1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_MIPS_CONSTANTS_H_
6 #define V8_MIPS_CONSTANTS_H_
7
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/globals.h"
11
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15 v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16 __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23 enum ArchVariants {
24 kMips64r2,
25 kMips64r6
26 };
27
28
29 #ifdef _MIPS_ARCH_MIPS64R2
30 static const ArchVariants kArchVariant = kMips64r2;
31 #elif _MIPS_ARCH_MIPS64R6
32 static const ArchVariants kArchVariant = kMips64r6;
33 #else
34 static const ArchVariants kArchVariant = kMips64r2;
35 #endif
36
37
38 enum Endianness { kLittle, kBig };
39
40 #if defined(V8_TARGET_LITTLE_ENDIAN)
41 static const Endianness kArchEndian = kLittle;
42 #elif defined(V8_TARGET_BIG_ENDIAN)
43 static const Endianness kArchEndian = kBig;
44 #else
45 #error Unknown endianness
46 #endif
47
48
49 // TODO(plind): consider renaming these ...
50 #if(defined(__mips_hard_float) && __mips_hard_float != 0)
51 // Use floating-point coprocessor instructions. This flag is raised when
52 // -mhard-float is passed to the compiler.
53 const bool IsMipsSoftFloatABI = false;
54 #elif(defined(__mips_soft_float) && __mips_soft_float != 0)
55 // This flag is raised when -msoft-float is passed to the compiler.
56 // Although FPU is a base requirement for v8, soft-float ABI is used
57 // on soft-float systems with FPU kernel emulation.
58 const bool IsMipsSoftFloatABI = true;
59 #else
60 const bool IsMipsSoftFloatABI = true;
61 #endif
62
63 #if defined(V8_TARGET_LITTLE_ENDIAN)
64 const uint32_t kMipsLwrOffset = 0;
65 const uint32_t kMipsLwlOffset = 3;
66 const uint32_t kMipsSwrOffset = 0;
67 const uint32_t kMipsSwlOffset = 3;
68 const uint32_t kMipsLdrOffset = 0;
69 const uint32_t kMipsLdlOffset = 7;
70 const uint32_t kMipsSdrOffset = 0;
71 const uint32_t kMipsSdlOffset = 7;
72 #elif defined(V8_TARGET_BIG_ENDIAN)
73 const uint32_t kMipsLwrOffset = 3;
74 const uint32_t kMipsLwlOffset = 0;
75 const uint32_t kMipsSwrOffset = 3;
76 const uint32_t kMipsSwlOffset = 0;
77 const uint32_t kMipsLdrOffset = 7;
78 const uint32_t kMipsLdlOffset = 0;
79 const uint32_t kMipsSdrOffset = 7;
80 const uint32_t kMipsSdlOffset = 0;
81 #else
82 #error Unknown endianness
83 #endif
84
85 #ifndef __STDC_FORMAT_MACROS
86 #define __STDC_FORMAT_MACROS
87 #endif
88 #include <inttypes.h>
89
90
91 // Defines constants and accessor classes to assemble, disassemble and
92 // simulate MIPS32 instructions.
93 //
94 // See: MIPS32 Architecture For Programmers
95 // Volume II: The MIPS32 Instruction Set
96 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
97
98 namespace v8 {
99 namespace internal {
100
101 // -----------------------------------------------------------------------------
102 // Registers and FPURegisters.
103
104 // Number of general purpose registers.
105 const int kNumRegisters = 32;
106 const int kInvalidRegister = -1;
107
108 // Number of registers with HI, LO, and pc.
109 const int kNumSimuRegisters = 35;
110
111 // In the simulator, the PC register is simulated as the 34th register.
112 const int kPCRegister = 34;
113
114 // Number coprocessor registers.
115 const int kNumFPURegisters = 32;
116 const int kInvalidFPURegister = -1;
117
118 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
119 const int kFCSRRegister = 31;
120 const int kInvalidFPUControlRegister = -1;
121 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
122 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1 << 31);
123 const uint64_t kFPU64InvalidResult =
124 static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
125 const int64_t kFPU64InvalidResultNegative =
126 static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
127
128 // FCSR constants.
129 const uint32_t kFCSRInexactFlagBit = 2;
130 const uint32_t kFCSRUnderflowFlagBit = 3;
131 const uint32_t kFCSROverflowFlagBit = 4;
132 const uint32_t kFCSRDivideByZeroFlagBit = 5;
133 const uint32_t kFCSRInvalidOpFlagBit = 6;
134 const uint32_t kFCSRNaN2008FlagBit = 18;
135
136 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
137 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
138 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
139 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
140 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
141 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
142
143 const uint32_t kFCSRFlagMask =
144 kFCSRInexactFlagMask |
145 kFCSRUnderflowFlagMask |
146 kFCSROverflowFlagMask |
147 kFCSRDivideByZeroFlagMask |
148 kFCSRInvalidOpFlagMask;
149
150 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
151
152 // 'pref' instruction hints
153 const int32_t kPrefHintLoad = 0;
154 const int32_t kPrefHintStore = 1;
155 const int32_t kPrefHintLoadStreamed = 4;
156 const int32_t kPrefHintStoreStreamed = 5;
157 const int32_t kPrefHintLoadRetained = 6;
158 const int32_t kPrefHintStoreRetained = 7;
159 const int32_t kPrefHintWritebackInvalidate = 25;
160 const int32_t kPrefHintPrepareForStore = 30;
161
162 // Helper functions for converting between register numbers and names.
163 class Registers {
164 public:
165 // Return the name of the register.
166 static const char* Name(int reg);
167
168 // Lookup the register number for the name provided.
169 static int Number(const char* name);
170
171 struct RegisterAlias {
172 int reg;
173 const char* name;
174 };
175
176 static const int64_t kMaxValue = 0x7fffffffffffffffl;
177 static const int64_t kMinValue = 0x8000000000000000l;
178
179 private:
180 static const char* names_[kNumSimuRegisters];
181 static const RegisterAlias aliases_[];
182 };
183
184 // Helper functions for converting between register numbers and names.
