
274 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
275 gc_count_last_window_(0U),
276 blocking_gc_count_last_window_(0U),
277 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
278 blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
279 kGcCountRateMaxBucketCount),
280 alloc_tracking_enabled_(false),
281 backtrace_lock_(nullptr),
282 seen_backtrace_count_(0u),
283 unique_backtrace_count_(0u),
284 gc_disabled_for_shutdown_(false) {
285 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
286 LOG(INFO) << "Heap() entering";
287 }
288 if (kUseReadBarrier) {
289 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
290 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
291 }
292 verification_.reset(new Verification(this));
293 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
294 ScopedTrace trace(__FUNCTION__);
295 Runtime* const runtime = Runtime::Current();
296 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
297 // entrypoints.
298 const bool is_zygote = runtime->IsZygote();
299 if (!is_zygote) {
300 // Background compaction is currently not supported for command line runs.
301 if (background_collector_type_ != foreground_collector_type_) {
302 VLOG(heap) << "Disabling background compaction for non zygote";
303 background_collector_type_ = foreground_collector_type_;
304 }
305 }
306 ChangeCollector(desired_collector_type_);
307 live_bitmap_.reset(new accounting::HeapBitmap(this));
308 mark_bitmap_.reset(new accounting::HeapBitmap(this));
309 // Requested begin for the alloc space, to follow the mapped image and oat files
310 uint8_t* requested_alloc_space_begin = nullptr;
311 if (foreground_collector_type_ == kCollectorTypeCC) {
312 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space when there's no
313 // image (dex2oat for target).
314 requested_alloc_space_begin = kPreferredAllocSpaceBegin;
315 }
316
317 // Load image space(s).
318 if (space::ImageSpace::LoadBootImage(image_file_name,
319 image_instruction_set,
320 &boot_image_spaces_,
321 &requested_alloc_space_begin)) {
322 for (auto space : boot_image_spaces_) {
323 AddSpace(space);
324 }
325 }
326
327 /*
328 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
329 +- nonmoving space (non_moving_space_capacity)+-
330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
331 +-????????????????????????????????????????????+-
332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
333 +-main alloc space / bump space 1 (capacity_) +-
334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
335 +-????????????????????????????????????????????+-
336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
337 +-main alloc space2 / bump space 2 (capacity_)+-
338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
339 */
340 // We don't have hspace compaction enabled with GSS or CC.
341 if (foreground_collector_type_ == kCollectorTypeGSS ||
342 foreground_collector_type_ == kCollectorTypeCC) {
343 use_homogeneous_space_compaction_for_oom_ = false;
344 }
345 bool support_homogeneous_space_compaction =
346 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
347 use_homogeneous_space_compaction_for_oom_;
348 // We may use the same space the main space for the non moving space if we don't need to compact
349 // from the main space.
350 // This is not the case if we support homogeneous compaction or have a moving background
351 // collector type.
352 bool separate_non_moving_space = is_zygote ||
353 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
354 IsMovingGc(background_collector_type_);
355 if (foreground_collector_type_ == kCollectorTypeGSS) {
356 separate_non_moving_space = false;
357 }
358 std::unique_ptr<MemMap> main_mem_map_1;
359 std::unique_ptr<MemMap> main_mem_map_2;
360
361 // Gross hack to make dex2oat deterministic.
362 if (foreground_collector_type_ == kCollectorTypeMS &&
363 requested_alloc_space_begin == nullptr &&
364 Runtime::Current()->IsAotCompiler()) {
365 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
366 // b/26849108
367 requested_alloc_space_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
368 }
369 uint8_t* request_begin = requested_alloc_space_begin;
370 if (request_begin != nullptr && separate_non_moving_space) {
371 request_begin += non_moving_space_capacity;
372 }
373 std::string error_str;
374 std::unique_ptr<MemMap> non_moving_space_mem_map;
375 if (separate_non_moving_space) {
376 ScopedTrace trace2("Create separate non moving space");
377 // If we are the zygote, the non moving space becomes the zygote space when we run
378 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
379 // rename the mem map later.
380 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
381 // Reserve the non moving mem map before the other two since it needs to be at a specific
382 // address.
383 non_moving_space_mem_map.reset(
384 MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
385 non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
386 &error_str));
387 CHECK(non_moving_space_mem_map != nullptr) << error_str;
388 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
389 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
390 }
391 // Attempt to create 2 mem maps at or after the requested begin.
392 if (foreground_collector_type_ != kCollectorTypeCC) {
393 ScopedTrace trace2("Create main mem map");
394 if (separate_non_moving_space || !is_zygote) {
395 main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0],
396 request_begin,
397 capacity_,
398 &error_str));
399 } else {
400 // If no separate non-moving space and we are the zygote, the main space must come right
401 // after the image space to avoid a gap. This is required since we want the zygote space to
402 // be adjacent to the image space.
403 main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
404 PROT_READ | PROT_WRITE, true, false,
405 &error_str));
406 }
407 CHECK(main_mem_map_1.get() != nullptr) << error_str;
408 }
409 if (support_homogeneous_space_compaction ||
410 background_collector_type_ == kCollectorTypeSS ||
411 foreground_collector_type_ == kCollectorTypeSS) {
412 ScopedTrace trace2("Create main mem map 2");
413 main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
414 capacity_, &error_str));
415 CHECK(main_mem_map_2.get() != nullptr) << error_str;
416 }
417
418 // Create the non moving space first so that bitmaps don't take up the address range.
419 if (separate_non_moving_space) {
420 ScopedTrace trace2("Add non moving space");
421 // Non moving space is always dlmalloc since we currently don't have support for multiple
422 // active rosalloc spaces.
423 const size_t size = non_moving_space_mem_map->Size();
424 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
425 non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
426 initial_size, size, size, false);
427 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
428 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
429 << requested_alloc_space_begin;
430 AddSpace(non_moving_space_);
431 }
432 // Create other spaces based on whether or not we have a moving GC.
433 if (foreground_collector_type_ == kCollectorTypeCC) {
434 CHECK(separate_non_moving_space);
435 MemMap* region_space_mem_map = space::RegionSpace::CreateMemMap(kRegionSpaceName,
436 capacity_ * 2,
437 request_begin);
438 CHECK(region_space_mem_map != nullptr) << "No region space mem map";
439 region_space_ = space::RegionSpace::Create(kRegionSpaceName, region_space_mem_map);
440 AddSpace(region_space_);
441 } else if (IsMovingGc(foreground_collector_type_) &&
442 foreground_collector_type_ != kCollectorTypeGSS) {
443 // Create bump pointer spaces.
444 // We only to create the bump pointer if the foreground collector is a compacting GC.
445 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
446 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
447 main_mem_map_1.release());
448 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
449 AddSpace(bump_pointer_space_);
450 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
451 main_mem_map_2.release());
452 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
453 AddSpace(temp_space_);
454 CHECK(separate_non_moving_space);
455 } else {
456 CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
457 CHECK(main_space_ != nullptr);
458 AddSpace(main_space_);
459 if (!separate_non_moving_space) {
460 non_moving_space_ = main_space_;
461 CHECK(!non_moving_space_->CanMoveObjects());
462 }
463 if (foreground_collector_type_ == kCollectorTypeGSS) {
464 CHECK_EQ(foreground_collector_type_, background_collector_type_);
465 // Create bump pointer spaces instead of a backup space.
466 main_mem_map_2.release();
467 bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
468 kGSSBumpPointerSpaceCapacity, nullptr);
469 CHECK(bump_pointer_space_ != nullptr);
470 AddSpace(bump_pointer_space_);
471 temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
472 kGSSBumpPointerSpaceCapacity, nullptr);
473 CHECK(temp_space_ != nullptr);
474 AddSpace(temp_space_);
475 } else if (main_mem_map_2.get() != nullptr) {
476 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
477 main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
478 growth_limit_, capacity_, name, true));
479 CHECK(main_space_backup_.get() != nullptr);
480 // Add the space so its accounted for in the heap_begin and heap_end.
481 AddSpace(main_space_backup_.get());
482 }
483 }
484 CHECK(non_moving_space_ != nullptr);
485 CHECK(!non_moving_space_->CanMoveObjects());
486 // Allocate the large object space.
487 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
488 large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
489 capacity_);
490 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
491 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
492 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
493 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
494 } else {
495 // Disable the large object space by making the cutoff excessively large.
496 large_object_threshold_ = std::numeric_limits<size_t>::max();
497 large_object_space_ = nullptr;
498 }
499 if (large_object_space_ != nullptr) {
500 AddSpace(large_object_space_);
501 }
502 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
503 CHECK(!continuous_spaces_.empty());
504 // Relies on the spaces being sorted.
505 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
506 uint8_t* heap_end = continuous_spaces_.back()->Limit();
507 size_t heap_capacity = heap_end - heap_begin;
508 // Remove the main backup space since it slows down the GC to have unused extra spaces.
509 // TODO: Avoid needing to do this.
510 if (main_space_backup_.get() != nullptr) {
511 RemoveSpace(main_space_backup_.get());
512 }
513 // Allocate the card table.
514 // We currently don't support dynamically resizing the card table.
515 // Since we don't know where in the low_4gb the app image will be located, make the card table
516 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
517 UNUSED(heap_capacity);
518 // Start at 64 KB, we can be sure there are no spaces mapped this low since the address range is
519 // reserved by the kernel.
520 static constexpr size_t kMinHeapAddress = 4 * KB;
521 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
522 4 * GB - kMinHeapAddress));
523 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
524 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
525 rb_table_.reset(new accounting::ReadBarrierTable());
526 DCHECK(rb_table_->IsAllCleared());
527 }
528 if (HasBootImageSpace()) {
529 // Don't add the image mod union table if we are running without an image, this can crash if
530 // we use the CardCache implementation.
531 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
532 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
533 "Image mod-union table", this, image_space);
534 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
535 AddModUnionTable(mod_union_table);
536 }
537 }
538 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
539 accounting::RememberedSet* non_moving_space_rem_set =
540 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
541 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
542 AddRememberedSet(non_moving_space_rem_set);
543 }
544 // TODO: Count objects in the image space here?
545 num_bytes_allocated_.StoreRelaxed(0);
546 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
547 kDefaultMarkStackSize));
548 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
549 allocation_stack_.reset(accounting::ObjectStack::Create(
550 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
551 live_stack_.reset(accounting::ObjectStack::Create(
552 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
553 // It's still too early to take a lock because there are no threads yet, but we can create locks
554 // now. We don't create it earlier to make it clear that you can't use locks during heap
555 // initialization.
556 gc_complete_lock_ = new Mutex("GC complete lock");
557 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
558 *gc_complete_lock_));
559 native_blocking_gc_lock_ = new Mutex("Native blocking GC lock");
560 native_blocking_gc_cond_.reset(new ConditionVariable("Native blocking GC condition variable",
561 *native_blocking_gc_lock_));
562 native_blocking_gc_is_assigned_ = false;
563 native_blocking_gc_in_progress_ = false;
564 native_blocking_gcs_finished_ = 0;
565
566 thread_flip_lock_ = new Mutex("GC thread flip lock");
567 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
568 *thread_flip_lock_));
569 task_processor_.reset(new TaskProcessor());
570 reference_processor_.reset(new ReferenceProcessor());
571 pending_task_lock_ = new Mutex("Pending task lock");
572 if (ignore_max_footprint_) {
573 SetIdealFootprint(std::numeric_limits<size_t>::max());
574 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
575 }
576 CHECK_NE(max_allowed_footprint_, 0U);
577 // Create our garbage collectors.
578 for (size_t i = 0; i < 2; ++i) {
579 const bool concurrent = i != 0;
580 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
581 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
582 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
583 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
584 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
585 }
586 }
587 if (kMovingCollector) {
588 if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
589 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
590 use_homogeneous_space_compaction_for_oom_) {
591 // TODO: Clean this up.
592 const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
593 semi_space_collector_ = new collector::SemiSpace(this, generational,
594 generational ? "generational" : "");
595 garbage_collectors_.push_back(semi_space_collector_);
596 }
597 if (MayUseCollector(kCollectorTypeCC)) {
598 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
599 "",
600 measure_gc_performance);
601 DCHECK(region_space_ != nullptr);
602 concurrent_copying_collector_->SetRegionSpace(region_space_);
603 garbage_collectors_.push_back(concurrent_copying_collector_);
604 }
605 if (MayUseCollector(kCollectorTypeMC)) {
606 mark_compact_collector_ = new collector::MarkCompact(this);
607 garbage_collectors_.push_back(mark_compact_collector_);
608 }
609 }
610 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
611 (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
612 // Check that there's no gap between the image space and the non moving space so that the
613 // immune region won't break (eg. due to a large object allocated in the gap). This is only
614 // required when we're the zygote or using GSS.
615 // Space with smallest Begin().
616 space::ImageSpace* first_space = nullptr;
617 for (space::ImageSpace* space : boot_image_spaces_) {
618 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
619 first_space = space;
620 }
621 }
622 bool no_gap = MemMap::CheckNoGaps(first_space->GetMemMap(), non_moving_space_->GetMemMap());
623 if (!no_gap) {
624 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
625 MemMap::DumpMaps(LOG_STREAM(ERROR), true);
626 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
627 }
628 }
629 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
630 if (gc_stress_mode_) {
631 backtrace_lock_ = new Mutex("GC complete lock");
632 }
633 if (is_running_on_memory_tool_ || gc_stress_mode_) {
634 instrumentation->InstrumentQuickAllocEntryPoints();
635 }
636 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
637 LOG(INFO) << "Heap() exiting";
638 }
639 }
640
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)641 MemMap* Heap::MapAnonymousPreferredAddress(const char* name,
642 uint8_t* request_begin,
643 size_t capacity,
644 std::string* out_error_str) {
645 while (true) {
646 MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
647 PROT_READ | PROT_WRITE, true, false, out_error_str);
648 if (map != nullptr || request_begin == nullptr) {
649 return map;
650 }
651 // Retry a second time with no specified request begin.
652 request_begin = nullptr;
653 }
654 }
655
MayUseCollector(CollectorType type) const656 bool Heap::MayUseCollector(CollectorType type) const {
657 return foreground_collector_type_ == type || background_collector_type_ == type;
658 }
659
CreateMallocSpaceFromMemMap(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)660 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map,
661 size_t initial_size,
662 size_t growth_limit,
663 size_t capacity,
664 const char* name,
665 bool can_move_objects) {
666 space::MallocSpace* malloc_space = nullptr;
667 if (kUseRosAlloc) {
668 // Create rosalloc space.
669 malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
670 initial_size, growth_limit, capacity,
671 low_memory_mode_, can_move_objects);
672 } else {
673 malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
674 initial_size, growth_limit, capacity,
675 can_move_objects);
676 }
677 if (collector::SemiSpace::kUseRememberedSet) {
678 accounting::RememberedSet* rem_set =
679 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
680 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
681 AddRememberedSet(rem_set);
682 }
683 CHECK(malloc_space != nullptr) << "Failed to create " << name;
684 malloc_space->SetFootprintLimit(malloc_space->Capacity());
685 return malloc_space;
686 }
687
CreateMainMallocSpace(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity)688 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
689 size_t capacity) {
690 // Is background compaction is enabled?
691 bool can_move_objects = IsMovingGc(background_collector_type_) !=
692 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
693 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
694 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
695 // from the main space to the zygote space. If background compaction is enabled, always pass in
696 // that we can move objets.
697 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
698 // After the zygote we want this to be false if we don't have background compaction enabled so
699 // that getting primitive array elements is faster.
700 // We never have homogeneous compaction with GSS and don't need a space with movable objects.
701 can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
702 }
703 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
704 RemoveRememberedSet(main_space_);
705 }
706 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
707 main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
708 can_move_objects);
709 SetSpaceAsDefault(main_space_);
710 VLOG(heap) << "Created main space " << main_space_;
711 }
712
ChangeAllocator(AllocatorType allocator)713 void Heap::ChangeAllocator(AllocatorType allocator) {
714 if (current_allocator_ != allocator) {
715 // These two allocators are only used internally and don't have any entrypoints.
716 CHECK_NE(allocator, kAllocatorTypeLOS);
717 CHECK_NE(allocator, kAllocatorTypeNonMoving);
718 current_allocator_ = allocator;
719 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
720 SetQuickAllocEntryPointsAllocator(current_allocator_);
721 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
722 }
723 }
724
DisableMovingGc()725 void Heap::DisableMovingGc() {
726 CHECK(!kUseReadBarrier);
727 if (IsMovingGc(foreground_collector_type_)) {
728 foreground_collector_type_ = kCollectorTypeCMS;
729 }
730 if (IsMovingGc(background_collector_type_)) {
731 background_collector_type_ = foreground_collector_type_;
732 }
733 TransitionCollector(foreground_collector_type_);
734 Thread* const self = Thread::Current();
735 ScopedThreadStateChange tsc(self, kSuspended);
736 ScopedSuspendAll ssa(__FUNCTION__);
737 // Something may have caused the transition to fail.
