1 //===-- interception_linux.cc -----------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 //
12 // Windows-specific interception methods.
13 //
14 // This file is implementing several hooking techniques to intercept calls
15 // to functions. The hooks are dynamically installed by modifying the assembly
16 // code.
17 //
18 // The hooking techniques are making assumptions on the way the code is
19 // generated and are safe under these assumptions.
20 //
21 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
22 // arbitrary branching on the whole memory space, the notion of trampoline
23 // region is used. A trampoline region is a memory space withing 2G boundary
24 // where it is safe to add custom assembly code to build 64-bit jumps.
25 //
26 // Hooking techniques
27 // ==================
28 //
29 // 1) Detour
30 //
31 // The Detour hooking technique is assuming the presence of an header with
32 // padding and an overridable 2-bytes nop instruction (mov edi, edi). The
33 // nop instruction can safely be replaced by a 2-bytes jump without any need
34 // to save the instruction. A jump to the target is encoded in the function
35 // header and the nop instruction is replaced by a short jump to the header.
36 //
37 // head: 5 x nop head: jmp <hook>
38 // func: mov edi, edi --> func: jmp short <head>
39 // [...] real: [...]
40 //
41 // This technique is only implemented on 32-bit architecture.
42 // Most of the time, Windows API are hookable with the detour technique.
43 //
44 // 2) Redirect Jump
45 //
46 // The redirect jump is applicable when the first instruction is a direct
47 // jump. The instruction is replaced by jump to the hook.
48 //
49 // func: jmp <label> --> func: jmp <hook>
50 //
51 // On an 64-bit architecture, a trampoline is inserted.
52 //
53 // func: jmp <label> --> func: jmp <tramp>
54 // [...]
55 //
56 // [trampoline]
57 // tramp: jmp QWORD [addr]
58 // addr: .bytes <hook>
59 //
60 // Note: <real> is equilavent to <label>.
61 //
62 // 3) HotPatch
63 //
64 // The HotPatch hooking is assuming the presence of an header with padding
65 // and a first instruction with at least 2-bytes.
66 //
67 // The reason to enforce the 2-bytes limitation is to provide the minimal
68 // space to encode a short jump. HotPatch technique is only rewriting one
69 // instruction to avoid breaking a sequence of instructions containing a
70 // branching target.
71 //
72 // Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
73 // see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
74 // Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
75 //
76 // head: 5 x nop head: jmp <hook>
77 // func: <instr> --> func: jmp short <head>
78 // [...] body: [...]
79 //
80 // [trampoline]
81 // real: <instr>
82 // jmp <body>
83 //
84 // On an 64-bit architecture:
85 //
86 // head: 6 x nop head: jmp QWORD [addr1]
87 // func: <instr> --> func: jmp short <head>
88 // [...] body: [...]
89 //
90 // [trampoline]
91 // addr1: .bytes <hook>
92 // real: <instr>
93 // jmp QWORD [addr2]
94 // addr2: .bytes <body>
95 //
96 // 4) Trampoline
97 //
98 // The Trampoline hooking technique is the most aggressive one. It is
99 // assuming that there is a sequence of instructions that can be safely
100 // replaced by a jump (enough room and no incoming branches).
101 //
102 // Unfortunately, these assumptions can't be safely presumed and code may
103 // be broken after hooking.
104 //
105 // func: <instr> --> func: jmp <hook>
106 // <instr>
107 // [...] body: [...]
108 //
109 // [trampoline]
110 // real: <instr>
111 // <instr>
112 // jmp <body>
113 //
114 // On an 64-bit architecture:
115 //
116 // func: <instr> --> func: jmp QWORD [addr1]
117 // <instr>
118 // [...] body: [...]