185 class FPURegisters {
186 public:
187 // Return the name of the register.
188 static const char* Name(int reg);
189
190 // Lookup the register number for the name provided.
191 static int Number(const char* name);
192
193 struct RegisterAlias {
194 int creg;
195 const char* name;
196 };
197
198 private:
199 static const char* names_[kNumFPURegisters];
200 static const RegisterAlias aliases_[];
201 };
202
203
204 // -----------------------------------------------------------------------------
205 // Instructions encoding constants.
206
207 // On MIPS all instructions are 32 bits.
208 typedef int32_t Instr;
209
210 // Special Software Interrupt codes when used in the presence of the MIPS
211 // simulator.
212 enum SoftwareInterruptCodes {
213 // Transition to C code.
214 call_rt_redirected = 0xfffff
215 };
216
217 // On MIPS Simulator breakpoints can have different codes:
218 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
219 // the simulator will run through them and print the registers.
220 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
221 // instructions (see Assembler::stop()).
222 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
223 // debugger.
224 const uint32_t kMaxWatchpointCode = 31;
225 const uint32_t kMaxStopCode = 127;
226 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
227
228
229 // ----- Fields offset and length.
230 const int kOpcodeShift = 26;
231 const int kOpcodeBits = 6;
232 const int kRsShift = 21;
233 const int kRsBits = 5;
234 const int kRtShift = 16;
235 const int kRtBits = 5;
236 const int kRdShift = 11;
237 const int kRdBits = 5;
238 const int kSaShift = 6;
239 const int kSaBits = 5;
240 const int kLsaSaBits = 2;
241 const int kFunctionShift = 0;
242 const int kFunctionBits = 6;
243 const int kLuiShift = 16;
244 const int kBp2Shift = 6;
245 const int kBp2Bits = 2;
246 const int kBp3Shift = 6;
247 const int kBp3Bits = 3;
248
249 const int kImm16Shift = 0;
250 const int kImm16Bits = 16;
251 const int kImm18Shift = 0;
252 const int kImm18Bits = 18;
253 const int kImm19Shift = 0;
254 const int kImm19Bits = 19;
255 const int kImm21Shift = 0;
256 const int kImm21Bits = 21;
257 const int kImm26Shift = 0;
258 const int kImm26Bits = 26;
259 const int kImm28Shift = 0;
260 const int kImm28Bits = 28;
261 const int kImm32Shift = 0;
262 const int kImm32Bits = 32;
263
264 // In branches and jumps immediate fields point to words, not bytes,
265 // and are therefore shifted by 2.
266 const int kImmFieldShift = 2;
267
268 const int kFrBits = 5;
269 const int kFrShift = 21;
270 const int kFsShift = 11;
271 const int kFsBits = 5;
272 const int kFtShift = 16;
273 const int kFtBits = 5;
274 const int kFdShift = 6;
275 const int kFdBits = 5;
276 const int kFCccShift = 8;
277 const int kFCccBits = 3;
278 const int kFBccShift = 18;
279 const int kFBccBits = 3;
280 const int kFBtrueShift = 16;
281 const int kFBtrueBits = 1;
282
283 // ----- Miscellaneous useful masks.
284 // Instruction bit masks.
285 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
286 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
287 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
288 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
289 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
290 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
291 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
292 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
293 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
294 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
295 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
296 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
297 // Misc masks.
298 const int kHiMask = 0xffff << 16;
299 const int kLoMask = 0xffff;
300 const int kSignMask = 0x80000000;
301 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
302 const int64_t kHi16MaskOf64 = (int64_t)0xffff << 48;
303 const int64_t kSe16MaskOf64 = (int64_t)0xffff << 32;
304 const int64_t kTh16MaskOf64 = (int64_t)0xffff << 16;
305 const int32_t kJalRawMark = 0x00000000;
306 const int32_t kJRawMark = 0xf0000000;
307 const int32_t kJumpRawMask = 0xf0000000;
308
309 // ----- MIPS Opcodes and Function Fields.
310 // We use this presentation to stay close to the table representation in
311 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
312 enum Opcode : uint32_t {
313 SPECIAL = 0U << kOpcodeShift,
314 REGIMM = 1U << kOpcodeShift,
315
316 J = ((0U << 3) + 2) << kOpcodeShift,
317 JAL = ((0U << 3) + 3) << kOpcodeShift,
318 BEQ = ((0U << 3) + 4) << kOpcodeShift,
319 BNE = ((0U << 3) + 5) << kOpcodeShift,
320 BLEZ = ((0U << 3) + 6) << kOpcodeShift,
321 BGTZ = ((0U << 3) + 7) << kOpcodeShift,
322
323 ADDI = ((1U << 3) + 0) << kOpcodeShift,
324 ADDIU = ((1U << 3) + 1) << kOpcodeShift,
325 SLTI = ((1U << 3) + 2) << kOpcodeShift,
326 SLTIU = ((1U << 3) + 3) << kOpcodeShift,