738 if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
739 CHECK(main_space_ != nullptr);
740 // The allocation stack may have non movable objects in it. We need to flush it since the GC
741 // can't only handle marking allocation stack objects of one non moving space and one main
742 // space.
743 {
744 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
745 FlushAllocStack();
746 }
747 main_space_->DisableMovingObjects();
748 non_moving_space_ = main_space_;
749 CHECK(!non_moving_space_->CanMoveObjects());
750 }
751 }
752
IsCompilingBoot() const753 bool Heap::IsCompilingBoot() const {
754 if (!Runtime::Current()->IsAotCompiler()) {
755 return false;
756 }
757 ScopedObjectAccess soa(Thread::Current());
758 for (const auto& space : continuous_spaces_) {
759 if (space->IsImageSpace() || space->IsZygoteSpace()) {
760 return false;
761 }
762 }
763 return true;
764 }
765
IncrementDisableMovingGC(Thread * self)766 void Heap::IncrementDisableMovingGC(Thread* self) {
767 // Need to do this holding the lock to prevent races where the GC is about to run / running when
768 // we attempt to disable it.
769 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
770 MutexLock mu(self, *gc_complete_lock_);
771 ++disable_moving_gc_count_;
772 if (IsMovingGc(collector_type_running_)) {
773 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
774 }
775 }
776
DecrementDisableMovingGC(Thread * self)777 void Heap::DecrementDisableMovingGC(Thread* self) {
778 MutexLock mu(self, *gc_complete_lock_);
779 CHECK_GT(disable_moving_gc_count_, 0U);
780 --disable_moving_gc_count_;
781 }
782
IncrementDisableThreadFlip(Thread * self)783 void Heap::IncrementDisableThreadFlip(Thread* self) {
784 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
785 CHECK(kUseReadBarrier);
786 bool is_nested = self->GetDisableThreadFlipCount() > 0;
787 self->IncrementDisableThreadFlipCount();
788 if (is_nested) {
789 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
790 // counter. The global counter is incremented only once for a thread for the outermost enter.
791 return;
792 }
793 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
794 MutexLock mu(self, *thread_flip_lock_);
795 bool has_waited = false;
796 uint64_t wait_start = NanoTime();
797 if (thread_flip_running_) {
798 ATRACE_BEGIN("IncrementDisableThreadFlip");
799 while (thread_flip_running_) {
800 has_waited = true;
801 thread_flip_cond_->Wait(self);
802 }
803 ATRACE_END();
804 }
805 ++disable_thread_flip_count_;
806 if (has_waited) {
807 uint64_t wait_time = NanoTime() - wait_start;
808 total_wait_time_ += wait_time;
809 if (wait_time > long_pause_log_threshold_) {
810 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
811 }
812 }
813 }
814
DecrementDisableThreadFlip(Thread * self)815 void Heap::DecrementDisableThreadFlip(Thread* self) {
816 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
817 // the GC waiting before doing a thread flip.
818 CHECK(kUseReadBarrier);
819 self->DecrementDisableThreadFlipCount();
820 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
821 if (!is_outermost) {
822 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
823 // The global counter is decremented only once for a thread for the outermost exit.
824 return;
825 }
826 MutexLock mu(self, *thread_flip_lock_);
827 CHECK_GT(disable_thread_flip_count_, 0U);
828 --disable_thread_flip_count_;
829 if (disable_thread_flip_count_ == 0) {
830 // Potentially notify the GC thread blocking to begin a thread flip.
831 thread_flip_cond_->Broadcast(self);
832 }
833 }
834
ThreadFlipBegin(Thread * self)835 void Heap::ThreadFlipBegin(Thread* self) {
836 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
837 // > 0, block. Otherwise, go ahead.
838 CHECK(kUseReadBarrier);
839 ScopedThreadStateChange tsc(self, kWaitingForGcThreadFlip);
840 MutexLock mu(self, *thread_flip_lock_);
841 bool has_waited = false;
842 uint64_t wait_start = NanoTime();
843 CHECK(!thread_flip_running_);
844 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
845 // GC. This like a writer preference of a reader-writer lock.
846 thread_flip_running_ = true;
847 while (disable_thread_flip_count_ > 0) {
848 has_waited = true;
849 thread_flip_cond_->Wait(self);
850 }
851 if (has_waited) {
852 uint64_t wait_time = NanoTime() - wait_start;
853 total_wait_time_ += wait_time;
854 if (wait_time > long_pause_log_threshold_) {
855 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
856 }
857 }
858 }
859
ThreadFlipEnd(Thread * self)860 void Heap::ThreadFlipEnd(Thread* self) {
861 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
862 // waiting before doing a JNI critical.
863 CHECK(kUseReadBarrier);
864 MutexLock mu(self, *thread_flip_lock_);
865 CHECK(thread_flip_running_);
866 thread_flip_running_ = false;
867 // Potentially notify mutator threads blocking to enter a JNI critical section.
868 thread_flip_cond_->Broadcast(self);
869 }
870
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)871 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
872 if (old_process_state != new_process_state) {
873 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
874 for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
875 // Start at index 1 to avoid "is always false" warning.
876 // Have iteration 1 always transition the collector.
877 TransitionCollector((((i & 1) == 1) == jank_perceptible)
878 ? foreground_collector_type_
879 : background_collector_type_);
880 usleep(kCollectorTransitionStressWait);
881 }
882 if (jank_perceptible) {
883 // Transition back to foreground right away to prevent jank.
884 RequestCollectorTransition(foreground_collector_type_, 0);
885 } else {
886 // Don't delay for debug builds since we may want to stress test the GC.
887 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
888 // special handling which does a homogenous space compaction once but then doesn't transition
889 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
890 // transition the collector.
891 RequestCollectorTransition(background_collector_type_,
892 kIsDebugBuild ? 0 : kCollectorTransitionWait);
893 }
894 }
895 }
896
CreateThreadPool()897 void Heap::CreateThreadPool() {
898 const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
899 if (num_threads != 0) {
900 thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
901 }
902 }
903
MarkAllocStackAsLive(accounting::ObjectStack * stack)904 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
905 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
906 space::ContinuousSpace* space2 = non_moving_space_;
907 // TODO: Generalize this to n bitmaps?
908 CHECK(space1 != nullptr);
909 CHECK(space2 != nullptr);
910 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
911 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
912 stack);
913 }
914
DeleteThreadPool()915 void Heap::DeleteThreadPool() {
916 thread_pool_.reset(nullptr);
917 }
918
AddSpace(space::Space * space)919 void Heap::AddSpace(space::Space* space) {
920 CHECK(space != nullptr);
921 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
922 if (space->IsContinuousSpace()) {
923 DCHECK(!space->IsDiscontinuousSpace());
924 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
925 // Continuous spaces don't necessarily have bitmaps.
926 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
927 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
928 // The region space bitmap is not added since VisitObjects visits the region space objects with
929 // special handling.
930 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
931 CHECK(mark_bitmap != nullptr);
932 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
933 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
934 }
935 continuous_spaces_.push_back(continuous_space);
936 // Ensure that spaces remain sorted in increasing order of start address.
937 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
938 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
939 return a->Begin() < b->Begin();
940 });
941 } else {
942 CHECK(space->IsDiscontinuousSpace());
943 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
944 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
945 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
946 discontinuous_spaces_.push_back(discontinuous_space);
947 }
948 if (space->IsAllocSpace()) {
949 alloc_spaces_.push_back(space->AsAllocSpace());
950 }
951 }
952
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)953 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
954 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
955 if (continuous_space->IsDlMallocSpace()) {
956 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
957 } else if (continuous_space->IsRosAllocSpace()) {
958 rosalloc_space_ = continuous_space->AsRosAllocSpace();
959 }
960 }
961
RemoveSpace(space::Space * space)962 void Heap::RemoveSpace(space::Space* space) {
963 DCHECK(space != nullptr);
964 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
965 if (space->IsContinuousSpace()) {
966 DCHECK(!space->IsDiscontinuousSpace());
967 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
968 // Continuous spaces don't necessarily have bitmaps.
969 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
970 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
971 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
972 DCHECK(mark_bitmap != nullptr);
973 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
974 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
975 }
976 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
977 DCHECK(it != continuous_spaces_.end());
978 continuous_spaces_.erase(it);
979 } else {
980 DCHECK(space->IsDiscontinuousSpace());
981 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
982 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
983 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
984 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
985 discontinuous_space);
986 DCHECK(it != discontinuous_spaces_.end());
987 discontinuous_spaces_.erase(it);
988 }
989 if (space->IsAllocSpace()) {
990 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
991 DCHECK(it != alloc_spaces_.end());
992 alloc_spaces_.erase(it);
993 }
994 }
995
DumpGcPerformanceInfo(std::ostream & os)996 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
997 // Dump cumulative timings.
998 os << "Dumping cumulative Gc timings\n";
999 uint64_t total_duration = 0;
1000 // Dump cumulative loggers for each GC type.
1001 uint64_t total_paused_time = 0;
1002 for (auto& collector : garbage_collectors_) {
1003 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1004 total_paused_time += collector->GetTotalPausedTimeNs();
1005 collector->DumpPerformanceInfo(os);
1006 }
1007 if (total_duration != 0) {
1008 const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
1009 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1010 os << "Mean GC size throughput: "
1011 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
1012 os << "Mean GC object throughput: "
1013 << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
1014 }
1015 uint64_t total_objects_allocated = GetObjectsAllocatedEver();
1016 os << "Total number of allocations " << total_objects_allocated << "\n";
1017 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1018 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1019 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1020 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1021 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1022 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1023 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1024 if (HasZygoteSpace()) {
1025 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1026 }
1027 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1028 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1029 os << "Total GC count: " << GetGcCount() << "\n";
1030 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1031 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1032 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1033
1034 {
1035 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1036 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1037 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1038 gc_count_rate_histogram_.DumpBins(os);
1039 os << "\n";
1040 }
1041 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1042 os << "Histogram of blocking GC count per "
1043 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1044 blocking_gc_count_rate_histogram_.DumpBins(os);
1045 os << "\n";
1046 }
1047 }
1048
1049 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1050 rosalloc_space_->DumpStats(os);
1051 }
1052
1053 os << "Registered native bytes allocated: "
1054 << old_native_bytes_allocated_.LoadRelaxed() + new_native_bytes_allocated_.LoadRelaxed()
1055 << "\n";
1056
1057 BaseMutex::DumpAll(os);
1058 }
1059
ResetGcPerformanceInfo()1060 void Heap::ResetGcPerformanceInfo() {
1061 for (auto& collector : garbage_collectors_) {
1062 collector->ResetMeasurements();
1063 }
1064 total_bytes_freed_ever_ = 0;
1065 total_objects_freed_ever_ = 0;
1066 total_wait_time_ = 0;
1067 blocking_gc_count_ = 0;
1068 blocking_gc_time_ = 0;
1069 gc_count_last_window_ = 0;
1070 blocking_gc_count_last_window_ = 0;
1071 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1072 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1073 {
1074 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1075 gc_count_rate_histogram_.Reset();
1076 blocking_gc_count_rate_histogram_.Reset();
1077 }
1078 }
1079
GetGcCount() const1080 uint64_t Heap::GetGcCount() const {
1081 uint64_t gc_count = 0U;
1082 for (auto& collector : garbage_collectors_) {
1083 gc_count += collector->GetCumulativeTimings().GetIterations();
1084 }
1085 return gc_count;
1086 }
1087
GetGcTime() const1088 uint64_t Heap::GetGcTime() const {
1089 uint64_t gc_time = 0U;
1090 for (auto& collector : garbage_collectors_) {
1091 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1092 }
1093 return gc_time;
1094 }
1095
GetBlockingGcCount() const1096 uint64_t Heap::GetBlockingGcCount() const {
1097 return blocking_gc_count_;
1098 }
1099
GetBlockingGcTime() const1100 uint64_t Heap::GetBlockingGcTime() const {
1101 return blocking_gc_time_;
1102 }
1103
DumpGcCountRateHistogram(std::ostream & os) const1104 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1105 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1106 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1107 gc_count_rate_histogram_.DumpBins(os);
1108 }
1109 }
1110
DumpBlockingGcCountRateHistogram(std::ostream & os) const1111 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1112 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1113 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1114 blocking_gc_count_rate_histogram_.DumpBins(os);
1115 }
1116 }
1117
1118 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1119 static inline AllocationListener* GetAndOverwriteAllocationListener(
1120 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1121 AllocationListener* old;
1122 do {
1123 old = storage->LoadSequentiallyConsistent();
1124 } while (!storage->CompareExchangeStrongSequentiallyConsistent(old, new_value));
1125 return old;
1126 }
1127
~Heap()1128 Heap::~Heap() {
1129 VLOG(heap) << "Starting ~Heap()";
1130 STLDeleteElements(&garbage_collectors_);
1131 // If we don't reset then the mark stack complains in its destructor.
1132 allocation_stack_->Reset();
1133 allocation_records_.reset();
1134 live_stack_->Reset();
1135 STLDeleteValues(&mod_union_tables_);
1136 STLDeleteValues(&remembered_sets_);
1137 STLDeleteElements(&continuous_spaces_);
1138 STLDeleteElements(&discontinuous_spaces_);
1139 delete gc_complete_lock_;
1140 delete native_blocking_gc_lock_;
1141 delete thread_flip_lock_;
1142 delete pending_task_lock_;
1143 delete backtrace_lock_;
1144 if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
1145 LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
1146 << " total=" << seen_backtrace_count_.LoadRelaxed() +
1147 unique_backtrace_count_.LoadRelaxed();
1148 }
1149
1150 VLOG(heap) << "Finished ~Heap()";
1151 }
1152
1153
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1154 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1155 for (const auto& space : continuous_spaces_) {
1156 if (space->Contains(addr)) {
1157 return space;
1158 }
1159 }
1160 return nullptr;
1161 }
1162
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1163 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1164 bool fail_ok) const {
1165 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1166 if (space != nullptr) {
1167 return space;
1168 }
1169 if (!fail_ok) {
1170 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1171 }
1172 return nullptr;
1173 }
1174
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1175 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1176 bool fail_ok) const {
1177 for (const auto& space : discontinuous_spaces_) {
1178 if (space->Contains(obj.Ptr())) {
1179 return space;
1180 }
1181 }
1182 if (!fail_ok) {
1183 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1184 }
1185 return nullptr;
1186 }
1187
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1188 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1189 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1190 if (result != nullptr) {
1191 return result;
1192 }
1193 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1194 }
1195
FindSpaceFromAddress(const void * addr) const1196 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1197 for (const auto& space : continuous_spaces_) {
1198 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1199 return space;
1200 }
1201 }
1202 for (const auto& space : discontinuous_spaces_) {
1203 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1204 return space;
1205 }
1206 }
1207 return nullptr;
1208 }
1209
1210
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1211 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1212 // If we're in a stack overflow, do not create a new exception. It would require running the
1213 // constructor, which will of course still be in a stack overflow.
1214 if (self->IsHandlingStackOverflow()) {
1215 self->SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1216 return;
1217 }
1218
1219 std::ostringstream oss;
1220 size_t total_bytes_free = GetFreeMemory();
1221 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1222 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1223 << " max allowed footprint " << max_allowed_footprint_ << ", growth limit "
1224 << growth_limit_;
1225 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1226 if (total_bytes_free >= byte_count) {
1227 space::AllocSpace* space = nullptr;
1228 if (allocator_type == kAllocatorTypeNonMoving) {
1229 space = non_moving_space_;
1230 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1231 allocator_type == kAllocatorTypeDlMalloc) {
1232 space = main_space_;
1233 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1234 allocator_type == kAllocatorTypeTLAB) {
1235 space = bump_pointer_space_;
1236 } else if (allocator_type == kAllocatorTypeRegion ||
1237 allocator_type == kAllocatorTypeRegionTLAB) {
1238 space = region_space_;
1239 }
1240 if (space != nullptr) {
1241 space->LogFragmentationAllocFailure(oss, byte_count);
1242 }
1243 }
1244 self->ThrowOutOfMemoryError(oss.str().c_str());
1245 }
1246
DoPendingCollectorTransition()1247 void Heap::DoPendingCollectorTransition() {
1248 CollectorType desired_collector_type = desired_collector_type_;
1249 // Launch homogeneous space compaction if it is desired.
1250 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1251 if (!CareAboutPauseTimes()) {
1252 PerformHomogeneousSpaceCompact();
1253 } else {
1254 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1255 }
1256 } else if (desired_collector_type == kCollectorTypeCCBackground) {
1257 DCHECK(kUseReadBarrier);
1258 if (!CareAboutPauseTimes()) {
1259 // Invoke CC full compaction.
