1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements decl-related attribute processing.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/ASTMutationListener.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/Scope.h"
34 #include "llvm/ADT/StringExtras.h"
35 #include "llvm/Support/MathExtras.h"
36
37 using namespace clang;
38 using namespace sema;
39
40 namespace AttributeLangSupport {
41 enum LANG {
42 C,
43 Cpp,
44 ObjC
45 };
46 } // end namespace AttributeLangSupport
47
48 //===----------------------------------------------------------------------===//
49 // Helper functions
50 //===----------------------------------------------------------------------===//
51
52 /// isFunctionOrMethod - Return true if the given decl has function
53 /// type (function or function-typed variable) or an Objective-C
54 /// method.
isFunctionOrMethod(const Decl * D)55 static bool isFunctionOrMethod(const Decl *D) {
56 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
57 }
58
59 /// \brief Return true if the given decl has function type (function or
60 /// function-typed variable) or an Objective-C method or a block.
isFunctionOrMethodOrBlock(const Decl * D)61 static bool isFunctionOrMethodOrBlock(const Decl *D) {
62 return isFunctionOrMethod(D) || isa<BlockDecl>(D);
63 }
64
65 /// Return true if the given decl has a declarator that should have
66 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)67 static bool hasDeclarator(const Decl *D) {
68 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
69 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
70 isa<ObjCPropertyDecl>(D);
71 }
72
73 /// hasFunctionProto - Return true if the given decl has a argument
74 /// information. This decl should have already passed
75 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)76 static bool hasFunctionProto(const Decl *D) {
77 if (const FunctionType *FnTy = D->getFunctionType())
78 return isa<FunctionProtoType>(FnTy);
79 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
80 }
81
82 /// getFunctionOrMethodNumParams - Return number of function or method
83 /// parameters. It is an error to call this on a K&R function (use
84 /// hasFunctionProto first).
getFunctionOrMethodNumParams(const Decl * D)85 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
86 if (const FunctionType *FnTy = D->getFunctionType())
87 return cast<FunctionProtoType>(FnTy)->getNumParams();
88 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
89 return BD->getNumParams();
90 return cast<ObjCMethodDecl>(D)->param_size();
91 }
92
getFunctionOrMethodParamType(const Decl * D,unsigned Idx)93 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
94 if (const FunctionType *FnTy = D->getFunctionType())
95 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
96 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
97 return BD->getParamDecl(Idx)->getType();
98
99 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
100 }
101
getFunctionOrMethodParamRange(const Decl * D,unsigned Idx)102 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
103 if (const auto *FD = dyn_cast<FunctionDecl>(D))
104 return FD->getParamDecl(Idx)->getSourceRange();
105 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
106 return MD->parameters()[Idx]->getSourceRange();
107 if (const auto *BD = dyn_cast<BlockDecl>(D))
108 return BD->getParamDecl(Idx)->getSourceRange();
109 return SourceRange();
110 }
111
getFunctionOrMethodResultType(const Decl * D)112 static QualType getFunctionOrMethodResultType(const Decl *D) {
113 if (const FunctionType *FnTy = D->getFunctionType())
114 return cast<FunctionType>(FnTy)->getReturnType();
115 return cast<ObjCMethodDecl>(D)->getReturnType();
116 }
117
getFunctionOrMethodResultSourceRange(const Decl * D)118 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
119 if (const auto *FD = dyn_cast<FunctionDecl>(D))
120 return FD->getReturnTypeSourceRange();
121 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
122 return MD->getReturnTypeSourceRange();
123 return SourceRange();
124 }
125
isFunctionOrMethodVariadic(const Decl * D)126 static bool isFunctionOrMethodVariadic(const Decl *D) {
127 if (const FunctionType *FnTy = D->getFunctionType()) {
128 const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
129 return proto->isVariadic();
130 }
131 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
132 return BD->isVariadic();
133
134 return cast<ObjCMethodDecl>(D)->isVariadic();
135 }
136
isInstanceMethod(const Decl * D)137 static bool isInstanceMethod(const Decl *D) {
138 if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
139 return MethodDecl->isInstance();
140 return false;
141 }
142
isNSStringType(QualType T,ASTContext & Ctx)143 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
144 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
145 if (!PT)
146 return false;
147
148 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
149 if (!Cls)
150 return false;
151
152 IdentifierInfo* ClsName = Cls->getIdentifier();
153
154 // FIXME: Should we walk the chain of classes?
155 return ClsName == &Ctx.Idents.get("NSString") ||
156 ClsName == &Ctx.Idents.get("NSMutableString");
157 }
158
isCFStringType(QualType T,ASTContext & Ctx)159 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
160 const PointerType *PT = T->getAs<PointerType>();
161 if (!PT)
162 return false;
163
164 const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
165 if (!RT)
166 return false;
167
168 const RecordDecl *RD = RT->getDecl();
169 if (RD->getTagKind() != TTK_Struct)
170 return false;
171
172 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
173 }
174
getNumAttributeArgs(const AttributeList & Attr)175 static unsigned getNumAttributeArgs(const AttributeList &Attr) {
176 // FIXME: Include the type in the argument list.
177 return Attr.getNumArgs() + Attr.hasParsedType();
178 }
179
180 template <typename Compare>
checkAttributeNumArgsImpl(Sema & S,const AttributeList & Attr,unsigned Num,unsigned Diag,Compare Comp)181 static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
182 unsigned Num, unsigned Diag,
183 Compare Comp) {
184 if (Comp(getNumAttributeArgs(Attr), Num)) {
185 S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
186 return false;
187 }
188
189 return true;
190 }
191
192 /// \brief Check if the attribute has exactly as many args as Num. May
193 /// output an error.
checkAttributeNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)194 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
195 unsigned Num) {
196 return checkAttributeNumArgsImpl(S, Attr, Num,
197 diag::err_attribute_wrong_number_arguments,
198 std::not_equal_to<unsigned>());
199 }
200
201 /// \brief Check if the attribute has at least as many args as Num. May
202 /// output an error.
checkAttributeAtLeastNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)203 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
204 unsigned Num) {
205 return checkAttributeNumArgsImpl(S, Attr, Num,
206 diag::err_attribute_too_few_arguments,
207 std::less<unsigned>());
208 }
209
210 /// \brief Check if the attribute has at most as many args as Num. May
211 /// output an error.
checkAttributeAtMostNumArgs(Sema & S,const AttributeList & Attr,unsigned Num)212 static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
213 unsigned Num) {
214 return checkAttributeNumArgsImpl(S, Attr, Num,
215 diag::err_attribute_too_many_arguments,
216 std::greater<unsigned>());
217 }
218
219 /// \brief If Expr is a valid integer constant, get the value of the integer
220 /// expression and return success or failure. May output an error.
checkUInt32Argument(Sema & S,const AttributeList & Attr,const Expr * Expr,uint32_t & Val,unsigned Idx=UINT_MAX)221 static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
222 const Expr *Expr, uint32_t &Val,
223 unsigned Idx = UINT_MAX) {
224 llvm::APSInt I(32);
225 if (Expr->isTypeDependent() || Expr->isValueDependent() ||
226 !Expr->isIntegerConstantExpr(I, S.Context)) {
227 if (Idx != UINT_MAX)
228 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
229 << Attr.getName() << Idx << AANT_ArgumentIntegerConstant
230 << Expr->getSourceRange();
231 else
232 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
233 << Attr.getName() << AANT_ArgumentIntegerConstant
234 << Expr->getSourceRange();
235 return false;
236 }
237
238 if (!I.isIntN(32)) {
239 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
240 << I.toString(10, false) << 32 << /* Unsigned */ 1;
241 return false;
242 }
243
244 Val = (uint32_t)I.getZExtValue();
245 return true;
246 }
247
248 /// \brief Diagnose mutually exclusive attributes when present on a given
249 /// declaration. Returns true if diagnosed.
250 template <typename AttrTy>
checkAttrMutualExclusion(Sema & S,Decl * D,SourceRange Range,IdentifierInfo * Ident)251 static bool checkAttrMutualExclusion(Sema &S, Decl *D, SourceRange Range,
252 IdentifierInfo *Ident) {
253 if (AttrTy *A = D->getAttr<AttrTy>()) {
254 S.Diag(Range.getBegin(), diag::err_attributes_are_not_compatible) << Ident
255 << A;
256 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
257 return true;
258 }
259 return false;
260 }
261
262 /// \brief Check if IdxExpr is a valid parameter index for a function or
263 /// instance method D. May output an error.
264 ///
265 /// \returns true if IdxExpr is a valid index.
checkFunctionOrMethodParameterIndex(Sema & S,const Decl * D,const AttributeList & Attr,unsigned AttrArgNum,const Expr * IdxExpr,uint64_t & Idx)266 static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
267 const AttributeList &Attr,
268 unsigned AttrArgNum,
269 const Expr *IdxExpr,
270 uint64_t &Idx) {
271 assert(isFunctionOrMethodOrBlock(D));
272
273 // In C++ the implicit 'this' function parameter also counts.
274 // Parameters are counted from one.
275 bool HP = hasFunctionProto(D);
276 bool HasImplicitThisParam = isInstanceMethod(D);
277 bool IV = HP && isFunctionOrMethodVariadic(D);
278 unsigned NumParams =
279 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
280
281 llvm::APSInt IdxInt;
282 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
283 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
284 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
285 << Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
286 << IdxExpr->getSourceRange();
287 return false;
288 }
289
290 Idx = IdxInt.getLimitedValue();
291 if (Idx < 1 || (!IV && Idx > NumParams)) {
292 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
293 << Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
294 return false;
295 }
296 Idx--; // Convert to zero-based.
297 if (HasImplicitThisParam) {
298 if (Idx == 0) {
299 S.Diag(Attr.getLoc(),
300 diag::err_attribute_invalid_implicit_this_argument)
301 << Attr.getName() << IdxExpr->getSourceRange();
302 return false;
303 }
304 --Idx;
305 }
306
307 return true;
308 }
309
310 /// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
311 /// If not emit an error and return false. If the argument is an identifier it
312 /// will emit an error with a fixit hint and treat it as if it was a string
313 /// literal.
checkStringLiteralArgumentAttr(const AttributeList & Attr,unsigned ArgNum,StringRef & Str,SourceLocation * ArgLocation)314 bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
315 unsigned ArgNum, StringRef &Str,
316 SourceLocation *ArgLocation) {
317 // Look for identifiers. If we have one emit a hint to fix it to a literal.
318 if (Attr.isArgIdent(ArgNum)) {
319 IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
320 Diag(Loc->Loc, diag::err_attribute_argument_type)
321 << Attr.getName() << AANT_ArgumentString
322 << FixItHint::CreateInsertion(Loc->Loc, "\"")
323 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
324 Str = Loc->Ident->getName();
325 if (ArgLocation)
326 *ArgLocation = Loc->Loc;
327 return true;
328 }
329
330 // Now check for an actual string literal.
331 Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
332 StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
333 if (ArgLocation)
334 *ArgLocation = ArgExpr->getLocStart();
335
336 if (!Literal || !Literal->isAscii()) {
337 Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
338 << Attr.getName() << AANT_ArgumentString;
339 return false;
340 }
341
342 Str = Literal->getString();
343 return true;
344 }
345
346 /// \brief Applies the given attribute to the Decl without performing any
347 /// additional semantic checking.
348 template <typename AttrType>
handleSimpleAttribute(Sema & S,Decl * D,const AttributeList & Attr)349 static void handleSimpleAttribute(Sema &S, Decl *D,
350 const AttributeList &Attr) {
351 D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
352 Attr.getAttributeSpellingListIndex()));
353 }
354
355 template <typename AttrType>
handleSimpleAttributeWithExclusions(Sema & S,Decl * D,const AttributeList & Attr)356 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
357 const AttributeList &Attr) {
358 handleSimpleAttribute<AttrType>(S, D, Attr);
359 }
360
361 /// \brief Applies the given attribute to the Decl so long as the Decl doesn't
362 /// already have one of the given incompatible attributes.
363 template <typename AttrType, typename IncompatibleAttrType,
364 typename... IncompatibleAttrTypes>
handleSimpleAttributeWithExclusions(Sema & S,Decl * D,const AttributeList & Attr)365 static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
366 const AttributeList &Attr) {
367 if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, Attr.getRange(),
368 Attr.getName()))
369 return;
370 handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
371 Attr);
372 }
373
374 /// \brief Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)375 static bool isIntOrBool(Expr *Exp) {
376 QualType QT = Exp->getType();
377 return QT->isBooleanType() || QT->isIntegerType();
378 }
379
380
381 // Check to see if the type is a smart pointer of some kind. We assume
382 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)383 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
384 DeclContextLookupResult Res1 = RT->getDecl()->lookup(
385 S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
386 if (Res1.empty())
387 return false;
388
389 DeclContextLookupResult Res2 = RT->getDecl()->lookup(
390 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
391 if (Res2.empty())
392 return false;
393
394 return true;
395 }
396
397 /// \brief Check if passed in Decl is a pointer type.
398 /// Note that this function may produce an error message.
399 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const AttributeList & Attr)400 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
401 const AttributeList &Attr) {
402 const ValueDecl *vd = cast<ValueDecl>(D);
403 QualType QT = vd->getType();
404 if (QT->isAnyPointerType())
405 return true;
406
407 if (const RecordType *RT = QT->getAs<RecordType>()) {
408 // If it's an incomplete type, it could be a smart pointer; skip it.
409 // (We don't want to force template instantiation if we can avoid it,
410 // since that would alter the order in which templates are instantiated.)
411 if (RT->isIncompleteType())
412 return true;
413
414 if (threadSafetyCheckIsSmartPointer(S, RT))
415 return true;
416 }
417
418 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
419 << Attr.getName() << QT;
420 return false;
421 }
422
423 /// \brief Checks that the passed in QualType either is of RecordType or points
424 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)425 static const RecordType *getRecordType(QualType QT) {
426 if (const RecordType *RT = QT->getAs<RecordType>())
427 return RT;
428
429 // Now check if we point to record type.
430 if (const PointerType *PT = QT->getAs<PointerType>())
431 return PT->getPointeeType()->getAs<RecordType>();
432
433 return nullptr;
434 }
435
checkRecordTypeForCapability(Sema & S,QualType Ty)436 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
437 const RecordType *RT = getRecordType(Ty);
438
439 if (!RT)
440 return false;
441
442 // Don't check for the capability if the class hasn't been defined yet.
443 if (RT->isIncompleteType())
444 return true;
445
446 // Allow smart pointers to be used as capability objects.
447 // FIXME -- Check the type that the smart pointer points to.
448 if (threadSafetyCheckIsSmartPointer(S, RT))
449 return true;
450
451 // Check if the record itself has a capability.
452 RecordDecl *RD = RT->getDecl();
453 if (RD->hasAttr<CapabilityAttr>())
454 return true;
455
456 // Else check if any base classes have a capability.
457 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
458 CXXBasePaths BPaths(false, false);
459 if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &) {
460 const auto *Type = BS->getType()->getAs<RecordType>();
461 return Type->getDecl()->hasAttr<CapabilityAttr>();
462 }, BPaths))
463 return true;
464 }
465 return false;
466 }
467
checkTypedefTypeForCapability(QualType Ty)468 static bool checkTypedefTypeForCapability(QualType Ty) {
469 const auto *TD = Ty->getAs<TypedefType>();
470 if (!TD)
471 return false;
472
473 TypedefNameDecl *TN = TD->getDecl();
474 if (!TN)
475 return false;
476
477 return TN->hasAttr<CapabilityAttr>();
478 }
479
typeHasCapability(Sema & S,QualType Ty)480 static bool typeHasCapability(Sema &S, QualType Ty) {
481 if (checkTypedefTypeForCapability(Ty))
482 return true;
483
484 if (checkRecordTypeForCapability(S, Ty))
485 return true;
486
487 return false;
488 }
489
isCapabilityExpr(Sema & S,const Expr * Ex)490 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
491 // Capability expressions are simple expressions involving the boolean logic
492 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
493 // a DeclRefExpr is found, its type should be checked to determine whether it
494 // is a capability or not.
495
496 if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
497 return typeHasCapability(S, E->getType());
498 else if (const auto *E = dyn_cast<CastExpr>(Ex))
499 return isCapabilityExpr(S, E->getSubExpr());
500 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
501 return isCapabilityExpr(S, E->getSubExpr());
502 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
503 if (E->getOpcode() == UO_LNot)
504 return isCapabilityExpr(S, E->getSubExpr());
505 return false;
506 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
507 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
508 return isCapabilityExpr(S, E->getLHS()) &&
509 isCapabilityExpr(S, E->getRHS());
510 return false;
511 }
512
513 return false;
514 }
515
516 /// \brief Checks that all attribute arguments, starting from Sidx, resolve to
517 /// a capability object.
518 /// \param Sidx The attribute argument index to start checking with.
519 /// \param ParamIdxOk Whether an argument can be indexing into a function
520 /// parameter list.
checkAttrArgsAreCapabilityObjs(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args,int Sidx=0,bool ParamIdxOk=false)521 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
522 const AttributeList &Attr,
523 SmallVectorImpl<Expr *> &Args,
524 int Sidx = 0,
525 bool ParamIdxOk = false) {
526 for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
527 Expr *ArgExp = Attr.getArgAsExpr(Idx);
528
529 if (ArgExp->isTypeDependent()) {
530 // FIXME -- need to check this again on template instantiation
531 Args.push_back(ArgExp);
532 continue;
533 }
534
535 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
536 if (StrLit->getLength() == 0 ||
537 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
538 // Pass empty strings to the analyzer without warnings.
539 // Treat "*" as the universal lock.
540 Args.push_back(ArgExp);
541 continue;
542 }
543
544 // We allow constant strings to be used as a placeholder for expressions
545 // that are not valid C++ syntax, but warn that they are ignored.