119 //
120 // [trampoline]
121 // addr1: .bytes <hook>
122 // real: <instr>
123 // <instr>
124 // jmp QWORD [addr2]
125 // addr2: .bytes <body>
126 //===----------------------------------------------------------------------===//
127
128 #ifdef _WIN32
129
130 #include "interception.h"
131 #include "sanitizer_common/sanitizer_platform.h"
132 #define WIN32_LEAN_AND_MEAN
133 #include <windows.h>
134
135 namespace __interception {
136
137 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
138 static const int kJumpInstructionLength = 5;
139 static const int kShortJumpInstructionLength = 2;
140 static const int kIndirectJumpInstructionLength = 6;
141 static const int kBranchLength =
142 FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
143 static const int kDirectBranchLength = kBranchLength + kAddressLength;
144
InterceptionFailed()145 static void InterceptionFailed() {
146 // Do we have a good way to abort with an error message here?
147 __debugbreak();
148 }
149
DistanceIsWithin2Gig(uptr from,uptr target)150 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
151 if (from < target)
152 return target - from <= (uptr)0x7FFFFFFFU;
153 else
154 return from - target <= (uptr)0x80000000U;
155 }
156
GetMmapGranularity()157 static uptr GetMmapGranularity() {
158 SYSTEM_INFO si;
159 GetSystemInfo(&si);
160 return si.dwAllocationGranularity;
161 }
162
RoundUpTo(uptr size,uptr boundary)163 static uptr RoundUpTo(uptr size, uptr boundary) {
164 return (size + boundary - 1) & ~(boundary - 1);
165 }
166
167 // FIXME: internal_str* and internal_mem* functions should be moved from the
168 // ASan sources into interception/.
169
_memset(void * p,int value,size_t sz)170 static void _memset(void *p, int value, size_t sz) {
171 for (size_t i = 0; i < sz; ++i)
172 ((char*)p)[i] = (char)value;
173 }
174
_memcpy(void * dst,void * src,size_t sz)175 static void _memcpy(void *dst, void *src, size_t sz) {
176 char *dst_c = (char*)dst,
177 *src_c = (char*)src;
178 for (size_t i = 0; i < sz; ++i)
179 dst_c[i] = src_c[i];
180 }
181
ChangeMemoryProtection(uptr address,uptr size,DWORD * old_protection)182 static bool ChangeMemoryProtection(
183 uptr address, uptr size, DWORD *old_protection) {
184 return ::VirtualProtect((void*)address, size,
185 PAGE_EXECUTE_READWRITE,
186 old_protection) != FALSE;
187 }
188
RestoreMemoryProtection(uptr address,uptr size,DWORD old_protection)189 static bool RestoreMemoryProtection(
190 uptr address, uptr size, DWORD old_protection) {
191 DWORD unused;
192 return ::VirtualProtect((void*)address, size,
193 old_protection,
194 &unused) != FALSE;
195 }
196
IsMemoryPadding(uptr address,uptr size)197 static bool IsMemoryPadding(uptr address, uptr size) {
198 u8* function = (u8*)address;
199 for (size_t i = 0; i < size; ++i)
200 if (function[i] != 0x90 && function[i] != 0xCC)
201 return false;
202 return true;
203 }
204
205 static const u8 kHintNop10Bytes[] = {
206 0x66, 0x66, 0x0F, 0x1F, 0x84,
207 0x00, 0x00, 0x00, 0x00, 0x00
208 };
209
210 template<class T>
FunctionHasPrefix(uptr address,const T & pattern)211 static bool FunctionHasPrefix(uptr address, const T &pattern) {
212 u8* function = (u8*)address - sizeof(pattern);
213 for (size_t i = 0; i < sizeof(pattern); ++i)
214 if (function[i] != pattern[i])
215 return false;
216 return true;
217 }
218
FunctionHasPadding(uptr address,uptr size)219 static bool FunctionHasPadding(uptr address, uptr size) {
220 if (IsMemoryPadding(address - size, size))
221 return true;
222 if (size <= sizeof(kHintNop10Bytes) &&
223 FunctionHasPrefix(address, kHintNop10Bytes))
224 return true;
225 return false;
226 }
227
WritePadding(uptr from,uptr size)228 static void WritePadding(uptr from, uptr size) {
229 _memset((void*)from, 0xCC, (size_t)size);
230 }
231
CopyInstructions(uptr from,uptr to,uptr size)232 static void CopyInstructions(uptr from, uptr to, uptr size) {
233 _memcpy((void*)from, (void*)to, (size_t)size);
234 }
235
WriteJumpInstruction(uptr from,uptr target)236 static void WriteJumpInstruction(uptr from, uptr target) {
237 if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
238 InterceptionFailed();
239 ptrdiff_t offset = target - from - kJumpInstructionLength;
240 *(u8*)from = 0xE9;
241 *(u32*)(from + 1) = offset;
242 }
243
WriteShortJumpInstruction(uptr from,uptr target)244 static void WriteShortJumpInstruction(uptr from, uptr target) {
245 sptr offset = target - from - kShortJumpInstructionLength;
246 if (offset < -128 || offset > 127)
247 InterceptionFailed();
248 *(u8*)from = 0xEB;
249 *(u8*)(from + 1) = (u8)offset;
250 }
251
252 #if SANITIZER_WINDOWS64
WriteIndirectJumpInstruction(uptr from,uptr indirect_target)253 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
254 // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
255 // offset.