1260 CollectGarbageInternal(collector::kGcTypeFull,
1261 kGcCauseCollectorTransition,
1262 /*clear_soft_references*/false);
1263 } else {
1264 VLOG(gc) << "CC background compaction ignored due to jank perceptible process state";
1265 }
1266 } else {
1267 TransitionCollector(desired_collector_type);
1268 }
1269 }
1270
Trim(Thread * self)1271 void Heap::Trim(Thread* self) {
1272 Runtime* const runtime = Runtime::Current();
1273 if (!CareAboutPauseTimes()) {
1274 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1275 // about pauses.
1276 ScopedTrace trace("Deflating monitors");
1277 // Avoid race conditions on the lock word for CC.
1278 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1279 ScopedSuspendAll ssa(__FUNCTION__);
1280 uint64_t start_time = NanoTime();
1281 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1282 VLOG(heap) << "Deflating " << count << " monitors took "
1283 << PrettyDuration(NanoTime() - start_time);
1284 }
1285 TrimIndirectReferenceTables(self);
1286 TrimSpaces(self);
1287 // Trim arenas that may have been used by JIT or verifier.
1288 runtime->GetArenaPool()->TrimMaps();
1289 }
1290
1291 class TrimIndirectReferenceTableClosure : public Closure {
1292 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1293 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1294 }
Run(Thread * thread)1295 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1296 thread->GetJniEnv()->locals.Trim();
1297 // If thread is a running mutator, then act on behalf of the trim thread.
1298 // See the code in ThreadList::RunCheckpoint.
1299 barrier_->Pass(Thread::Current());
1300 }
1301
1302 private:
1303 Barrier* const barrier_;
1304 };
1305
TrimIndirectReferenceTables(Thread * self)1306 void Heap::TrimIndirectReferenceTables(Thread* self) {
1307 ScopedObjectAccess soa(self);
1308 ScopedTrace trace(__PRETTY_FUNCTION__);
1309 JavaVMExt* vm = soa.Vm();
1310 // Trim globals indirect reference table.
1311 vm->TrimGlobals();
1312 // Trim locals indirect reference tables.
1313 Barrier barrier(0);
1314 TrimIndirectReferenceTableClosure closure(&barrier);
1315 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1316 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1317 if (barrier_count != 0) {
1318 barrier.Increment(self, barrier_count);
1319 }
1320 }
1321
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1322 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1323 // Need to do this before acquiring the locks since we don't want to get suspended while
1324 // holding any locks.
1325 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1326 MutexLock mu(self, *gc_complete_lock_);
1327 // Ensure there is only one GC at a time.
1328 WaitForGcToCompleteLocked(cause, self);
1329 collector_type_running_ = collector_type;
1330 last_gc_cause_ = cause;
1331 thread_running_gc_ = self;
1332 }
1333
TrimSpaces(Thread * self)1334 void Heap::TrimSpaces(Thread* self) {
1335 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1336 // trimming.
1337 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1338 ScopedTrace trace(__PRETTY_FUNCTION__);
1339 const uint64_t start_ns = NanoTime();
1340 // Trim the managed spaces.
1341 uint64_t total_alloc_space_allocated = 0;
1342 uint64_t total_alloc_space_size = 0;
1343 uint64_t managed_reclaimed = 0;
1344 {
1345 ScopedObjectAccess soa(self);
1346 for (const auto& space : continuous_spaces_) {
1347 if (space->IsMallocSpace()) {
1348 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1349 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1350 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1351 // for a long period of time.
1352 managed_reclaimed += malloc_space->Trim();
1353 }
1354 total_alloc_space_size += malloc_space->Size();
1355 }
1356 }
1357 }
1358 total_alloc_space_allocated = GetBytesAllocated();
1359 if (large_object_space_ != nullptr) {
1360 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1361 }
1362 if (bump_pointer_space_ != nullptr) {
1363 total_alloc_space_allocated -= bump_pointer_space_->Size();
1364 }
1365 if (region_space_ != nullptr) {
1366 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1367 }
1368 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1369 static_cast<float>(total_alloc_space_size);
1370 uint64_t gc_heap_end_ns = NanoTime();
1371 // We never move things in the native heap, so we can finish the GC at this point.
1372 FinishGC(self, collector::kGcTypeNone);
1373
1374 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1375 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1376 << static_cast<int>(100 * managed_utilization) << "%.";
1377 }
1378
IsValidObjectAddress(const void * addr) const1379 bool Heap::IsValidObjectAddress(const void* addr) const {
1380 if (addr == nullptr) {
1381 return true;
1382 }
1383 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1384 }
1385
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1386 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1387 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1388 }
1389
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1390 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1391 bool search_allocation_stack,
1392 bool search_live_stack,
1393 bool sorted) {
1394 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1395 return false;
1396 }
1397 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1398 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1399 if (obj == klass) {
1400 // This case happens for java.lang.Class.
1401 return true;
1402 }
1403 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1404 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1405 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1406 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1407 return temp_space_->Contains(obj.Ptr());
1408 }
1409 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1410 return true;
1411 }
1412 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1413 space::DiscontinuousSpace* d_space = nullptr;
1414 if (c_space != nullptr) {
1415 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1416 return true;
1417 }
1418 } else {
1419 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1420 if (d_space != nullptr) {
1421 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1422 return true;
1423 }
1424 }
1425 }
1426 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1427 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1428 if (i > 0) {
1429 NanoSleep(MsToNs(10));
1430 }
1431 if (search_allocation_stack) {
1432 if (sorted) {
1433 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1434 return true;
1435 }
1436 } else if (allocation_stack_->Contains(obj.Ptr())) {
1437 return true;
1438 }
1439 }
1440
1441 if (search_live_stack) {
1442 if (sorted) {
1443 if (live_stack_->ContainsSorted(obj.Ptr())) {
1444 return true;
1445 }
1446 } else if (live_stack_->Contains(obj.Ptr())) {
1447 return true;
1448 }
1449 }
1450 }
1451 // We need to check the bitmaps again since there is a race where we mark something as live and
1452 // then clear the stack containing it.
1453 if (c_space != nullptr) {
1454 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1455 return true;
1456 }
1457 } else {
1458 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1459 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1460 return true;
1461 }
1462 }
1463 return false;
1464 }
1465
DumpSpaces() const1466 std::string Heap::DumpSpaces() const {
1467 std::ostringstream oss;
1468 DumpSpaces(oss);
1469 return oss.str();
1470 }
1471
DumpSpaces(std::ostream & stream) const1472 void Heap::DumpSpaces(std::ostream& stream) const {
1473 for (const auto& space : continuous_spaces_) {
1474 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1475 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1476 stream << space << " " << *space << "\n";
1477 if (live_bitmap != nullptr) {
1478 stream << live_bitmap << " " << *live_bitmap << "\n";
1479 }
1480 if (mark_bitmap != nullptr) {
1481 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1482 }
1483 }
1484 for (const auto& space : discontinuous_spaces_) {
1485 stream << space << " " << *space << "\n";
1486 }
1487 }
1488
VerifyObjectBody(ObjPtr<mirror::Object> obj)1489 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1490 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1491 return;
1492 }
1493
1494 // Ignore early dawn of the universe verifications.
1495 if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1496 return;
1497 }
1498 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1499 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1500 CHECK(c != nullptr) << "Null class in object " << obj;
1501 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1502 CHECK(VerifyClassClass(c));
1503
1504 if (verify_object_mode_ > kVerifyObjectModeFast) {
1505 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1506 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1507 }
1508 }
1509
VerifyHeap()1510 void Heap::VerifyHeap() {
1511 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1512 auto visitor = [&](mirror::Object* obj) {
1513 VerifyObjectBody(obj);
1514 };
1515 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1516 // NO_THREAD_SAFETY_ANALYSIS.
1517 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1518 GetLiveBitmap()->Visit(visitor);
1519 };
1520 no_thread_safety_analysis();
1521 }
1522
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1523 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1524 // Use signed comparison since freed bytes can be negative when background compaction foreground
1525 // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1526 // free list backed space typically increasing memory footprint due to padding and binning.
1527 DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1528 // Note: This relies on 2s complement for handling negative freed_bytes.
1529 num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1530 if (Runtime::Current()->HasStatsEnabled()) {
1531 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1532 thread_stats->freed_objects += freed_objects;
1533 thread_stats->freed_bytes += freed_bytes;
1534 // TODO: Do this concurrently.
1535 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1536 global_stats->freed_objects += freed_objects;
1537 global_stats->freed_bytes += freed_bytes;
1538 }
1539 }
1540
RecordFreeRevoke()1541 void Heap::RecordFreeRevoke() {
1542 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1543 // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1544 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1545 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1546 size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1547 CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1548 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1549 CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1550 bytes_freed) << "num_bytes_allocated_ underflow";
1551 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1552 }
1553
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1554 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1555 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1556 return rosalloc_space_;
1557 }
1558 for (const auto& space : continuous_spaces_) {
1559 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1560 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1561 return space->AsContinuousSpace()->AsRosAllocSpace();
1562 }
1563 }
1564 }
1565 return nullptr;
1566 }
1567
EntrypointsInstrumented()1568 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1569 instrumentation::Instrumentation* const instrumentation =
1570 Runtime::Current()->GetInstrumentation();
1571 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1572 }
1573
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1574 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1575 AllocatorType allocator,
1576 bool instrumented,
1577 size_t alloc_size,
1578 size_t* bytes_allocated,
1579 size_t* usable_size,
1580 size_t* bytes_tl_bulk_allocated,
1581 ObjPtr<mirror::Class>* klass) {
1582 bool was_default_allocator = allocator == GetCurrentAllocator();
1583 // Make sure there is no pending exception since we may need to throw an OOME.
1584 self->AssertNoPendingException();
1585 DCHECK(klass != nullptr);
1586 StackHandleScope<1> hs(self);
1587 HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(klass));
1588 // The allocation failed. If the GC is running, block until it completes, and then retry the
1589 // allocation.
1590 collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1591 // If we were the default allocator but the allocator changed while we were suspended,
1592 // abort the allocation.
1593 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1594 (!instrumented && EntrypointsInstrumented())) {
1595 return nullptr;
1596 }
1597 if (last_gc != collector::kGcTypeNone) {
1598 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1599 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1600 usable_size, bytes_tl_bulk_allocated);
1601 if (ptr != nullptr) {
1602 return ptr;
1603 }
1604 }
1605
1606 collector::GcType tried_type = next_gc_type_;
1607 const bool gc_ran =
1608 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1609 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1610 (!instrumented && EntrypointsInstrumented())) {
1611 return nullptr;
1612 }
1613 if (gc_ran) {
1614 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1615 usable_size, bytes_tl_bulk_allocated);
1616 if (ptr != nullptr) {
1617 return ptr;
1618 }
1619 }
1620
1621 // Loop through our different Gc types and try to Gc until we get enough free memory.
1622 for (collector::GcType gc_type : gc_plan_) {
1623 if (gc_type == tried_type) {
1624 continue;
1625 }
1626 // Attempt to run the collector, if we succeed, re-try the allocation.
1627 const bool plan_gc_ran =
1628 CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1629 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1630 (!instrumented && EntrypointsInstrumented())) {
1631 return nullptr;
1632 }
1633 if (plan_gc_ran) {
1634 // Did we free sufficient memory for the allocation to succeed?
1635 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1636 usable_size, bytes_tl_bulk_allocated);
1637 if (ptr != nullptr) {
1638 return ptr;
1639 }
1640 }
1641 }
1642 // Allocations have failed after GCs; this is an exceptional state.
1643 // Try harder, growing the heap if necessary.
1644 mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1645 usable_size, bytes_tl_bulk_allocated);
1646 if (ptr != nullptr) {
1647 return ptr;
1648 }
1649 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1650 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1651 // VM spec requires that all SoftReferences have been collected and cleared before throwing
1652 // OOME.
1653 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1654 << " allocation";
1655 // TODO: Run finalization, but this may cause more allocations to occur.
1656 // We don't need a WaitForGcToComplete here either.
1657 DCHECK(!gc_plan_.empty());
1658 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1659 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1660 (!instrumented && EntrypointsInstrumented())) {
1661 return nullptr;
1662 }
1663 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1664 bytes_tl_bulk_allocated);
1665 if (ptr == nullptr) {
1666 const uint64_t current_time = NanoTime();
1667 switch (allocator) {
1668 case kAllocatorTypeRosAlloc:
1669 // Fall-through.
1670 case kAllocatorTypeDlMalloc: {
1671 if (use_homogeneous_space_compaction_for_oom_ &&
1672 current_time - last_time_homogeneous_space_compaction_by_oom_ >
1673 min_interval_homogeneous_space_compaction_by_oom_) {
1674 last_time_homogeneous_space_compaction_by_oom_ = current_time;
1675 HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1676 // Thread suspension could have occurred.
1677 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1678 (!instrumented && EntrypointsInstrumented())) {
1679 return nullptr;
1680 }
1681 switch (result) {
1682 case HomogeneousSpaceCompactResult::kSuccess:
1683 // If the allocation succeeded, we delayed an oom.
1684 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1685 usable_size, bytes_tl_bulk_allocated);
1686 if (ptr != nullptr) {
1687 count_delayed_oom_++;
1688 }
1689 break;
1690 case HomogeneousSpaceCompactResult::kErrorReject:
1691 // Reject due to disabled moving GC.
1692 break;
1693 case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1694 // Throw OOM by default.
1695 break;
1696 default: {
1697 UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1698 << static_cast<size_t>(result);
1699 UNREACHABLE();
1700 }
1701 }
1702 // Always print that we ran homogeneous space compation since this can cause jank.
1703 VLOG(heap) << "Ran heap homogeneous space compaction, "
1704 << " requested defragmentation "
1705 << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1706 << " performed defragmentation "
1707 << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1708 << " ignored homogeneous space compaction "
1709 << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1710 << " delayed count = "
1711 << count_delayed_oom_.LoadSequentiallyConsistent();
1712 }
1713 break;
1714 }
1715 case kAllocatorTypeNonMoving: {
1716 if (kUseReadBarrier) {
1717 // DisableMovingGc() isn't compatible with CC.
1718 break;
1719 }
1720 // Try to transition the heap if the allocation failure was due to the space being full.
1721 if (!IsOutOfMemoryOnAllocation(allocator, alloc_size, /*grow*/ false)) {
1722 // If we aren't out of memory then the OOM was probably from the non moving space being
1723 // full. Attempt to disable compaction and turn the main space into a non moving space.
1724 DisableMovingGc();
1725 // Thread suspension could have occurred.
1726 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1727 (!instrumented && EntrypointsInstrumented())) {
1728 return nullptr;
1729 }
1730 // If we are still a moving GC then something must have caused the transition to fail.
1731 if (IsMovingGc(collector_type_)) {
1732 MutexLock mu(self, *gc_complete_lock_);
1733 // If we couldn't disable moving GC, just throw OOME and return null.
1734 LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1735 << disable_moving_gc_count_;
1736 } else {
1737 LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1738 ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1739 usable_size, bytes_tl_bulk_allocated);
1740 }
1741 }
1742 break;
1743 }
1744 default: {
1745 // Do nothing for others allocators.
1746 }
1747 }
1748 }
1749 // If the allocation hasn't succeeded by this point, throw an OOM error.