546 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
547 Attr.getName();
548 Args.push_back(ArgExp);
549 continue;
550 }
551
552 QualType ArgTy = ArgExp->getType();
553
554 // A pointer to member expression of the form &MyClass::mu is treated
555 // specially -- we need to look at the type of the member.
556 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
557 if (UOp->getOpcode() == UO_AddrOf)
558 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
559 if (DRE->getDecl()->isCXXInstanceMember())
560 ArgTy = DRE->getDecl()->getType();
561
562 // First see if we can just cast to record type, or pointer to record type.
563 const RecordType *RT = getRecordType(ArgTy);
564
565 // Now check if we index into a record type function param.
566 if(!RT && ParamIdxOk) {
567 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
568 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
569 if(FD && IL) {
570 unsigned int NumParams = FD->getNumParams();
571 llvm::APInt ArgValue = IL->getValue();
572 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
573 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
574 if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
575 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
576 << Attr.getName() << Idx + 1 << NumParams;
577 continue;
578 }
579 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
580 }
581 }
582
583 // If the type does not have a capability, see if the components of the
584 // expression have capabilities. This allows for writing C code where the
585 // capability may be on the type, and the expression is a capability
586 // boolean logic expression. Eg) requires_capability(A || B && !C)
587 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
588 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
589 << Attr.getName() << ArgTy;
590
591 Args.push_back(ArgExp);
592 }
593 }
594
595 //===----------------------------------------------------------------------===//
596 // Attribute Implementations
597 //===----------------------------------------------------------------------===//
598
handlePtGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)599 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
600 const AttributeList &Attr) {
601 if (!threadSafetyCheckIsPointer(S, D, Attr))
602 return;
603
604 D->addAttr(::new (S.Context)
605 PtGuardedVarAttr(Attr.getRange(), S.Context,
606 Attr.getAttributeSpellingListIndex()));
607 }
608
checkGuardedByAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,Expr * & Arg)609 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
610 const AttributeList &Attr,
611 Expr* &Arg) {
612 SmallVector<Expr*, 1> Args;
613 // check that all arguments are lockable objects
614 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
615 unsigned Size = Args.size();
616 if (Size != 1)
617 return false;
618
619 Arg = Args[0];
620
621 return true;
622 }
623
handleGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)624 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
625 Expr *Arg = nullptr;
626 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
627 return;
628
629 D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
630 Attr.getAttributeSpellingListIndex()));
631 }
632
handlePtGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)633 static void handlePtGuardedByAttr(Sema &S, Decl *D,
634 const AttributeList &Attr) {
635 Expr *Arg = nullptr;
636 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
637 return;
638
639 if (!threadSafetyCheckIsPointer(S, D, Attr))
640 return;
641
642 D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
643 S.Context, Arg,
644 Attr.getAttributeSpellingListIndex()));
645 }
646
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)647 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
648 const AttributeList &Attr,
649 SmallVectorImpl<Expr *> &Args) {
650 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
651 return false;
652
653 // Check that this attribute only applies to lockable types.
654 QualType QT = cast<ValueDecl>(D)->getType();
655 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
656 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
657 << Attr.getName();
658 return false;
659 }
660
661 // Check that all arguments are lockable objects.
662 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
663 if (Args.empty())
664 return false;
665
666 return true;
667 }
668
handleAcquiredAfterAttr(Sema & S,Decl * D,const AttributeList & Attr)669 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
670 const AttributeList &Attr) {
671 SmallVector<Expr*, 1> Args;
672 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
673 return;
674
675 Expr **StartArg = &Args[0];
676 D->addAttr(::new (S.Context)
677 AcquiredAfterAttr(Attr.getRange(), S.Context,
678 StartArg, Args.size(),
679 Attr.getAttributeSpellingListIndex()));
680 }
681
handleAcquiredBeforeAttr(Sema & S,Decl * D,const AttributeList & Attr)682 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
683 const AttributeList &Attr) {
684 SmallVector<Expr*, 1> Args;
685 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
686 return;
687
688 Expr **StartArg = &Args[0];
689 D->addAttr(::new (S.Context)
690 AcquiredBeforeAttr(Attr.getRange(), S.Context,
691 StartArg, Args.size(),
692 Attr.getAttributeSpellingListIndex()));
693 }
694
checkLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)695 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
696 const AttributeList &Attr,
697 SmallVectorImpl<Expr *> &Args) {
698 // zero or more arguments ok
699 // check that all arguments are lockable objects
700 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
701
702 return true;
703 }
704
handleAssertSharedLockAttr(Sema & S,Decl * D,const AttributeList & Attr)705 static void handleAssertSharedLockAttr(Sema &S, Decl *D,
706 const AttributeList &Attr) {
707 SmallVector<Expr*, 1> Args;
708 if (!checkLockFunAttrCommon(S, D, Attr, Args))
709 return;
710
711 unsigned Size = Args.size();
712 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
713 D->addAttr(::new (S.Context)
714 AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
715 Attr.getAttributeSpellingListIndex()));
716 }
717
handleAssertExclusiveLockAttr(Sema & S,Decl * D,const AttributeList & Attr)718 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
719 const AttributeList &Attr) {
720 SmallVector<Expr*, 1> Args;
721 if (!checkLockFunAttrCommon(S, D, Attr, Args))
722 return;
723
724 unsigned Size = Args.size();
725 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
726 D->addAttr(::new (S.Context)
727 AssertExclusiveLockAttr(Attr.getRange(), S.Context,
728 StartArg, Size,
729 Attr.getAttributeSpellingListIndex()));
730 }
731
732
checkTryLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)733 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
734 const AttributeList &Attr,
735 SmallVectorImpl<Expr *> &Args) {
736 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
737 return false;
738
739 if (!isIntOrBool(Attr.getArgAsExpr(0))) {
740 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
741 << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
742 return false;
743 }
744
745 // check that all arguments are lockable objects
746 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
747
748 return true;
749 }
750
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)751 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
752 const AttributeList &Attr) {
753 SmallVector<Expr*, 2> Args;
754 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
755 return;
756
757 D->addAttr(::new (S.Context)
758 SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
759 Attr.getArgAsExpr(0),
760 Args.data(), Args.size(),
761 Attr.getAttributeSpellingListIndex()));
762 }
763
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)764 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
765 const AttributeList &Attr) {
766 SmallVector<Expr*, 2> Args;
767 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
768 return;
769
770 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
771 Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
772 Args.size(), Attr.getAttributeSpellingListIndex()));
773 }
774
handleLockReturnedAttr(Sema & S,Decl * D,const AttributeList & Attr)775 static void handleLockReturnedAttr(Sema &S, Decl *D,
776 const AttributeList &Attr) {
777 // check that the argument is lockable object
778 SmallVector<Expr*, 1> Args;
779 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
780 unsigned Size = Args.size();
781 if (Size == 0)
782 return;
783
784 D->addAttr(::new (S.Context)
785 LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
786 Attr.getAttributeSpellingListIndex()));
787 }
788
handleLocksExcludedAttr(Sema & S,Decl * D,const AttributeList & Attr)789 static void handleLocksExcludedAttr(Sema &S, Decl *D,
790 const AttributeList &Attr) {
791 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
792 return;
793
794 // check that all arguments are lockable objects
795 SmallVector<Expr*, 1> Args;
796 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
797 unsigned Size = Args.size();
798 if (Size == 0)
799 return;
800 Expr **StartArg = &Args[0];
801
802 D->addAttr(::new (S.Context)
803 LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
804 Attr.getAttributeSpellingListIndex()));
805 }
806
handleEnableIfAttr(Sema & S,Decl * D,const AttributeList & Attr)807 static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
808 S.Diag(Attr.getLoc(), diag::ext_clang_enable_if);
809
810 Expr *Cond = Attr.getArgAsExpr(0);
811 if (!Cond->isTypeDependent()) {
812 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
813 if (Converted.isInvalid())
814 return;
815 Cond = Converted.get();
816 }
817
818 StringRef Msg;
819 if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
820 return;
821
822 SmallVector<PartialDiagnosticAt, 8> Diags;
823 if (!Cond->isValueDependent() &&
824 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
825 Diags)) {
826 S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
827 for (int I = 0, N = Diags.size(); I != N; ++I)
828 S.Diag(Diags[I].first, Diags[I].second);
829 return;
830 }
831
832 D->addAttr(::new (S.Context)
833 EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
834 Attr.getAttributeSpellingListIndex()));
835 }
836
handlePassObjectSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)837 static void handlePassObjectSizeAttr(Sema &S, Decl *D,
838 const AttributeList &Attr) {
839 if (D->hasAttr<PassObjectSizeAttr>()) {
840 S.Diag(D->getLocStart(), diag::err_attribute_only_once_per_parameter)
841 << Attr.getName();
842 return;
843 }
844
845 Expr *E = Attr.getArgAsExpr(0);
846 uint32_t Type;
847 if (!checkUInt32Argument(S, Attr, E, Type, /*Idx=*/1))
848 return;
849
850 // pass_object_size's argument is passed in as the second argument of
851 // __builtin_object_size. So, it has the same constraints as that second
852 // argument; namely, it must be in the range [0, 3].
853 if (Type > 3) {
854 S.Diag(E->getLocStart(), diag::err_attribute_argument_outof_range)
855 << Attr.getName() << 0 << 3 << E->getSourceRange();
856 return;
857 }
858
859 // pass_object_size is only supported on constant pointer parameters; as a
860 // kindness to users, we allow the parameter to be non-const for declarations.
861 // At this point, we have no clue if `D` belongs to a function declaration or
862 // definition, so we defer the constness check until later.
863 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
864 S.Diag(D->getLocStart(), diag::err_attribute_pointers_only)
865 << Attr.getName() << 1;
866 return;
867 }
868
869 D->addAttr(::new (S.Context)
870 PassObjectSizeAttr(Attr.getRange(), S.Context, (int)Type,
871 Attr.getAttributeSpellingListIndex()));
872 }
873
handleConsumableAttr(Sema & S,Decl * D,const AttributeList & Attr)874 static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
875 ConsumableAttr::ConsumedState DefaultState;
876
877 if (Attr.isArgIdent(0)) {
878 IdentifierLoc *IL = Attr.getArgAsIdent(0);
879 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
880 DefaultState)) {
881 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
882 << Attr.getName() << IL->Ident;
883 return;
884 }
885 } else {
886 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
887 << Attr.getName() << AANT_ArgumentIdentifier;
888 return;
889 }
890
891 D->addAttr(::new (S.Context)
892 ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
893 Attr.getAttributeSpellingListIndex()));
894 }
895
checkForConsumableClass(Sema & S,const CXXMethodDecl * MD,const AttributeList & Attr)896 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
897 const AttributeList &Attr) {
898 ASTContext &CurrContext = S.getASTContext();
899 QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
900
901 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
902 if (!RD->hasAttr<ConsumableAttr>()) {
903 S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
904 RD->getNameAsString();
905
906 return false;
907 }
908 }
909
910 return true;
911 }
912
handleCallableWhenAttr(Sema & S,Decl * D,const AttributeList & Attr)913 static void handleCallableWhenAttr(Sema &S, Decl *D,
914 const AttributeList &Attr) {
915 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
916 return;
917
918 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
919 return;
920
921 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
922 for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
923 CallableWhenAttr::ConsumedState CallableState;
924
925 StringRef StateString;
926 SourceLocation Loc;
927 if (Attr.isArgIdent(ArgIndex)) {
928 IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
929 StateString = Ident->Ident->getName();
930 Loc = Ident->Loc;
931 } else {
932 if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
933 return;
934 }
935
936 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
937 CallableState)) {
938 S.Diag(Loc, diag::warn_attribute_type_not_supported)
939 << Attr.getName() << StateString;
940 return;
941 }
942
943 States.push_back(CallableState);
944 }
945
946 D->addAttr(::new (S.Context)
947 CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
948 States.size(), Attr.getAttributeSpellingListIndex()));
949 }
950
handleParamTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)951 static void handleParamTypestateAttr(Sema &S, Decl *D,
952 const AttributeList &Attr) {
953 ParamTypestateAttr::ConsumedState ParamState;
954
955 if (Attr.isArgIdent(0)) {
956 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
957 StringRef StateString = Ident->Ident->getName();
958
959 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
960 ParamState)) {
961 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
962 << Attr.getName() << StateString;
963 return;
964 }
965 } else {
966 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
967 Attr.getName() << AANT_ArgumentIdentifier;
968 return;
969 }
970
971 // FIXME: This check is currently being done in the analysis. It can be
972 // enabled here only after the parser propagates attributes at
973 // template specialization definition, not declaration.
974 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
975 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
976 //
977 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
978 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
979 // ReturnType.getAsString();
980 // return;
981 //}
982
983 D->addAttr(::new (S.Context)
984 ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
985 Attr.getAttributeSpellingListIndex()));
986 }
987
handleReturnTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)988 static void handleReturnTypestateAttr(Sema &S, Decl *D,
989 const AttributeList &Attr) {
990 ReturnTypestateAttr::ConsumedState ReturnState;
991
992 if (Attr.isArgIdent(0)) {
993 IdentifierLoc *IL = Attr.getArgAsIdent(0);
994 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
995 ReturnState)) {
996 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
997 << Attr.getName() << IL->Ident;
998 return;
999 }
1000 } else {
1001 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1002 Attr.getName() << AANT_ArgumentIdentifier;
1003 return;
1004 }
1005
1006 // FIXME: This check is currently being done in the analysis. It can be
1007 // enabled here only after the parser propagates attributes at
1008 // template specialization definition, not declaration.
1009 //QualType ReturnType;
1010 //
1011 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1012 // ReturnType = Param->getType();
1013 //
1014 //} else if (const CXXConstructorDecl *Constructor =
1015 // dyn_cast<CXXConstructorDecl>(D)) {
1016 // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
1017 //
1018 //} else {
1019 //
1020 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1021 //}
1022 //
1023 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1024 //
1025 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1026 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1027 // ReturnType.getAsString();
1028 // return;
1029 //}
1030
1031 D->addAttr(::new (S.Context)
1032 ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
1033 Attr.getAttributeSpellingListIndex()));
1034 }
1035
handleSetTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)1036 static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1037 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1038 return;
1039
1040 SetTypestateAttr::ConsumedState NewState;
1041 if (Attr.isArgIdent(0)) {
1042 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1043 StringRef Param = Ident->Ident->getName();
1044 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1045 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1046 << Attr.getName() << Param;
1047 return;
1048 }
1049 } else {
1050 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1051 Attr.getName() << AANT_ArgumentIdentifier;
1052 return;
1053 }
1054
1055 D->addAttr(::new (S.Context)
1056 SetTypestateAttr(Attr.getRange(), S.Context, NewState,
1057 Attr.getAttributeSpellingListIndex()));
1058 }
1059
handleTestTypestateAttr(Sema & S,Decl * D,const AttributeList & Attr)1060 static void handleTestTypestateAttr(Sema &S, Decl *D,
1061 const AttributeList &Attr) {
1062 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
1063 return;
1064
1065 TestTypestateAttr::ConsumedState TestState;
1066 if (Attr.isArgIdent(0)) {
1067 IdentifierLoc *Ident = Attr.getArgAsIdent(0);
1068 StringRef Param = Ident->Ident->getName();
1069 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1070 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1071 << Attr.getName() << Param;
1072 return;
1073 }
1074 } else {
1075 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
1076 Attr.getName() << AANT_ArgumentIdentifier;
1077 return;
1078 }
1079
1080 D->addAttr(::new (S.Context)
1081 TestTypestateAttr(Attr.getRange(), S.Context, TestState,
1082 Attr.getAttributeSpellingListIndex()));
1083 }
1084
handleExtVectorTypeAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)1085 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
1086 const AttributeList &Attr) {
1087 // Remember this typedef decl, we will need it later for diagnostics.
1088 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1089 }
1090
handlePackedAttr(Sema & S,Decl * D,const AttributeList & Attr)1091 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1092 if (TagDecl *TD = dyn_cast<TagDecl>(D))
1093 TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
1094 Attr.getAttributeSpellingListIndex()));
1095 else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1096 // Report warning about changed offset in the newer compiler versions.
1097 if (!FD->getType()->isDependentType() &&
1098 !FD->getType()->isIncompleteType() && FD->isBitField() &&
1099 S.Context.getTypeAlign(FD->getType()) <= 8)
1100 S.Diag(Attr.getLoc(), diag::warn_attribute_packed_for_bitfield);
1101
1102 FD->addAttr(::new (S.Context) PackedAttr(
1103 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
1104 } else
1105 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1106 }
1107
checkIBOutletCommon(Sema & S,Decl * D,const AttributeList & Attr)1108 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1109 // The IBOutlet/IBOutletCollection attributes only apply to instance
1110 // variables or properties of Objective-C classes. The outlet must also
1111 // have an object reference type.
1112 if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1113 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1114 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1115 << Attr.getName() << VD->getType() << 0;
1116 return false;
1117 }
1118 }
1119 else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1120 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1121 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1122 << Attr.getName() << PD->getType() << 1;
1123 return false;
1124 }
1125 }
1126 else {
1127 S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1128 return false;
1129 }
1130
1131 return true;
1132 }
1133
handleIBOutlet(Sema & S,Decl * D,const AttributeList & Attr)1134 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1135 if (!checkIBOutletCommon(S, D, Attr))
1136 return;
1137
1138 D->addAttr(::new (S.Context)
1139 IBOutletAttr(Attr.getRange(), S.Context,
1140 Attr.getAttributeSpellingListIndex()));
1141 }
1142
handleIBOutletCollection(Sema & S,Decl * D,const AttributeList & Attr)1143 static void handleIBOutletCollection(Sema &S, Decl *D,
1144 const AttributeList &Attr) {
1145
1146 // The iboutletcollection attribute can have zero or one arguments.