256 // The offset is the distance from then end of the jump instruction to the
257 // memory location containing the targeted address. The displacement is still
258 // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
259 int offset = indirect_target - from - kIndirectJumpInstructionLength;
260 if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
261 indirect_target)) {
262 InterceptionFailed();
263 }
264 *(u16*)from = 0x25FF;
265 *(u32*)(from + 2) = offset;
266 }
267 #endif
268
WriteBranch(uptr from,uptr indirect_target,uptr target)269 static void WriteBranch(
270 uptr from, uptr indirect_target, uptr target) {
271 #if SANITIZER_WINDOWS64
272 WriteIndirectJumpInstruction(from, indirect_target);
273 *(u64*)indirect_target = target;
274 #else
275 (void)indirect_target;
276 WriteJumpInstruction(from, target);
277 #endif
278 }
279
WriteDirectBranch(uptr from,uptr target)280 static void WriteDirectBranch(uptr from, uptr target) {
281 #if SANITIZER_WINDOWS64
282 // Emit an indirect jump through immediately following bytes:
283 // jmp [rip + kBranchLength]
284 // .quad <target>
285 WriteBranch(from, from + kBranchLength, target);
286 #else
287 WriteJumpInstruction(from, target);
288 #endif
289 }
290
291 struct TrampolineMemoryRegion {
292 uptr content;
293 uptr allocated_size;
294 uptr max_size;
295 };
296
297 static const uptr kTrampolineScanLimitRange = 1 << 30; // 1 gig
298 static const int kMaxTrampolineRegion = 1024;
299 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
300
AllocateTrampolineRegion(uptr image_address,size_t granularity)301 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
302 #if SANITIZER_WINDOWS64
303 uptr address = image_address;
304 uptr scanned = 0;
305 while (scanned < kTrampolineScanLimitRange) {
306 MEMORY_BASIC_INFORMATION info;
307 if (!::VirtualQuery((void*)address, &info, sizeof(info)))
308 return nullptr;
309
310 // Check whether a region can be allocated at |address|.
311 if (info.State == MEM_FREE && info.RegionSize >= granularity) {
312 void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
313 granularity,
314 MEM_RESERVE | MEM_COMMIT,
315 PAGE_EXECUTE_READWRITE);
316 return page;
317 }
318
319 // Move to the next region.
320 address = (uptr)info.BaseAddress + info.RegionSize;
321 scanned += info.RegionSize;
322 }
323 return nullptr;
324 #else
325 return ::VirtualAlloc(nullptr,
326 granularity,
327 MEM_RESERVE | MEM_COMMIT,
328 PAGE_EXECUTE_READWRITE);
329 #endif
330 }
331
332 // Used by unittests to release mapped memory space.
TestOnlyReleaseTrampolineRegions()333 void TestOnlyReleaseTrampolineRegions() {
334 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
335 TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
336 if (current->content == 0)
337 return;
338 ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
339 current->content = 0;
340 }
341 }
342
AllocateMemoryForTrampoline(uptr image_address,size_t size)343 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
344 // Find a region within 2G with enough space to allocate |size| bytes.