1750 if (ptr == nullptr) {
1751 ThrowOutOfMemoryError(self, alloc_size, allocator);
1752 }
1753 return ptr;
1754 }
1755
SetTargetHeapUtilization(float target)1756 void Heap::SetTargetHeapUtilization(float target) {
1757 DCHECK_GT(target, 0.0f); // asserted in Java code
1758 DCHECK_LT(target, 1.0f);
1759 target_utilization_ = target;
1760 }
1761
GetObjectsAllocated() const1762 size_t Heap::GetObjectsAllocated() const {
1763 Thread* const self = Thread::Current();
1764 ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1765 // Prevent GC running during GetObjectsALlocated since we may get a checkpoint request that tells
1766 // us to suspend while we are doing SuspendAll. b/35232978
1767 gc::ScopedGCCriticalSection gcs(Thread::Current(),
1768 gc::kGcCauseGetObjectsAllocated,
1769 gc::kCollectorTypeGetObjectsAllocated);
1770 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1771 ScopedSuspendAll ssa(__FUNCTION__);
1772 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1773 size_t total = 0;
1774 for (space::AllocSpace* space : alloc_spaces_) {
1775 total += space->GetObjectsAllocated();
1776 }
1777 return total;
1778 }
1779
GetObjectsAllocatedEver() const1780 uint64_t Heap::GetObjectsAllocatedEver() const {
1781 uint64_t total = GetObjectsFreedEver();
1782 // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1783 if (Thread::Current() != nullptr) {
1784 total += GetObjectsAllocated();
1785 }
1786 return total;
1787 }
1788
GetBytesAllocatedEver() const1789 uint64_t Heap::GetBytesAllocatedEver() const {
1790 return GetBytesFreedEver() + GetBytesAllocated();
1791 }
1792
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)1793 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
1794 bool use_is_assignable_from,
1795 uint64_t* counts) {
1796 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1797 mirror::Class* instance_class = obj->GetClass();
1798 CHECK(instance_class != nullptr);
1799 for (size_t i = 0; i < classes.size(); ++i) {
1800 ObjPtr<mirror::Class> klass = classes[i].Get();
1801 if (use_is_assignable_from) {
1802 if (klass != nullptr && klass->IsAssignableFrom(instance_class)) {
1803 ++counts[i];
1804 }
1805 } else if (instance_class == klass) {
1806 ++counts[i];
1807 }
1808 }
1809 };
1810 VisitObjects(instance_counter);
1811 }
1812
GetInstances(VariableSizedHandleScope & scope,Handle<mirror::Class> h_class,int32_t max_count,std::vector<Handle<mirror::Object>> & instances)1813 void Heap::GetInstances(VariableSizedHandleScope& scope,
1814 Handle<mirror::Class> h_class,
1815 int32_t max_count,
1816 std::vector<Handle<mirror::Object>>& instances) {
1817 DCHECK_GE(max_count, 0);
1818 auto instance_collector = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1819 if (obj->GetClass() == h_class.Get()) {
1820 if (max_count == 0 || instances.size() < static_cast<size_t>(max_count)) {
1821 instances.push_back(scope.NewHandle(obj));
1822 }
1823 }
1824 };
1825 VisitObjects(instance_collector);
1826 }
1827
GetReferringObjects(VariableSizedHandleScope & scope,Handle<mirror::Object> o,int32_t max_count,std::vector<Handle<mirror::Object>> & referring_objects)1828 void Heap::GetReferringObjects(VariableSizedHandleScope& scope,
1829 Handle<mirror::Object> o,
1830 int32_t max_count,
1831 std::vector<Handle<mirror::Object>>& referring_objects) {
1832 class ReferringObjectsFinder {
1833 public:
1834 ReferringObjectsFinder(VariableSizedHandleScope& scope_in,
1835 Handle<mirror::Object> object_in,
1836 int32_t max_count_in,
1837 std::vector<Handle<mirror::Object>>& referring_objects_in)
1838 REQUIRES_SHARED(Locks::mutator_lock_)
1839 : scope_(scope_in),
1840 object_(object_in),
1841 max_count_(max_count_in),
1842 referring_objects_(referring_objects_in) {}
1843
1844 // For Object::VisitReferences.
1845 void operator()(ObjPtr<mirror::Object> obj,
1846 MemberOffset offset,
1847 bool is_static ATTRIBUTE_UNUSED) const
1848 REQUIRES_SHARED(Locks::mutator_lock_) {
1849 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1850 if (ref == object_.Get() && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1851 referring_objects_.push_back(scope_.NewHandle(obj));
1852 }
1853 }
1854
1855 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1856 const {}
1857 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1858
1859 private:
1860 VariableSizedHandleScope& scope_;
1861 Handle<mirror::Object> const object_;
1862 const uint32_t max_count_;
1863 std::vector<Handle<mirror::Object>>& referring_objects_;
1864 DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1865 };
1866 ReferringObjectsFinder finder(scope, o, max_count, referring_objects);
1867 auto referring_objects_finder = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1868 obj->VisitReferences(finder, VoidFunctor());
1869 };
1870 VisitObjects(referring_objects_finder);
1871 }
1872
CollectGarbage(bool clear_soft_references)1873 void Heap::CollectGarbage(bool clear_soft_references) {
1874 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1875 // last GC will not have necessarily been cleared.
1876 CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1877 }
1878
SupportHomogeneousSpaceCompactAndCollectorTransitions() const1879 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
1880 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
1881 foreground_collector_type_ == kCollectorTypeCMS;
1882 }
1883
PerformHomogeneousSpaceCompact()1884 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1885 Thread* self = Thread::Current();
1886 // Inc requested homogeneous space compaction.
1887 count_requested_homogeneous_space_compaction_++;
1888 // Store performed homogeneous space compaction at a new request arrival.
1889 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1890 Locks::mutator_lock_->AssertNotHeld(self);
1891 {
1892 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1893 MutexLock mu(self, *gc_complete_lock_);
1894 // Ensure there is only one GC at a time.
1895 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1896 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1897 // is non zero.
1898 // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1899 // exit.
1900 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1901 !main_space_->CanMoveObjects()) {
1902 return kErrorReject;
1903 }
1904 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
1905 return kErrorUnsupported;
1906 }
1907 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1908 }
1909 if (Runtime::Current()->IsShuttingDown(self)) {
1910 // Don't allow heap transitions to happen if the runtime is shutting down since these can
1911 // cause objects to get finalized.
1912 FinishGC(self, collector::kGcTypeNone);
1913 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1914 }
1915 collector::GarbageCollector* collector;
1916 {
1917 ScopedSuspendAll ssa(__FUNCTION__);
1918 uint64_t start_time = NanoTime();
1919 // Launch compaction.
1920 space::MallocSpace* to_space = main_space_backup_.release();
1921 space::MallocSpace* from_space = main_space_;
1922 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1923 const uint64_t space_size_before_compaction = from_space->Size();
1924 AddSpace(to_space);
1925 // Make sure that we will have enough room to copy.
1926 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1927 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
1928 const uint64_t space_size_after_compaction = to_space->Size();
1929 main_space_ = to_space;
1930 main_space_backup_.reset(from_space);
1931 RemoveSpace(from_space);
1932 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
1933 // Update performed homogeneous space compaction count.
1934 count_performed_homogeneous_space_compaction_++;
1935 // Print statics log and resume all threads.
1936 uint64_t duration = NanoTime() - start_time;
1937 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1938 << PrettySize(space_size_before_compaction) << " -> "
1939 << PrettySize(space_size_after_compaction) << " compact-ratio: "
1940 << std::fixed << static_cast<double>(space_size_after_compaction) /
1941 static_cast<double>(space_size_before_compaction);
1942 }
1943 // Finish GC.
1944 reference_processor_->EnqueueClearedReferences(self);
1945 GrowForUtilization(semi_space_collector_);
1946 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
1947 FinishGC(self, collector::kGcTypeFull);
1948 {
1949 ScopedObjectAccess soa(self);
1950 soa.Vm()->UnloadNativeLibraries();
1951 }
1952 return HomogeneousSpaceCompactResult::kSuccess;
1953 }
1954
TransitionCollector(CollectorType collector_type)1955 void Heap::TransitionCollector(CollectorType collector_type) {
1956 if (collector_type == collector_type_) {
1957 return;
1958 }
1959 // Collector transition must not happen with CC
1960 CHECK(!kUseReadBarrier);
1961 VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1962 << " -> " << static_cast<int>(collector_type);
1963 uint64_t start_time = NanoTime();
1964 uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1965 Runtime* const runtime = Runtime::Current();
1966 Thread* const self = Thread::Current();
1967 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1968 Locks::mutator_lock_->AssertNotHeld(self);
1969 // Busy wait until we can GC (StartGC can fail if we have a non-zero
1970 // compacting_gc_disable_count_, this should rarely occurs).
1971 for (;;) {
1972 {
1973 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1974 MutexLock mu(self, *gc_complete_lock_);
1975 // Ensure there is only one GC at a time.
1976 WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1977 // Currently we only need a heap transition if we switch from a moving collector to a
1978 // non-moving one, or visa versa.
1979 const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1980 // If someone else beat us to it and changed the collector before we could, exit.
1981 // This is safe to do before the suspend all since we set the collector_type_running_ before
1982 // we exit the loop. If another thread attempts to do the heap transition before we exit,
1983 // then it would get blocked on WaitForGcToCompleteLocked.
1984 if (collector_type == collector_type_) {
1985 return;
1986 }
1987 // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1988 if (!copying_transition || disable_moving_gc_count_ == 0) {
1989 // TODO: Not hard code in semi-space collector?
1990 collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1991 break;
1992 }
1993 }
1994 usleep(1000);
1995 }
1996 if (runtime->IsShuttingDown(self)) {
1997 // Don't allow heap transitions to happen if the runtime is shutting down since these can
1998 // cause objects to get finalized.
1999 FinishGC(self, collector::kGcTypeNone);
2000 return;
2001 }
2002 collector::GarbageCollector* collector = nullptr;
2003 {
2004 ScopedSuspendAll ssa(__FUNCTION__);
2005 switch (collector_type) {
2006 case kCollectorTypeSS: {
2007 if (!IsMovingGc(collector_type_)) {
2008 // Create the bump pointer space from the backup space.
2009 CHECK(main_space_backup_ != nullptr);
2010 std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
2011 // We are transitioning from non moving GC -> moving GC, since we copied from the bump
2012 // pointer space last transition it will be protected.
2013 CHECK(mem_map != nullptr);
2014 mem_map->Protect(PROT_READ | PROT_WRITE);
2015 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
2016 mem_map.release());
2017 AddSpace(bump_pointer_space_);
2018 collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
2019 // Use the now empty main space mem map for the bump pointer temp space.
2020 mem_map.reset(main_space_->ReleaseMemMap());
2021 // Unset the pointers just in case.
2022 if (dlmalloc_space_ == main_space_) {
2023 dlmalloc_space_ = nullptr;
2024 } else if (rosalloc_space_ == main_space_) {
2025 rosalloc_space_ = nullptr;
2026 }
2027 // Remove the main space so that we don't try to trim it, this doens't work for debug
2028 // builds since RosAlloc attempts to read the magic number from a protected page.
2029 RemoveSpace(main_space_);
2030 RemoveRememberedSet(main_space_);
2031 delete main_space_; // Delete the space since it has been removed.
2032 main_space_ = nullptr;
2033 RemoveRememberedSet(main_space_backup_.get());
2034 main_space_backup_.reset(nullptr); // Deletes the space.
2035 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
2036 mem_map.release());
2037 AddSpace(temp_space_);
2038 }
2039 break;
2040 }
2041 case kCollectorTypeMS:
2042 // Fall through.
2043 case kCollectorTypeCMS: {
2044 if (IsMovingGc(collector_type_)) {
2045 CHECK(temp_space_ != nullptr);
2046 std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
2047 RemoveSpace(temp_space_);
2048 temp_space_ = nullptr;
2049 mem_map->Protect(PROT_READ | PROT_WRITE);
2050 CreateMainMallocSpace(mem_map.get(),
2051 kDefaultInitialSize,
2052 std::min(mem_map->Size(), growth_limit_),
2053 mem_map->Size());
2054 mem_map.release();
2055 // Compact to the main space from the bump pointer space, don't need to swap semispaces.
2056 AddSpace(main_space_);
2057 collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
2058 mem_map.reset(bump_pointer_space_->ReleaseMemMap());
2059 RemoveSpace(bump_pointer_space_);
2060 bump_pointer_space_ = nullptr;
2061 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
2062 // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
2063 if (kIsDebugBuild && kUseRosAlloc) {
2064 mem_map->Protect(PROT_READ | PROT_WRITE);
2065 }
2066 main_space_backup_.reset(CreateMallocSpaceFromMemMap(
2067 mem_map.get(),
2068 kDefaultInitialSize,
2069 std::min(mem_map->Size(), growth_limit_),
2070 mem_map->Size(),
2071 name,
2072 true));
2073 if (kIsDebugBuild && kUseRosAlloc) {
2074 mem_map->Protect(PROT_NONE);
2075 }
2076 mem_map.release();
2077 }
2078 break;
2079 }
2080 default: {
2081 LOG(FATAL) << "Attempted to transition to invalid collector type "
2082 << static_cast<size_t>(collector_type);
2083 break;
2084 }
2085 }
2086 ChangeCollector(collector_type);
2087 }
2088 // Can't call into java code with all threads suspended.
2089 reference_processor_->EnqueueClearedReferences(self);
2090 uint64_t duration = NanoTime() - start_time;
2091 GrowForUtilization(semi_space_collector_);
2092 DCHECK(collector != nullptr);
2093 LogGC(kGcCauseCollectorTransition, collector);
2094 FinishGC(self, collector::kGcTypeFull);
2095 {
2096 ScopedObjectAccess soa(self);
2097 soa.Vm()->UnloadNativeLibraries();
2098 }
2099 int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2100 int32_t delta_allocated = before_allocated - after_allocated;
2101 std::string saved_str;
2102 if (delta_allocated >= 0) {
2103 saved_str = " saved at least " + PrettySize(delta_allocated);
2104 } else {
2105 saved_str = " expanded " + PrettySize(-delta_allocated);
2106 }
2107 VLOG(heap) << "Collector transition to " << collector_type << " took "
2108 << PrettyDuration(duration) << saved_str;
2109 }
2110
ChangeCollector(CollectorType collector_type)2111 void Heap::ChangeCollector(CollectorType collector_type) {
2112 // TODO: Only do this with all mutators suspended to avoid races.
2113 if (collector_type != collector_type_) {
2114 if (collector_type == kCollectorTypeMC) {
2115 // Don't allow mark compact unless support is compiled in.
2116 CHECK(kMarkCompactSupport);
2117 }
2118 collector_type_ = collector_type;
2119 gc_plan_.clear();
2120 switch (collector_type_) {
2121 case kCollectorTypeCC: {
2122 gc_plan_.push_back(collector::kGcTypeFull);
2123 if (use_tlab_) {
2124 ChangeAllocator(kAllocatorTypeRegionTLAB);
2125 } else {
2126 ChangeAllocator(kAllocatorTypeRegion);
2127 }
2128 break;
2129 }
2130 case kCollectorTypeMC: // Fall-through.
2131 case kCollectorTypeSS: // Fall-through.
2132 case kCollectorTypeGSS: {
2133 gc_plan_.push_back(collector::kGcTypeFull);
2134 if (use_tlab_) {
2135 ChangeAllocator(kAllocatorTypeTLAB);
2136 } else {
2137 ChangeAllocator(kAllocatorTypeBumpPointer);
2138 }
2139 break;
2140 }
2141 case kCollectorTypeMS: {
2142 gc_plan_.push_back(collector::kGcTypeSticky);
2143 gc_plan_.push_back(collector::kGcTypePartial);
2144 gc_plan_.push_back(collector::kGcTypeFull);
2145 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2146 break;
2147 }
2148 case kCollectorTypeCMS: {
2149 gc_plan_.push_back(collector::kGcTypeSticky);
2150 gc_plan_.push_back(collector::kGcTypePartial);
2151 gc_plan_.push_back(collector::kGcTypeFull);
2152 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2153 break;
2154 }
2155 default: {
2156 UNIMPLEMENTED(FATAL);
2157 UNREACHABLE();
2158 }
2159 }
2160 if (IsGcConcurrent()) {
2161 concurrent_start_bytes_ =
2162 std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2163 } else {
2164 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2165 }
2166 }
2167 }
2168
2169 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2170 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2171 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2172 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2173 : SemiSpace(heap, false, "zygote collector"),
2174 bin_live_bitmap_(nullptr),
2175 bin_mark_bitmap_(nullptr),
2176 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2177
BuildBins(space::ContinuousSpace * space)2178 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2179 bin_live_bitmap_ = space->GetLiveBitmap();
2180 bin_mark_bitmap_ = space->GetMarkBitmap();
2181 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2182 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2183 // Note: This requires traversing the space in increasing order of object addresses.
2184 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2185 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2186 size_t bin_size = object_addr - prev;
2187 // Add the bin consisting of the end of the previous object to the start of the current object.
2188 AddBin(bin_size, prev);
2189 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2190 };
2191 bin_live_bitmap_->Walk(visitor);
2192 // Add the last bin which spans after the last object to the end of the space.
2193 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2194 }
2195
2196 private:
2197 // Maps from bin sizes to locations.
2198 std::multimap<size_t, uintptr_t> bins_;
2199 // Live bitmap of the space which contains the bins.
2200 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2201 // Mark bitmap of the space which contains the bins.
2202 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2203 const bool is_running_on_memory_tool_;
2204
AddBin(size_t size,uintptr_t position)2205 void AddBin(size_t size, uintptr_t position) {
2206 if (is_running_on_memory_tool_) {
2207 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2208 }
2209 if (size != 0) {
2210 bins_.insert(std::make_pair(size, position));
2211 }
2212 }
2213
ShouldSweepSpace(space::ContinuousSpace * space ATTRIBUTE_UNUSED) const2214 virtual bool ShouldSweepSpace(space::ContinuousSpace* space ATTRIBUTE_UNUSED) const {
2215 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2216 // allocator.
2217 return false;
2218 }
2219
MarkNonForwardedObject(mirror::Object * obj)2220 virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2221 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2222 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2223 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2224 mirror::Object* forward_address;
2225 // Find the smallest bin which we can move obj in.
2226 auto it = bins_.lower_bound(alloc_size);
2227 if (it == bins_.end()) {
2228 // No available space in the bins, place it in the target space instead (grows the zygote
2229 // space).
2230 size_t bytes_allocated, dummy;
2231 forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2232 if (to_space_live_bitmap_ != nullptr) {
2233 to_space_live_bitmap_->Set(forward_address);
2234 } else {
2235 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2236 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2237 }
2238 } else {
2239 size_t size = it->first;
2240 uintptr_t pos = it->second;
2241 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2242 forward_address = reinterpret_cast<mirror::Object*>(pos);
2243 // Set the live and mark bits so that sweeping system weaks works properly.