1147 if (Attr.getNumArgs() > 1) {
1148 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1149 << Attr.getName() << 1;
1150 return;
1151 }
1152
1153 if (!checkIBOutletCommon(S, D, Attr))
1154 return;
1155
1156 ParsedType PT;
1157
1158 if (Attr.hasParsedType())
1159 PT = Attr.getTypeArg();
1160 else {
1161 PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
1162 S.getScopeForContext(D->getDeclContext()->getParent()));
1163 if (!PT) {
1164 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1165 return;
1166 }
1167 }
1168
1169 TypeSourceInfo *QTLoc = nullptr;
1170 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1171 if (!QTLoc)
1172 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
1173
1174 // Diagnose use of non-object type in iboutletcollection attribute.
1175 // FIXME. Gnu attribute extension ignores use of builtin types in
1176 // attributes. So, __attribute__((iboutletcollection(char))) will be
1177 // treated as __attribute__((iboutletcollection())).
1178 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1179 S.Diag(Attr.getLoc(),
1180 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1181 : diag::err_iboutletcollection_type) << QT;
1182 return;
1183 }
1184
1185 D->addAttr(::new (S.Context)
1186 IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
1187 Attr.getAttributeSpellingListIndex()));
1188 }
1189
isValidPointerAttrType(QualType T,bool RefOkay)1190 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1191 if (RefOkay) {
1192 if (T->isReferenceType())
1193 return true;
1194 } else {
1195 T = T.getNonReferenceType();
1196 }
1197
1198 // The nonnull attribute, and other similar attributes, can be applied to a
1199 // transparent union that contains a pointer type.
1200 if (const RecordType *UT = T->getAsUnionType()) {
1201 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1202 RecordDecl *UD = UT->getDecl();
1203 for (const auto *I : UD->fields()) {
1204 QualType QT = I->getType();
1205 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1206 return true;
1207 }
1208 }
1209 }
1210
1211 return T->isAnyPointerType() || T->isBlockPointerType();
1212 }
1213
attrNonNullArgCheck(Sema & S,QualType T,const AttributeList & Attr,SourceRange AttrParmRange,SourceRange TypeRange,bool isReturnValue=false)1214 static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
1215 SourceRange AttrParmRange,
1216 SourceRange TypeRange,
1217 bool isReturnValue = false) {
1218 if (!S.isValidPointerAttrType(T)) {
1219 if (isReturnValue)
1220 S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
1221 << Attr.getName() << AttrParmRange << TypeRange;
1222 else
1223 S.Diag(Attr.getLoc(), diag::warn_attribute_pointers_only)
1224 << Attr.getName() << AttrParmRange << TypeRange << 0;
1225 return false;
1226 }
1227 return true;
1228 }
1229
handleNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1230 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1231 SmallVector<unsigned, 8> NonNullArgs;
1232 for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
1233 Expr *Ex = Attr.getArgAsExpr(I);
1234 uint64_t Idx;
1235 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
1236 return;
1237
1238 // Is the function argument a pointer type?
1239 if (Idx < getFunctionOrMethodNumParams(D) &&
1240 !attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
1241 Ex->getSourceRange(),
1242 getFunctionOrMethodParamRange(D, Idx)))
1243 continue;
1244
1245 NonNullArgs.push_back(Idx);
1246 }
1247
1248 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1249 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1250 // check if the attribute came from a macro expansion or a template
1251 // instantiation.
1252 if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
1253 S.ActiveTemplateInstantiations.empty()) {
1254 bool AnyPointers = isFunctionOrMethodVariadic(D);
1255 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1256 I != E && !AnyPointers; ++I) {
1257 QualType T = getFunctionOrMethodParamType(D, I);
1258 if (T->isDependentType() || S.isValidPointerAttrType(T))
1259 AnyPointers = true;
1260 }
1261
1262 if (!AnyPointers)
1263 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1264 }
1265
1266 unsigned *Start = NonNullArgs.data();
1267 unsigned Size = NonNullArgs.size();
1268 llvm::array_pod_sort(Start, Start + Size);
1269 D->addAttr(::new (S.Context)
1270 NonNullAttr(Attr.getRange(), S.Context, Start, Size,
1271 Attr.getAttributeSpellingListIndex()));
1272 }
1273
handleNonNullAttrParameter(Sema & S,ParmVarDecl * D,const AttributeList & Attr)1274 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1275 const AttributeList &Attr) {
1276 if (Attr.getNumArgs() > 0) {
1277 if (D->getFunctionType()) {
1278 handleNonNullAttr(S, D, Attr);
1279 } else {
1280 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1281 << D->getSourceRange();
1282 }
1283 return;
1284 }
1285
1286 // Is the argument a pointer type?
1287 if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
1288 D->getSourceRange()))
1289 return;
1290
1291 D->addAttr(::new (S.Context)
1292 NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
1293 Attr.getAttributeSpellingListIndex()));
1294 }
1295
handleReturnsNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1296 static void handleReturnsNonNullAttr(Sema &S, Decl *D,
1297 const AttributeList &Attr) {
1298 QualType ResultType = getFunctionOrMethodResultType(D);
1299 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1300 if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
1301 /* isReturnValue */ true))
1302 return;
1303
1304 D->addAttr(::new (S.Context)
1305 ReturnsNonNullAttr(Attr.getRange(), S.Context,
1306 Attr.getAttributeSpellingListIndex()));
1307 }
1308
handleAssumeAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)1309 static void handleAssumeAlignedAttr(Sema &S, Decl *D,
1310 const AttributeList &Attr) {
1311 Expr *E = Attr.getArgAsExpr(0),
1312 *OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
1313 S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
1314 Attr.getAttributeSpellingListIndex());
1315 }
1316
AddAssumeAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,Expr * OE,unsigned SpellingListIndex)1317 void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
1318 Expr *OE, unsigned SpellingListIndex) {
1319 QualType ResultType = getFunctionOrMethodResultType(D);
1320 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1321
1322 AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
1323 SourceLocation AttrLoc = AttrRange.getBegin();
1324
1325 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1326 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1327 << &TmpAttr << AttrRange << SR;
1328 return;
1329 }
1330
1331 if (!E->isValueDependent()) {
1332 llvm::APSInt I(64);
1333 if (!E->isIntegerConstantExpr(I, Context)) {
1334 if (OE)
1335 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1336 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1337 << E->getSourceRange();
1338 else
1339 Diag(AttrLoc, diag::err_attribute_argument_type)
1340 << &TmpAttr << AANT_ArgumentIntegerConstant
1341 << E->getSourceRange();
1342 return;
1343 }
1344
1345 if (!I.isPowerOf2()) {
1346 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1347 << E->getSourceRange();
1348 return;
1349 }
1350 }
1351
1352 if (OE) {
1353 if (!OE->isValueDependent()) {
1354 llvm::APSInt I(64);
1355 if (!OE->isIntegerConstantExpr(I, Context)) {
1356 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1357 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1358 << OE->getSourceRange();
1359 return;
1360 }
1361 }
1362 }
1363
1364 D->addAttr(::new (Context)
1365 AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
1366 }
1367
1368 /// Normalize the attribute, __foo__ becomes foo.
1369 /// Returns true if normalization was applied.
normalizeName(StringRef & AttrName)1370 static bool normalizeName(StringRef &AttrName) {
1371 if (AttrName.size() > 4 && AttrName.startswith("__") &&
1372 AttrName.endswith("__")) {
1373 AttrName = AttrName.drop_front(2).drop_back(2);
1374 return true;
1375 }
1376 return false;
1377 }
1378
handleOwnershipAttr(Sema & S,Decl * D,const AttributeList & AL)1379 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1380 // This attribute must be applied to a function declaration. The first
1381 // argument to the attribute must be an identifier, the name of the resource,
1382 // for example: malloc. The following arguments must be argument indexes, the
1383 // arguments must be of integer type for Returns, otherwise of pointer type.
1384 // The difference between Holds and Takes is that a pointer may still be used
1385 // after being held. free() should be __attribute((ownership_takes)), whereas
1386 // a list append function may well be __attribute((ownership_holds)).
1387
1388 if (!AL.isArgIdent(0)) {
1389 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1390 << AL.getName() << 1 << AANT_ArgumentIdentifier;
1391 return;
1392 }
1393
1394 // Figure out our Kind.
1395 OwnershipAttr::OwnershipKind K =
1396 OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
1397 AL.getAttributeSpellingListIndex()).getOwnKind();
1398
1399 // Check arguments.
1400 switch (K) {
1401 case OwnershipAttr::Takes:
1402 case OwnershipAttr::Holds:
1403 if (AL.getNumArgs() < 2) {
1404 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
1405 << AL.getName() << 2;
1406 return;
1407 }
1408 break;
1409 case OwnershipAttr::Returns:
1410 if (AL.getNumArgs() > 2) {
1411 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
1412 << AL.getName() << 1;
1413 return;
1414 }
1415 break;
1416 }
1417
1418 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1419
1420 StringRef ModuleName = Module->getName();
1421 if (normalizeName(ModuleName)) {
1422 Module = &S.PP.getIdentifierTable().get(ModuleName);
1423 }
1424
1425 SmallVector<unsigned, 8> OwnershipArgs;
1426 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1427 Expr *Ex = AL.getArgAsExpr(i);
1428 uint64_t Idx;
1429 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1430 return;
1431
1432 // Is the function argument a pointer type?
1433 QualType T = getFunctionOrMethodParamType(D, Idx);
1434 int Err = -1; // No error
1435 switch (K) {
1436 case OwnershipAttr::Takes:
1437 case OwnershipAttr::Holds:
1438 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1439 Err = 0;
1440 break;
1441 case OwnershipAttr::Returns:
1442 if (!T->isIntegerType())
1443 Err = 1;
1444 break;
1445 }
1446 if (-1 != Err) {
1447 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
1448 << Ex->getSourceRange();
1449 return;
1450 }
1451
1452 // Check we don't have a conflict with another ownership attribute.
1453 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1454 // Cannot have two ownership attributes of different kinds for the same
1455 // index.
1456 if (I->getOwnKind() != K && I->args_end() !=
1457 std::find(I->args_begin(), I->args_end(), Idx)) {
1458 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1459 << AL.getName() << I;
1460 return;
1461 } else if (K == OwnershipAttr::Returns &&
1462 I->getOwnKind() == OwnershipAttr::Returns) {
1463 // A returns attribute conflicts with any other returns attribute using
1464 // a different index. Note, diagnostic reporting is 1-based, but stored
1465 // argument indexes are 0-based.
1466 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1467 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1468 << *(I->args_begin()) + 1;
1469 if (I->args_size())
1470 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1471 << (unsigned)Idx + 1 << Ex->getSourceRange();
1472 return;
1473 }
1474 }
1475 }
1476 OwnershipArgs.push_back(Idx);
1477 }
1478
1479 unsigned* start = OwnershipArgs.data();
1480 unsigned size = OwnershipArgs.size();
1481 llvm::array_pod_sort(start, start + size);
1482
1483 D->addAttr(::new (S.Context)
1484 OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
1485 AL.getAttributeSpellingListIndex()));
1486 }
1487
handleWeakRefAttr(Sema & S,Decl * D,const AttributeList & Attr)1488 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1489 // Check the attribute arguments.
1490 if (Attr.getNumArgs() > 1) {
1491 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1492 << Attr.getName() << 1;
1493 return;
1494 }
1495
1496 NamedDecl *nd = cast<NamedDecl>(D);
1497
1498 // gcc rejects
1499 // class c {
1500 // static int a __attribute__((weakref ("v2")));
1501 // static int b() __attribute__((weakref ("f3")));
1502 // };
1503 // and ignores the attributes of
1504 // void f(void) {
1505 // static int a __attribute__((weakref ("v2")));
1506 // }
1507 // we reject them
1508 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1509 if (!Ctx->isFileContext()) {
1510 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
1511 << nd;
1512 return;
1513 }
1514
1515 // The GCC manual says
1516 //
1517 // At present, a declaration to which `weakref' is attached can only
1518 // be `static'.
1519 //
1520 // It also says
1521 //
1522 // Without a TARGET,
1523 // given as an argument to `weakref' or to `alias', `weakref' is
1524 // equivalent to `weak'.
1525 //
1526 // gcc 4.4.1 will accept
1527 // int a7 __attribute__((weakref));
1528 // as
1529 // int a7 __attribute__((weak));
1530 // This looks like a bug in gcc. We reject that for now. We should revisit
1531 // it if this behaviour is actually used.
1532
1533 // GCC rejects
1534 // static ((alias ("y"), weakref)).
1535 // Should we? How to check that weakref is before or after alias?
1536
1537 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1538 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1539 // StringRef parameter it was given anyway.
1540 StringRef Str;
1541 if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1542 // GCC will accept anything as the argument of weakref. Should we
1543 // check for an existing decl?
1544 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1545 Attr.getAttributeSpellingListIndex()));
1546
1547 D->addAttr(::new (S.Context)
1548 WeakRefAttr(Attr.getRange(), S.Context,
1549 Attr.getAttributeSpellingListIndex()));
1550 }
1551
handleIFuncAttr(Sema & S,Decl * D,const AttributeList & Attr)1552 static void handleIFuncAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1553 StringRef Str;
1554 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1555 return;
1556
1557 // Aliases should be on declarations, not definitions.
1558 const auto *FD = cast<FunctionDecl>(D);
1559 if (FD->isThisDeclarationADefinition()) {
1560 S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD << 1;
1561 return;
1562 }
1563 // FIXME: it should be handled as a target specific attribute.
1564 if (S.Context.getTargetInfo().getTriple().getObjectFormat() !=
1565 llvm::Triple::ELF) {
1566 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1567 return;
1568 }
1569
1570 D->addAttr(::new (S.Context) IFuncAttr(Attr.getRange(), S.Context, Str,
1571 Attr.getAttributeSpellingListIndex()));
1572 }
1573
handleAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1574 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1575 StringRef Str;
1576 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1577 return;
1578
1579 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1580 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1581 return;
1582 }
1583 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1584 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_nvptx);
1585 }
1586
1587 // Aliases should be on declarations, not definitions.
1588 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1589 if (FD->isThisDeclarationADefinition()) {
1590 S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD << 0;
1591 return;
1592 }
1593 } else {
1594 const auto *VD = cast<VarDecl>(D);
1595 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1596 S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << VD << 0;
1597 return;
1598 }
1599 }
1600
1601 // FIXME: check if target symbol exists in current file
1602
1603 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
1604 Attr.getAttributeSpellingListIndex()));
1605 }
1606
handleColdAttr(Sema & S,Decl * D,const AttributeList & Attr)1607 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1608 if (checkAttrMutualExclusion<HotAttr>(S, D, Attr.getRange(), Attr.getName()))
1609 return;
1610
1611 D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
1612 Attr.getAttributeSpellingListIndex()));
1613 }
1614
handleHotAttr(Sema & S,Decl * D,const AttributeList & Attr)1615 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1616 if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr.getRange(), Attr.getName()))
1617 return;
1618
1619 D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
1620 Attr.getAttributeSpellingListIndex()));
1621 }
1622
handleTLSModelAttr(Sema & S,Decl * D,const AttributeList & Attr)1623 static void handleTLSModelAttr(Sema &S, Decl *D,
1624 const AttributeList &Attr) {
1625 StringRef Model;
1626 SourceLocation LiteralLoc;
1627 // Check that it is a string.
1628 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
1629 return;
1630
1631 // Check that the value.
1632 if (Model != "global-dynamic" && Model != "local-dynamic"
1633 && Model != "initial-exec" && Model != "local-exec") {
1634 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1635 return;
1636 }
1637
1638 D->addAttr(::new (S.Context)
1639 TLSModelAttr(Attr.getRange(), S.Context, Model,
1640 Attr.getAttributeSpellingListIndex()));
1641 }
1642
handleRestrictAttr(Sema & S,Decl * D,const AttributeList & Attr)1643 static void handleRestrictAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1644 QualType ResultType = getFunctionOrMethodResultType(D);
1645 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1646 D->addAttr(::new (S.Context) RestrictAttr(
1647 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
1648 return;
1649 }
1650
1651 S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
1652 << Attr.getName() << getFunctionOrMethodResultSourceRange(D);
1653 }
1654
handleCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1655 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1656 if (S.LangOpts.CPlusPlus) {
1657 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
1658 << Attr.getName() << AttributeLangSupport::Cpp;
1659 return;
1660 }
1661
1662 if (CommonAttr *CA = S.mergeCommonAttr(D, Attr.getRange(), Attr.getName(),
1663 Attr.getAttributeSpellingListIndex()))
1664 D->addAttr(CA);
1665 }
1666
handleNakedAttr(Sema & S,Decl * D,const AttributeList & Attr)1667 static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1668 if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, Attr.getRange(),
1669 Attr.getName()))
1670 return;
1671
1672 D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context,
1673 Attr.getAttributeSpellingListIndex()));
1674 }
1675
handleNoReturnAttr(Sema & S,Decl * D,const AttributeList & attr)1676 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1677 if (hasDeclarator(D)) return;
1678
1679 if (S.CheckNoReturnAttr(attr)) return;
1680
1681 if (!isa<ObjCMethodDecl>(D)) {
1682 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1683 << attr.getName() << ExpectedFunctionOrMethod;
1684 return;
1685 }
1686
1687 D->addAttr(::new (S.Context)
1688 NoReturnAttr(attr.getRange(), S.Context,
1689 attr.getAttributeSpellingListIndex()));
1690 }
1691
CheckNoReturnAttr(const AttributeList & attr)1692 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1693 if (!checkAttributeNumArgs(*this, attr, 0)) {
1694 attr.setInvalid();
1695 return true;
1696 }
1697
1698 return false;
1699 }
1700
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1701 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1702 const AttributeList &Attr) {
1703
1704 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1705 // because 'analyzer_noreturn' does not impact the type.