327 ANDI = ((1U << 3) + 4) << kOpcodeShift,
328 ORI = ((1U << 3) + 5) << kOpcodeShift,
329 XORI = ((1U << 3) + 6) << kOpcodeShift,
330 LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
331 DAUI = ((3U << 3) + 5) << kOpcodeShift,
332
333 BEQC = ((2U << 3) + 0) << kOpcodeShift,
334 COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
335 BEQL = ((2U << 3) + 4) << kOpcodeShift,
336 BNEL = ((2U << 3) + 5) << kOpcodeShift,
337 BLEZL = ((2U << 3) + 6) << kOpcodeShift,
338 BGTZL = ((2U << 3) + 7) << kOpcodeShift,
339
340 DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
341 DADDIU = ((3U << 3) + 1) << kOpcodeShift,
342 LDL = ((3U << 3) + 2) << kOpcodeShift,
343 LDR = ((3U << 3) + 3) << kOpcodeShift,
344 SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
345 SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
346
347 LB = ((4U << 3) + 0) << kOpcodeShift,
348 LH = ((4U << 3) + 1) << kOpcodeShift,
349 LWL = ((4U << 3) + 2) << kOpcodeShift,
350 LW = ((4U << 3) + 3) << kOpcodeShift,
351 LBU = ((4U << 3) + 4) << kOpcodeShift,
352 LHU = ((4U << 3) + 5) << kOpcodeShift,
353 LWR = ((4U << 3) + 6) << kOpcodeShift,
354 LWU = ((4U << 3) + 7) << kOpcodeShift,
355
356 SB = ((5U << 3) + 0) << kOpcodeShift,
357 SH = ((5U << 3) + 1) << kOpcodeShift,
358 SWL = ((5U << 3) + 2) << kOpcodeShift,
359 SW = ((5U << 3) + 3) << kOpcodeShift,
360 SDL = ((5U << 3) + 4) << kOpcodeShift,
361 SDR = ((5U << 3) + 5) << kOpcodeShift,
362 SWR = ((5U << 3) + 6) << kOpcodeShift,
363
364 LWC1 = ((6U << 3) + 1) << kOpcodeShift,
365 BC = ((6U << 3) + 2) << kOpcodeShift,
366 LLD = ((6U << 3) + 4) << kOpcodeShift,
367 LDC1 = ((6U << 3) + 5) << kOpcodeShift,
368 POP66 = ((6U << 3) + 6) << kOpcodeShift,
369 LD = ((6U << 3) + 7) << kOpcodeShift,
370
371 PREF = ((6U << 3) + 3) << kOpcodeShift,
372
373 SWC1 = ((7U << 3) + 1) << kOpcodeShift,
374 BALC = ((7U << 3) + 2) << kOpcodeShift,
375 PCREL = ((7U << 3) + 3) << kOpcodeShift,
376 SCD = ((7U << 3) + 4) << kOpcodeShift,
377 SDC1 = ((7U << 3) + 5) << kOpcodeShift,
378 POP76 = ((7U << 3) + 6) << kOpcodeShift,
379 SD = ((7U << 3) + 7) << kOpcodeShift,
380
381 COP1X = ((1U << 4) + 3) << kOpcodeShift,
382
383 // New r6 instruction.
384 POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
385 POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
386 POP10 = ADDI, // beqzalc, bovc, beqc
387 POP26 = BLEZL, // bgezc, blezc, bgec/blec
388 POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
389 POP30 = DADDI, // bnezalc, bnvc, bnec
390 };
391
392 enum SecondaryField : uint32_t {
393 // SPECIAL Encoding of Function Field.
394 SLL = ((0U << 3) + 0),
395 MOVCI = ((0U << 3) + 1),
396 SRL = ((0U << 3) + 2),
397 SRA = ((0U << 3) + 3),
398 SLLV = ((0U << 3) + 4),
399 LSA = ((0U << 3) + 5),
400 SRLV = ((0U << 3) + 6),
401 SRAV = ((0U << 3) + 7),
402
403 JR = ((1U << 3) + 0),
404 JALR = ((1U << 3) + 1),
405 MOVZ = ((1U << 3) + 2),
406 MOVN = ((1U << 3) + 3),
407 BREAK = ((1U << 3) + 5),
408 SYNC = ((1U << 3) + 7),
409
410 MFHI = ((2U << 3) + 0),
411 CLZ_R6 = ((2U << 3) + 0),
412 CLO_R6 = ((2U << 3) + 1),
413 MFLO = ((2U << 3) + 2),
414 DCLZ_R6 = ((2U << 3) + 2),
415 DCLO_R6 = ((2U << 3) + 3),
416 DSLLV = ((2U << 3) + 4),
417 DLSA = ((2U << 3) + 5),
418 DSRLV = ((2U << 3) + 6),
419 DSRAV = ((2U << 3) + 7),
420
421 MULT = ((3U << 3) + 0),
422 MULTU = ((3U << 3) + 1),
423 DIV = ((3U << 3) + 2),
424 DIVU = ((3U << 3) + 3),
425 DMULT = ((3U << 3) + 4),
426 DMULTU = ((3U << 3) + 5),
427 DDIV = ((3U << 3) + 6),
428 DDIVU = ((3U << 3) + 7),
429
430 ADD = ((4U << 3) + 0),
431 ADDU = ((4U << 3) + 1),
432 SUB = ((4U << 3) + 2),
433 SUBU = ((4U << 3) + 3),
434 AND = ((4U << 3) + 4),
435 OR = ((4U << 3) + 5),
436 XOR = ((4U << 3) + 6),
437 NOR = ((4U << 3) + 7),
438
439 SLT = ((5U << 3) + 2),
440 SLTU = ((5U << 3) + 3),
441 DADD = ((5U << 3) + 4),
442 DADDU = ((5U << 3) + 5),
443 DSUB = ((5U << 3) + 6),
444 DSUBU = ((5U << 3) + 7),
445
446 TGE = ((6U << 3) + 0),
447 TGEU = ((6U << 3) + 1),
448 TLT = ((6U << 3) + 2),
449 TLTU = ((6U << 3) + 3),
450 TEQ = ((6U << 3) + 4),
451 SELEQZ_S = ((6U << 3) + 5),
452 TNE = ((6U << 3) + 6),
453 SELNEZ_S = ((6U << 3) + 7),
454
455 DSLL = ((7U << 3) + 0),
456 DSRL = ((7U << 3) + 2),
457 DSRA = ((7U << 3) + 3),
458 DSLL32 = ((7U << 3) + 4),
459 DSRL32 = ((7U << 3) + 6),
460 DSRA32 = ((7U << 3) + 7),
461
462 // Multiply integers in r6.
463 MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
464 MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
465 D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
466 D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
467 RINT = ((3U << 3) + 2),
468
469 MUL_OP = ((0U << 3) + 2),
470 MUH_OP = ((0U << 3) + 3),
471 DIV_OP = ((0U << 3) + 2),
472 MOD_OP = ((0U << 3) + 3),
473
474 DIV_MOD = ((3U << 3) + 2),
475 DIV_MOD_U = ((3U << 3) + 3),
476 D_DIV_MOD = ((3U << 3) + 6),
477 D_DIV_MOD_U = ((3U << 3) + 7),
478
479 // drotr in special4?