2244 bin_live_bitmap_->Set(forward_address);
2245 bin_mark_bitmap_->Set(forward_address);
2246 DCHECK_GE(size, alloc_size);
2247 // Add a new bin with the remaining space.
2248 AddBin(size - alloc_size, pos + alloc_size);
2249 }
2250 // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2251 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2252 if (kUseBakerReadBarrier) {
2253 obj->AssertReadBarrierState();
2254 forward_address->AssertReadBarrierState();
2255 }
2256 return forward_address;
2257 }
2258 };
2259
UnBindBitmaps()2260 void Heap::UnBindBitmaps() {
2261 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2262 for (const auto& space : GetContinuousSpaces()) {
2263 if (space->IsContinuousMemMapAllocSpace()) {
2264 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2265 if (alloc_space->HasBoundBitmaps()) {
2266 alloc_space->UnBindBitmaps();
2267 }
2268 }
2269 }
2270 }
2271
PreZygoteFork()2272 void Heap::PreZygoteFork() {
2273 if (!HasZygoteSpace()) {
2274 // We still want to GC in case there is some unreachable non moving objects that could cause a
2275 // suboptimal bin packing when we compact the zygote space.
2276 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2277 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2278 // the trim process may require locking the mutator lock.
2279 non_moving_space_->Trim();
2280 }
2281 Thread* self = Thread::Current();
2282 MutexLock mu(self, zygote_creation_lock_);
2283 // Try to see if we have any Zygote spaces.
2284 if (HasZygoteSpace()) {
2285 return;
2286 }
2287 Runtime::Current()->GetInternTable()->AddNewTable();
2288 Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2289 VLOG(heap) << "Starting PreZygoteFork";
2290 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2291 // there.
2292 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2293 const bool same_space = non_moving_space_ == main_space_;
2294 if (kCompactZygote) {
2295 // Temporarily disable rosalloc verification because the zygote
2296 // compaction will mess up the rosalloc internal metadata.
2297 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2298 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2299 zygote_collector.BuildBins(non_moving_space_);
2300 // Create a new bump pointer space which we will compact into.
2301 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2302 non_moving_space_->Limit());
2303 // Compact the bump pointer space to a new zygote bump pointer space.
2304 bool reset_main_space = false;
2305 if (IsMovingGc(collector_type_)) {
2306 if (collector_type_ == kCollectorTypeCC) {
2307 zygote_collector.SetFromSpace(region_space_);
2308 } else {
2309 zygote_collector.SetFromSpace(bump_pointer_space_);
2310 }
2311 } else {
2312 CHECK(main_space_ != nullptr);
2313 CHECK_NE(main_space_, non_moving_space_)
2314 << "Does not make sense to compact within the same space";
2315 // Copy from the main space.
2316 zygote_collector.SetFromSpace(main_space_);
2317 reset_main_space = true;
2318 }
2319 zygote_collector.SetToSpace(&target_space);
2320 zygote_collector.SetSwapSemiSpaces(false);
2321 zygote_collector.Run(kGcCauseCollectorTransition, false);
2322 if (reset_main_space) {
2323 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2324 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2325 MemMap* mem_map = main_space_->ReleaseMemMap();
2326 RemoveSpace(main_space_);
2327 space::Space* old_main_space = main_space_;
2328 CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2329 mem_map->Size());
2330 delete old_main_space;
2331 AddSpace(main_space_);
2332 } else {
2333 if (collector_type_ == kCollectorTypeCC) {
2334 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2335 // Evacuated everything out of the region space, clear the mark bitmap.
2336 region_space_->GetMarkBitmap()->Clear();
2337 } else {
2338 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2339 }
2340 }
2341 if (temp_space_ != nullptr) {
2342 CHECK(temp_space_->IsEmpty());
2343 }
2344 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2345 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2346 // Update the end and write out image.
2347 non_moving_space_->SetEnd(target_space.End());
2348 non_moving_space_->SetLimit(target_space.Limit());
2349 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2350 }
2351 // Change the collector to the post zygote one.
2352 ChangeCollector(foreground_collector_type_);
2353 // Save the old space so that we can remove it after we complete creating the zygote space.
2354 space::MallocSpace* old_alloc_space = non_moving_space_;
2355 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2356 // the remaining available space.
2357 // Remove the old space before creating the zygote space since creating the zygote space sets
2358 // the old alloc space's bitmaps to null.
2359 RemoveSpace(old_alloc_space);
2360 if (collector::SemiSpace::kUseRememberedSet) {
2361 // Sanity bound check.
2362 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2363 // Remove the remembered set for the now zygote space (the old
2364 // non-moving space). Note now that we have compacted objects into
2365 // the zygote space, the data in the remembered set is no longer
2366 // needed. The zygote space will instead have a mod-union table
2367 // from this point on.
2368 RemoveRememberedSet(old_alloc_space);
2369 }
2370 // Remaining space becomes the new non moving space.
2371 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2372 &non_moving_space_);
2373 CHECK(!non_moving_space_->CanMoveObjects());
2374 if (same_space) {
2375 main_space_ = non_moving_space_;
2376 SetSpaceAsDefault(main_space_);
2377 }
2378 delete old_alloc_space;
2379 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2380 AddSpace(zygote_space_);
2381 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2382 AddSpace(non_moving_space_);
2383 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2384 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2385 // safe since we mark all of the objects that may reference non immune objects as gray.
2386 zygote_space_->GetLiveBitmap()->VisitMarkedRange(
2387 reinterpret_cast<uintptr_t>(zygote_space_->Begin()),
2388 reinterpret_cast<uintptr_t>(zygote_space_->Limit()),
2389 [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2390 CHECK(obj->AtomicSetMarkBit(0, 1));
2391 });
2392 }
2393
2394 // Create the zygote space mod union table.
2395 accounting::ModUnionTable* mod_union_table =
2396 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2397 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2398
2399 if (collector_type_ != kCollectorTypeCC) {
2400 // Set all the cards in the mod-union table since we don't know which objects contain references
2401 // to large objects.
2402 mod_union_table->SetCards();
2403 } else {
2404 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2405 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2406 // necessary to have marked since the zygote space may not refer to any objects not in the
2407 // zygote or image spaces at this point.
2408 mod_union_table->ProcessCards();
2409 mod_union_table->ClearTable();
2410
2411 // For CC we never collect zygote large objects. This means we do not need to set the cards for
2412 // the zygote mod-union table and we can also clear all of the existing image mod-union tables.
2413 // The existing mod-union tables are only for image spaces and may only reference zygote and
2414 // image objects.
2415 for (auto& pair : mod_union_tables_) {
2416 CHECK(pair.first->IsImageSpace());
2417 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2418 accounting::ModUnionTable* table = pair.second;
2419 table->ClearTable();
2420 }
2421 }
2422 AddModUnionTable(mod_union_table);
2423 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2424 if (collector::SemiSpace::kUseRememberedSet) {
2425 // Add a new remembered set for the post-zygote non-moving space.
2426 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2427 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2428 non_moving_space_);
2429 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2430 << "Failed to create post-zygote non-moving space remembered set";
2431 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2432 }
2433 }
2434
FlushAllocStack()2435 void Heap::FlushAllocStack() {
2436 MarkAllocStackAsLive(allocation_stack_.get());
2437 allocation_stack_->Reset();
2438 }
2439
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2440 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2441 accounting::ContinuousSpaceBitmap* bitmap2,
2442 accounting::LargeObjectBitmap* large_objects,
2443 accounting::ObjectStack* stack) {
2444 DCHECK(bitmap1 != nullptr);
2445 DCHECK(bitmap2 != nullptr);
2446 const auto* limit = stack->End();
2447 for (auto* it = stack->Begin(); it != limit; ++it) {
2448 const mirror::Object* obj = it->AsMirrorPtr();
2449 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2450 if (bitmap1->HasAddress(obj)) {
2451 bitmap1->Set(obj);
2452 } else if (bitmap2->HasAddress(obj)) {
2453 bitmap2->Set(obj);
2454 } else {
2455 DCHECK(large_objects != nullptr);
2456 large_objects->Set(obj);
2457 }
2458 }
2459 }
2460 }
2461
SwapSemiSpaces()2462 void Heap::SwapSemiSpaces() {
2463 CHECK(bump_pointer_space_ != nullptr);
2464 CHECK(temp_space_ != nullptr);
2465 std::swap(bump_pointer_space_, temp_space_);
2466 }
2467
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2468 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2469 space::ContinuousMemMapAllocSpace* source_space,
2470 GcCause gc_cause) {
2471 CHECK(kMovingCollector);
2472 if (target_space != source_space) {
2473 // Don't swap spaces since this isn't a typical semi space collection.
2474 semi_space_collector_->SetSwapSemiSpaces(false);
2475 semi_space_collector_->SetFromSpace(source_space);
2476 semi_space_collector_->SetToSpace(target_space);
2477 semi_space_collector_->Run(gc_cause, false);
2478 return semi_space_collector_;
2479 } else {
2480 CHECK(target_space->IsBumpPointerSpace())
2481 << "In-place compaction is only supported for bump pointer spaces";
2482 mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2483 mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2484 return mark_compact_collector_;
2485 }
2486 }
2487
TraceHeapSize(size_t heap_size)2488 void Heap::TraceHeapSize(size_t heap_size) {
2489 ATRACE_INT("Heap size (KB)", heap_size / KB);
2490 }
2491
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2492 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2493 GcCause gc_cause,
2494 bool clear_soft_references) {
2495 Thread* self = Thread::Current();
2496 Runtime* runtime = Runtime::Current();
2497 // If the heap can't run the GC, silently fail and return that no GC was run.
2498 switch (gc_type) {
2499 case collector::kGcTypePartial: {
2500 if (!HasZygoteSpace()) {
2501 return collector::kGcTypeNone;
2502 }
2503 break;
2504 }
2505 default: {
2506 // Other GC types don't have any special cases which makes them not runnable. The main case
2507 // here is full GC.
2508 }
2509 }
2510 ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2511 Locks::mutator_lock_->AssertNotHeld(self);
2512 if (self->IsHandlingStackOverflow()) {
2513 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2514 // space to run the GC.
2515 return collector::kGcTypeNone;
2516 }
2517 bool compacting_gc;
2518 {
2519 gc_complete_lock_->AssertNotHeld(self);
2520 ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2521 MutexLock mu(self, *gc_complete_lock_);
2522 // Ensure there is only one GC at a time.
2523 WaitForGcToCompleteLocked(gc_cause, self);
2524 compacting_gc = IsMovingGc(collector_type_);
2525 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2526 if (compacting_gc && disable_moving_gc_count_ != 0) {
2527 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2528 return collector::kGcTypeNone;
2529 }
2530 if (gc_disabled_for_shutdown_) {
2531 return collector::kGcTypeNone;
2532 }
2533 collector_type_running_ = collector_type_;
2534 }
2535 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2536 ++runtime->GetStats()->gc_for_alloc_count;
2537 ++self->GetStats()->gc_for_alloc_count;
2538 }
2539 const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2540
2541 if (gc_type == NonStickyGcType()) {
2542 // Move all bytes from new_native_bytes_allocated_ to
2543 // old_native_bytes_allocated_ now that GC has been triggered, resetting
2544 // new_native_bytes_allocated_ to zero in the process.
2545 old_native_bytes_allocated_.FetchAndAddRelaxed(new_native_bytes_allocated_.ExchangeRelaxed(0));
2546 if (gc_cause == kGcCauseForNativeAllocBlocking) {
2547 MutexLock mu(self, *native_blocking_gc_lock_);
2548 native_blocking_gc_in_progress_ = true;
2549 }
2550 }
2551
2552 DCHECK_LT(gc_type, collector::kGcTypeMax);
2553 DCHECK_NE(gc_type, collector::kGcTypeNone);
2554
2555 collector::GarbageCollector* collector = nullptr;
2556 // TODO: Clean this up.
2557 if (compacting_gc) {
2558 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2559 current_allocator_ == kAllocatorTypeTLAB ||
2560 current_allocator_ == kAllocatorTypeRegion ||
2561 current_allocator_ == kAllocatorTypeRegionTLAB);
2562 switch (collector_type_) {
2563 case kCollectorTypeSS:
2564 // Fall-through.
2565 case kCollectorTypeGSS:
2566 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2567 semi_space_collector_->SetToSpace(temp_space_);
2568 semi_space_collector_->SetSwapSemiSpaces(true);
2569 collector = semi_space_collector_;
2570 break;
2571 case kCollectorTypeCC:
2572 collector = concurrent_copying_collector_;
2573 break;
2574 case kCollectorTypeMC:
2575 mark_compact_collector_->SetSpace(bump_pointer_space_);
2576 collector = mark_compact_collector_;
2577 break;
2578 default:
2579 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2580 }
2581 if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2582 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2583 if (kIsDebugBuild) {
2584 // Try to read each page of the memory map in case mprotect didn't work properly b/19894268.
2585 temp_space_->GetMemMap()->TryReadable();
2586 }
2587 CHECK(temp_space_->IsEmpty());
2588 }
2589 gc_type = collector::kGcTypeFull; // TODO: Not hard code this in.
2590 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2591 current_allocator_ == kAllocatorTypeDlMalloc) {
2592 collector = FindCollectorByGcType(gc_type);
2593 } else {
2594 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2595 }
2596 if (IsGcConcurrent()) {
2597 // Disable concurrent GC check so that we don't have spammy JNI requests.
2598 // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2599 // calculated in the same thread so that there aren't any races that can cause it to become
2600 // permanantly disabled. b/17942071
2601 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2602 }
2603
2604 CHECK(collector != nullptr)
2605 << "Could not find garbage collector with collector_type="
2606 << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2607 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2608 total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2609 total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2610 RequestTrim(self);
2611 // Enqueue cleared references.
2612 reference_processor_->EnqueueClearedReferences(self);
2613 // Grow the heap so that we know when to perform the next GC.
2614 GrowForUtilization(collector, bytes_allocated_before_gc);
2615 LogGC(gc_cause, collector);
2616 FinishGC(self, gc_type);
2617 // Inform DDMS that a GC completed.
2618 Dbg::GcDidFinish();
2619 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2620 // deadlocks in case the JNI_OnUnload function does allocations.
2621 {
2622 ScopedObjectAccess soa(self);
2623 soa.Vm()->UnloadNativeLibraries();
2624 }
2625 return gc_type;
2626 }
2627
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2628 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2629 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2630 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2631 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2632 // (mutator time blocked >= long_pause_log_threshold_).
2633 bool log_gc = kLogAllGCs || gc_cause == kGcCauseExplicit;
2634 if (!log_gc && CareAboutPauseTimes()) {
2635 // GC for alloc pauses the allocating thread, so consider it as a pause.
2636 log_gc = duration > long_gc_log_threshold_ ||
2637 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2638 for (uint64_t pause : pause_times) {
2639 log_gc = log_gc || pause >= long_pause_log_threshold_;
2640 }
2641 }
2642 if (log_gc) {
2643 const size_t percent_free = GetPercentFree();
2644 const size_t current_heap_size = GetBytesAllocated();
2645 const size_t total_memory = GetTotalMemory();
2646 std::ostringstream pause_string;
2647 for (size_t i = 0; i < pause_times.size(); ++i) {
2648 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2649 << ((i != pause_times.size() - 1) ? "," : "");
2650 }
2651 LOG(INFO) << gc_cause << " " << collector->GetName()
2652 << " GC freed " << current_gc_iteration_.GetFreedObjects() << "("
2653 << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2654 << current_gc_iteration_.GetFreedLargeObjects() << "("
2655 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2656 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2657 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2658 << " total " << PrettyDuration((duration / 1000) * 1000);
2659 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2660 }
2661 }
2662
FinishGC(Thread * self,collector::GcType gc_type)2663 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2664 MutexLock mu(self, *gc_complete_lock_);
2665 collector_type_running_ = kCollectorTypeNone;
2666 if (gc_type != collector::kGcTypeNone) {
2667 last_gc_type_ = gc_type;
2668
2669 // Update stats.
2670 ++gc_count_last_window_;
2671 if (running_collection_is_blocking_) {
2672 // If the currently running collection was a blocking one,
2673 // increment the counters and reset the flag.
2674 ++blocking_gc_count_;
2675 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2676 ++blocking_gc_count_last_window_;
2677 }
2678 // Update the gc count rate histograms if due.
2679 UpdateGcCountRateHistograms();
2680 }
2681 // Reset.
2682 running_collection_is_blocking_ = false;
2683 thread_running_gc_ = nullptr;
2684 // Wake anyone who may have been waiting for the GC to complete.
2685 gc_complete_cond_->Broadcast(self);
2686 }
2687
UpdateGcCountRateHistograms()2688 void Heap::UpdateGcCountRateHistograms() {
2689 // Invariant: if the time since the last update includes more than
2690 // one windows, all the GC runs (if > 0) must have happened in first
2691 // window because otherwise the update must have already taken place
2692 // at an earlier GC run. So, we report the non-first windows with
2693 // zero counts to the histograms.