1706 if (!isFunctionOrMethodOrBlock(D)) {
1707 ValueDecl *VD = dyn_cast<ValueDecl>(D);
1708 if (!VD || (!VD->getType()->isBlockPointerType() &&
1709 !VD->getType()->isFunctionPointerType())) {
1710 S.Diag(Attr.getLoc(),
1711 Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1712 : diag::warn_attribute_wrong_decl_type)
1713 << Attr.getName() << ExpectedFunctionMethodOrBlock;
1714 return;
1715 }
1716 }
1717
1718 D->addAttr(::new (S.Context)
1719 AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
1720 Attr.getAttributeSpellingListIndex()));
1721 }
1722
1723 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1724 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1725 /*
1726 Returning a Vector Class in Registers
1727
1728 According to the PPU ABI specifications, a class with a single member of
1729 vector type is returned in memory when used as the return value of a function.
1730 This results in inefficient code when implementing vector classes. To return
1731 the value in a single vector register, add the vecreturn attribute to the
1732 class definition. This attribute is also applicable to struct types.
1733
1734 Example:
1735
1736 struct Vector
1737 {
1738 __vector float xyzw;
1739 } __attribute__((vecreturn));
1740
1741 Vector Add(Vector lhs, Vector rhs)
1742 {
1743 Vector result;
1744 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1745 return result; // This will be returned in a register
1746 }
1747 */
1748 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
1749 S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
1750 return;
1751 }
1752
1753 RecordDecl *record = cast<RecordDecl>(D);
1754 int count = 0;
1755
1756 if (!isa<CXXRecordDecl>(record)) {
1757 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1758 return;
1759 }
1760
1761 if (!cast<CXXRecordDecl>(record)->isPOD()) {
1762 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1763 return;
1764 }
1765
1766 for (const auto *I : record->fields()) {
1767 if ((count == 1) || !I->getType()->isVectorType()) {
1768 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1769 return;
1770 }
1771 count++;
1772 }
1773
1774 D->addAttr(::new (S.Context)
1775 VecReturnAttr(Attr.getRange(), S.Context,
1776 Attr.getAttributeSpellingListIndex()));
1777 }
1778
handleDependencyAttr(Sema & S,Scope * Scope,Decl * D,const AttributeList & Attr)1779 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
1780 const AttributeList &Attr) {
1781 if (isa<ParmVarDecl>(D)) {
1782 // [[carries_dependency]] can only be applied to a parameter if it is a
1783 // parameter of a function declaration or lambda.
1784 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
1785 S.Diag(Attr.getLoc(),
1786 diag::err_carries_dependency_param_not_function_decl);
1787 return;
1788 }
1789 }
1790
1791 D->addAttr(::new (S.Context) CarriesDependencyAttr(
1792 Attr.getRange(), S.Context,
1793 Attr.getAttributeSpellingListIndex()));
1794 }
1795
handleNotTailCalledAttr(Sema & S,Decl * D,const AttributeList & Attr)1796 static void handleNotTailCalledAttr(Sema &S, Decl *D,
1797 const AttributeList &Attr) {
1798 if (checkAttrMutualExclusion<AlwaysInlineAttr>(S, D, Attr.getRange(),
1799 Attr.getName()))
1800 return;
1801
1802 D->addAttr(::new (S.Context) NotTailCalledAttr(
1803 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
1804 }
1805
handleDisableTailCallsAttr(Sema & S,Decl * D,const AttributeList & Attr)1806 static void handleDisableTailCallsAttr(Sema &S, Decl *D,
1807 const AttributeList &Attr) {
1808 if (checkAttrMutualExclusion<NakedAttr>(S, D, Attr.getRange(),
1809 Attr.getName()))
1810 return;
1811
1812 D->addAttr(::new (S.Context) DisableTailCallsAttr(
1813 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
1814 }
1815
handleUsedAttr(Sema & S,Decl * D,const AttributeList & Attr)1816 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1817 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1818 if (VD->hasLocalStorage()) {
1819 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1820 return;
1821 }
1822 } else if (!isFunctionOrMethod(D)) {
1823 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1824 << Attr.getName() << ExpectedVariableOrFunction;
1825 return;
1826 }
1827
1828 D->addAttr(::new (S.Context)
1829 UsedAttr(Attr.getRange(), S.Context,
1830 Attr.getAttributeSpellingListIndex()));
1831 }
1832
handleUnusedAttr(Sema & S,Decl * D,const AttributeList & Attr)1833 static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1834 bool IsCXX1zAttr = Attr.isCXX11Attribute() && !Attr.getScopeName();
1835
1836 if (IsCXX1zAttr && isa<VarDecl>(D)) {
1837 // The C++1z spelling of this attribute cannot be applied to a static data
1838 // member per [dcl.attr.unused]p2.
1839 if (cast<VarDecl>(D)->isStaticDataMember()) {
1840 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1841 << Attr.getName() << ExpectedForMaybeUnused;
1842 return;
1843 }
1844 }
1845
1846 // If this is spelled as the standard C++1z attribute, but not in C++1z, warn
1847 // about using it as an extension.
1848 if (!S.getLangOpts().CPlusPlus1z && IsCXX1zAttr)
1849 S.Diag(Attr.getLoc(), diag::ext_cxx1z_attr) << Attr.getName();
1850
1851 D->addAttr(::new (S.Context) UnusedAttr(
1852 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
1853 }
1854
handleConstructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1855 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1856 uint32_t priority = ConstructorAttr::DefaultPriority;
1857 if (Attr.getNumArgs() &&
1858 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1859 return;
1860
1861 D->addAttr(::new (S.Context)
1862 ConstructorAttr(Attr.getRange(), S.Context, priority,
1863 Attr.getAttributeSpellingListIndex()));
1864 }
1865
handleDestructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1866 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1867 uint32_t priority = DestructorAttr::DefaultPriority;
1868 if (Attr.getNumArgs() &&
1869 !checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
1870 return;
1871
1872 D->addAttr(::new (S.Context)
1873 DestructorAttr(Attr.getRange(), S.Context, priority,
1874 Attr.getAttributeSpellingListIndex()));
1875 }
1876
1877 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const AttributeList & Attr)1878 static void handleAttrWithMessage(Sema &S, Decl *D,
1879 const AttributeList &Attr) {
1880 // Handle the case where the attribute has a text message.
1881 StringRef Str;
1882 if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
1883 return;
1884
1885 D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
1886 Attr.getAttributeSpellingListIndex()));
1887 }
1888
handleObjCSuppresProtocolAttr(Sema & S,Decl * D,const AttributeList & Attr)1889 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
1890 const AttributeList &Attr) {
1891 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
1892 S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
1893 << Attr.getName() << Attr.getRange();
1894 return;
1895 }
1896
1897 D->addAttr(::new (S.Context)
1898 ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
1899 Attr.getAttributeSpellingListIndex()));
1900 }
1901
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)1902 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
1903 IdentifierInfo *Platform,
1904 VersionTuple Introduced,
1905 VersionTuple Deprecated,
1906 VersionTuple Obsoleted) {
1907 StringRef PlatformName
1908 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
1909 if (PlatformName.empty())
1910 PlatformName = Platform->getName();
1911
1912 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
1913 // of these steps are needed).
1914 if (!Introduced.empty() && !Deprecated.empty() &&
1915 !(Introduced <= Deprecated)) {
1916 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1917 << 1 << PlatformName << Deprecated.getAsString()
1918 << 0 << Introduced.getAsString();
1919 return true;
1920 }
1921
1922 if (!Introduced.empty() && !Obsoleted.empty() &&
1923 !(Introduced <= Obsoleted)) {
1924 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1925 << 2 << PlatformName << Obsoleted.getAsString()
1926 << 0 << Introduced.getAsString();
1927 return true;
1928 }
1929
1930 if (!Deprecated.empty() && !Obsoleted.empty() &&
1931 !(Deprecated <= Obsoleted)) {
1932 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
1933 << 2 << PlatformName << Obsoleted.getAsString()
1934 << 1 << Deprecated.getAsString();
1935 return true;
1936 }
1937
1938 return false;
1939 }
1940
1941 /// \brief Check whether the two versions match.
1942 ///
1943 /// If either version tuple is empty, then they are assumed to match. If
1944 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
versionsMatch(const VersionTuple & X,const VersionTuple & Y,bool BeforeIsOkay)1945 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
1946 bool BeforeIsOkay) {
1947 if (X.empty() || Y.empty())
1948 return true;
1949
1950 if (X == Y)
1951 return true;
1952
1953 if (BeforeIsOkay && X < Y)
1954 return true;
1955
1956 return false;
1957 }
1958
mergeAvailabilityAttr(NamedDecl * D,SourceRange Range,IdentifierInfo * Platform,bool Implicit,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message,bool IsStrict,StringRef Replacement,AvailabilityMergeKind AMK,unsigned AttrSpellingListIndex)1959 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
1960 IdentifierInfo *Platform,
1961 bool Implicit,
1962 VersionTuple Introduced,
1963 VersionTuple Deprecated,
1964 VersionTuple Obsoleted,
1965 bool IsUnavailable,
1966 StringRef Message,
1967 bool IsStrict,
1968 StringRef Replacement,
1969 AvailabilityMergeKind AMK,
1970 unsigned AttrSpellingListIndex) {
1971 VersionTuple MergedIntroduced = Introduced;
1972 VersionTuple MergedDeprecated = Deprecated;
1973 VersionTuple MergedObsoleted = Obsoleted;
1974 bool FoundAny = false;
1975 bool OverrideOrImpl = false;
1976 switch (AMK) {
1977 case AMK_None:
1978 case AMK_Redeclaration:
1979 OverrideOrImpl = false;
1980 break;
1981
1982 case AMK_Override:
1983 case AMK_ProtocolImplementation:
1984 OverrideOrImpl = true;
1985 break;
1986 }
1987
1988 if (D->hasAttrs()) {
1989 AttrVec &Attrs = D->getAttrs();
1990 for (unsigned i = 0, e = Attrs.size(); i != e;) {
1991 const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
1992 if (!OldAA) {
1993 ++i;
1994 continue;
1995 }
1996
1997 IdentifierInfo *OldPlatform = OldAA->getPlatform();
1998 if (OldPlatform != Platform) {
1999 ++i;
2000 continue;
2001 }
2002
2003 // If there is an existing availability attribute for this platform that
2004 // is explicit and the new one is implicit use the explicit one and
2005 // discard the new implicit attribute.
2006 if (!OldAA->isImplicit() && Implicit) {
2007 return nullptr;
2008 }
2009
2010 // If there is an existing attribute for this platform that is implicit
2011 // and the new attribute is explicit then erase the old one and
2012 // continue processing the attributes.
2013 if (!Implicit && OldAA->isImplicit()) {
2014 Attrs.erase(Attrs.begin() + i);
2015 --e;
2016 continue;
2017 }
2018
2019 FoundAny = true;
2020 VersionTuple OldIntroduced = OldAA->getIntroduced();
2021 VersionTuple OldDeprecated = OldAA->getDeprecated();
2022 VersionTuple OldObsoleted = OldAA->getObsoleted();
2023 bool OldIsUnavailable = OldAA->getUnavailable();
2024
2025 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2026 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2027 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2028 !(OldIsUnavailable == IsUnavailable ||
2029 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2030 if (OverrideOrImpl) {
2031 int Which = -1;
2032 VersionTuple FirstVersion;
2033 VersionTuple SecondVersion;
2034 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2035 Which = 0;
2036 FirstVersion = OldIntroduced;
2037 SecondVersion = Introduced;
2038 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2039 Which = 1;
2040 FirstVersion = Deprecated;
2041 SecondVersion = OldDeprecated;
2042 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2043 Which = 2;
2044 FirstVersion = Obsoleted;
2045 SecondVersion = OldObsoleted;
2046 }
2047
2048 if (Which == -1) {
2049 Diag(OldAA->getLocation(),
2050 diag::warn_mismatched_availability_override_unavail)
2051 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2052 << (AMK == AMK_Override);
2053 } else {
2054 Diag(OldAA->getLocation(),
2055 diag::warn_mismatched_availability_override)
2056 << Which
2057 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2058 << FirstVersion.getAsString() << SecondVersion.getAsString()
2059 << (AMK == AMK_Override);
2060 }
2061 if (AMK == AMK_Override)
2062 Diag(Range.getBegin(), diag::note_overridden_method);
2063 else
2064 Diag(Range.getBegin(), diag::note_protocol_method);
2065 } else {
2066 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2067 Diag(Range.getBegin(), diag::note_previous_attribute);
2068 }
2069
2070 Attrs.erase(Attrs.begin() + i);
2071 --e;
2072 continue;
2073 }
2074
2075 VersionTuple MergedIntroduced2 = MergedIntroduced;
2076 VersionTuple MergedDeprecated2 = MergedDeprecated;
2077 VersionTuple MergedObsoleted2 = MergedObsoleted;
2078
2079 if (MergedIntroduced2.empty())
2080 MergedIntroduced2 = OldIntroduced;
2081 if (MergedDeprecated2.empty())
2082 MergedDeprecated2 = OldDeprecated;
2083 if (MergedObsoleted2.empty())
2084 MergedObsoleted2 = OldObsoleted;
2085
2086 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2087 MergedIntroduced2, MergedDeprecated2,
2088 MergedObsoleted2)) {
2089 Attrs.erase(Attrs.begin() + i);
2090 --e;
2091 continue;
2092 }
2093
2094 MergedIntroduced = MergedIntroduced2;
2095 MergedDeprecated = MergedDeprecated2;
2096 MergedObsoleted = MergedObsoleted2;
2097 ++i;
2098 }
2099 }
2100
2101 if (FoundAny &&
2102 MergedIntroduced == Introduced &&
2103 MergedDeprecated == Deprecated &&
2104 MergedObsoleted == Obsoleted)
2105 return nullptr;
2106
2107 // Only create a new attribute if !OverrideOrImpl, but we want to do
2108 // the checking.
2109 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
2110 MergedDeprecated, MergedObsoleted) &&
2111 !OverrideOrImpl) {
2112 auto *Avail = ::new (Context) AvailabilityAttr(Range, Context, Platform,
2113 Introduced, Deprecated,
2114 Obsoleted, IsUnavailable, Message,
2115 IsStrict, Replacement,
2116 AttrSpellingListIndex);
2117 Avail->setImplicit(Implicit);
2118 return Avail;
2119 }
2120 return nullptr;
2121 }
2122
handleAvailabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)2123 static void handleAvailabilityAttr(Sema &S, Decl *D,
2124 const AttributeList &Attr) {
2125 if (!checkAttributeNumArgs(S, Attr, 1))
2126 return;
2127 IdentifierLoc *Platform = Attr.getArgAsIdent(0);
2128 unsigned Index = Attr.getAttributeSpellingListIndex();
2129
2130 IdentifierInfo *II = Platform->Ident;
2131 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2132 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2133 << Platform->Ident;
2134
2135 NamedDecl *ND = dyn_cast<NamedDecl>(D);
2136 if (!ND) {
2137 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2138 return;
2139 }
2140
2141 AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
2142 AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
2143 AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
2144 bool IsUnavailable = Attr.getUnavailableLoc().isValid();
2145 bool IsStrict = Attr.getStrictLoc().isValid();
2146 StringRef Str;
2147 if (const StringLiteral *SE =
2148 dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
2149 Str = SE->getString();
2150 StringRef Replacement;
2151 if (const StringLiteral *SE =
2152 dyn_cast_or_null<StringLiteral>(Attr.getReplacementExpr()))
2153 Replacement = SE->getString();
2154
2155 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
2156 false/*Implicit*/,
2157 Introduced.Version,
2158 Deprecated.Version,
2159 Obsoleted.Version,
2160 IsUnavailable, Str,
2161 IsStrict, Replacement,
2162 Sema::AMK_None,
2163 Index);
2164 if (NewAttr)
2165 D->addAttr(NewAttr);
2166
2167 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2168 // matches before the start of the watchOS platform.
2169 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2170 IdentifierInfo *NewII = nullptr;
2171 if (II->getName() == "ios")
2172 NewII = &S.Context.Idents.get("watchos");
2173 else if (II->getName() == "ios_app_extension")
2174 NewII = &S.Context.Idents.get("watchos_app_extension");
2175
2176 if (NewII) {
2177 auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2178 if (Version.empty())
2179 return Version;
2180 auto Major = Version.getMajor();
2181 auto NewMajor = Major >= 9 ? Major - 7 : 0;
2182 if (NewMajor >= 2) {
2183 if (Version.getMinor().hasValue()) {
2184 if (Version.getSubminor().hasValue())
2185 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2186 Version.getSubminor().getValue());
2187 else
2188 return VersionTuple(NewMajor, Version.getMinor().getValue());
2189 }
2190 }
2191
2192 return VersionTuple(2, 0);
2193 };
2194
2195 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2196 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2197 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2198
2199 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
2200 Attr.getRange(),
2201 NewII,
2202 true/*Implicit*/,
2203 NewIntroduced,
2204 NewDeprecated,
2205 NewObsoleted,
2206 IsUnavailable, Str,
2207 IsStrict,
2208 Replacement,
2209 Sema::AMK_None,
2210 Index);
2211 if (NewAttr)
2212 D->addAttr(NewAttr);
2213 }
2214 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2215 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2216 // matches before the start of the tvOS platform.