345 TrampolineMemoryRegion *region = nullptr;
346 for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
347 TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
348 if (current->content == 0) {
349 // No valid region found, allocate a new region.
350 size_t bucket_size = GetMmapGranularity();
351 void *content = AllocateTrampolineRegion(image_address, bucket_size);
352 if (content == nullptr)
353 return 0U;
354
355 current->content = (uptr)content;
356 current->allocated_size = 0;
357 current->max_size = bucket_size;
358 region = current;
359 break;
360 } else if (current->max_size - current->allocated_size > size) {
361 #if SANITIZER_WINDOWS64
362 // In 64-bits, the memory space must be allocated within 2G boundary.
363 uptr next_address = current->content + current->allocated_size;
364 if (next_address < image_address ||
365 next_address - image_address >= 0x7FFF0000)
366 continue;
367 #endif
368 // The space can be allocated in the current region.
369 region = current;
370 break;
371 }
372 }
373
374 // Failed to find a region.
375 if (region == nullptr)
376 return 0U;
377
378 // Allocate the space in the current region.
379 uptr allocated_space = region->content + region->allocated_size;
380 region->allocated_size += size;
381 WritePadding(allocated_space, size);
382
383 return allocated_space;
384 }
385
386 // Returns 0 on error.
GetInstructionSize(uptr address)387 static size_t GetInstructionSize(uptr address) {
388 switch (*(u8*)address) {
389 case 0x90: // 90 : nop
390 return 1;
391
392 case 0x50: // push eax / rax
393 case 0x51: // push ecx / rcx
394 case 0x52: // push edx / rdx
395 case 0x53: // push ebx / rbx
396 case 0x54: // push esp / rsp
397 case 0x55: // push ebp / rbp
398 case 0x56: // push esi / rsi
399 case 0x57: // push edi / rdi
400 case 0x5D: // pop ebp / rbp
401 return 1;
402
403 case 0x6A: // 6A XX = push XX
404 return 2;
405
406 case 0xb8: // b8 XX XX XX XX : mov eax, XX XX XX XX
407 case 0xB9: // b9 XX XX XX XX : mov ecx, XX XX XX XX
408 case 0xA1: // A1 XX XX XX XX : mov eax, dword ptr ds:[XXXXXXXX]
409 return 5;
410
411 // Cannot overwrite control-instruction. Return 0 to indicate failure.
412 case 0xE9: // E9 XX XX XX XX : jmp <label>
413 case 0xE8: // E8 XX XX XX XX : call <func>
414 case 0xC3: // C3 : ret
415 case 0xEB: // EB XX : jmp XX (short jump)
416 case 0x70: // 7Y YY : jy XX (short conditional jump)
417 case 0x71:
418 case 0x72:
419 case 0x73:
420 case 0x74:
421 case 0x75:
422 case 0x76:
423 case 0x77:
424 case 0x78:
425 case 0x79:
426 case 0x7A:
427 case 0x7B:
428 case 0x7C:
429 case 0x7D:
430 case 0x7E:
431 case 0x7F:
432 return 0;
433 }
434
435 switch (*(u16*)(address)) {
436 case 0xFF8B: // 8B FF : mov edi, edi
437 case 0xEC8B: // 8B EC : mov ebp, esp
438 case 0xc889: // 89 C8 : mov eax, ecx
439 case 0xC18B: // 8B C1 : mov eax, ecx
440 case 0xC033: // 33 C0 : xor eax, eax
441 case 0xC933: // 33 C9 : xor ecx, ecx
442 case 0xD233: // 33 D2 : xor edx, edx
443 return 2;
444
445 // Cannot overwrite control-instruction. Return 0 to indicate failure.