2694 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2695 uint64_t now = NanoTime();
2696 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2697 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2698 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2699 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2700 // Record the first window.
2701 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
2702 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2703 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2704 // Record the other windows (with zero counts).
2705 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2706 gc_count_rate_histogram_.AddValue(0);
2707 blocking_gc_count_rate_histogram_.AddValue(0);
2708 }
2709 // Update the last update time and reset the counters.
2710 last_update_time_gc_count_rate_histograms_ =
2711 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2712 gc_count_last_window_ = 1; // Include the current run.
2713 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2714 }
2715 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2716 }
2717
2718 class RootMatchesObjectVisitor : public SingleRootVisitor {
2719 public:
RootMatchesObjectVisitor(const mirror::Object * obj)2720 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2721
VisitRoot(mirror::Object * root,const RootInfo & info)2722 void VisitRoot(mirror::Object* root, const RootInfo& info)
2723 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2724 if (root == obj_) {
2725 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2726 }
2727 }
2728
2729 private:
2730 const mirror::Object* const obj_;
2731 };
2732
2733
2734 class ScanVisitor {
2735 public:
operator ()(const mirror::Object * obj) const2736 void operator()(const mirror::Object* obj) const {
2737 LOG(ERROR) << "Would have rescanned object " << obj;
2738 }
2739 };
2740
2741 // Verify a reference from an object.
2742 class VerifyReferenceVisitor : public SingleRootVisitor {
2743 public:
VerifyReferenceVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2744 VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2745 REQUIRES_SHARED(Locks::mutator_lock_)
2746 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2747
GetFailureCount() const2748 size_t GetFailureCount() const {
2749 return fail_count_->LoadSequentiallyConsistent();
2750 }
2751
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2752 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, ObjPtr<mirror::Reference> ref) const
2753 REQUIRES_SHARED(Locks::mutator_lock_) {
2754 if (verify_referent_) {
2755 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
2756 }
2757 }
2758
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2759 void operator()(ObjPtr<mirror::Object> obj,
2760 MemberOffset offset,
2761 bool is_static ATTRIBUTE_UNUSED) const
2762 REQUIRES_SHARED(Locks::mutator_lock_) {
2763 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
2764 }
2765
IsLive(ObjPtr<mirror::Object> obj) const2766 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
2767 return heap_->IsLiveObjectLocked(obj, true, false, true);
2768 }
2769
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2770 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2771 REQUIRES_SHARED(Locks::mutator_lock_) {
2772 if (!root->IsNull()) {
2773 VisitRoot(root);
2774 }
2775 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2776 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2777 REQUIRES_SHARED(Locks::mutator_lock_) {
2778 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
2779 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
2780 }
2781
VisitRoot(mirror::Object * root,const RootInfo & root_info)2782 virtual void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2783 REQUIRES_SHARED(Locks::mutator_lock_) {
2784 if (root == nullptr) {
2785 LOG(ERROR) << "Root is null with info " << root_info.GetType();
2786 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2787 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
2788 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2789 }
2790 }
2791
2792 private:
2793 // TODO: Fix the no thread safety analysis.
2794 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2795 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2796 NO_THREAD_SAFETY_ANALYSIS {
2797 if (ref == nullptr || IsLive(ref)) {
2798 // Verify that the reference is live.
2799 return true;
2800 }
2801 if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2802 // Print message on only on first failure to prevent spam.
2803 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2804 }
2805 if (obj != nullptr) {
2806 // Only do this part for non roots.
2807 accounting::CardTable* card_table = heap_->GetCardTable();
2808 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2809 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2810 uint8_t* card_addr = card_table->CardFromAddr(obj);
2811 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2812 << offset << "\n card value = " << static_cast<int>(*card_addr);
2813 if (heap_->IsValidObjectAddress(obj->GetClass())) {
2814 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
2815 } else {
2816 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2817 }
2818
2819 // Attempt to find the class inside of the recently freed objects.
2820 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2821 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2822 space::MallocSpace* space = ref_space->AsMallocSpace();
2823 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2824 if (ref_class != nullptr) {
2825 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2826 << ref_class->PrettyClass();
2827 } else {
2828 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2829 }
2830 }
2831
2832 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2833 ref->GetClass()->IsClass()) {
2834 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
2835 } else {
2836 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2837 << ") is not a valid heap address";
2838 }
2839
2840 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2841 void* cover_begin = card_table->AddrFromCard(card_addr);
2842 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2843 accounting::CardTable::kCardSize);
2844 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2845 << "-" << cover_end;
2846 accounting::ContinuousSpaceBitmap* bitmap =
2847 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2848
2849 if (bitmap == nullptr) {
2850 LOG(ERROR) << "Object " << obj << " has no bitmap";
2851 if (!VerifyClassClass(obj->GetClass())) {
2852 LOG(ERROR) << "Object " << obj << " failed class verification!";
2853 }
2854 } else {
2855 // Print out how the object is live.
2856 if (bitmap->Test(obj)) {
2857 LOG(ERROR) << "Object " << obj << " found in live bitmap";
2858 }
2859 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2860 LOG(ERROR) << "Object " << obj << " found in allocation stack";
2861 }
2862 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2863 LOG(ERROR) << "Object " << obj << " found in live stack";
2864 }
2865 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2866 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2867 }
2868 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2869 LOG(ERROR) << "Ref " << ref << " found in live stack";
2870 }
2871 // Attempt to see if the card table missed the reference.
2872 ScanVisitor scan_visitor;
2873 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2874 card_table->Scan<false>(bitmap, byte_cover_begin,
2875 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2876 }
2877
2878 // Search to see if any of the roots reference our object.
2879 RootMatchesObjectVisitor visitor1(obj);
2880 Runtime::Current()->VisitRoots(&visitor1);
2881 // Search to see if any of the roots reference our reference.
2882 RootMatchesObjectVisitor visitor2(ref);
2883 Runtime::Current()->VisitRoots(&visitor2);
2884 }
2885 return false;
2886 }
2887
2888 Heap* const heap_;
2889 Atomic<size_t>* const fail_count_;
2890 const bool verify_referent_;
2891 };
2892
2893 // Verify all references within an object, for use with HeapBitmap::Visit.
2894 class VerifyObjectVisitor {
2895 public:
VerifyObjectVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2896 VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2897 : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2898
operator ()(mirror::Object * obj)2899 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2900 // Note: we are verifying the references in obj but not obj itself, this is because obj must
2901 // be live or else how did we find it in the live bitmap?
2902 VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2903 // The class doesn't count as a reference but we should verify it anyways.
2904 obj->VisitReferences(visitor, visitor);
2905 }
2906
VerifyRoots()2907 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
2908 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2909 VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2910 Runtime::Current()->VisitRoots(&visitor);
2911 }
2912
GetFailureCount() const2913 size_t GetFailureCount() const {
2914 return fail_count_->LoadSequentiallyConsistent();
2915 }
2916
2917 private:
2918 Heap* const heap_;
2919 Atomic<size_t>* const fail_count_;
2920 const bool verify_referent_;
2921 };
2922
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)2923 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
2924 // Slow path, the allocation stack push back must have already failed.
2925 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
2926 do {
2927 // TODO: Add handle VerifyObject.
2928 StackHandleScope<1> hs(self);
2929 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2930 // Push our object into the reserve region of the allocaiton stack. This is only required due
2931 // to heap verification requiring that roots are live (either in the live bitmap or in the
2932 // allocation stack).
2933 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
2934 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2935 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
2936 }
2937
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)2938 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
2939 ObjPtr<mirror::Object>* obj) {
2940 // Slow path, the allocation stack push back must have already failed.
2941 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
2942 StackReference<mirror::Object>* start_address;
2943 StackReference<mirror::Object>* end_address;
2944 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2945 &end_address)) {
2946 // TODO: Add handle VerifyObject.
2947 StackHandleScope<1> hs(self);
2948 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2949 // Push our object into the reserve region of the allocaiton stack. This is only required due
2950 // to heap verification requiring that roots are live (either in the live bitmap or in the
2951 // allocation stack).
2952 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
2953 // Push into the reserve allocation stack.
2954 CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2955 }
2956 self->SetThreadLocalAllocationStack(start_address, end_address);
2957 // Retry on the new thread-local allocation stack.
2958 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
2959 }
2960
2961 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)2962 size_t Heap::VerifyHeapReferences(bool verify_referents) {
2963 Thread* self = Thread::Current();
2964 Locks::mutator_lock_->AssertExclusiveHeld(self);
2965 // Lets sort our allocation stacks so that we can efficiently binary search them.
2966 allocation_stack_->Sort();
2967 live_stack_->Sort();
2968 // Since we sorted the allocation stack content, need to revoke all
2969 // thread-local allocation stacks.
2970 RevokeAllThreadLocalAllocationStacks(self);
2971 Atomic<size_t> fail_count_(0);
2972 VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2973 // Verify objects in the allocation stack since these will be objects which were:
2974 // 1. Allocated prior to the GC (pre GC verification).
2975 // 2. Allocated during the GC (pre sweep GC verification).
2976 // We don't want to verify the objects in the live stack since they themselves may be
2977 // pointing to dead objects if they are not reachable.
2978 VisitObjectsPaused(visitor);
2979 // Verify the roots:
2980 visitor.VerifyRoots();
2981 if (visitor.GetFailureCount() > 0) {
2982 // Dump mod-union tables.
2983 for (const auto& table_pair : mod_union_tables_) {
2984 accounting::ModUnionTable* mod_union_table = table_pair.second;
2985 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
2986 }
2987 // Dump remembered sets.
2988 for (const auto& table_pair : remembered_sets_) {
2989 accounting::RememberedSet* remembered_set = table_pair.second;
2990 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
2991 }
2992 DumpSpaces(LOG_STREAM(ERROR));
2993 }
2994 return visitor.GetFailureCount();
2995 }
2996
2997 class VerifyReferenceCardVisitor {
2998 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)2999 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3000 REQUIRES_SHARED(Locks::mutator_lock_,
3001 Locks::heap_bitmap_lock_)
3002 : heap_(heap), failed_(failed) {
3003 }
3004
3005 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3006 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
3007 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const3008 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
3009
3010 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3011 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3012 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3013 NO_THREAD_SAFETY_ANALYSIS {
3014 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3015 // Filter out class references since changing an object's class does not mark the card as dirty.
3016 // Also handles large objects, since the only reference they hold is a class reference.
3017 if (ref != nullptr && !ref->IsClass()) {
3018 accounting::CardTable* card_table = heap_->GetCardTable();
3019 // If the object is not dirty and it is referencing something in the live stack other than
3020 // class, then it must be on a dirty card.
3021 if (!card_table->AddrIsInCardTable(obj)) {
3022 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3023 *failed_ = true;
3024 } else if (!card_table->IsDirty(obj)) {
3025 // TODO: Check mod-union tables.
3026 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3027 // kCardDirty - 1 if it didnt get touched since we aged it.
3028 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3029 if (live_stack->ContainsSorted(ref)) {
3030 if (live_stack->ContainsSorted(obj)) {
3031 LOG(ERROR) << "Object " << obj << " found in live stack";
3032 }
3033 if (heap_->GetLiveBitmap()->Test(obj)) {
3034 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3035 }
3036 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3037 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3038 << " in live stack";
3039
3040 // Print which field of the object is dead.
3041 if (!obj->IsObjectArray()) {
3042 mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
3043 CHECK(klass != nullptr);
3044 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3045 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3046 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3047 << field.PrettyField();
3048 break;
3049 }
3050 }
3051 } else {
3052 mirror::ObjectArray<mirror::Object>* object_array =
3053 obj->AsObjectArray<mirror::Object>();
3054 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3055 if (object_array->Get(i) == ref) {
3056 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3057 }
3058 }
3059 }
3060
3061 *failed_ = true;
3062 }
3063 }
3064 }
3065 }
3066
3067 private:
3068 Heap* const heap_;
3069 bool* const failed_;
3070 };
3071
3072 class VerifyLiveStackReferences {
3073 public:
VerifyLiveStackReferences(Heap * heap)3074 explicit VerifyLiveStackReferences(Heap* heap)
3075 : heap_(heap),
3076 failed_(false) {}
3077
operator ()(mirror::Object * obj) const3078 void operator()(mirror::Object* obj) const
3079 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3080 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3081 obj->VisitReferences(visitor, VoidFunctor());
3082 }
3083
Failed() const3084 bool Failed() const {
3085 return failed_;
3086 }
3087
3088 private:
3089 Heap* const heap_;
3090 bool failed_;
3091 };
3092
VerifyMissingCardMarks()3093 bool Heap::VerifyMissingCardMarks() {
3094 Thread* self = Thread::Current();
3095 Locks::mutator_lock_->AssertExclusiveHeld(self);
3096 // We need to sort the live stack since we binary search it.
3097 live_stack_->Sort();
3098 // Since we sorted the allocation stack content, need to revoke all
3099 // thread-local allocation stacks.
3100 RevokeAllThreadLocalAllocationStacks(self);
3101 VerifyLiveStackReferences visitor(this);
3102 GetLiveBitmap()->Visit(visitor);
3103 // We can verify objects in the live stack since none of these should reference dead objects.
3104 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3105 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3106 visitor(it->AsMirrorPtr());
3107 }
3108 }
3109 return !visitor.Failed();
3110 }
3111
SwapStacks()3112 void Heap::SwapStacks() {
3113 if (kUseThreadLocalAllocationStack) {
3114 live_stack_->AssertAllZero();
3115 }
3116 allocation_stack_.swap(live_stack_);
3117 }
3118
RevokeAllThreadLocalAllocationStacks(Thread * self)3119 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3120 // This must be called only during the pause.
3121 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3122 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3123 MutexLock mu2(self, *Locks::thread_list_lock_);
3124 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3125 for (Thread* t : thread_list) {
3126 t->RevokeThreadLocalAllocationStack();
3127 }
3128 }
3129
AssertThreadLocalBuffersAreRevoked(Thread * thread)3130 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3131 if (kIsDebugBuild) {
3132 if (rosalloc_space_ != nullptr) {
3133 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3134 }
3135 if (bump_pointer_space_ != nullptr) {
3136 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3137 }
3138 }
3139 }
3140
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3141 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3142 if (kIsDebugBuild) {
3143 if (bump_pointer_space_ != nullptr) {
3144 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3145 }
3146 }
3147 }
3148
FindModUnionTableFromSpace(space::Space * space)3149 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3150 auto it = mod_union_tables_.find(space);
3151 if (it == mod_union_tables_.end()) {
3152 return nullptr;
3153 }
3154 return it->second;
3155 }
3156
FindRememberedSetFromSpace(space::Space * space)3157 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3158 auto it = remembered_sets_.find(space);
3159 if (it == remembered_sets_.end()) {
3160 return nullptr;
3161 }
3162 return it->second;
3163 }
3164
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3165 void Heap::ProcessCards(TimingLogger* timings,
3166 bool use_rem_sets,
3167 bool process_alloc_space_cards,
3168 bool clear_alloc_space_cards) {
3169 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3170 // Clear cards and keep track of cards cleared in the mod-union table.
3171 for (const auto& space : continuous_spaces_) {
3172 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3173 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3174 if (table != nullptr) {
3175 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3176 "ImageModUnionClearCards";
3177 TimingLogger::ScopedTiming t2(name, timings);
3178 table->ProcessCards();
3179 } else if (use_rem_sets && rem_set != nullptr) {
3180 DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3181 << static_cast<int>(collector_type_);
3182 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3183 rem_set->ClearCards();
3184 } else if (process_alloc_space_cards) {
3185 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3186 if (clear_alloc_space_cards) {
3187 uint8_t* end = space->End();
3188 if (space->IsImageSpace()) {
3189 // Image space end is the end of the mirror objects, it is not necessarily page or card
3190 // aligned. Align up so that the check in ClearCardRange does not fail.
3191 end = AlignUp(end, accounting::CardTable::kCardSize);
3192 }
3193 card_table_->ClearCardRange(space->Begin(), end);
3194 } else {
3195 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3196 // cards were dirty before the GC started.
3197 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3198 // -> clean(cleaning thread).
3199 // The races are we either end up with: Aged card, unaged card. Since we have the
3200 // checkpoint roots and then we scan / update mod union tables after. We will always
3201 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3202 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3203 VoidFunctor());
3204 }
3205 }
3206 }
3207 }
3208
3209 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3210 virtual mirror::Object* MarkObject(mirror::Object* obj) OVERRIDE {
3211 return obj;
3212 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3213 virtual void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) OVERRIDE {
3214 }
3215 };
3216
PreGcVerificationPaused(collector::GarbageCollector * gc)3217 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3218 Thread* const self = Thread::Current();
3219 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3220 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3221 if (verify_pre_gc_heap_) {
3222 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3223 size_t failures = VerifyHeapReferences();
3224 if (failures > 0) {
3225 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3226 << " failures";
3227 }
3228 }
3229 // Check that all objects which reference things in the live stack are on dirty cards.