2217 IdentifierInfo *NewII = nullptr;
2218 if (II->getName() == "ios")
2219 NewII = &S.Context.Idents.get("tvos");
2220 else if (II->getName() == "ios_app_extension")
2221 NewII = &S.Context.Idents.get("tvos_app_extension");
2222
2223 if (NewII) {
2224 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
2225 Attr.getRange(),
2226 NewII,
2227 true/*Implicit*/,
2228 Introduced.Version,
2229 Deprecated.Version,
2230 Obsoleted.Version,
2231 IsUnavailable, Str,
2232 IsStrict,
2233 Replacement,
2234 Sema::AMK_None,
2235 Index);
2236 if (NewAttr)
2237 D->addAttr(NewAttr);
2238 }
2239 }
2240 }
2241
2242 template <class T>
mergeVisibilityAttr(Sema & S,Decl * D,SourceRange range,typename T::VisibilityType value,unsigned attrSpellingListIndex)2243 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
2244 typename T::VisibilityType value,
2245 unsigned attrSpellingListIndex) {
2246 T *existingAttr = D->getAttr<T>();
2247 if (existingAttr) {
2248 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2249 if (existingValue == value)
2250 return nullptr;
2251 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2252 S.Diag(range.getBegin(), diag::note_previous_attribute);
2253 D->dropAttr<T>();
2254 }
2255 return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
2256 }
2257
mergeVisibilityAttr(Decl * D,SourceRange Range,VisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)2258 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
2259 VisibilityAttr::VisibilityType Vis,
2260 unsigned AttrSpellingListIndex) {
2261 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
2262 AttrSpellingListIndex);
2263 }
2264
mergeTypeVisibilityAttr(Decl * D,SourceRange Range,TypeVisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)2265 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
2266 TypeVisibilityAttr::VisibilityType Vis,
2267 unsigned AttrSpellingListIndex) {
2268 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
2269 AttrSpellingListIndex);
2270 }
2271
handleVisibilityAttr(Sema & S,Decl * D,const AttributeList & Attr,bool isTypeVisibility)2272 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
2273 bool isTypeVisibility) {
2274 // Visibility attributes don't mean anything on a typedef.
2275 if (isa<TypedefNameDecl>(D)) {
2276 S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
2277 << Attr.getName();
2278 return;
2279 }
2280
2281 // 'type_visibility' can only go on a type or namespace.
2282 if (isTypeVisibility &&
2283 !(isa<TagDecl>(D) ||
2284 isa<ObjCInterfaceDecl>(D) ||
2285 isa<NamespaceDecl>(D))) {
2286 S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2287 << Attr.getName() << ExpectedTypeOrNamespace;
2288 return;
2289 }
2290
2291 // Check that the argument is a string literal.
2292 StringRef TypeStr;
2293 SourceLocation LiteralLoc;
2294 if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
2295 return;
2296
2297 VisibilityAttr::VisibilityType type;
2298 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2299 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
2300 << Attr.getName() << TypeStr;
2301 return;
2302 }
2303
2304 // Complain about attempts to use protected visibility on targets
2305 // (like Darwin) that don't support it.
2306 if (type == VisibilityAttr::Protected &&
2307 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2308 S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2309 type = VisibilityAttr::Default;
2310 }
2311
2312 unsigned Index = Attr.getAttributeSpellingListIndex();
2313 clang::Attr *newAttr;
2314 if (isTypeVisibility) {
2315 newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
2316 (TypeVisibilityAttr::VisibilityType) type,
2317 Index);
2318 } else {
2319 newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
2320 }
2321 if (newAttr)
2322 D->addAttr(newAttr);
2323 }
2324
handleObjCMethodFamilyAttr(Sema & S,Decl * decl,const AttributeList & Attr)2325 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2326 const AttributeList &Attr) {
2327 ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
2328 if (!Attr.isArgIdent(0)) {
2329 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2330 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2331 return;
2332 }
2333
2334 IdentifierLoc *IL = Attr.getArgAsIdent(0);
2335 ObjCMethodFamilyAttr::FamilyKind F;
2336 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2337 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
2338 << IL->Ident;
2339 return;
2340 }
2341
2342 if (F == ObjCMethodFamilyAttr::OMF_init &&
2343 !method->getReturnType()->isObjCObjectPointerType()) {
2344 S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2345 << method->getReturnType();
2346 // Ignore the attribute.
2347 return;
2348 }
2349
2350 method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2351 S.Context, F,
2352 Attr.getAttributeSpellingListIndex()));
2353 }
2354
handleObjCNSObject(Sema & S,Decl * D,const AttributeList & Attr)2355 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2356 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2357 QualType T = TD->getUnderlyingType();
2358 if (!T->isCARCBridgableType()) {
2359 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2360 return;
2361 }
2362 }
2363 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2364 QualType T = PD->getType();
2365 if (!T->isCARCBridgableType()) {
2366 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2367 return;
2368 }
2369 }
2370 else {
2371 // It is okay to include this attribute on properties, e.g.:
2372 //
2373 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2374 //
2375 // In this case it follows tradition and suppresses an error in the above
2376 // case.
2377 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2378 }
2379 D->addAttr(::new (S.Context)
2380 ObjCNSObjectAttr(Attr.getRange(), S.Context,
2381 Attr.getAttributeSpellingListIndex()));
2382 }
2383
handleObjCIndependentClass(Sema & S,Decl * D,const AttributeList & Attr)2384 static void handleObjCIndependentClass(Sema &S, Decl *D, const AttributeList &Attr) {
2385 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2386 QualType T = TD->getUnderlyingType();
2387 if (!T->isObjCObjectPointerType()) {
2388 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2389 return;
2390 }
2391 } else {
2392 S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2393 return;
2394 }
2395 D->addAttr(::new (S.Context)
2396 ObjCIndependentClassAttr(Attr.getRange(), S.Context,
2397 Attr.getAttributeSpellingListIndex()));
2398 }
2399
handleBlocksAttr(Sema & S,Decl * D,const AttributeList & Attr)2400 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2401 if (!Attr.isArgIdent(0)) {
2402 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2403 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2404 return;
2405 }
2406
2407 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2408 BlocksAttr::BlockType type;
2409 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2410 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2411 << Attr.getName() << II;
2412 return;
2413 }
2414
2415 D->addAttr(::new (S.Context)
2416 BlocksAttr(Attr.getRange(), S.Context, type,
2417 Attr.getAttributeSpellingListIndex()));
2418 }
2419
handleSentinelAttr(Sema & S,Decl * D,const AttributeList & Attr)2420 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2421 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2422 if (Attr.getNumArgs() > 0) {
2423 Expr *E = Attr.getArgAsExpr(0);
2424 llvm::APSInt Idx(32);
2425 if (E->isTypeDependent() || E->isValueDependent() ||
2426 !E->isIntegerConstantExpr(Idx, S.Context)) {
2427 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2428 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2429 << E->getSourceRange();
2430 return;
2431 }
2432
2433 if (Idx.isSigned() && Idx.isNegative()) {
2434 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2435 << E->getSourceRange();
2436 return;
2437 }
2438
2439 sentinel = Idx.getZExtValue();
2440 }
2441
2442 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2443 if (Attr.getNumArgs() > 1) {
2444 Expr *E = Attr.getArgAsExpr(1);
2445 llvm::APSInt Idx(32);
2446 if (E->isTypeDependent() || E->isValueDependent() ||
2447 !E->isIntegerConstantExpr(Idx, S.Context)) {
2448 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2449 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
2450 << E->getSourceRange();
2451 return;
2452 }
2453 nullPos = Idx.getZExtValue();
2454
2455 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2456 // FIXME: This error message could be improved, it would be nice
2457 // to say what the bounds actually are.
2458 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2459 << E->getSourceRange();
2460 return;
2461 }
2462 }
2463
2464 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2465 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2466 if (isa<FunctionNoProtoType>(FT)) {
2467 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2468 return;
2469 }
2470
2471 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2472 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2473 return;
2474 }
2475 } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2476 if (!MD->isVariadic()) {
2477 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2478 return;
2479 }
2480 } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2481 if (!BD->isVariadic()) {
2482 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2483 return;
2484 }
2485 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2486 QualType Ty = V->getType();
2487 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2488 const FunctionType *FT = Ty->isFunctionPointerType()
2489 ? D->getFunctionType()
2490 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2491 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2492 int m = Ty->isFunctionPointerType() ? 0 : 1;
2493 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2494 return;
2495 }
2496 } else {
2497 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2498 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2499 return;
2500 }
2501 } else {
2502 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2503 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2504 return;
2505 }
2506 D->addAttr(::new (S.Context)
2507 SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
2508 Attr.getAttributeSpellingListIndex()));
2509 }
2510
handleWarnUnusedResult(Sema & S,Decl * D,const AttributeList & Attr)2511 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2512 if (D->getFunctionType() &&
2513 D->getFunctionType()->getReturnType()->isVoidType()) {
2514 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2515 << Attr.getName() << 0;
2516 return;
2517 }
2518 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2519 if (MD->getReturnType()->isVoidType()) {
2520 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2521 << Attr.getName() << 1;
2522 return;
2523 }
2524
2525 // If this is spelled as the standard C++1z attribute, but not in C++1z, warn
2526 // about using it as an extension.
2527 if (!S.getLangOpts().CPlusPlus1z && Attr.isCXX11Attribute() &&
2528 !Attr.getScopeName())
2529 S.Diag(Attr.getLoc(), diag::ext_cxx1z_attr) << Attr.getName();
2530
2531 D->addAttr(::new (S.Context)
2532 WarnUnusedResultAttr(Attr.getRange(), S.Context,
2533 Attr.getAttributeSpellingListIndex()));
2534 }
2535
handleWeakImportAttr(Sema & S,Decl * D,const AttributeList & Attr)2536 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2537 // weak_import only applies to variable & function declarations.
2538 bool isDef = false;
2539 if (!D->canBeWeakImported(isDef)) {
2540 if (isDef)
2541 S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
2542 << "weak_import";
2543 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2544 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2545 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2546 // Nothing to warn about here.
2547 } else
2548 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2549 << Attr.getName() << ExpectedVariableOrFunction;
2550
2551 return;
2552 }
2553
2554 D->addAttr(::new (S.Context)
2555 WeakImportAttr(Attr.getRange(), S.Context,
2556 Attr.getAttributeSpellingListIndex()));
2557 }
2558
2559 // Handles reqd_work_group_size and work_group_size_hint.
2560 template <typename WorkGroupAttr>
handleWorkGroupSize(Sema & S,Decl * D,const AttributeList & Attr)2561 static void handleWorkGroupSize(Sema &S, Decl *D,
2562 const AttributeList &Attr) {
2563 uint32_t WGSize[3];
2564 for (unsigned i = 0; i < 3; ++i) {
2565 const Expr *E = Attr.getArgAsExpr(i);
2566 if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
2567 return;
2568 if (WGSize[i] == 0) {
2569 S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
2570 << Attr.getName() << E->getSourceRange();
2571 return;
2572 }
2573 }
2574
2575 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2576 if (Existing && !(Existing->getXDim() == WGSize[0] &&
2577 Existing->getYDim() == WGSize[1] &&
2578 Existing->getZDim() == WGSize[2]))
2579 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2580
2581 D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
2582 WGSize[0], WGSize[1], WGSize[2],
2583 Attr.getAttributeSpellingListIndex()));
2584 }
2585
handleVecTypeHint(Sema & S,Decl * D,const AttributeList & Attr)2586 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
2587 if (!Attr.hasParsedType()) {
2588 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2589 << Attr.getName() << 1;
2590 return;
2591 }
2592
2593 TypeSourceInfo *ParmTSI = nullptr;
2594 QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
2595 assert(ParmTSI && "no type source info for attribute argument");
2596
2597 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2598 (ParmType->isBooleanType() ||
2599 !ParmType->isIntegralType(S.getASTContext()))) {
2600 S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
2601 << ParmType;
2602 return;
2603 }
2604
2605 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2606 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2607 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2608 return;
2609 }
2610 }
2611
2612 D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
2613 ParmTSI,
2614 Attr.getAttributeSpellingListIndex()));
2615 }
2616
mergeSectionAttr(Decl * D,SourceRange Range,StringRef Name,unsigned AttrSpellingListIndex)2617 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2618 StringRef Name,
2619 unsigned AttrSpellingListIndex) {
2620 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2621 if (ExistingAttr->getName() == Name)
2622 return nullptr;
2623 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2624 Diag(Range.getBegin(), diag::note_previous_attribute);
2625 return nullptr;
2626 }
2627 return ::new (Context) SectionAttr(Range, Context, Name,
2628 AttrSpellingListIndex);
2629 }
2630
checkSectionName(SourceLocation LiteralLoc,StringRef SecName)2631 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
2632 std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
2633 if (!Error.empty()) {
2634 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error;
2635 return false;
2636 }
2637 return true;
2638 }
2639
handleSectionAttr(Sema & S,Decl * D,const AttributeList & Attr)2640 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2641 // Make sure that there is a string literal as the sections's single
2642 // argument.
2643 StringRef Str;
2644 SourceLocation LiteralLoc;
2645 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
2646 return;
2647
2648 if (!S.checkSectionName(LiteralLoc, Str))
2649 return;
2650
2651 // If the target wants to validate the section specifier, make it happen.
2652 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2653 if (!Error.empty()) {
2654 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2655 << Error;
2656 return;
2657 }
2658
2659 unsigned Index = Attr.getAttributeSpellingListIndex();
2660 SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
2661 if (NewAttr)
2662 D->addAttr(NewAttr);
2663 }
2664
2665 // Check for things we'd like to warn about, no errors or validation for now.
2666 // TODO: Validation should use a backend target library that specifies
2667 // the allowable subtarget features and cpus. We could use something like a
2668 // TargetCodeGenInfo hook here to do validation.
checkTargetAttr(SourceLocation LiteralLoc,StringRef AttrStr)2669 void Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
2670 for (auto Str : {"tune=", "fpmath="})
2671 if (AttrStr.find(Str) != StringRef::npos)
2672 Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Str;
2673 }
2674
handleTargetAttr(Sema & S,Decl * D,const AttributeList & Attr)2675 static void handleTargetAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2676 StringRef Str;
2677 SourceLocation LiteralLoc;
2678 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
2679 return;
2680 S.checkTargetAttr(LiteralLoc, Str);
2681 unsigned Index = Attr.getAttributeSpellingListIndex();
2682 TargetAttr *NewAttr =
2683 ::new (S.Context) TargetAttr(Attr.getRange(), S.Context, Str, Index);
2684 D->addAttr(NewAttr);
2685 }
2686
handleCleanupAttr(Sema & S,Decl * D,const AttributeList & Attr)2687 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2688 VarDecl *VD = cast<VarDecl>(D);
2689 if (!VD->hasLocalStorage()) {
2690 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2691 return;
2692 }
2693
2694 Expr *E = Attr.getArgAsExpr(0);
2695 SourceLocation Loc = E->getExprLoc();
2696 FunctionDecl *FD = nullptr;
2697 DeclarationNameInfo NI;
2698
2699 // gcc only allows for simple identifiers. Since we support more than gcc, we
2700 // will warn the user.
2701 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
2702 if (DRE->hasQualifier())
2703 S.Diag(Loc, diag::warn_cleanup_ext);
2704 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2705 NI = DRE->getNameInfo();
2706 if (!FD) {
2707 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
2708 << NI.getName();
2709 return;
2710 }
2711 } else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
2712 if (ULE->hasExplicitTemplateArgs())
2713 S.Diag(Loc, diag::warn_cleanup_ext);
2714 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
2715 NI = ULE->getNameInfo();
2716 if (!FD) {
2717 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
2718 << NI.getName();
2719 if (ULE->getType() == S.Context.OverloadTy)
2720 S.NoteAllOverloadCandidates(ULE);
2721 return;
2722 }
2723 } else {
2724 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
2725 return;
2726 }
2727
2728 if (FD->getNumParams() != 1) {
2729 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
2730 << NI.getName();
2731 return;
2732 }
2733
2734 // We're currently more strict than GCC about what function types we accept.
2735 // If this ever proves to be a problem it should be easy to fix.
2736 QualType Ty = S.Context.getPointerType(VD->getType());
2737 QualType ParamTy = FD->getParamDecl(0)->getType();
2738 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2739 ParamTy, Ty) != Sema::Compatible) {
2740 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
2741 << NI.getName() << ParamTy << Ty;
2742 return;
2743 }
2744
2745 D->addAttr(::new (S.Context)
2746 CleanupAttr(Attr.getRange(), S.Context, FD,
2747 Attr.getAttributeSpellingListIndex()));
2748 }
2749
2750 /// Handle __attribute__((format_arg((idx)))) attribute based on
2751 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const AttributeList & Attr)2752 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2753 Expr *IdxExpr = Attr.getArgAsExpr(0);
2754 uint64_t Idx;
2755 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
2756 return;
2757
2758 // Make sure the format string is really a string.
2759 QualType Ty = getFunctionOrMethodParamType(D, Idx);
2760
2761 bool NotNSStringTy = !isNSStringType(Ty, S.Context);
2762 if (NotNSStringTy &&
2763 !isCFStringType(Ty, S.Context) &&
2764 (!Ty->isPointerType() ||
2765 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2766 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2767 << "a string type" << IdxExpr->getSourceRange()
2768 << getFunctionOrMethodParamRange(D, 0);
2769 return;
2770 }
2771 Ty = getFunctionOrMethodResultType(D);
2772 if (!isNSStringType(Ty, S.Context) &&
2773 !isCFStringType(Ty, S.Context) &&
2774 (!Ty->isPointerType() ||
2775 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2776 S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2777 << (NotNSStringTy ? "string type" : "NSString")
2778 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
2779 return;
2780 }
2781
2782 // We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
2783 // because that has corrected for the implicit this parameter, and is zero-
2784 // based. The attribute expects what the user wrote explicitly.