446 case 0x25FF: // FF 25 XX XX XX XX : jmp [XXXXXXXX]
447 return 0;
448 }
449
450 #if SANITIZER_WINDOWS64
451 switch (*(u16*)address) {
452 case 0x5040: // push rax
453 case 0x5140: // push rcx
454 case 0x5240: // push rdx
455 case 0x5340: // push rbx
456 case 0x5440: // push rsp
457 case 0x5540: // push rbp
458 case 0x5640: // push rsi
459 case 0x5740: // push rdi
460 case 0x5441: // push r12
461 case 0x5541: // push r13
462 case 0x5641: // push r14
463 case 0x5741: // push r15
464 case 0x9066: // Two-byte NOP
465 return 2;
466 }
467
468 switch (0x00FFFFFF & *(u32*)address) {
469 case 0xe58948: // 48 8b c4 : mov rbp, rsp
470 case 0xc18b48: // 48 8b c1 : mov rax, rcx
471 case 0xc48b48: // 48 8b c4 : mov rax, rsp
472 case 0xd9f748: // 48 f7 d9 : neg rcx
473 case 0xd12b48: // 48 2b d1 : sub rdx, rcx
474 case 0x07c1f6: // f6 c1 07 : test cl, 0x7
475 case 0xc0854d: // 4d 85 c0 : test r8, r8
476 case 0xc2b60f: // 0f b6 c2 : movzx eax, dl
477 case 0xc03345: // 45 33 c0 : xor r8d, r8d
478 case 0xd98b4c: // 4c 8b d9 : mov r11, rcx
479 case 0xd28b4c: // 4c 8b d2 : mov r10, rdx
480 case 0xd2b60f: // 0f b6 d2 : movzx edx, dl
481 case 0xca2b48: // 48 2b ca : sub rcx, rdx
482 case 0x10b70f: // 0f b7 10 : movzx edx, WORD PTR [rax]
483 case 0xc00b4d: // 3d 0b c0 : or r8, r8
484 case 0xd18b48: // 48 8b d1 : mov rdx, rcx
485 case 0xdc8b4c: // 4c 8b dc : mov r11,rsp
486 case 0xd18b4c: // 4c 8b d1 : mov r10, rcx
487 return 3;
488
489 case 0xec8348: // 48 83 ec XX : sub rsp, XX
490 case 0xf88349: // 49 83 f8 XX : cmp r8, XX
491 case 0x588948: // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
492 return 4;
493
494 case 0x058b48: // 48 8b 05 XX XX XX XX :
495 // mov rax, QWORD PTR [rip + XXXXXXXX]
496 case 0x25ff48: // 48 ff 25 XX XX XX XX :
497 // rex.W jmp QWORD PTR [rip + XXXXXXXX]
498 return 7;
499 }
500
501 switch (*(u32*)(address)) {
502 case 0x24448b48: // 48 8b 44 24 XX : mov rax, qword ptr [rsp + XX]
503 case 0x245c8948: // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
504 case 0x24748948: // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
505 return 5;
506 }
507
508 #else
509
510 switch (*(u16*)address) {
511 case 0x458B: // 8B 45 XX : mov eax, dword ptr [ebp + XX]
512 case 0x5D8B: // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
513 case 0x7D8B: // 8B 7D XX : mov edi, dword ptr [ebp + XX]
514 case 0xEC83: // 83 EC XX : sub esp, XX
515 case 0x75FF: // FF 75 XX : push dword ptr [ebp + XX]
516 return 3;
517 case 0xC1F7: // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
518 case 0x25FF: // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
519 return 6;
520 case 0x3D83: // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
521 return 7;
522 case 0x7D83: // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
523 return 4;
524 }
525
526 switch (0x00FFFFFF & *(u32*)address) {
527 case 0x24448A: // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
528 case 0x24448B: // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
529 case 0x244C8B: // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
530 case 0x24548B: // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
531 case 0x24748B: // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
532 case 0x247C8B: // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
533 return 4;
534 }
535
536 switch (*(u32*)address) {
537 case 0x2444B60F: // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
538 return 5;
539 }
540 #endif
541
542 // Unknown instruction!
543 // FIXME: Unknown instruction failures might happen when we add a new
544 // interceptor or a new compiler version. In either case, they should result
545 // in visible and readable error messages. However, merely calling abort()
546 // leads to an infinite recursion in CheckFailed.
547 InterceptionFailed();
548 return 0;
549 }
550
551 // Returns 0 on error.