3230 if (verify_missing_card_marks_) {
3231 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3232 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3233 SwapStacks();
3234 // Sort the live stack so that we can quickly binary search it later.
3235 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3236 << " missing card mark verification failed\n" << DumpSpaces();
3237 SwapStacks();
3238 }
3239 if (verify_mod_union_table_) {
3240 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3241 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3242 for (const auto& table_pair : mod_union_tables_) {
3243 accounting::ModUnionTable* mod_union_table = table_pair.second;
3244 IdentityMarkHeapReferenceVisitor visitor;
3245 mod_union_table->UpdateAndMarkReferences(&visitor);
3246 mod_union_table->Verify();
3247 }
3248 }
3249 }
3250
PreGcVerification(collector::GarbageCollector * gc)3251 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3252 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3253 collector::GarbageCollector::ScopedPause pause(gc, false);
3254 PreGcVerificationPaused(gc);
3255 }
3256 }
3257
PrePauseRosAllocVerification(collector::GarbageCollector * gc ATTRIBUTE_UNUSED)3258 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc ATTRIBUTE_UNUSED) {
3259 // TODO: Add a new runtime option for this?
3260 if (verify_pre_gc_rosalloc_) {
3261 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3262 }
3263 }
3264
PreSweepingGcVerification(collector::GarbageCollector * gc)3265 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3266 Thread* const self = Thread::Current();
3267 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3268 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3269 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3270 // reachable objects.
3271 if (verify_pre_sweeping_heap_) {
3272 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3273 CHECK_NE(self->GetState(), kRunnable);
3274 {
3275 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3276 // Swapping bound bitmaps does nothing.
3277 gc->SwapBitmaps();
3278 }
3279 // Pass in false since concurrent reference processing can mean that the reference referents
3280 // may point to dead objects at the point which PreSweepingGcVerification is called.
3281 size_t failures = VerifyHeapReferences(false);
3282 if (failures > 0) {
3283 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3284 << " failures";
3285 }
3286 {
3287 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3288 gc->SwapBitmaps();
3289 }
3290 }
3291 if (verify_pre_sweeping_rosalloc_) {
3292 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3293 }
3294 }
3295
PostGcVerificationPaused(collector::GarbageCollector * gc)3296 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3297 // Only pause if we have to do some verification.
3298 Thread* const self = Thread::Current();
3299 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3300 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3301 if (verify_system_weaks_) {
3302 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3303 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3304 mark_sweep->VerifySystemWeaks();
3305 }
3306 if (verify_post_gc_rosalloc_) {
3307 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3308 }
3309 if (verify_post_gc_heap_) {
3310 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3311 size_t failures = VerifyHeapReferences();
3312 if (failures > 0) {
3313 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3314 << " failures";
3315 }
3316 }
3317 }
3318
PostGcVerification(collector::GarbageCollector * gc)3319 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3320 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3321 collector::GarbageCollector::ScopedPause pause(gc, false);
3322 PostGcVerificationPaused(gc);
3323 }
3324 }
3325
RosAllocVerification(TimingLogger * timings,const char * name)3326 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3327 TimingLogger::ScopedTiming t(name, timings);
3328 for (const auto& space : continuous_spaces_) {
3329 if (space->IsRosAllocSpace()) {
3330 VLOG(heap) << name << " : " << space->GetName();
3331 space->AsRosAllocSpace()->Verify();
3332 }
3333 }
3334 }
3335
WaitForGcToComplete(GcCause cause,Thread * self)3336 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3337 ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3338 MutexLock mu(self, *gc_complete_lock_);
3339 return WaitForGcToCompleteLocked(cause, self);
3340 }
3341
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3342 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3343 collector::GcType last_gc_type = collector::kGcTypeNone;
3344 GcCause last_gc_cause = kGcCauseNone;
3345 uint64_t wait_start = NanoTime();
3346 while (collector_type_running_ != kCollectorTypeNone) {
3347 if (self != task_processor_->GetRunningThread()) {
3348 // The current thread is about to wait for a currently running
3349 // collection to finish. If the waiting thread is not the heap
3350 // task daemon thread, the currently running collection is
3351 // considered as a blocking GC.
3352 running_collection_is_blocking_ = true;
3353 VLOG(gc) << "Waiting for a blocking GC " << cause;
3354 }
3355 ScopedTrace trace("GC: Wait For Completion");
3356 // We must wait, change thread state then sleep on gc_complete_cond_;
3357 gc_complete_cond_->Wait(self);
3358 last_gc_type = last_gc_type_;
3359 last_gc_cause = last_gc_cause_;
3360 }
3361 uint64_t wait_time = NanoTime() - wait_start;
3362 total_wait_time_ += wait_time;
3363 if (wait_time > long_pause_log_threshold_) {
3364 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3365 << PrettyDuration(wait_time);
3366 }
3367 if (self != task_processor_->GetRunningThread()) {
3368 // The current thread is about to run a collection. If the thread
3369 // is not the heap task daemon thread, it's considered as a
3370 // blocking GC (i.e., blocking itself).
3371 running_collection_is_blocking_ = true;
3372 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3373 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3374 if (cause == kGcCauseForAlloc ||
3375 cause == kGcCauseForNativeAlloc ||
3376 cause == kGcCauseForNativeAllocBlocking ||
3377 cause == kGcCauseDisableMovingGc) {
3378 VLOG(gc) << "Starting a blocking GC " << cause;
3379 }
3380 }
3381 return last_gc_type;
3382 }
3383
DumpForSigQuit(std::ostream & os)3384 void Heap::DumpForSigQuit(std::ostream& os) {
3385 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3386 << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3387 DumpGcPerformanceInfo(os);
3388 }
3389
GetPercentFree()3390 size_t Heap::GetPercentFree() {
3391 return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3392 }
3393
SetIdealFootprint(size_t max_allowed_footprint)3394 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3395 if (max_allowed_footprint > GetMaxMemory()) {
3396 VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3397 << PrettySize(GetMaxMemory());
3398 max_allowed_footprint = GetMaxMemory();
3399 }
3400 max_allowed_footprint_ = max_allowed_footprint;
3401 }
3402
IsMovableObject(ObjPtr<mirror::Object> obj) const3403 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3404 if (kMovingCollector) {
3405 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3406 if (space != nullptr) {
3407 // TODO: Check large object?
3408 return space->CanMoveObjects();
3409 }
3410 }
3411 return false;
3412 }
3413
FindCollectorByGcType(collector::GcType gc_type)3414 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3415 for (const auto& collector : garbage_collectors_) {
3416 if (collector->GetCollectorType() == collector_type_ &&
3417 collector->GetGcType() == gc_type) {
3418 return collector;
3419 }
3420 }
3421 return nullptr;
3422 }
3423
HeapGrowthMultiplier() const3424 double Heap::HeapGrowthMultiplier() const {
3425 // If we don't care about pause times we are background, so return 1.0.
3426 if (!CareAboutPauseTimes()) {
3427 return 1.0;
3428 }
3429 return foreground_heap_growth_multiplier_;
3430 }
3431
GrowForUtilization(collector::GarbageCollector * collector_ran,uint64_t bytes_allocated_before_gc)3432 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3433 uint64_t bytes_allocated_before_gc) {
3434 // We know what our utilization is at this moment.
3435 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3436 const uint64_t bytes_allocated = GetBytesAllocated();
3437 // Trace the new heap size after the GC is finished.
3438 TraceHeapSize(bytes_allocated);
3439 uint64_t target_size;
3440 collector::GcType gc_type = collector_ran->GetGcType();
3441 const double multiplier = HeapGrowthMultiplier(); // Use the multiplier to grow more for
3442 // foreground.
3443 const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3444 const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3445 if (gc_type != collector::kGcTypeSticky) {
3446 // Grow the heap for non sticky GC.
3447 ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3448 CHECK_GE(delta, 0);
3449 target_size = bytes_allocated + delta * multiplier;
3450 target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3451 target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3452 next_gc_type_ = collector::kGcTypeSticky;
3453 } else {
3454 collector::GcType non_sticky_gc_type = NonStickyGcType();
3455 // Find what the next non sticky collector will be.
3456 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3457 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3458 // do another sticky collection next.
3459 // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3460 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3461 // if the sticky GC throughput always remained >= the full/partial throughput.
3462 if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3463 non_sticky_collector->GetEstimatedMeanThroughput() &&
3464 non_sticky_collector->NumberOfIterations() > 0 &&
3465 bytes_allocated <= max_allowed_footprint_) {
3466 next_gc_type_ = collector::kGcTypeSticky;
3467 } else {
3468 next_gc_type_ = non_sticky_gc_type;
3469 }
3470 // If we have freed enough memory, shrink the heap back down.
3471 if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3472 target_size = bytes_allocated + adjusted_max_free;
3473 } else {
3474 target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3475 }
3476 }
3477 if (!ignore_max_footprint_) {
3478 SetIdealFootprint(target_size);
3479 if (IsGcConcurrent()) {
3480 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3481 current_gc_iteration_.GetFreedLargeObjectBytes() +
3482 current_gc_iteration_.GetFreedRevokeBytes();
3483 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3484 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3485 CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3486 const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3487 bytes_allocated_before_gc;
3488 // Calculate when to perform the next ConcurrentGC.
3489 // Calculate the estimated GC duration.
3490 const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3491 // Estimate how many remaining bytes we will have when we need to start the next GC.
3492 size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3493 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3494 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3495 if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3496 // A never going to happen situation that from the estimated allocation rate we will exceed
3497 // the applications entire footprint with the given estimated allocation rate. Schedule
3498 // another GC nearly straight away.
3499 remaining_bytes = kMinConcurrentRemainingBytes;
3500 }
3501 DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3502 DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3503 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3504 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3505 // right away.
3506 concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3507 static_cast<size_t>(bytes_allocated));
3508 }
3509 }
3510 }
3511
ClampGrowthLimit()3512 void Heap::ClampGrowthLimit() {
3513 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3514 ScopedObjectAccess soa(Thread::Current());
3515 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3516 capacity_ = growth_limit_;
3517 for (const auto& space : continuous_spaces_) {
3518 if (space->IsMallocSpace()) {
3519 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3520 malloc_space->ClampGrowthLimit();
3521 }
3522 }
3523 // This space isn't added for performance reasons.
3524 if (main_space_backup_.get() != nullptr) {
3525 main_space_backup_->ClampGrowthLimit();
3526 }
3527 }
3528
ClearGrowthLimit()3529 void Heap::ClearGrowthLimit() {
3530 growth_limit_ = capacity_;
3531 ScopedObjectAccess soa(Thread::Current());
3532 for (const auto& space : continuous_spaces_) {
3533 if (space->IsMallocSpace()) {
3534 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3535 malloc_space->ClearGrowthLimit();
3536 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3537 }
3538 }
3539 // This space isn't added for performance reasons.
3540 if (main_space_backup_.get() != nullptr) {
3541 main_space_backup_->ClearGrowthLimit();
3542 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3543 }
3544 }
3545
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3546 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3547 ScopedObjectAccess soa(self);
3548 ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3549 jvalue args[1];
3550 args[0].l = arg.get();
3551 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3552 // Restore object in case it gets moved.
3553 *object = soa.Decode<mirror::Object>(arg.get());
3554 }
3555
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,ObjPtr<mirror::Object> * obj)3556 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3557 bool force_full,
3558 ObjPtr<mirror::Object>* obj) {
3559 StackHandleScope<1> hs(self);
3560 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3561 RequestConcurrentGC(self, kGcCauseBackground, force_full);
3562 }
3563
3564 class Heap::ConcurrentGCTask : public HeapTask {
3565 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full)3566 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full)
3567 : HeapTask(target_time), cause_(cause), force_full_(force_full) {}
Run(Thread * self)3568 virtual void Run(Thread* self) OVERRIDE {
3569 gc::Heap* heap = Runtime::Current()->GetHeap();
3570 heap->ConcurrentGC(self, cause_, force_full_);
3571 heap->ClearConcurrentGCRequest();
3572 }
3573
3574 private:
3575 const GcCause cause_;
3576 const bool force_full_; // If true, force full (or partial) collection.
3577 };
3578
CanAddHeapTask(Thread * self)3579 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3580 Runtime* runtime = Runtime::Current();
3581 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3582 !self->IsHandlingStackOverflow();
3583 }
3584
ClearConcurrentGCRequest()3585 void Heap::ClearConcurrentGCRequest() {
3586 concurrent_gc_pending_.StoreRelaxed(false);
3587 }
3588
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full)3589 void Heap::RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3590 if (CanAddHeapTask(self) &&
3591 concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3592 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3593 cause,
3594 force_full));
3595 }
3596 }
3597
ConcurrentGC(Thread * self,GcCause cause,bool force_full)3598 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full) {
3599 if (!Runtime::Current()->IsShuttingDown(self)) {
3600 // Wait for any GCs currently running to finish.
3601 if (WaitForGcToComplete(cause, self) == collector::kGcTypeNone) {
3602 // If the we can't run the GC type we wanted to run, find the next appropriate one and try
3603 // that instead. E.g. can't do partial, so do full instead.
3604 collector::GcType next_gc_type = next_gc_type_;
3605 // If forcing full and next gc type is sticky, override with a non-sticky type.
3606 if (force_full && next_gc_type == collector::kGcTypeSticky) {
3607 next_gc_type = NonStickyGcType();
3608 }
3609 if (CollectGarbageInternal(next_gc_type, cause, false) == collector::kGcTypeNone) {
3610 for (collector::GcType gc_type : gc_plan_) {
3611 // Attempt to run the collector, if we succeed, we are done.
3612 if (gc_type > next_gc_type &&
3613 CollectGarbageInternal(gc_type, cause, false) != collector::kGcTypeNone) {
3614 break;
3615 }
3616 }
3617 }
3618 }
3619 }
3620 }
3621
3622 class Heap::CollectorTransitionTask : public HeapTask {
3623 public:
CollectorTransitionTask(uint64_t target_time)3624 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
3625
Run(Thread * self)3626 virtual void Run(Thread* self) OVERRIDE {
3627 gc::Heap* heap = Runtime::Current()->GetHeap();
3628 heap->DoPendingCollectorTransition();
3629 heap->ClearPendingCollectorTransition(self);
3630 }
3631 };
3632
ClearPendingCollectorTransition(Thread * self)3633 void Heap::ClearPendingCollectorTransition(Thread* self) {
3634 MutexLock mu(self, *pending_task_lock_);
3635 pending_collector_transition_ = nullptr;
3636 }
3637
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3638 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3639 Thread* self = Thread::Current();
3640 desired_collector_type_ = desired_collector_type;
3641 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3642 return;
3643 }
3644 if (collector_type_ == kCollectorTypeCC) {
3645 // For CC, we invoke a full compaction when going to the background, but the collector type
3646 // doesn't change.
3647 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
3648 }
3649 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
3650 CollectorTransitionTask* added_task = nullptr;
3651 const uint64_t target_time = NanoTime() + delta_time;
3652 {
3653 MutexLock mu(self, *pending_task_lock_);
3654 // If we have an existing collector transition, update the targe time to be the new target.
3655 if (pending_collector_transition_ != nullptr) {
3656 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3657 return;
3658 }
3659 added_task = new CollectorTransitionTask(target_time);
3660 pending_collector_transition_ = added_task;
3661 }
3662 task_processor_->AddTask(self, added_task);
3663 }
3664
3665 class Heap::HeapTrimTask : public HeapTask {
3666 public:
HeapTrimTask(uint64_t delta_time)3667 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3668 virtual void Run(Thread* self) OVERRIDE {
3669 gc::Heap* heap = Runtime::Current()->GetHeap();
3670 heap->Trim(self);
3671 heap->ClearPendingTrim(self);
3672 }
3673 };
3674
ClearPendingTrim(Thread * self)3675 void Heap::ClearPendingTrim(Thread* self) {
3676 MutexLock mu(self, *pending_task_lock_);
3677 pending_heap_trim_ = nullptr;
3678 }
3679
RequestTrim(Thread * self)3680 void Heap::RequestTrim(Thread* self) {
3681 if (!CanAddHeapTask(self)) {
3682 return;
3683 }
3684 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3685 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3686 // a space it will hold its lock and can become a cause of jank.
3687 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3688 // forking.
3689
3690 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3691 // because that only marks object heads, so a large array looks like lots of empty space. We
3692 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3693 // to utilization (which is probably inversely proportional to how much benefit we can expect).
3694 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3695 // not how much use we're making of those pages.
3696 HeapTrimTask* added_task = nullptr;
3697 {
3698 MutexLock mu(self, *pending_task_lock_);
3699 if (pending_heap_trim_ != nullptr) {
3700 // Already have a heap trim request in task processor, ignore this request.