2785 llvm::APSInt Val;
2786 IdxExpr->EvaluateAsInt(Val, S.Context);
2787
2788 D->addAttr(::new (S.Context)
2789 FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
2790 Attr.getAttributeSpellingListIndex()));
2791 }
2792
2793 enum FormatAttrKind {
2794 CFStringFormat,
2795 NSStringFormat,
2796 StrftimeFormat,
2797 SupportedFormat,
2798 IgnoredFormat,
2799 InvalidFormat
2800 };
2801
2802 /// getFormatAttrKind - Map from format attribute names to supported format
2803 /// types.
getFormatAttrKind(StringRef Format)2804 static FormatAttrKind getFormatAttrKind(StringRef Format) {
2805 return llvm::StringSwitch<FormatAttrKind>(Format)
2806 // Check for formats that get handled specially.
2807 .Case("NSString", NSStringFormat)
2808 .Case("CFString", CFStringFormat)
2809 .Case("strftime", StrftimeFormat)
2810
2811 // Otherwise, check for supported formats.
2812 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
2813 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
2814 .Case("kprintf", SupportedFormat) // OpenBSD.
2815 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
2816 .Case("os_trace", SupportedFormat)
2817
2818 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
2819 .Default(InvalidFormat);
2820 }
2821
2822 /// Handle __attribute__((init_priority(priority))) attributes based on
2823 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const AttributeList & Attr)2824 static void handleInitPriorityAttr(Sema &S, Decl *D,
2825 const AttributeList &Attr) {
2826 if (!S.getLangOpts().CPlusPlus) {
2827 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2828 return;
2829 }
2830
2831 if (S.getCurFunctionOrMethodDecl()) {
2832 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2833 Attr.setInvalid();
2834 return;
2835 }
2836 QualType T = cast<VarDecl>(D)->getType();
2837 if (S.Context.getAsArrayType(T))
2838 T = S.Context.getBaseElementType(T);
2839 if (!T->getAs<RecordType>()) {
2840 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
2841 Attr.setInvalid();
2842 return;
2843 }
2844
2845 Expr *E = Attr.getArgAsExpr(0);
2846 uint32_t prioritynum;
2847 if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
2848 Attr.setInvalid();
2849 return;
2850 }
2851
2852 if (prioritynum < 101 || prioritynum > 65535) {
2853 S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
2854 << E->getSourceRange() << Attr.getName() << 101 << 65535;
2855 Attr.setInvalid();
2856 return;
2857 }
2858 D->addAttr(::new (S.Context)
2859 InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
2860 Attr.getAttributeSpellingListIndex()));
2861 }
2862
mergeFormatAttr(Decl * D,SourceRange Range,IdentifierInfo * Format,int FormatIdx,int FirstArg,unsigned AttrSpellingListIndex)2863 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
2864 IdentifierInfo *Format, int FormatIdx,
2865 int FirstArg,
2866 unsigned AttrSpellingListIndex) {
2867 // Check whether we already have an equivalent format attribute.
2868 for (auto *F : D->specific_attrs<FormatAttr>()) {
2869 if (F->getType() == Format &&
2870 F->getFormatIdx() == FormatIdx &&
2871 F->getFirstArg() == FirstArg) {
2872 // If we don't have a valid location for this attribute, adopt the
2873 // location.
2874 if (F->getLocation().isInvalid())
2875 F->setRange(Range);
2876 return nullptr;
2877 }
2878 }
2879
2880 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
2881 FirstArg, AttrSpellingListIndex);
2882 }
2883
2884 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
2885 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const AttributeList & Attr)2886 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2887 if (!Attr.isArgIdent(0)) {
2888 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2889 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
2890 return;
2891 }
2892
2893 // In C++ the implicit 'this' function parameter also counts, and they are
2894 // counted from one.
2895 bool HasImplicitThisParam = isInstanceMethod(D);
2896 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
2897
2898 IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
2899 StringRef Format = II->getName();
2900
2901 if (normalizeName(Format)) {
2902 // If we've modified the string name, we need a new identifier for it.
2903 II = &S.Context.Idents.get(Format);
2904 }
2905
2906 // Check for supported formats.
2907 FormatAttrKind Kind = getFormatAttrKind(Format);
2908
2909 if (Kind == IgnoredFormat)
2910 return;
2911
2912 if (Kind == InvalidFormat) {
2913 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2914 << Attr.getName() << II->getName();
2915 return;
2916 }
2917
2918 // checks for the 2nd argument
2919 Expr *IdxExpr = Attr.getArgAsExpr(1);
2920 uint32_t Idx;
2921 if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
2922 return;
2923
2924 if (Idx < 1 || Idx > NumArgs) {
2925 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2926 << Attr.getName() << 2 << IdxExpr->getSourceRange();
2927 return;
2928 }
2929
2930 // FIXME: Do we need to bounds check?
2931 unsigned ArgIdx = Idx - 1;
2932
2933 if (HasImplicitThisParam) {
2934 if (ArgIdx == 0) {
2935 S.Diag(Attr.getLoc(),
2936 diag::err_format_attribute_implicit_this_format_string)
2937 << IdxExpr->getSourceRange();
2938 return;
2939 }
2940 ArgIdx--;
2941 }
2942
2943 // make sure the format string is really a string
2944 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
2945
2946 if (Kind == CFStringFormat) {
2947 if (!isCFStringType(Ty, S.Context)) {
2948 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2949 << "a CFString" << IdxExpr->getSourceRange()
2950 << getFunctionOrMethodParamRange(D, ArgIdx);
2951 return;
2952 }
2953 } else if (Kind == NSStringFormat) {
2954 // FIXME: do we need to check if the type is NSString*? What are the
2955 // semantics?
2956 if (!isNSStringType(Ty, S.Context)) {
2957 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2958 << "an NSString" << IdxExpr->getSourceRange()
2959 << getFunctionOrMethodParamRange(D, ArgIdx);
2960 return;
2961 }
2962 } else if (!Ty->isPointerType() ||
2963 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
2964 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2965 << "a string type" << IdxExpr->getSourceRange()
2966 << getFunctionOrMethodParamRange(D, ArgIdx);
2967 return;
2968 }
2969
2970 // check the 3rd argument
2971 Expr *FirstArgExpr = Attr.getArgAsExpr(2);
2972 uint32_t FirstArg;
2973 if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
2974 return;
2975
2976 // check if the function is variadic if the 3rd argument non-zero
2977 if (FirstArg != 0) {
2978 if (isFunctionOrMethodVariadic(D)) {
2979 ++NumArgs; // +1 for ...
2980 } else {
2981 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
2982 return;
2983 }
2984 }
2985
2986 // strftime requires FirstArg to be 0 because it doesn't read from any
2987 // variable the input is just the current time + the format string.
2988 if (Kind == StrftimeFormat) {
2989 if (FirstArg != 0) {
2990 S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
2991 << FirstArgExpr->getSourceRange();
2992 return;
2993 }
2994 // if 0 it disables parameter checking (to use with e.g. va_list)
2995 } else if (FirstArg != 0 && FirstArg != NumArgs) {
2996 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
2997 << Attr.getName() << 3 << FirstArgExpr->getSourceRange();
2998 return;
2999 }
3000
3001 FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
3002 Idx, FirstArg,
3003 Attr.getAttributeSpellingListIndex());
3004 if (NewAttr)
3005 D->addAttr(NewAttr);
3006 }
3007
handleTransparentUnionAttr(Sema & S,Decl * D,const AttributeList & Attr)3008 static void handleTransparentUnionAttr(Sema &S, Decl *D,
3009 const AttributeList &Attr) {
3010 // Try to find the underlying union declaration.
3011 RecordDecl *RD = nullptr;
3012 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
3013 if (TD && TD->getUnderlyingType()->isUnionType())
3014 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3015 else
3016 RD = dyn_cast<RecordDecl>(D);
3017
3018 if (!RD || !RD->isUnion()) {
3019 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3020 << Attr.getName() << ExpectedUnion;
3021 return;
3022 }
3023
3024 if (!RD->isCompleteDefinition()) {
3025 S.Diag(Attr.getLoc(),
3026 diag::warn_transparent_union_attribute_not_definition);
3027 return;
3028 }
3029
3030 RecordDecl::field_iterator Field = RD->field_begin(),
3031 FieldEnd = RD->field_end();
3032 if (Field == FieldEnd) {
3033 S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3034 return;
3035 }
3036
3037 FieldDecl *FirstField = *Field;
3038 QualType FirstType = FirstField->getType();
3039 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3040 S.Diag(FirstField->getLocation(),
3041 diag::warn_transparent_union_attribute_floating)
3042 << FirstType->isVectorType() << FirstType;
3043 return;
3044 }
3045
3046 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3047 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3048 for (; Field != FieldEnd; ++Field) {
3049 QualType FieldType = Field->getType();
3050 // FIXME: this isn't fully correct; we also need to test whether the
3051 // members of the union would all have the same calling convention as the
3052 // first member of the union. Checking just the size and alignment isn't
3053 // sufficient (consider structs passed on the stack instead of in registers
3054 // as an example).
3055 if (S.Context.getTypeSize(FieldType) != FirstSize ||
3056 S.Context.getTypeAlign(FieldType) > FirstAlign) {
3057 // Warn if we drop the attribute.
3058 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3059 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3060 : S.Context.getTypeAlign(FieldType);
3061 S.Diag(Field->getLocation(),
3062 diag::warn_transparent_union_attribute_field_size_align)
3063 << isSize << Field->getDeclName() << FieldBits;
3064 unsigned FirstBits = isSize? FirstSize : FirstAlign;
3065 S.Diag(FirstField->getLocation(),
3066 diag::note_transparent_union_first_field_size_align)
3067 << isSize << FirstBits;
3068 return;
3069 }
3070 }
3071
3072 RD->addAttr(::new (S.Context)
3073 TransparentUnionAttr(Attr.getRange(), S.Context,
3074 Attr.getAttributeSpellingListIndex()));
3075 }
3076
handleAnnotateAttr(Sema & S,Decl * D,const AttributeList & Attr)3077 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3078 // Make sure that there is a string literal as the annotation's single
3079 // argument.
3080 StringRef Str;
3081 if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
3082 return;
3083
3084 // Don't duplicate annotations that are already set.
3085 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
3086 if (I->getAnnotation() == Str)
3087 return;
3088 }
3089
3090 D->addAttr(::new (S.Context)
3091 AnnotateAttr(Attr.getRange(), S.Context, Str,
3092 Attr.getAttributeSpellingListIndex()));
3093 }
3094
handleAlignValueAttr(Sema & S,Decl * D,const AttributeList & Attr)3095 static void handleAlignValueAttr(Sema &S, Decl *D,
3096 const AttributeList &Attr) {
3097 S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
3098 Attr.getAttributeSpellingListIndex());
3099 }
3100
AddAlignValueAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex)3101 void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
3102 unsigned SpellingListIndex) {
3103 AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
3104 SourceLocation AttrLoc = AttrRange.getBegin();
3105
3106 QualType T;
3107 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3108 T = TD->getUnderlyingType();
3109 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3110 T = VD->getType();
3111 else
3112 llvm_unreachable("Unknown decl type for align_value");
3113
3114 if (!T->isDependentType() && !T->isAnyPointerType() &&
3115 !T->isReferenceType() && !T->isMemberPointerType()) {
3116 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3117 << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
3118 return;
3119 }
3120
3121 if (!E->isValueDependent()) {
3122 llvm::APSInt Alignment;
3123 ExprResult ICE
3124 = VerifyIntegerConstantExpression(E, &Alignment,
3125 diag::err_align_value_attribute_argument_not_int,
3126 /*AllowFold*/ false);
3127 if (ICE.isInvalid())
3128 return;
3129
3130 if (!Alignment.isPowerOf2()) {
3131 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3132 << E->getSourceRange();
3133 return;
3134 }
3135
3136 D->addAttr(::new (Context)
3137 AlignValueAttr(AttrRange, Context, ICE.get(),
3138 SpellingListIndex));
3139 return;
3140 }
3141
3142 // Save dependent expressions in the AST to be instantiated.
3143 D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
3144 }
3145
handleAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)3146 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3147 // check the attribute arguments.
3148 if (Attr.getNumArgs() > 1) {
3149 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3150 << Attr.getName() << 1;
3151 return;
3152 }
3153
3154 if (Attr.getNumArgs() == 0) {
3155 D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
3156 true, nullptr, Attr.getAttributeSpellingListIndex()));
3157 return;
3158 }
3159
3160 Expr *E = Attr.getArgAsExpr(0);
3161 if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3162 S.Diag(Attr.getEllipsisLoc(),
3163 diag::err_pack_expansion_without_parameter_packs);
3164 return;
3165 }
3166
3167 if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3168 return;
3169
3170 if (E->isValueDependent()) {
3171 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
3172 if (!TND->getUnderlyingType()->isDependentType()) {
3173 S.Diag(Attr.getLoc(), diag::err_alignment_dependent_typedef_name)
3174 << E->getSourceRange();
3175 return;
3176 }
3177 }
3178 }
3179
3180 S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
3181 Attr.isPackExpansion());
3182 }
3183
AddAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex,bool IsPackExpansion)3184 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
3185 unsigned SpellingListIndex, bool IsPackExpansion) {
3186 AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
3187 SourceLocation AttrLoc = AttrRange.getBegin();
3188
3189 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3190 if (TmpAttr.isAlignas()) {
3191 // C++11 [dcl.align]p1:
3192 // An alignment-specifier may be applied to a variable or to a class
3193 // data member, but it shall not be applied to a bit-field, a function
3194 // parameter, the formal parameter of a catch clause, or a variable
3195 // declared with the register storage class specifier. An
3196 // alignment-specifier may also be applied to the declaration of a class
3197 // or enumeration type.
3198 // C11 6.7.5/2:
3199 // An alignment attribute shall not be specified in a declaration of
3200 // a typedef, or a bit-field, or a function, or a parameter, or an
3201 // object declared with the register storage-class specifier.
3202 int DiagKind = -1;
3203 if (isa<ParmVarDecl>(D)) {
3204 DiagKind = 0;
3205 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
3206 if (VD->getStorageClass() == SC_Register)
3207 DiagKind = 1;
3208 if (VD->isExceptionVariable())
3209 DiagKind = 2;
3210 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
3211 if (FD->isBitField())
3212 DiagKind = 3;
3213 } else if (!isa<TagDecl>(D)) {
3214 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3215 << (TmpAttr.isC11() ? ExpectedVariableOrField
3216 : ExpectedVariableFieldOrTag);
3217 return;
3218 }
3219 if (DiagKind != -1) {
3220 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3221 << &TmpAttr << DiagKind;
3222 return;
3223 }
3224 }
3225
3226 if (E->isTypeDependent() || E->isValueDependent()) {
3227 // Save dependent expressions in the AST to be instantiated.
3228 AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
3229 AA->setPackExpansion(IsPackExpansion);
3230 D->addAttr(AA);
3231 return;
3232 }
3233
3234 // FIXME: Cache the number on the Attr object?
3235 llvm::APSInt Alignment;
3236 ExprResult ICE
3237 = VerifyIntegerConstantExpression(E, &Alignment,
3238 diag::err_aligned_attribute_argument_not_int,
3239 /*AllowFold*/ false);
3240 if (ICE.isInvalid())
3241 return;
3242
3243 uint64_t AlignVal = Alignment.getZExtValue();
3244
3245 // C++11 [dcl.align]p2:
3246 // -- if the constant expression evaluates to zero, the alignment
3247 // specifier shall have no effect
3248 // C11 6.7.5p6:
3249 // An alignment specification of zero has no effect.
3250 if (!(TmpAttr.isAlignas() && !Alignment)) {
3251 if (!llvm::isPowerOf2_64(AlignVal)) {
3252 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3253 << E->getSourceRange();
3254 return;
3255 }
3256 }
3257
3258 // Alignment calculations can wrap around if it's greater than 2**28.
3259 unsigned MaxValidAlignment =
3260 Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
3261 : 268435456;
3262 if (AlignVal > MaxValidAlignment) {
3263 Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
3264 << E->getSourceRange();
3265 return;
3266 }
3267
3268 if (Context.getTargetInfo().isTLSSupported()) {
3269 unsigned MaxTLSAlign =
3270 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
3271 .getQuantity();
3272 auto *VD = dyn_cast<VarDecl>(D);
3273 if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
3274 VD->getTLSKind() != VarDecl::TLS_None) {
3275 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
3276 << (unsigned)AlignVal << VD << MaxTLSAlign;
3277 return;
3278 }
3279 }
3280
3281 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
3282 ICE.get(), SpellingListIndex);
3283 AA->setPackExpansion(IsPackExpansion);
3284 D->addAttr(AA);
3285 }
3286
AddAlignedAttr(SourceRange AttrRange,Decl * D,TypeSourceInfo * TS,unsigned SpellingListIndex,bool IsPackExpansion)3287 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
3288 unsigned SpellingListIndex, bool IsPackExpansion) {
3289 // FIXME: Cache the number on the Attr object if non-dependent?
3290 // FIXME: Perform checking of type validity
3291 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
3292 SpellingListIndex);
3293 AA->setPackExpansion(IsPackExpansion);
3294 D->addAttr(AA);
3295 }
3296
CheckAlignasUnderalignment(Decl * D)3297 void Sema::CheckAlignasUnderalignment(Decl *D) {
3298 assert(D->hasAttrs() && "no attributes on decl");
3299
3300 QualType UnderlyingTy, DiagTy;
3301 if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
3302 UnderlyingTy = DiagTy = VD->getType();
3303 } else {
3304 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
3305 if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
3306 UnderlyingTy = ED->getIntegerType();
3307 }
3308 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
3309 return;
3310
3311 // C++11 [dcl.align]p5, C11 6.7.5/4:
3312 // The combined effect of all alignment attributes in a declaration shall
3313 // not specify an alignment that is less strict than the alignment that
3314 // would otherwise be required for the entity being declared.