RoundUpToInstrBoundary(size_t size,uptr address)552 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
553 size_t cursor = 0;
554 while (cursor < size) {
555 size_t instruction_size = GetInstructionSize(address + cursor);
556 if (!instruction_size)
557 return 0;
558 cursor += instruction_size;
559 }
560 return cursor;
561 }
562
563 #if !SANITIZER_WINDOWS64
OverrideFunctionWithDetour(uptr old_func,uptr new_func,uptr * orig_old_func)564 bool OverrideFunctionWithDetour(
565 uptr old_func, uptr new_func, uptr *orig_old_func) {
566 const int kDetourHeaderLen = 5;
567 const u16 kDetourInstruction = 0xFF8B;
568
569 uptr header = (uptr)old_func - kDetourHeaderLen;
570 uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
571
572 // Validate that the function is hookable.
573 if (*(u16*)old_func != kDetourInstruction ||
574 !IsMemoryPadding(header, kDetourHeaderLen))
575 return false;
576
577 // Change memory protection to writable.
578 DWORD protection = 0;
579 if (!ChangeMemoryProtection(header, patch_length, &protection))
580 return false;
581
582 // Write a relative jump to the redirected function.
583 WriteJumpInstruction(header, new_func);
584
585 // Write the short jump to the function prefix.
586 WriteShortJumpInstruction(old_func, header);
587
588 // Restore previous memory protection.
589 if (!RestoreMemoryProtection(header, patch_length, protection))
590 return false;
591
592 if (orig_old_func)
593 *orig_old_func = old_func + kShortJumpInstructionLength;
594
595 return true;
596 }
597 #endif
598
OverrideFunctionWithRedirectJump(uptr old_func,uptr new_func,uptr * orig_old_func)599 bool OverrideFunctionWithRedirectJump(
600 uptr old_func, uptr new_func, uptr *orig_old_func) {
601 // Check whether the first instruction is a relative jump.
602 if (*(u8*)old_func != 0xE9)
603 return false;
604
605 if (orig_old_func) {
606 uptr relative_offset = *(u32*)(old_func + 1);
607 uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
608 *orig_old_func = absolute_target;
609 }
610
611 #if SANITIZER_WINDOWS64
612 // If needed, get memory space for a trampoline jump.
613 uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
614 if (!trampoline)
615 return false;
616 WriteDirectBranch(trampoline, new_func);
617 #endif
618
619 // Change memory protection to writable.
620 DWORD protection = 0;
621 if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
622 return false;
623
624 // Write a relative jump to the redirected function.
625 WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
626
627 // Restore previous memory protection.
628 if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
629 return false;
630
631 return true;
632 }
633
OverrideFunctionWithHotPatch(uptr old_func,uptr new_func,uptr * orig_old_func)634 bool OverrideFunctionWithHotPatch(
635 uptr old_func, uptr new_func, uptr *orig_old_func) {
636 const int kHotPatchHeaderLen = kBranchLength;
637
638 uptr header = (uptr)old_func - kHotPatchHeaderLen;
639 uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
640
641 // Validate that the function is hot patchable.
642 size_t instruction_size = GetInstructionSize(old_func);
643 if (instruction_size < kShortJumpInstructionLength ||
644 !FunctionHasPadding(old_func, kHotPatchHeaderLen))
645 return false;
646
647 if (orig_old_func) {
648 // Put the needed instructions into the trampoline bytes.
649 uptr trampoline_length = instruction_size + kDirectBranchLength;
650 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
651 if (!trampoline)
652 return false;
653 CopyInstructions(trampoline, old_func, instruction_size);
654 WriteDirectBranch(trampoline + instruction_size,
655 old_func + instruction_size);
656 *orig_old_func = trampoline;
657 }
658
659 // If needed, get memory space for indirect address.
660 uptr indirect_address = 0;
661 #if SANITIZER_WINDOWS64
662 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
663 if (!indirect_address)
664 return false;
665 #endif
666
667 // Change memory protection to writable.