480
481 // SPECIAL2 Encoding of Function Field.
482 MUL = ((0U << 3) + 2),
483 CLZ = ((4U << 3) + 0),
484 CLO = ((4U << 3) + 1),
485 DCLZ = ((4U << 3) + 4),
486 DCLO = ((4U << 3) + 5),
487
488 // SPECIAL3 Encoding of Function Field.
489 EXT = ((0U << 3) + 0),
490 DEXTM = ((0U << 3) + 1),
491 DEXTU = ((0U << 3) + 2),
492 DEXT = ((0U << 3) + 3),
493 INS = ((0U << 3) + 4),
494 DINSM = ((0U << 3) + 5),
495 DINSU = ((0U << 3) + 6),
496 DINS = ((0U << 3) + 7),
497
498 BSHFL = ((4U << 3) + 0),
499 DBSHFL = ((4U << 3) + 4),
500
501 // SPECIAL3 Encoding of sa Field.
502 BITSWAP = ((0U << 3) + 0),
503 ALIGN = ((0U << 3) + 2),
504 WSBH = ((0U << 3) + 2),
505 SEB = ((2U << 3) + 0),
506 SEH = ((3U << 3) + 0),
507
508 DBITSWAP = ((0U << 3) + 0),
509 DALIGN = ((0U << 3) + 1),
510 DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
511 DSBH = ((0U << 3) + 2),
512 DSHD = ((0U << 3) + 5),
513
514 // REGIMM encoding of rt Field.
515 BLTZ = ((0U << 3) + 0) << 16,
516 BGEZ = ((0U << 3) + 1) << 16,
517 BLTZAL = ((2U << 3) + 0) << 16,
518 BGEZAL = ((2U << 3) + 1) << 16,
519 BGEZALL = ((2U << 3) + 3) << 16,
520 DAHI = ((0U << 3) + 6) << 16,
521 DATI = ((3U << 3) + 6) << 16,
522
523 // COP1 Encoding of rs Field.
524 MFC1 = ((0U << 3) + 0) << 21,
525 DMFC1 = ((0U << 3) + 1) << 21,
526 CFC1 = ((0U << 3) + 2) << 21,
527 MFHC1 = ((0U << 3) + 3) << 21,
528 MTC1 = ((0U << 3) + 4) << 21,
529 DMTC1 = ((0U << 3) + 5) << 21,
530 CTC1 = ((0U << 3) + 6) << 21,
531 MTHC1 = ((0U << 3) + 7) << 21,
532 BC1 = ((1U << 3) + 0) << 21,
533 S = ((2U << 3) + 0) << 21,
534 D = ((2U << 3) + 1) << 21,
535 W = ((2U << 3) + 4) << 21,
536 L = ((2U << 3) + 5) << 21,
537 PS = ((2U << 3) + 6) << 21,
538 // COP1 Encoding of Function Field When rs=S.
539
540 ADD_S = ((0U << 3) + 0),
541 SUB_S = ((0U << 3) + 1),
542 MUL_S = ((0U << 3) + 2),
543 DIV_S = ((0U << 3) + 3),
544 ABS_S = ((0U << 3) + 5),
545 SQRT_S = ((0U << 3) + 4),
546 MOV_S = ((0U << 3) + 6),
547 NEG_S = ((0U << 3) + 7),
548 ROUND_L_S = ((1U << 3) + 0),
549 TRUNC_L_S = ((1U << 3) + 1),
550 CEIL_L_S = ((1U << 3) + 2),
551 FLOOR_L_S = ((1U << 3) + 3),
552 ROUND_W_S = ((1U << 3) + 4),
553 TRUNC_W_S = ((1U << 3) + 5),
554 CEIL_W_S = ((1U << 3) + 6),
555 FLOOR_W_S = ((1U << 3) + 7),
556 RECIP_S = ((2U << 3) + 5),
557 RSQRT_S = ((2U << 3) + 6),
558 MADDF_S = ((3U << 3) + 0),
559 MSUBF_S = ((3U << 3) + 1),
560 CLASS_S = ((3U << 3) + 3),
561 CVT_D_S = ((4U << 3) + 1),
562 CVT_W_S = ((4U << 3) + 4),
563 CVT_L_S = ((4U << 3) + 5),
564 CVT_PS_S = ((4U << 3) + 6),
565 // COP1 Encoding of Function Field When rs=D.
566 ADD_D = ((0U << 3) + 0),
567 SUB_D = ((0U << 3) + 1),
568 MUL_D = ((0U << 3) + 2),
569 DIV_D = ((0U << 3) + 3),
570 SQRT_D = ((0U << 3) + 4),
571 ABS_D = ((0U << 3) + 5),
572 MOV_D = ((0U << 3) + 6),
573 NEG_D = ((0U << 3) + 7),
574 ROUND_L_D = ((1U << 3) + 0),
575 TRUNC_L_D = ((1U << 3) + 1),
576 CEIL_L_D = ((1U << 3) + 2),
577 FLOOR_L_D = ((1U << 3) + 3),
578 ROUND_W_D = ((1U << 3) + 4),
579 TRUNC_W_D = ((1U << 3) + 5),
580 CEIL_W_D = ((1U << 3) + 6),
581 FLOOR_W_D = ((1U << 3) + 7),
582 RECIP_D = ((2U << 3) + 5),
583 RSQRT_D = ((2U << 3) + 6),
584 MADDF_D = ((3U << 3) + 0),
585 MSUBF_D = ((3U << 3) + 1),
586 CLASS_D = ((3U << 3) + 3),
587 MIN = ((3U << 3) + 4),
588 MINA = ((3U << 3) + 5),
589 MAX = ((3U << 3) + 6),
590 MAXA = ((3U << 3) + 7),
591 CVT_S_D = ((4U << 3) + 0),
592 CVT_W_D = ((4U << 3) + 4),
593 CVT_L_D = ((4U << 3) + 5),
594 C_F_D = ((6U << 3) + 0),
595 C_UN_D = ((6U << 3) + 1),
596 C_EQ_D = ((6U << 3) + 2),
597 C_UEQ_D = ((6U << 3) + 3),
598 C_OLT_D = ((6U << 3) + 4),
599 C_ULT_D = ((6U << 3) + 5),
600 C_OLE_D = ((6U << 3) + 6),
601 C_ULE_D = ((6U << 3) + 7),
602
603 // COP1 Encoding of Function Field When rs=W or L.