3315 AlignedAttr *AlignasAttr = nullptr;
3316 unsigned Align = 0;
3317 for (auto *I : D->specific_attrs<AlignedAttr>()) {
3318 if (I->isAlignmentDependent())
3319 return;
3320 if (I->isAlignas())
3321 AlignasAttr = I;
3322 Align = std::max(Align, I->getAlignment(Context));
3323 }
3324
3325 if (AlignasAttr && Align) {
3326 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3327 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
3328 if (NaturalAlign > RequestedAlign)
3329 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3330 << DiagTy << (unsigned)NaturalAlign.getQuantity();
3331 }
3332 }
3333
checkMSInheritanceAttrOnDefinition(CXXRecordDecl * RD,SourceRange Range,bool BestCase,MSInheritanceAttr::Spelling SemanticSpelling)3334 bool Sema::checkMSInheritanceAttrOnDefinition(
3335 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
3336 MSInheritanceAttr::Spelling SemanticSpelling) {
3337 assert(RD->hasDefinition() && "RD has no definition!");
3338
3339 // We may not have seen base specifiers or any virtual methods yet. We will
3340 // have to wait until the record is defined to catch any mismatches.
3341 if (!RD->getDefinition()->isCompleteDefinition())
3342 return false;
3343
3344 // The unspecified model never matches what a definition could need.
3345 if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
3346 return false;
3347
3348 if (BestCase) {
3349 if (RD->calculateInheritanceModel() == SemanticSpelling)
3350 return false;
3351 } else {
3352 if (RD->calculateInheritanceModel() <= SemanticSpelling)
3353 return false;
3354 }
3355
3356 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
3357 << 0 /*definition*/;
3358 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
3359 << RD->getNameAsString();
3360 return true;
3361 }
3362
3363 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
3364 /// attribute.
parseModeAttrArg(Sema & S,StringRef Str,unsigned & DestWidth,bool & IntegerMode,bool & ComplexMode)3365 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
3366 bool &IntegerMode, bool &ComplexMode) {
3367 IntegerMode = true;
3368 ComplexMode = false;
3369 switch (Str.size()) {
3370 case 2:
3371 switch (Str[0]) {
3372 case 'Q':
3373 DestWidth = 8;
3374 break;
3375 case 'H':
3376 DestWidth = 16;
3377 break;
3378 case 'S':
3379 DestWidth = 32;
3380 break;
3381 case 'D':
3382 DestWidth = 64;
3383 break;
3384 case 'X':
3385 DestWidth = 96;
3386 break;
3387 case 'T':
3388 DestWidth = 128;
3389 break;
3390 }
3391 if (Str[1] == 'F') {
3392 IntegerMode = false;
3393 } else if (Str[1] == 'C') {
3394 IntegerMode = false;
3395 ComplexMode = true;
3396 } else if (Str[1] != 'I') {
3397 DestWidth = 0;
3398 }
3399 break;
3400 case 4:
3401 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3402 // pointer on PIC16 and other embedded platforms.
3403 if (Str == "word")
3404 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
3405 else if (Str == "byte")
3406 DestWidth = S.Context.getTargetInfo().getCharWidth();
3407 break;
3408 case 7:
3409 if (Str == "pointer")
3410 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3411 break;
3412 case 11:
3413 if (Str == "unwind_word")
3414 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3415 break;
3416 }
3417 }
3418
3419 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3420 /// type.
3421 ///
3422 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3423 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3424 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const AttributeList & Attr)3425 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3426 // This attribute isn't documented, but glibc uses it. It changes
3427 // the width of an int or unsigned int to the specified size.
3428 if (!Attr.isArgIdent(0)) {
3429 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3430 << AANT_ArgumentIdentifier;
3431 return;
3432 }
3433
3434 IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
3435
3436 S.AddModeAttr(Attr.getRange(), D, Name, Attr.getAttributeSpellingListIndex());
3437 }
3438
AddModeAttr(SourceRange AttrRange,Decl * D,IdentifierInfo * Name,unsigned SpellingListIndex,bool InInstantiation)3439 void Sema::AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name,
3440 unsigned SpellingListIndex, bool InInstantiation) {
3441 StringRef Str = Name->getName();
3442 normalizeName(Str);
3443 SourceLocation AttrLoc = AttrRange.getBegin();
3444
3445 unsigned DestWidth = 0;
3446 bool IntegerMode = true;
3447 bool ComplexMode = false;
3448 llvm::APInt VectorSize(64, 0);
3449 if (Str.size() >= 4 && Str[0] == 'V') {
3450 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
3451 size_t StrSize = Str.size();
3452 size_t VectorStringLength = 0;
3453 while ((VectorStringLength + 1) < StrSize &&
3454 isdigit(Str[VectorStringLength + 1]))
3455 ++VectorStringLength;
3456 if (VectorStringLength &&
3457 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
3458 VectorSize.isPowerOf2()) {
3459 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
3460 IntegerMode, ComplexMode);
3461 // Avoid duplicate warning from template instantiation.
3462 if (!InInstantiation)
3463 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
3464 } else {
3465 VectorSize = 0;
3466 }
3467 }
3468
3469 if (!VectorSize)
3470 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
3471
3472 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3473 // and friends, at least with glibc.
3474 // FIXME: Make sure floating-point mappings are accurate
3475 // FIXME: Support XF and TF types
3476 if (!DestWidth) {
3477 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
3478 return;
3479 }
3480
3481 QualType OldTy;
3482 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3483 OldTy = TD->getUnderlyingType();
3484 else if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
3485 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
3486 // Try to get type from enum declaration, default to int.
3487 OldTy = ED->getIntegerType();
3488 if (OldTy.isNull())
3489 OldTy = Context.IntTy;
3490 } else
3491 OldTy = cast<ValueDecl>(D)->getType();
3492
3493 if (OldTy->isDependentType()) {
3494 D->addAttr(::new (Context)
3495 ModeAttr(AttrRange, Context, Name, SpellingListIndex));
3496 return;
3497 }
3498
3499 // Base type can also be a vector type (see PR17453).
3500 // Distinguish between base type and base element type.
3501 QualType OldElemTy = OldTy;
3502 if (const VectorType *VT = OldTy->getAs<VectorType>())
3503 OldElemTy = VT->getElementType();
3504
3505 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
3506 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
3507 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
3508 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
3509 VectorSize.getBoolValue()) {
3510 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << AttrRange;
3511 return;
3512 }
3513 bool IntegralOrAnyEnumType =
3514 OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
3515
3516 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
3517 !IntegralOrAnyEnumType)
3518 Diag(AttrLoc, diag::err_mode_not_primitive);
3519 else if (IntegerMode) {
3520 if (!IntegralOrAnyEnumType)
3521 Diag(AttrLoc, diag::err_mode_wrong_type);
3522 } else if (ComplexMode) {
3523 if (!OldElemTy->isComplexType())
3524 Diag(AttrLoc, diag::err_mode_wrong_type);
3525 } else {
3526 if (!OldElemTy->isFloatingType())
3527 Diag(AttrLoc, diag::err_mode_wrong_type);
3528 }
3529
3530 QualType NewElemTy;
3531
3532 if (IntegerMode)
3533 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
3534 OldElemTy->isSignedIntegerType());
3535 else
3536 NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
3537
3538 if (NewElemTy.isNull()) {
3539 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
3540 return;
3541 }
3542
3543 if (ComplexMode) {
3544 NewElemTy = Context.getComplexType(NewElemTy);
3545 }
3546
3547 QualType NewTy = NewElemTy;
3548 if (VectorSize.getBoolValue()) {
3549 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
3550 VectorType::GenericVector);
3551 } else if (const VectorType *OldVT = OldTy->getAs<VectorType>()) {
3552 // Complex machine mode does not support base vector types.
3553 if (ComplexMode) {
3554 Diag(AttrLoc, diag::err_complex_mode_vector_type);
3555 return;
3556 }
3557 unsigned NumElements = Context.getTypeSize(OldElemTy) *
3558 OldVT->getNumElements() /
3559 Context.getTypeSize(NewElemTy);
3560 NewTy =
3561 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
3562 }
3563
3564 if (NewTy.isNull()) {
3565 Diag(AttrLoc, diag::err_mode_wrong_type);
3566 return;
3567 }
3568
3569 // Install the new type.
3570 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3571 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3572 else if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
3573 ED->setIntegerType(NewTy);
3574 else
3575 cast<ValueDecl>(D)->setType(NewTy);
3576
3577 D->addAttr(::new (Context)
3578 ModeAttr(AttrRange, Context, Name, SpellingListIndex));
3579 }
3580
handleNoDebugAttr(Sema & S,Decl * D,const AttributeList & Attr)3581 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3582 D->addAttr(::new (S.Context)
3583 NoDebugAttr(Attr.getRange(), S.Context,
3584 Attr.getAttributeSpellingListIndex()));
3585 }
3586
mergeAlwaysInlineAttr(Decl * D,SourceRange Range,IdentifierInfo * Ident,unsigned AttrSpellingListIndex)3587 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
3588 IdentifierInfo *Ident,
3589 unsigned AttrSpellingListIndex) {
3590 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3591 Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
3592 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3593 return nullptr;
3594 }
3595
3596 if (D->hasAttr<AlwaysInlineAttr>())
3597 return nullptr;
3598
3599 return ::new (Context) AlwaysInlineAttr(Range, Context,
3600 AttrSpellingListIndex);
3601 }
3602
mergeCommonAttr(Decl * D,SourceRange Range,IdentifierInfo * Ident,unsigned AttrSpellingListIndex)3603 CommonAttr *Sema::mergeCommonAttr(Decl *D, SourceRange Range,
3604 IdentifierInfo *Ident,
3605 unsigned AttrSpellingListIndex) {
3606 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, Range, Ident))
3607 return nullptr;
3608
3609 return ::new (Context) CommonAttr(Range, Context, AttrSpellingListIndex);
3610 }
3611
3612 InternalLinkageAttr *
mergeInternalLinkageAttr(Decl * D,SourceRange Range,IdentifierInfo * Ident,unsigned AttrSpellingListIndex)3613 Sema::mergeInternalLinkageAttr(Decl *D, SourceRange Range,
3614 IdentifierInfo *Ident,
3615 unsigned AttrSpellingListIndex) {
3616 if (auto VD = dyn_cast<VarDecl>(D)) {
3617 // Attribute applies to Var but not any subclass of it (like ParmVar,
3618 // ImplicitParm or VarTemplateSpecialization).
3619 if (VD->getKind() != Decl::Var) {
3620 Diag(Range.getBegin(), diag::warn_attribute_wrong_decl_type)
3621 << Ident << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
3622 : ExpectedVariableOrFunction);
3623 return nullptr;
3624 }
3625 // Attribute does not apply to non-static local variables.
3626 if (VD->hasLocalStorage()) {
3627 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
3628 return nullptr;
3629 }
3630 }
3631
3632 if (checkAttrMutualExclusion<CommonAttr>(*this, D, Range, Ident))
3633 return nullptr;
3634
3635 return ::new (Context)
3636 InternalLinkageAttr(Range, Context, AttrSpellingListIndex);
3637 }
3638
mergeMinSizeAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3639 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
3640 unsigned AttrSpellingListIndex) {
3641 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3642 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
3643 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3644 return nullptr;
3645 }
3646
3647 if (D->hasAttr<MinSizeAttr>())
3648 return nullptr;
3649
3650 return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
3651 }
3652
mergeOptimizeNoneAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)3653 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
3654 unsigned AttrSpellingListIndex) {
3655 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
3656 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
3657 Diag(Range.getBegin(), diag::note_conflicting_attribute);
3658 D->dropAttr<AlwaysInlineAttr>();
3659 }
3660 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
3661 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
3662 Diag(Range.getBegin(), diag::note_conflicting_attribute);
3663 D->dropAttr<MinSizeAttr>();
3664 }
3665
3666 if (D->hasAttr<OptimizeNoneAttr>())
3667 return nullptr;
3668
3669 return ::new (Context) OptimizeNoneAttr(Range, Context,
3670 AttrSpellingListIndex);
3671 }
3672
handleAlwaysInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3673 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
3674 const AttributeList &Attr) {
3675 if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, Attr.getRange(),
3676 Attr.getName()))
3677 return;
3678
3679 if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
3680 D, Attr.getRange(), Attr.getName(),
3681 Attr.getAttributeSpellingListIndex()))
3682 D->addAttr(Inline);
3683 }
3684
handleMinSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)3685 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3686 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
3687 D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3688 D->addAttr(MinSize);
3689 }
3690
handleOptimizeNoneAttr(Sema & S,Decl * D,const AttributeList & Attr)3691 static void handleOptimizeNoneAttr(Sema &S, Decl *D,
3692 const AttributeList &Attr) {
3693 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
3694 D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
3695 D->addAttr(Optnone);
3696 }
3697
handleGlobalAttr(Sema & S,Decl * D,const AttributeList & Attr)3698 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3699 if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, Attr.getRange(),
3700 Attr.getName()) ||
3701 checkAttrMutualExclusion<CUDAHostAttr>(S, D, Attr.getRange(),
3702 Attr.getName())) {
3703 return;
3704 }
3705 FunctionDecl *FD = cast<FunctionDecl>(D);
3706 if (!FD->getReturnType()->isVoidType()) {
3707 SourceRange RTRange = FD->getReturnTypeSourceRange();
3708 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3709 << FD->getType()
3710 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
3711 : FixItHint());
3712 return;
3713 }
3714 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
3715 if (Method->isInstance()) {
3716 S.Diag(Method->getLocStart(), diag::err_kern_is_nonstatic_method)
3717 << Method;
3718 return;
3719 }
3720 S.Diag(Method->getLocStart(), diag::warn_kern_is_method) << Method;
3721 }
3722 // Only warn for "inline" when compiling for host, to cut down on noise.
3723 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
3724 S.Diag(FD->getLocStart(), diag::warn_kern_is_inline) << FD;
3725
3726 D->addAttr(::new (S.Context)
3727 CUDAGlobalAttr(Attr.getRange(), S.Context,
3728 Attr.getAttributeSpellingListIndex()));
3729 }
3730
handleGNUInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3731 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3732 FunctionDecl *Fn = cast<FunctionDecl>(D);
3733 if (!Fn->isInlineSpecified()) {
3734 S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3735 return;
3736 }
3737
3738 D->addAttr(::new (S.Context)
3739 GNUInlineAttr(Attr.getRange(), S.Context,
3740 Attr.getAttributeSpellingListIndex()));
3741 }
3742
handleCallConvAttr(Sema & S,Decl * D,const AttributeList & Attr)3743 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3744 if (hasDeclarator(D)) return;
3745
3746 // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3747 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3748 CallingConv CC;
3749 if (S.CheckCallingConvAttr(Attr, CC, /*FD*/nullptr))
3750 return;
3751
3752 if (!isa<ObjCMethodDecl>(D)) {
3753 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3754 << Attr.getName() << ExpectedFunctionOrMethod;
3755 return;
3756 }
3757
3758 switch (Attr.getKind()) {
3759 case AttributeList::AT_FastCall:
3760 D->addAttr(::new (S.Context)
3761 FastCallAttr(Attr.getRange(), S.Context,
3762 Attr.getAttributeSpellingListIndex()));
3763 return;
3764 case AttributeList::AT_StdCall:
3765 D->addAttr(::new (S.Context)
3766 StdCallAttr(Attr.getRange(), S.Context,
3767 Attr.getAttributeSpellingListIndex()));
3768 return;
3769 case AttributeList::AT_ThisCall:
3770 D->addAttr(::new (S.Context)
3771 ThisCallAttr(Attr.getRange(), S.Context,
3772 Attr.getAttributeSpellingListIndex()));
3773 return;
3774 case AttributeList::AT_CDecl:
3775 D->addAttr(::new (S.Context)
3776 CDeclAttr(Attr.getRange(), S.Context,
3777 Attr.getAttributeSpellingListIndex()));
3778 return;
3779 case AttributeList::AT_Pascal:
3780 D->addAttr(::new (S.Context)
3781 PascalAttr(Attr.getRange(), S.Context,
3782 Attr.getAttributeSpellingListIndex()));
3783 return;
3784 case AttributeList::AT_SwiftCall:
3785 D->addAttr(::new (S.Context)
3786 SwiftCallAttr(Attr.getRange(), S.Context,
3787 Attr.getAttributeSpellingListIndex()));
3788 return;
3789 case AttributeList::AT_VectorCall:
3790 D->addAttr(::new (S.Context)
3791 VectorCallAttr(Attr.getRange(), S.Context,
3792 Attr.getAttributeSpellingListIndex()));
3793 return;
3794 case AttributeList::AT_MSABI:
3795 D->addAttr(::new (S.Context)
3796 MSABIAttr(Attr.getRange(), S.Context,
3797 Attr.getAttributeSpellingListIndex()));
3798 return;
3799 case AttributeList::AT_SysVABI:
3800 D->addAttr(::new (S.Context)
3801 SysVABIAttr(Attr.getRange(), S.Context,
3802 Attr.getAttributeSpellingListIndex()));
3803 return;
3804 case AttributeList::AT_Pcs: {
3805 PcsAttr::PCSType PCS;
3806 switch (CC) {
3807 case CC_AAPCS:
3808 PCS = PcsAttr::AAPCS;
3809 break;
3810 case CC_AAPCS_VFP:
3811 PCS = PcsAttr::AAPCS_VFP;
3812 break;
3813 default:
3814 llvm_unreachable("unexpected calling convention in pcs attribute");
3815 }
3816
3817 D->addAttr(::new (S.Context)
3818 PcsAttr(Attr.getRange(), S.Context, PCS,
3819 Attr.getAttributeSpellingListIndex()));
3820 return;
3821 }
3822 case AttributeList::AT_IntelOclBicc:
3823 D->addAttr(::new (S.Context)
3824 IntelOclBiccAttr(Attr.getRange(), S.Context,
3825 Attr.getAttributeSpellingListIndex()));
3826 return;
3827 case AttributeList::AT_PreserveMost:
3828 D->addAttr(::new (S.Context) PreserveMostAttr(
3829 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3830 return;
3831 case AttributeList::AT_PreserveAll:
3832 D->addAttr(::new (S.Context) PreserveAllAttr(
3833 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
3834 return;
3835 default:
3836 llvm_unreachable("unexpected attribute kind");
3837 }
3838 }
3839
CheckCallingConvAttr(const AttributeList & attr,CallingConv & CC,const FunctionDecl * FD)3840 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
3841 const FunctionDecl *FD) {
3842 if (attr.isInvalid())
3843 return true;
3844
3845 if (attr.hasProcessingCache()) {
3846 CC = (CallingConv) attr.getProcessingCache();
3847 return false;
3848 }
3849
3850 unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3851 if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
3852 attr.setInvalid();
3853 return true;
3854 }
3855
3856 // TODO: diagnose uses of these conventions on the wrong target.