668 DWORD protection = 0;
669 if (!ChangeMemoryProtection(header, patch_length, &protection))
670 return false;
671
672 // Write jumps to the redirected function.
673 WriteBranch(header, indirect_address, new_func);
674 WriteShortJumpInstruction(old_func, header);
675
676 // Restore previous memory protection.
677 if (!RestoreMemoryProtection(header, patch_length, protection))
678 return false;
679
680 return true;
681 }
682
OverrideFunctionWithTrampoline(uptr old_func,uptr new_func,uptr * orig_old_func)683 bool OverrideFunctionWithTrampoline(
684 uptr old_func, uptr new_func, uptr *orig_old_func) {
685
686 size_t instructions_length = kBranchLength;
687 size_t padding_length = 0;
688 uptr indirect_address = 0;
689
690 if (orig_old_func) {
691 // Find out the number of bytes of the instructions we need to copy
692 // to the trampoline.
693 instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
694 if (!instructions_length)
695 return false;
696
697 // Put the needed instructions into the trampoline bytes.
698 uptr trampoline_length = instructions_length + kDirectBranchLength;
699 uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
700 if (!trampoline)
701 return false;
702 CopyInstructions(trampoline, old_func, instructions_length);
703 WriteDirectBranch(trampoline + instructions_length,
704 old_func + instructions_length);
705 *orig_old_func = trampoline;
706 }
707
708 #if SANITIZER_WINDOWS64
709 // Check if the targeted address can be encoded in the function padding.
710 // Otherwise, allocate it in the trampoline region.
711 if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
712 indirect_address = old_func - kAddressLength;
713 padding_length = kAddressLength;
714 } else {
715 indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
716 if (!indirect_address)
717 return false;
718 }
719 #endif
720
721 // Change memory protection to writable.
722 uptr patch_address = old_func - padding_length;
723 uptr patch_length = instructions_length + padding_length;
724 DWORD protection = 0;
725 if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
726 return false;
727
728 // Patch the original function.
729 WriteBranch(old_func, indirect_address, new_func);
730
731 // Restore previous memory protection.
732 if (!RestoreMemoryProtection(patch_address, patch_length, protection))
733 return false;
734
735 return true;
736 }
737
OverrideFunction(uptr old_func,uptr new_func,uptr * orig_old_func)738 bool OverrideFunction(
739 uptr old_func, uptr new_func, uptr *orig_old_func) {
740 #if !SANITIZER_WINDOWS64
741 if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
742 return true;
743 #endif
744 if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
745 return true;
746 if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
747 return true;
748 if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
749 return true;
750 return false;
751 }
752
InterestingDLLsAvailable()753 static void **InterestingDLLsAvailable() {
754 static const char *InterestingDLLs[] = {
755 "kernel32.dll",
756 "msvcr110.dll", // VS2012
757 "msvcr120.dll", // VS2013
758 "vcruntime140.dll", // VS2015
759 "ucrtbase.dll", // Universal CRT
760 // NTDLL should go last as it exports some functions that we should
761 // override in the CRT [presumably only used internally].
762 "ntdll.dll", NULL};
763 static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
764 if (!result[0]) {
765 for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
766 if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
767 result[j++] = (void *)h;
768 }
769 }
770 return &result[0];
771 }
772
773 namespace {
774 // Utility for reading loaded PE images.
775 template <typename T> class RVAPtr {
776 public:
RVAPtr(void * module,uptr rva)777 RVAPtr(void *module, uptr rva)
778 : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
operator T*()779 operator T *() { return ptr_; }
operator ->()780 T *operator->() { return ptr_; }
operator ++()781 T *operator++() { return ++ptr_; }
782
783 private:
784 T *ptr_;
785 };
786 } // namespace
787
788 // Internal implementation of GetProcAddress. At least since Windows 8,
789 // GetProcAddress appears to initialize DLLs before returning function pointers
790 // into them. This is problematic for the sanitizers, because they typically
791 // want to intercept malloc *before* MSVCRT initializes. Our internal
792 // implementation walks the export list manually without doing initialization.
InternalGetProcAddress(void * module,const char * func_name)793 uptr InternalGetProcAddress(void *module, const char *func_name) {
794 // Check that the module header is full and present.