604 CVT_S_W = ((4U << 3) + 0),
605 CVT_D_W = ((4U << 3) + 1),
606 CVT_S_L = ((4U << 3) + 0),
607 CVT_D_L = ((4U << 3) + 1),
608 BC1EQZ = ((2U << 2) + 1) << 21,
609 BC1NEZ = ((3U << 2) + 1) << 21,
610 // COP1 CMP positive predicates Bit 5..4 = 00.
611 CMP_AF = ((0U << 3) + 0),
612 CMP_UN = ((0U << 3) + 1),
613 CMP_EQ = ((0U << 3) + 2),
614 CMP_UEQ = ((0U << 3) + 3),
615 CMP_LT = ((0U << 3) + 4),
616 CMP_ULT = ((0U << 3) + 5),
617 CMP_LE = ((0U << 3) + 6),
618 CMP_ULE = ((0U << 3) + 7),
619 CMP_SAF = ((1U << 3) + 0),
620 CMP_SUN = ((1U << 3) + 1),
621 CMP_SEQ = ((1U << 3) + 2),
622 CMP_SUEQ = ((1U << 3) + 3),
623 CMP_SSLT = ((1U << 3) + 4),
624 CMP_SSULT = ((1U << 3) + 5),
625 CMP_SLE = ((1U << 3) + 6),
626 CMP_SULE = ((1U << 3) + 7),
627 // COP1 CMP negative predicates Bit 5..4 = 01.
628 CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
629 CMP_OR = ((2U << 3) + 1),
630 CMP_UNE = ((2U << 3) + 2),
631 CMP_NE = ((2U << 3) + 3),
632 CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
633 CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
634 CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
635 CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
636 CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
637 CMP_SOR = ((3U << 3) + 1),
638 CMP_SUNE = ((3U << 3) + 2),
639 CMP_SNE = ((3U << 3) + 3),
640 CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
641 CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
642 CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
643 CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
644
645 SEL = ((2U << 3) + 0),
646 MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
647 MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
648 MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
649 SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
650 SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
651
652 // COP1 Encoding of Function Field When rs=PS.
653
654 // COP1X Encoding of Function Field.
655 MADD_S = ((4U << 3) + 0),
656 MADD_D = ((4U << 3) + 1),
657 MSUB_S = ((5U << 3) + 0),
658 MSUB_D = ((5U << 3) + 1),
659
660 // PCREL Encoding of rt Field.
661 ADDIUPC = ((0U << 2) + 0),
662 LWPC = ((0U << 2) + 1),
663 LWUPC = ((0U << 2) + 2),
664 LDPC = ((0U << 3) + 6),
665 // reserved ((1U << 3) + 6),
666 AUIPC = ((3U << 3) + 6),
667 ALUIPC = ((3U << 3) + 7),
668
669 // POP66 Encoding of rs Field.
670 JIC = ((0U << 5) + 0),
671
672 // POP76 Encoding of rs Field.
673 JIALC = ((0U << 5) + 0),
674
675 NULLSF = 0U
676 };
677
678 // ----- Emulated conditions.
679 // On MIPS we use this enum to abstract from conditional branch instructions.
680 // The 'U' prefix is used to specify unsigned comparisons.
681 // Opposite conditions must be paired as odd/even numbers
682 // because 'NegateCondition' function flips LSB to negate condition.
683 enum Condition {
684 // Any value < 0 is considered no_condition.
685 kNoCondition = -1,
686 overflow = 0,
687 no_overflow = 1,
688 Uless = 2,
689 Ugreater_equal = 3,
690 Uless_equal = 4,
691 Ugreater = 5,
692 equal = 6,
693 not_equal = 7, // Unordered or Not Equal.
694 negative = 8,
695 positive = 9,
696 parity_even = 10,
697 parity_odd = 11,
698 less = 12,
699 greater_equal = 13,
700 less_equal = 14,
701 greater = 15,
702 ueq = 16, // Unordered or Equal.
703 ogl = 17, // Ordered and Not Equal.
704 cc_always = 18,
705
706 // Aliases.
707 carry = Uless,
708 not_carry = Ugreater_equal,
709 zero = equal,
710 eq = equal,
711 not_zero = not_equal,
712 ne = not_equal,
713 nz = not_equal,
714 sign = negative,
715 not_sign = positive,
716 mi = negative,
717 pl = positive,
718 hi = Ugreater,
719 ls = Uless_equal,
720 ge = greater_equal,
721 lt = less,
722 gt = greater,
723 le = less_equal,
724 hs = Ugreater_equal,
725 lo = Uless,
726 al = cc_always,
727 ult = Uless,
728 uge = Ugreater_equal,
729 ule = Uless_equal,
730 ugt = Ugreater,
731 cc_default = kNoCondition
732 };
733
734
735 // Returns the equivalent of !cc.
736 // Negation of the default kNoCondition (-1) results in a non-default
737 // no_condition value (-2). As long as tests for no_condition check
738 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)739 inline Condition NegateCondition(Condition cc) {
740 DCHECK(cc != cc_always);
741 return static_cast<Condition>(cc ^ 1);
742 }
743
744
NegateFpuCondition(Condition cc)745 inline Condition NegateFpuCondition(Condition cc) {
746 DCHECK(cc != cc_always);
747 switch (cc) {
748 case ult:
749 return ge;
750 case ugt:
751 return le;
752 case uge:
753 return lt;
754 case ule:
755 return gt;
756 case lt:
757 return uge;
758 case gt:
759 return ule;
760 case ge:
761 return ult;
762 case le:
763 return ugt;
764 case eq:
765 return ne;
766 case ne:
767 return eq;
768 case ueq:
769 return ogl;
770 case ogl:
771 return ueq;
772 default:
773 return cc;
774 }
775 }
776
777
778 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)779 inline Condition CommuteCondition(Condition cc) {
780 switch (cc) {
781 case Uless:
782 return Ugreater;
783 case Ugreater:
784 return Uless;
785 case Ugreater_equal:
786 return Uless_equal;
787 case Uless_equal:
788 return Ugreater_equal;
789 case less:
790 return greater;
791 case greater:
792 return less;
793 case greater_equal:
794 return less_equal;
795 case less_equal:
796 return greater_equal;
797 default:
798 return cc;
799 }
800 }
801
802
803 // ----- Coprocessor conditions.