3701 return;
3702 }
3703 added_task = new HeapTrimTask(kHeapTrimWait);
3704 pending_heap_trim_ = added_task;
3705 }
3706 task_processor_->AddTask(self, added_task);
3707 }
3708
RevokeThreadLocalBuffers(Thread * thread)3709 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3710 if (rosalloc_space_ != nullptr) {
3711 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3712 if (freed_bytes_revoke > 0U) {
3713 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3714 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3715 }
3716 }
3717 if (bump_pointer_space_ != nullptr) {
3718 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3719 }
3720 if (region_space_ != nullptr) {
3721 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3722 }
3723 }
3724
RevokeRosAllocThreadLocalBuffers(Thread * thread)3725 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3726 if (rosalloc_space_ != nullptr) {
3727 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3728 if (freed_bytes_revoke > 0U) {
3729 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3730 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3731 }
3732 }
3733 }
3734
RevokeAllThreadLocalBuffers()3735 void Heap::RevokeAllThreadLocalBuffers() {
3736 if (rosalloc_space_ != nullptr) {
3737 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3738 if (freed_bytes_revoke > 0U) {
3739 num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3740 CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3741 }
3742 }
3743 if (bump_pointer_space_ != nullptr) {
3744 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3745 }
3746 if (region_space_ != nullptr) {
3747 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3748 }
3749 }
3750
IsGCRequestPending() const3751 bool Heap::IsGCRequestPending() const {
3752 return concurrent_gc_pending_.LoadRelaxed();
3753 }
3754
RunFinalization(JNIEnv * env,uint64_t timeout)3755 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3756 env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3757 WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3758 static_cast<jlong>(timeout));
3759 }
3760
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3761 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3762 // See the REDESIGN section of go/understanding-register-native-allocation
3763 // for an explanation of how RegisterNativeAllocation works.
3764 size_t new_value = bytes + new_native_bytes_allocated_.FetchAndAddRelaxed(bytes);
3765 if (new_value > NativeAllocationBlockingGcWatermark()) {
3766 // Wait for a new GC to finish and finalizers to run, because the
3767 // allocation rate is too high.
3768 Thread* self = ThreadForEnv(env);
3769
3770 bool run_gc = false;
3771 {
3772 MutexLock mu(self, *native_blocking_gc_lock_);
3773 uint32_t initial_gcs_finished = native_blocking_gcs_finished_;
3774 if (native_blocking_gc_in_progress_) {
3775 // A native blocking GC is in progress from the last time the native
3776 // allocation blocking GC watermark was exceeded. Wait for that GC to
3777 // finish before addressing the fact that we exceeded the blocking
3778 // watermark again.
3779 do {
3780 ScopedTrace trace("RegisterNativeAllocation: Wait For Prior Blocking GC Completion");
3781 native_blocking_gc_cond_->Wait(self);
3782 } while (native_blocking_gcs_finished_ == initial_gcs_finished);
3783 initial_gcs_finished++;
3784 }
3785
3786 // It's possible multiple threads have seen that we exceeded the
3787 // blocking watermark. Ensure that only one of those threads is assigned
3788 // to run the blocking GC. The rest of the threads should instead wait
3789 // for the blocking GC to complete.
3790 if (native_blocking_gcs_finished_ == initial_gcs_finished) {
3791 if (native_blocking_gc_is_assigned_) {
3792 do {
3793 ScopedTrace trace("RegisterNativeAllocation: Wait For Blocking GC Completion");
3794 native_blocking_gc_cond_->Wait(self);
3795 } while (native_blocking_gcs_finished_ == initial_gcs_finished);
3796 } else {
3797 native_blocking_gc_is_assigned_ = true;
3798 run_gc = true;
3799 }
3800 }
3801 }
3802
3803 if (run_gc) {
3804 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAllocBlocking, false);
3805 RunFinalization(env, kNativeAllocationFinalizeTimeout);
3806 CHECK(!env->ExceptionCheck());
3807
3808 MutexLock mu(self, *native_blocking_gc_lock_);
3809 native_blocking_gc_is_assigned_ = false;
3810 native_blocking_gc_in_progress_ = false;
3811 native_blocking_gcs_finished_++;
3812 native_blocking_gc_cond_->Broadcast(self);
3813 }
3814 } else if (new_value > NativeAllocationGcWatermark() * HeapGrowthMultiplier() &&
3815 !IsGCRequestPending()) {
3816 // Trigger another GC because there have been enough native bytes
3817 // allocated since the last GC.
3818 if (IsGcConcurrent()) {
3819 RequestConcurrentGC(ThreadForEnv(env), kGcCauseForNativeAlloc, /*force_full*/true);
3820 } else {
3821 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false);
3822 }
3823 }
3824 }
3825
RegisterNativeFree(JNIEnv *,size_t bytes)3826 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
3827 // Take the bytes freed out of new_native_bytes_allocated_ first. If
3828 // new_native_bytes_allocated_ reaches zero, take the remaining bytes freed
3829 // out of old_native_bytes_allocated_ to ensure all freed bytes are
3830 // accounted for.
3831 size_t allocated;
3832 size_t new_freed_bytes;
3833 do {
3834 allocated = new_native_bytes_allocated_.LoadRelaxed();
3835 new_freed_bytes = std::min(allocated, bytes);
3836 } while (!new_native_bytes_allocated_.CompareExchangeWeakRelaxed(allocated,
3837 allocated - new_freed_bytes));
3838 if (new_freed_bytes < bytes) {
3839 old_native_bytes_allocated_.FetchAndSubRelaxed(bytes - new_freed_bytes);
3840 }
3841 }
3842
GetTotalMemory() const3843 size_t Heap::GetTotalMemory() const {
3844 return std::max(max_allowed_footprint_, GetBytesAllocated());
3845 }
3846
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3847 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3848 DCHECK(mod_union_table != nullptr);
3849 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3850 }
3851
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)3852 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
3853 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3854 (c->IsVariableSize() || c->GetObjectSize() == byte_count))
3855 << "ClassFlags=" << c->GetClassFlags()
3856 << " IsClassClass=" << c->IsClassClass()
3857 << " byte_count=" << byte_count
3858 << " IsVariableSize=" << c->IsVariableSize()
3859 << " ObjectSize=" << c->GetObjectSize()
3860 << " sizeof(Class)=" << sizeof(mirror::Class)
3861 << verification_->DumpObjectInfo(c.Ptr(), /*tag*/ "klass");
3862 CHECK_GE(byte_count, sizeof(mirror::Object));
3863 }
3864
AddRememberedSet(accounting::RememberedSet * remembered_set)3865 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3866 CHECK(remembered_set != nullptr);
3867 space::Space* space = remembered_set->GetSpace();
3868 CHECK(space != nullptr);
3869 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3870 remembered_sets_.Put(space, remembered_set);
3871 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3872 }
3873
RemoveRememberedSet(space::Space * space)3874 void Heap::RemoveRememberedSet(space::Space* space) {
3875 CHECK(space != nullptr);
3876 auto it = remembered_sets_.find(space);
3877 CHECK(it != remembered_sets_.end());
3878 delete it->second;
3879 remembered_sets_.erase(it);
3880 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3881 }
3882
ClearMarkedObjects()3883 void Heap::ClearMarkedObjects() {
3884 // Clear all of the spaces' mark bitmaps.
3885 for (const auto& space : GetContinuousSpaces()) {
3886 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3887 if (space->GetLiveBitmap() != mark_bitmap) {
3888 mark_bitmap->Clear();
3889 }
3890 }
3891 // Clear the marked objects in the discontinous space object sets.
3892 for (const auto& space : GetDiscontinuousSpaces()) {
3893 space->GetMarkBitmap()->Clear();
3894 }
3895 }
3896
SetAllocationRecords(AllocRecordObjectMap * records)3897 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
3898 allocation_records_.reset(records);
3899 }
3900
VisitAllocationRecords(RootVisitor * visitor) const3901 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
3902 if (IsAllocTrackingEnabled()) {
3903 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3904 if (IsAllocTrackingEnabled()) {
3905 GetAllocationRecords()->VisitRoots(visitor);
3906 }
3907 }
3908 }
3909
SweepAllocationRecords(IsMarkedVisitor * visitor) const3910 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
3911 if (IsAllocTrackingEnabled()) {
3912 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3913 if (IsAllocTrackingEnabled()) {
3914 GetAllocationRecords()->SweepAllocationRecords(visitor);
3915 }
3916 }
3917 }
3918
AllowNewAllocationRecords() const3919 void Heap::AllowNewAllocationRecords() const {
3920 CHECK(!kUseReadBarrier);
3921 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3922 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3923 if (allocation_records != nullptr) {
3924 allocation_records->AllowNewAllocationRecords();
3925 }
3926 }
3927
DisallowNewAllocationRecords() const3928 void Heap::DisallowNewAllocationRecords() const {
3929 CHECK(!kUseReadBarrier);
3930 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3931 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3932 if (allocation_records != nullptr) {
3933 allocation_records->DisallowNewAllocationRecords();
3934 }
3935 }
3936
BroadcastForNewAllocationRecords() const3937 void Heap::BroadcastForNewAllocationRecords() const {
3938 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
3939 // be set to false while some threads are waiting for system weak access in
3940 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
3941 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
3942 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
3943 if (allocation_records != nullptr) {
3944 allocation_records->BroadcastForNewAllocationRecords();
3945 }
3946 }
3947
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)3948 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
3949 auto* const runtime = Runtime::Current();
3950 if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
3951 !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
3952 // Check if we should GC.
3953 bool new_backtrace = false;
3954 {
3955 static constexpr size_t kMaxFrames = 16u;
3956 FixedSizeBacktrace<kMaxFrames> backtrace;
3957 backtrace.Collect(/* skip_frames */ 2);
3958 uint64_t hash = backtrace.Hash();
3959 MutexLock mu(self, *backtrace_lock_);
3960 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
3961 if (new_backtrace) {
3962 seen_backtraces_.insert(hash);
3963 }
3964 }
3965 if (new_backtrace) {
3966 StackHandleScope<1> hs(self);
3967 auto h = hs.NewHandleWrapper(obj);
3968 CollectGarbage(false);
3969 unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3970 } else {
3971 seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3972 }
3973 }
3974 }
3975
DisableGCForShutdown()3976 void Heap::DisableGCForShutdown() {
3977 Thread* const self = Thread::Current();
3978 CHECK(Runtime::Current()->IsShuttingDown(self));
3979 MutexLock mu(self, *gc_complete_lock_);
3980 gc_disabled_for_shutdown_ = true;
3981 }
3982
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const3983 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
3984 for (gc::space::ImageSpace* space : boot_image_spaces_) {
3985 if (space->HasAddress(obj.Ptr())) {
3986 return true;
3987 }
3988 }
3989 return false;
3990 }
3991
IsInBootImageOatFile(const void * p) const3992 bool Heap::IsInBootImageOatFile(const void* p) const {
3993 for (gc::space::ImageSpace* space : boot_image_spaces_) {
3994 if (space->GetOatFile()->Contains(p)) {
3995 return true;
3996 }
3997 }
3998 return false;
3999 }
4000
GetBootImagesSize(uint32_t * boot_image_begin,uint32_t * boot_image_end,uint32_t * boot_oat_begin,uint32_t * boot_oat_end)4001 void Heap::GetBootImagesSize(uint32_t* boot_image_begin,
4002 uint32_t* boot_image_end,
4003 uint32_t* boot_oat_begin,
4004 uint32_t* boot_oat_end) {
4005 DCHECK(boot_image_begin != nullptr);
4006 DCHECK(boot_image_end != nullptr);
4007 DCHECK(boot_oat_begin != nullptr);
4008 DCHECK(boot_oat_end != nullptr);
4009 *boot_image_begin = 0u;
4010 *boot_image_end = 0u;
4011 *boot_oat_begin = 0u;
4012 *boot_oat_end = 0u;
4013 for (gc::space::ImageSpace* space_ : GetBootImageSpaces()) {
4014 const uint32_t image_begin = PointerToLowMemUInt32(space_->Begin());
4015 const uint32_t image_size = space_->GetImageHeader().GetImageSize();
4016 if (*boot_image_begin == 0 || image_begin < *boot_image_begin) {
4017 *boot_image_begin = image_begin;
4018 }
4019 *boot_image_end = std::max(*boot_image_end, image_begin + image_size);
4020 const OatFile* boot_oat_file = space_->GetOatFile();
4021 const uint32_t oat_begin = PointerToLowMemUInt32(boot_oat_file->Begin());
4022 const uint32_t oat_size = boot_oat_file->Size();
4023 if (*boot_oat_begin == 0 || oat_begin < *boot_oat_begin) {
4024 *boot_oat_begin = oat_begin;
4025 }
4026 *boot_oat_end = std::max(*boot_oat_end, oat_begin + oat_size);
4027 }
4028 }
4029
SetAllocationListener(AllocationListener * l)4030 void Heap::SetAllocationListener(AllocationListener* l) {
4031 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4032
4033 if (old == nullptr) {
4034 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4035 }
4036 }
4037
RemoveAllocationListener()4038 void Heap::RemoveAllocationListener() {
4039 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4040
4041 if (old != nullptr) {
4042 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4043 }
4044 }
4045
SetGcPauseListener(GcPauseListener * l)4046 void Heap::SetGcPauseListener(GcPauseListener* l) {
4047 gc_pause_listener_.StoreRelaxed(l);
4048 }
4049
RemoveGcPauseListener()4050 void Heap::RemoveGcPauseListener() {
4051 gc_pause_listener_.StoreRelaxed(nullptr);
4052 }
4053
AllocWithNewTLAB(Thread * self,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4054 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4055 size_t alloc_size,
4056 bool grow,
4057 size_t* bytes_allocated,
4058 size_t* usable_size,
4059 size_t* bytes_tl_bulk_allocated) {
4060 const AllocatorType allocator_type = GetCurrentAllocator();
4061 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4062 DCHECK_GT(alloc_size, self->TlabSize());
4063 // There is enough space if we grow the TLAB. Lets do that. This increases the
4064 // TLAB bytes.
4065 const size_t min_expand_size = alloc_size - self->TlabSize();
4066 const size_t expand_bytes = std::max(
4067 min_expand_size,
4068 std::min(self->TlabRemainingCapacity() - self->TlabSize(), kPartialTlabSize));
4069 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4070 return nullptr;
4071 }
4072 *bytes_tl_bulk_allocated = expand_bytes;
4073 self->ExpandTlab(expand_bytes);
4074 DCHECK_LE(alloc_size, self->TlabSize());
4075 } else if (allocator_type == kAllocatorTypeTLAB) {
4076 DCHECK(bump_pointer_space_ != nullptr);
4077 const size_t new_tlab_size = alloc_size + kDefaultTLABSize;
4078 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4079 return nullptr;
4080 }
4081 // Try allocating a new thread local buffer, if the allocation fails the space must be
4082 // full so return null.
4083 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size)) {
4084 return nullptr;
4085 }
4086 *bytes_tl_bulk_allocated = new_tlab_size;
4087 } else {
4088 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4089 DCHECK(region_space_ != nullptr);
4090 if (space::RegionSpace::kRegionSize >= alloc_size) {
4091 // Non-large. Check OOME for a tlab.
4092 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4093 space::RegionSpace::kRegionSize,
4094 grow))) {
4095 const size_t new_tlab_size = kUsePartialTlabs
4096 ? std::max(alloc_size, kPartialTlabSize)
4097 : gc::space::RegionSpace::kRegionSize;
4098 // Try to allocate a tlab.
4099 if (!region_space_->AllocNewTlab(self, new_tlab_size)) {
4100 // Failed to allocate a tlab. Try non-tlab.
4101 return region_space_->AllocNonvirtual<false>(alloc_size,
4102 bytes_allocated,
4103 usable_size,
4104 bytes_tl_bulk_allocated);
4105 }
4106 *bytes_tl_bulk_allocated = new_tlab_size;
4107 // Fall-through to using the TLAB below.
4108 } else {
4109 // Check OOME for a non-tlab allocation.
4110 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4111 return region_space_->AllocNonvirtual<false>(alloc_size,
4112 bytes_allocated,
4113 usable_size,
4114 bytes_tl_bulk_allocated);
4115 }
4116 // Neither tlab or non-tlab works. Give up.
4117 return nullptr;
4118 }
4119 } else {
4120 // Large. Check OOME.
4121 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4122 return region_space_->AllocNonvirtual<false>(alloc_size,
4123 bytes_allocated,
4124 usable_size,
4125 bytes_tl_bulk_allocated);
4126 }
4127 return nullptr;
4128 }
4129 }
4130 // Refilled TLAB, return.
4131 mirror::Object* ret = self->AllocTlab(alloc_size);
4132 DCHECK(ret != nullptr);
4133 *bytes_allocated = alloc_size;
4134 *usable_size = alloc_size;
4135 return ret;
4136 }
4137
GetVerification() const4138 const Verification* Heap::GetVerification() const {
4139 return verification_.get();
4140 }
4141
4142 } // namespace gc
4143 } // namespace art
4144