795 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
796 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
797 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
798 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
799 headers->FileHeader.SizeOfOptionalHeader <
800 sizeof(IMAGE_OPTIONAL_HEADER)) {
801 return 0;
802 }
803
804 IMAGE_DATA_DIRECTORY *export_directory =
805 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
806 RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
807 export_directory->VirtualAddress);
808 RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
809 RVAPtr<DWORD> names(module, exports->AddressOfNames);
810 RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
811
812 for (DWORD i = 0; i < exports->NumberOfNames; i++) {
813 RVAPtr<char> name(module, names[i]);
814 if (!strcmp(func_name, name)) {
815 DWORD index = ordinals[i];
816 RVAPtr<char> func(module, functions[index]);
817 return (uptr)(char *)func;
818 }
819 }
820
821 return 0;
822 }
823
GetFunctionAddressInDLLs(const char * func_name,uptr * func_addr)824 static bool GetFunctionAddressInDLLs(const char *func_name, uptr *func_addr) {
825 *func_addr = 0;
826 void **DLLs = InterestingDLLsAvailable();
827 for (size_t i = 0; *func_addr == 0 && DLLs[i]; ++i)
828 *func_addr = InternalGetProcAddress(DLLs[i], func_name);
829 return (*func_addr != 0);
830 }
831
OverrideFunction(const char * name,uptr new_func,uptr * orig_old_func)832 bool OverrideFunction(const char *name, uptr new_func, uptr *orig_old_func) {
833 uptr orig_func;
834 if (!GetFunctionAddressInDLLs(name, &orig_func))
835 return false;
836 return OverrideFunction(orig_func, new_func, orig_old_func);
837 }
838
OverrideImportedFunction(const char * module_to_patch,const char * imported_module,const char * function_name,uptr new_function,uptr * orig_old_func)839 bool OverrideImportedFunction(const char *module_to_patch,
840 const char *imported_module,
841 const char *function_name, uptr new_function,
842 uptr *orig_old_func) {
843 HMODULE module = GetModuleHandleA(module_to_patch);
844 if (!module)
845 return false;
846
847 // Check that the module header is full and present.
848 RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
849 RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
850 if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE || // "MZ"
851 headers->Signature != IMAGE_NT_SIGNATURE || // "PE\0\0"
852 headers->FileHeader.SizeOfOptionalHeader <
853 sizeof(IMAGE_OPTIONAL_HEADER)) {
854 return false;
855 }
856
857 IMAGE_DATA_DIRECTORY *import_directory =
858 &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
859
860 // Iterate the list of imported DLLs. FirstThunk will be null for the last
861 // entry.
862 RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
863 import_directory->VirtualAddress);
864 for (; imports->FirstThunk != 0; ++imports) {
865 RVAPtr<const char> modname(module, imports->Name);
866 if (_stricmp(&*modname, imported_module) == 0)
867 break;
868 }
869 if (imports->FirstThunk == 0)
870 return false;
871
872 // We have two parallel arrays: the import address table (IAT) and the table
873 // of names. They start out containing the same data, but the loader rewrites
874 // the IAT to hold imported addresses and leaves the name table in
875 // OriginalFirstThunk alone.
876 RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
877 RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
878 for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
879 if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
880 RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
881 module, name_table->u1.ForwarderString);
882 const char *funcname = &import_by_name->Name[0];
883 if (strcmp(funcname, function_name) == 0)
884 break;
885 }
886 }
887 if (name_table->u1.Ordinal == 0)
888 return false;
889
890 // Now we have the correct IAT entry. Do the swap. We have to make the page
891 // read/write first.
892 if (orig_old_func)
893 *orig_old_func = iat->u1.AddressOfData;
894 DWORD old_prot, unused_prot;
895 if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
896 &old_prot))
897 return false;
898 iat->u1.AddressOfData = new_function;
899 if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
900 return false; // Not clear if this failure bothers us.
901 return true;
902 }
903
904 } // namespace __interception
905
906 #endif // _WIN32
907