804 enum FPUCondition {
805 kNoFPUCondition = -1,
806
807 F = 0x00, // False.
808 UN = 0x01, // Unordered.
809 EQ = 0x02, // Equal.
810 UEQ = 0x03, // Unordered or Equal.
811 OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
812 LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
813 ULT = 0x05, // Unordered or Less Than.
814 OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
815 LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
816 ULE = 0x07, // Unordered or Less Than or Equal.
817
818 // Following constants are available on Mips release >= 6 only.
819 ORD = 0x11, // Ordered, on Mips release >= 6.
820 UNE = 0x12, // Not equal, on Mips release >= 6.
821 NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
822 };
823
824
825 // FPU rounding modes.
826 enum FPURoundingMode {
827 RN = 0 << 0, // Round to Nearest.
828 RZ = 1 << 0, // Round towards zero.
829 RP = 2 << 0, // Round towards Plus Infinity.
830 RM = 3 << 0, // Round towards Minus Infinity.
831
832 // Aliases.
833 kRoundToNearest = RN,
834 kRoundToZero = RZ,
835 kRoundToPlusInf = RP,
836 kRoundToMinusInf = RM,
837
838 mode_round = RN,
839 mode_ceil = RP,
840 mode_floor = RM,
841 mode_trunc = RZ
842 };
843
844 const uint32_t kFPURoundingModeMask = 3 << 0;
845
846 enum CheckForInexactConversion {
847 kCheckForInexactConversion,
848 kDontCheckForInexactConversion
849 };
850
851 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
852
853 // -----------------------------------------------------------------------------
854 // Hints.
855
856 // Branch hints are not used on the MIPS. They are defined so that they can
857 // appear in shared function signatures, but will be ignored in MIPS
858 // implementations.
859 enum Hint {
860 no_hint = 0
861 };
862
863
NegateHint(Hint hint)864 inline Hint NegateHint(Hint hint) {
865 return no_hint;
866 }
867
868
869 // -----------------------------------------------------------------------------
870 // Specific instructions, constants, and masks.
871 // These constants are declared in assembler-mips.cc, as they use named
872 // registers and other constants.
873
874 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
875 // operations as post-increment of sp.
876 extern const Instr kPopInstruction;
877 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
878 extern const Instr kPushInstruction;
879 // sw(r, MemOperand(sp, 0))
880 extern const Instr kPushRegPattern;
881 // lw(r, MemOperand(sp, 0))
882 extern const Instr kPopRegPattern;
883 extern const Instr kLwRegFpOffsetPattern;
884 extern const Instr kSwRegFpOffsetPattern;
885 extern const Instr kLwRegFpNegOffsetPattern;
886 extern const Instr kSwRegFpNegOffsetPattern;
887 // A mask for the Rt register for push, pop, lw, sw instructions.
888 extern const Instr kRtMask;
889 extern const Instr kLwSwInstrTypeMask;
890 extern const Instr kLwSwInstrArgumentMask;
891 extern const Instr kLwSwOffsetMask;
892
893 // Break 0xfffff, reserved for redirected real time call.
894 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
895 // A nop instruction. (Encoding of sll 0 0 0).
896 const Instr nopInstr = 0;
897
OpcodeToBitNumber(Opcode opcode)898 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
899 return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
900 }
901
902 class InstructionBase {
903 public:
904 enum {
905 kInstrSize = 4,
906 kInstrSizeLog2 = 2,
907 // On MIPS PC cannot actually be directly accessed. We behave as if PC was
908 // always the value of the current instruction being executed.
909 kPCReadOffset = 0
910 };
911
912 // Instruction type.
913 enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
914
915 // Get the raw instruction bits.
InstructionBits()916 inline Instr InstructionBits() const {
917 return *reinterpret_cast<const Instr*>(this);
918 }
919
920 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)921 inline void SetInstructionBits(Instr value) {
922 *reinterpret_cast<Instr*>(this) = value;
923 }
924
925 // Read one particular bit out of the instruction bits.
Bit(int nr)926 inline int Bit(int nr) const {
927 return (InstructionBits() >> nr) & 1;
928 }
929
930 // Read a bit field out of the instruction bits.
Bits(int hi,int lo)931 inline int Bits(int hi, int lo) const {
932 return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
933 }
934
935 static constexpr uint64_t kOpcodeImmediateTypeMask =
936 OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
937 OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
938 OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
939 OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
940 OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
941 OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
942 OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
943 OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
944 OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
945 OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
946 OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
947 OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
948 OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
949 OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
950 OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
951 OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
952 OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
953 OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
954 OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
955 OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
956 OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
957
958 #define FunctionFieldToBitNumber(function) (1ULL << function)
959
960 // On r6, DCLZ_R6 aliases to existing MFLO.
961 static const uint64_t kFunctionFieldRegisterTypeMask =
962 FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
963 FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
964 FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
965 FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
966 FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
967 FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
968 FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
969 FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
970 FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
971 FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
972 FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
973 FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
974 FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
975 FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
976 FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
977 FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
978 FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
979 FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
980 FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
981 FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
982 FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
983 FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
984 FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
985 FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
986 FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
987 FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
988 FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
989 FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
990
991
992 // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()993 inline Opcode OpcodeValue() const {
994 return static_cast<Opcode>(
995 Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
996 }
997
FunctionFieldRaw()998 inline int FunctionFieldRaw() const {
999 return InstructionBits() & kFunctionFieldMask;
1000 }
1001
1002 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1003 inline Opcode OpcodeFieldRaw() const {
1004 return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1005 }
1006
1007 // Safe to call within InstructionType().
RsFieldRawNoAssert()1008 inline int RsFieldRawNoAssert() const {
1009 return InstructionBits() & kRsFieldMask;
1010 }
1011
SaFieldRaw()1012 inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1013
1014 // Get the encoding type of the instruction.
1015 inline Type InstructionType() const;
1016
1017 protected:
InstructionBase()1018 InstructionBase() {}
1019 };
1020
1021 template <class T>
1022 class InstructionGetters : public T {
1023 public:
RsValue()1024 inline int RsValue() const {
1025 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1026 this->InstructionType() == InstructionBase::kImmediateType);
1027 return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1028 }
1029
RtValue()1030 inline int RtValue() const {
1031 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1032 this->InstructionType() == InstructionBase::kImmediateType);
1033 return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1034 }
1035
RdValue()1036 inline int RdValue() const {
1037 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1038 return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1039 }
1040
SaValue()1041 inline int SaValue() const {
1042 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1043 return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1044 }
1045
LsaSaValue()1046 inline int LsaSaValue() const {
1047 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1048 return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1049 }
1050
FunctionValue()1051 inline int FunctionValue() const {
1052 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1053 this->InstructionType() == InstructionBase::kImmediateType);
1054 return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1055 }
1056
FdValue()1057 inline int FdValue() const {
1058 return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1059 }
1060
FsValue()1061 inline int FsValue() const {
1062 return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1063 }
1064
FtValue()1065 inline int FtValue() const {
1066 return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1067 }
1068
FrValue()1069 inline int FrValue() const {
1070 return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1071 }
1072
Bp2Value()1073 inline int Bp2Value() const {
1074 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1075 return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1076 }
1077
Bp3Value()1078 inline int Bp3Value() const {
1079 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1080 return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1081 }
1082
1083 // Float Compare condition code instruction bits.
FCccValue()1084 inline int FCccValue() const {
1085 return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1086 }
1087
1088 // Float Branch condition code instruction bits.
FBccValue()1089 inline int FBccValue() const {
1090 return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1091 }
1092
1093 // Float Branch true/false instruction bit.
FBtrueValue()1094 inline int FBtrueValue() const {
1095 return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1096 }
1097
1098 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1099 inline Opcode OpcodeFieldRaw() const {
1100 return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1101 }
1102
RsFieldRaw()1103 inline int RsFieldRaw() const {
1104 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1105 this->InstructionType() == InstructionBase::kImmediateType);
1106 return this->InstructionBits() & kRsFieldMask;
1107 }
1108
1109 // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1110 inline int RsFieldRawNoAssert() const {
1111 return this->InstructionBits() & kRsFieldMask;
1112 }
1113
RtFieldRaw()1114 inline int RtFieldRaw() const {
1115 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1116 this->InstructionType() == InstructionBase::kImmediateType);
1117 return this->InstructionBits() & kRtFieldMask;
1118 }
1119
RdFieldRaw()1120 inline int RdFieldRaw() const {
1121 DCHECK(this->InstructionType() == InstructionBase::kRegisterType);
1122 return this->InstructionBits() & kRdFieldMask;
1123 }
1124
SaFieldRaw()1125 inline int SaFieldRaw() const {
1126 return this->InstructionBits() & kSaFieldMask;
1127 }
1128
FunctionFieldRaw()1129 inline int FunctionFieldRaw() const {
1130 return this->InstructionBits() & kFunctionFieldMask;
1131 }
1132
1133 // Get the secondary field according to the opcode.
SecondaryValue()1134 inline int SecondaryValue() const {
1135 Opcode op = this->OpcodeFieldRaw();
1136 switch (op) {
1137 case SPECIAL:
1138 case SPECIAL2:
1139 return FunctionValue();
1140 case COP1:
1141 return RsValue();
1142 case REGIMM:
1143 return RtValue();
1144 default:
1145 return NULLSF;
1146 }
1147 }
1148
ImmValue(int bits)1149 inline int32_t ImmValue(int bits) const {
1150 DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
1151 return this->Bits(bits - 1, 0);
1152 }
1153
Imm16Value()1154 inline int32_t Imm16Value() const {
1155 DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
1156 return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1157 }
1158
Imm18Value()1159 inline int32_t Imm18Value() const {
1160 DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
1161 return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1162 }
1163
Imm19Value()1164 inline int32_t Imm19Value() const {
1165 DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
1166 return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1167 }
1168
Imm21Value()1169 inline int32_t Imm21Value() const {
1170 DCHECK(this->InstructionType() == InstructionBase::kImmediateType);
1171 return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1172 }
1173
Imm26Value()1174 inline int32_t Imm26Value() const {
1175 DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1176 (this->InstructionType() == InstructionBase::kImmediateType));
1177 return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1178 }
1179
1180 static bool IsForbiddenAfterBranchInstr(Instr instr);
1181
1182 // Say if the instruction should not be used in a branch delay slot or
1183 // immediately after a compact branch.
IsForbiddenAfterBranch()1184 inline bool IsForbiddenAfterBranch() const {
1185 return IsForbiddenAfterBranchInstr(this->InstructionBits());
1186 }
1187
IsForbiddenInBranchDelay()1188 inline bool IsForbiddenInBranchDelay() const {
1189 return IsForbiddenAfterBranch();
1190 }
1191
1192 // Say if the instruction 'links'. e.g. jal, bal.
1193 bool IsLinkingInstruction() const;
1194 // Say if the instruction is a break or a trap.
1195 bool IsTrap() const;
1196 };
1197
1198 class Instruction : public InstructionGetters<InstructionBase> {
1199 public:
1200 // Instructions are read of out a code stream. The only way to get a
1201 // reference to an instruction is to convert a pointer. There is no way
1202 // to allocate or create instances of class Instruction.
1203 // Use the At(pc) function to create references to Instruction.
At(byte * pc)1204 static Instruction* At(byte* pc) {
1205 return reinterpret_cast<Instruction*>(pc);
1206 }
1207
1208 private:
1209 // We need to prevent the creation of instances of class Instruction.
1210 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1211 };
1212
1213
1214 // -----------------------------------------------------------------------------
1215 // MIPS assembly various constants.
1216
1217 // C/C++ argument slots size.
1218 const int kCArgSlotCount = 0;
1219
1220 // TODO(plind): below should be based on kPointerSize
1221 // TODO(plind): find all usages and remove the needless instructions for n64.
1222 const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize * 2;
1223
1224 const int kInvalidStackOffset = -1;
1225 const int kBranchReturnOffset = 2 * Instruction::kInstrSize;
1226
InstructionType()1227 InstructionBase::Type InstructionBase::InstructionType() const {
1228 switch (OpcodeFieldRaw()) {
1229 case SPECIAL:
1230 if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1231 kFunctionFieldRegisterTypeMask) {
1232 return kRegisterType;
1233 }
1234 return kUnsupported;
1235 case SPECIAL2:
1236 switch (FunctionFieldRaw()) {
1237 case MUL:
1238 case CLZ:
1239 case DCLZ:
1240 return kRegisterType;
1241 default:
1242 return kUnsupported;
1243 }
1244 break;
1245 case SPECIAL3:
1246 switch (FunctionFieldRaw()) {
1247 case INS:
1248 case DINS:
1249 case EXT:
1250 case DEXT:
1251 case DEXTM:
1252 case DEXTU:
1253 return kRegisterType;
1254 case BSHFL: {
1255 int sa = SaFieldRaw() >> kSaShift;
1256 switch (sa) {
1257 case BITSWAP:
1258 case WSBH:
1259 case SEB:
1260 case SEH:
1261 return kRegisterType;
1262 }
1263 sa >>= kBp2Bits;
1264 switch (sa) {
1265 case ALIGN:
1266 return kRegisterType;
1267 default:
1268 return kUnsupported;
1269 }
1270 }
1271 case DBSHFL: {
1272 int sa = SaFieldRaw() >> kSaShift;
1273 switch (sa) {
1274 case DBITSWAP:
1275 case DSBH:
1276 case DSHD:
1277 return kRegisterType;
1278 }
1279 sa = SaFieldRaw() >> kSaShift;
1280 sa >>= kBp3Bits;
1281 switch (sa) {
1282 case DALIGN:
1283 return kRegisterType;
1284 default:
1285 return kUnsupported;
1286 }
1287 }
1288 default:
1289 return kUnsupported;
1290 }
1291 break;
1292 case COP1: // Coprocessor instructions.
1293 switch (RsFieldRawNoAssert()) {
1294 case BC1: // Branch on coprocessor condition.
1295 case BC1EQZ:
1296 case BC1NEZ:
1297 return kImmediateType;
1298 default:
1299 return kRegisterType;
1300 }
1301 break;
1302 case COP1X:
1303 return kRegisterType;
1304
1305 // 26 bits immediate type instructions. e.g.: j imm26.
1306 case J:
1307 case JAL:
1308 return kJumpType;
1309
1310 default:
1311 return kImmediateType;
1312 }
1313 return kUnsupported;
1314 }
1315 #undef OpcodeToBitNumber
1316 #undef FunctionFieldToBitNumber
1317
1318 // -----------------------------------------------------------------------------
1319 // Instructions.
1320
1321 template <class P>
IsLinkingInstruction()1322 bool InstructionGetters<P>::IsLinkingInstruction() const {
1323 switch (OpcodeFieldRaw()) {
1324 case JAL:
1325 return true;
1326 case POP76:
1327 if (RsFieldRawNoAssert() == JIALC)
1328 return true; // JIALC
1329 else
1330 return false; // BNEZC
1331 case REGIMM:
1332 switch (RtFieldRaw()) {
1333 case BGEZAL:
1334 case BLTZAL:
1335 return true;
1336 default:
1337 return false;
1338 }
1339 case SPECIAL:
1340 switch (FunctionFieldRaw()) {
1341 case JALR:
1342 return true;
1343 default:
1344 return false;
1345 }
1346 default:
1347 return false;
1348 }
1349 }
1350
1351 template <class P>
IsTrap()1352 bool InstructionGetters<P>::IsTrap() const {
1353 if (OpcodeFieldRaw() != SPECIAL) {
1354 return false;
1355 } else {
1356 switch (FunctionFieldRaw()) {
1357 case BREAK:
1358 case TGE:
1359 case TGEU:
1360 case TLT:
1361 case TLTU:
1362 case TEQ:
1363 case TNE:
1364 return true;
1365 default:
1366 return false;
1367 }
1368 }
1369 }
1370
1371 // static
1372 template <class T>
IsForbiddenAfterBranchInstr(Instr instr)1373 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1374 Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1375 switch (opcode) {
1376 case J:
1377 case JAL:
1378 case BEQ:
1379 case BNE:
1380 case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
1381 case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1382 case BEQL:
1383 case BNEL:
1384 case BLEZL: // POP26 bgezc, blezc, bgec/blec
1385 case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
1386 case BC:
1387 case BALC:
1388 case POP10: // beqzalc, bovc, beqc
1389 case POP30: // bnezalc, bnvc, bnec
1390 case POP66: // beqzc, jic
1391 case POP76: // bnezc, jialc
1392 return true;
1393 case REGIMM:
1394 switch (instr & kRtFieldMask) {
1395 case BLTZ:
1396 case BGEZ:
1397 case BLTZAL:
1398 case BGEZAL:
1399 return true;
1400 default:
1401 return false;
1402 }
1403 break;
1404 case SPECIAL:
1405 switch (instr & kFunctionFieldMask) {
1406 case JR:
1407 case JALR:
1408 return true;
1409 default:
1410 return false;
1411 }
1412 break;
1413 case COP1:
1414 switch (instr & kRsFieldMask) {
1415 case BC1:
1416 case BC1EQZ:
1417 case BC1NEZ:
1418 return true;
1419 break;
1420 default:
1421 return false;
1422 }
1423 break;
1424 default:
1425 return false;
1426 }
1427 }
1428 } // namespace internal
1429 } // namespace v8
1430
1431 #endif // #ifndef V8_MIPS_CONSTANTS_H_
1432