3857 switch (attr.getKind()) {
3858 case AttributeList::AT_CDecl: CC = CC_C; break;
3859 case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
3860 case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
3861 case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
3862 case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
3863 case AttributeList::AT_SwiftCall: CC = CC_Swift; break;
3864 case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
3865 case AttributeList::AT_MSABI:
3866 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
3867 CC_X86_64Win64;
3868 break;
3869 case AttributeList::AT_SysVABI:
3870 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
3871 CC_C;
3872 break;
3873 case AttributeList::AT_Pcs: {
3874 StringRef StrRef;
3875 if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
3876 attr.setInvalid();
3877 return true;
3878 }
3879 if (StrRef == "aapcs") {
3880 CC = CC_AAPCS;
3881 break;
3882 } else if (StrRef == "aapcs-vfp") {
3883 CC = CC_AAPCS_VFP;
3884 break;
3885 }
3886
3887 attr.setInvalid();
3888 Diag(attr.getLoc(), diag::err_invalid_pcs);
3889 return true;
3890 }
3891 case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
3892 case AttributeList::AT_PreserveMost: CC = CC_PreserveMost; break;
3893 case AttributeList::AT_PreserveAll: CC = CC_PreserveAll; break;
3894 default: llvm_unreachable("unexpected attribute kind");
3895 }
3896
3897 const TargetInfo &TI = Context.getTargetInfo();
3898 TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
3899 if (A != TargetInfo::CCCR_OK) {
3900 if (A == TargetInfo::CCCR_Warning)
3901 Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
3902
3903 // This convention is not valid for the target. Use the default function or
3904 // method calling convention.
3905 bool IsCXXMethod = false, IsVariadic = false;
3906 if (FD) {
3907 IsCXXMethod = FD->isCXXInstanceMember();
3908 IsVariadic = FD->isVariadic();
3909 }
3910 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
3911 }
3912
3913 attr.setProcessingCache((unsigned) CC);
3914 return false;
3915 }
3916
3917 /// Pointer-like types in the default address space.
isValidSwiftContextType(QualType type)3918 static bool isValidSwiftContextType(QualType type) {
3919 if (!type->hasPointerRepresentation())
3920 return type->isDependentType();
3921 return type->getPointeeType().getAddressSpace() == 0;
3922 }
3923
3924 /// Pointers and references in the default address space.
isValidSwiftIndirectResultType(QualType type)3925 static bool isValidSwiftIndirectResultType(QualType type) {
3926 if (auto ptrType = type->getAs<PointerType>()) {
3927 type = ptrType->getPointeeType();
3928 } else if (auto refType = type->getAs<ReferenceType>()) {
3929 type = refType->getPointeeType();
3930 } else {
3931 return type->isDependentType();
3932 }
3933 return type.getAddressSpace() == 0;
3934 }
3935
3936 /// Pointers and references to pointers in the default address space.
isValidSwiftErrorResultType(QualType type)3937 static bool isValidSwiftErrorResultType(QualType type) {
3938 if (auto ptrType = type->getAs<PointerType>()) {
3939 type = ptrType->getPointeeType();
3940 } else if (auto refType = type->getAs<ReferenceType>()) {
3941 type = refType->getPointeeType();
3942 } else {
3943 return type->isDependentType();
3944 }
3945 if (!type.getQualifiers().empty())
3946 return false;
3947 return isValidSwiftContextType(type);
3948 }
3949
handleParameterABIAttr(Sema & S,Decl * D,const AttributeList & attr,ParameterABI abi)3950 static void handleParameterABIAttr(Sema &S, Decl *D, const AttributeList &attr,
3951 ParameterABI abi) {
3952 S.AddParameterABIAttr(attr.getRange(), D, abi,
3953 attr.getAttributeSpellingListIndex());
3954 }
3955
AddParameterABIAttr(SourceRange range,Decl * D,ParameterABI abi,unsigned spellingIndex)3956 void Sema::AddParameterABIAttr(SourceRange range, Decl *D, ParameterABI abi,
3957 unsigned spellingIndex) {
3958
3959 QualType type = cast<ParmVarDecl>(D)->getType();
3960
3961 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
3962 if (existingAttr->getABI() != abi) {
3963 Diag(range.getBegin(), diag::err_attributes_are_not_compatible)
3964 << getParameterABISpelling(abi) << existingAttr;
3965 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
3966 return;
3967 }
3968 }
3969
3970 switch (abi) {
3971 case ParameterABI::Ordinary:
3972 llvm_unreachable("explicit attribute for ordinary parameter ABI?");
3973
3974 case ParameterABI::SwiftContext:
3975 if (!isValidSwiftContextType(type)) {
3976 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
3977 << getParameterABISpelling(abi)
3978 << /*pointer to pointer */ 0 << type;
3979 }
3980 D->addAttr(::new (Context)
3981 SwiftContextAttr(range, Context, spellingIndex));
3982 return;
3983
3984 case ParameterABI::SwiftErrorResult:
3985 if (!isValidSwiftErrorResultType(type)) {
3986 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
3987 << getParameterABISpelling(abi)
3988 << /*pointer to pointer */ 1 << type;
3989 }
3990 D->addAttr(::new (Context)
3991 SwiftErrorResultAttr(range, Context, spellingIndex));
3992 return;
3993
3994 case ParameterABI::SwiftIndirectResult:
3995 if (!isValidSwiftIndirectResultType(type)) {
3996 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
3997 << getParameterABISpelling(abi)
3998 << /*pointer*/ 0 << type;
3999 }
4000 D->addAttr(::new (Context)
4001 SwiftIndirectResultAttr(range, Context, spellingIndex));
4002 return;
4003 }
4004 llvm_unreachable("bad parameter ABI attribute");
4005 }
4006
4007 /// Checks a regparm attribute, returning true if it is ill-formed and
4008 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const AttributeList & Attr,unsigned & numParams)4009 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
4010 if (Attr.isInvalid())
4011 return true;
4012
4013 if (!checkAttributeNumArgs(*this, Attr, 1)) {
4014 Attr.setInvalid();
4015 return true;
4016 }
4017
4018 uint32_t NP;
4019 Expr *NumParamsExpr = Attr.getArgAsExpr(0);
4020 if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
4021 Attr.setInvalid();
4022 return true;
4023 }
4024
4025 if (Context.getTargetInfo().getRegParmMax() == 0) {
4026 Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
4027 << NumParamsExpr->getSourceRange();
4028 Attr.setInvalid();
4029 return true;
4030 }
4031
4032 numParams = NP;
4033 if (numParams > Context.getTargetInfo().getRegParmMax()) {
4034 Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
4035 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4036 Attr.setInvalid();
4037 return true;
4038 }
4039
4040 return false;
4041 }
4042
4043 // Checks whether an argument of launch_bounds attribute is
4044 // acceptable, performs implicit conversion to Rvalue, and returns
4045 // non-nullptr Expr result on success. Otherwise, it returns nullptr
4046 // and may output an error.
makeLaunchBoundsArgExpr(Sema & S,Expr * E,const CUDALaunchBoundsAttr & Attr,const unsigned Idx)4047 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
4048 const CUDALaunchBoundsAttr &Attr,
4049 const unsigned Idx) {
4050 if (S.DiagnoseUnexpandedParameterPack(E))
4051 return nullptr;
4052
4053 // Accept template arguments for now as they depend on something else.
4054 // We'll get to check them when they eventually get instantiated.
4055 if (E->isValueDependent())
4056 return E;
4057
4058 llvm::APSInt I(64);
4059 if (!E->isIntegerConstantExpr(I, S.Context)) {
4060 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
4061 << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
4062 return nullptr;
4063 }
4064 // Make sure we can fit it in 32 bits.
4065 if (!I.isIntN(32)) {
4066 S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
4067 << 32 << /* Unsigned */ 1;
4068 return nullptr;
4069 }
4070 if (I < 0)
4071 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
4072 << &Attr << Idx << E->getSourceRange();
4073
4074 // We may need to perform implicit conversion of the argument.
4075 InitializedEntity Entity = InitializedEntity::InitializeParameter(
4076 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
4077 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
4078 assert(!ValArg.isInvalid() &&
4079 "Unexpected PerformCopyInitialization() failure.");
4080
4081 return ValArg.getAs<Expr>();
4082 }
4083
AddLaunchBoundsAttr(SourceRange AttrRange,Decl * D,Expr * MaxThreads,Expr * MinBlocks,unsigned SpellingListIndex)4084 void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
4085 Expr *MinBlocks, unsigned SpellingListIndex) {
4086 CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks,
4087 SpellingListIndex);
4088 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
4089 if (MaxThreads == nullptr)
4090 return;
4091
4092 if (MinBlocks) {
4093 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
4094 if (MinBlocks == nullptr)
4095 return;
4096 }
4097
4098 D->addAttr(::new (Context) CUDALaunchBoundsAttr(
4099 AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex));
4100 }
4101
handleLaunchBoundsAttr(Sema & S,Decl * D,const AttributeList & Attr)4102 static void handleLaunchBoundsAttr(Sema &S, Decl *D,
4103 const AttributeList &Attr) {
4104 if (!checkAttributeAtLeastNumArgs(S, Attr, 1) ||
4105 !checkAttributeAtMostNumArgs(S, Attr, 2))
4106 return;
4107
4108 S.AddLaunchBoundsAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
4109 Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr,
4110 Attr.getAttributeSpellingListIndex());
4111 }
4112
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const AttributeList & Attr)4113 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4114 const AttributeList &Attr) {
4115 if (!Attr.isArgIdent(0)) {
4116 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4117 << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4118 return;
4119 }
4120
4121 if (!checkAttributeNumArgs(S, Attr, 3))
4122 return;
4123
4124 IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
4125
4126 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
4127 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
4128 << Attr.getName() << ExpectedFunctionOrMethod;
4129 return;
4130 }
4131
4132 uint64_t ArgumentIdx;
4133 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
4134 ArgumentIdx))
4135 return;
4136
4137 uint64_t TypeTagIdx;
4138 if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
4139 TypeTagIdx))
4140 return;
4141
4142 bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
4143 if (IsPointer) {
4144 // Ensure that buffer has a pointer type.
4145 QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
4146 if (!BufferTy->isPointerType()) {
4147 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
4148 << Attr.getName() << 0;
4149 }
4150 }
4151
4152 D->addAttr(::new (S.Context)
4153 ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
4154 ArgumentIdx, TypeTagIdx, IsPointer,
4155 Attr.getAttributeSpellingListIndex()));
4156 }
4157
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const AttributeList & Attr)4158 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4159 const AttributeList &Attr) {
4160 if (!Attr.isArgIdent(0)) {
4161 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4162 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
4163 return;
4164 }
4165
4166 if (!checkAttributeNumArgs(S, Attr, 1))
4167 return;
4168
4169 if (!isa<VarDecl>(D)) {
4170 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
4171 << Attr.getName() << ExpectedVariable;
4172 return;
4173 }
4174
4175 IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
4176 TypeSourceInfo *MatchingCTypeLoc = nullptr;
4177 S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
4178 assert(MatchingCTypeLoc && "no type source info for attribute argument");
4179
4180 D->addAttr(::new (S.Context)
4181 TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
4182 MatchingCTypeLoc,
4183 Attr.getLayoutCompatible(),
4184 Attr.getMustBeNull(),
4185 Attr.getAttributeSpellingListIndex()));
4186 }
4187
4188 //===----------------------------------------------------------------------===//
4189 // Checker-specific attribute handlers.
4190 //===----------------------------------------------------------------------===//
4191
isValidSubjectOfNSReturnsRetainedAttribute(QualType type)4192 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
4193 return type->isDependentType() ||
4194 type->isObjCRetainableType();
4195 }
4196
isValidSubjectOfNSAttribute(Sema & S,QualType type)4197 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
4198 return type->isDependentType() ||
4199 type->isObjCObjectPointerType() ||
4200 S.Context.isObjCNSObjectType(type);
4201 }
4202
isValidSubjectOfCFAttribute(Sema & S,QualType type)4203 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
4204 return type->isDependentType() ||
4205 type->isPointerType() ||
4206 isValidSubjectOfNSAttribute(S, type);
4207 }
4208
handleNSConsumedAttr(Sema & S,Decl * D,const AttributeList & Attr)4209 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4210 S.AddNSConsumedAttr(Attr.getRange(), D, Attr.getAttributeSpellingListIndex(),
4211 Attr.getKind() == AttributeList::AT_NSConsumed,
4212 /*template instantiation*/ false);
4213 }
4214
AddNSConsumedAttr(SourceRange attrRange,Decl * D,unsigned spellingIndex,bool isNSConsumed,bool isTemplateInstantiation)4215 void Sema::AddNSConsumedAttr(SourceRange attrRange, Decl *D,
4216 unsigned spellingIndex, bool isNSConsumed,
4217 bool isTemplateInstantiation) {
4218 ParmVarDecl *param = cast<ParmVarDecl>(D);
4219 bool typeOK;
4220
4221 if (isNSConsumed) {
4222 typeOK = isValidSubjectOfNSAttribute(*this, param->getType());
4223 } else {
4224 typeOK = isValidSubjectOfCFAttribute(*this, param->getType());
4225 }
4226
4227 if (!typeOK) {
4228 // These attributes are normally just advisory, but in ARC, ns_consumed
4229 // is significant. Allow non-dependent code to contain inappropriate
4230 // attributes even in ARC, but require template instantiations to be
4231 // set up correctly.
4232 Diag(D->getLocStart(),
4233 (isTemplateInstantiation && isNSConsumed &&
4234 getLangOpts().ObjCAutoRefCount
4235 ? diag::err_ns_attribute_wrong_parameter_type
4236 : diag::warn_ns_attribute_wrong_parameter_type))
4237 << attrRange
4238 << (isNSConsumed ? "ns_consumed" : "cf_consumed")
4239 << (isNSConsumed ? /*objc pointers*/ 0 : /*cf pointers*/ 1);
4240 return;
4241 }
4242
4243 if (isNSConsumed)
4244 param->addAttr(::new (Context)
4245 NSConsumedAttr(attrRange, Context, spellingIndex));
4246 else
4247 param->addAttr(::new (Context)
4248 CFConsumedAttr(attrRange, Context, spellingIndex));
4249 }
4250
handleNSReturnsRetainedAttr(Sema & S,Decl * D,const AttributeList & Attr)4251 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
4252 const AttributeList &Attr) {
4253 QualType returnType;
4254
4255 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
4256 returnType = MD->getReturnType();
4257 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
4258 (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
4259 return; // ignore: was handled as a type attribute
4260 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
4261 returnType = PD->getType();
4262 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4263 returnType = FD->getReturnType();
4264 else if (auto *Param = dyn_cast<ParmVarDecl>(D)) {
4265 returnType = Param->getType()->getPointeeType();
4266 if (returnType.isNull()) {
4267 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4268 << Attr.getName() << /*pointer-to-CF*/2
4269 << Attr.getRange();
4270 return;
4271 }
4272 } else {
4273 AttributeDeclKind ExpectedDeclKind;
4274 switch (Attr.getKind()) {
4275 default: llvm_unreachable("invalid ownership attribute");
4276 case AttributeList::AT_NSReturnsRetained:
4277 case AttributeList::AT_NSReturnsAutoreleased:
4278 case AttributeList::AT_NSReturnsNotRetained:
4279 ExpectedDeclKind = ExpectedFunctionOrMethod;
4280 break;
4281
4282 case AttributeList::AT_CFReturnsRetained:
4283 case AttributeList::AT_CFReturnsNotRetained:
4284 ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
4285 break;
4286 }
4287 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4288 << Attr.getRange() << Attr.getName() << ExpectedDeclKind;
4289 return;
4290 }
4291
4292 bool typeOK;
4293 bool cf;
4294 switch (Attr.getKind()) {
4295 default: llvm_unreachable("invalid ownership attribute");
4296 case AttributeList::AT_NSReturnsRetained:
4297 typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
4298 cf = false;
4299 break;
4300
4301 case AttributeList::AT_NSReturnsAutoreleased:
4302 case AttributeList::AT_NSReturnsNotRetained:
4303 typeOK = isValidSubjectOfNSAttribute(S, returnType);
4304 cf = false;
4305 break;
4306
4307 case AttributeList::AT_CFReturnsRetained:
4308 case AttributeList::AT_CFReturnsNotRetained:
4309 typeOK = isValidSubjectOfCFAttribute(S, returnType);
4310 cf = true;
4311 break;
4312 }
4313
4314 if (!typeOK) {
4315 if (isa<ParmVarDecl>(D)) {
4316 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4317 << Attr.getName() << /*pointer-to-CF*/2
4318 << Attr.getRange();
4319 } else {
4320 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
4321 enum : unsigned {
4322 Function,
4323 Method,
4324 Property
4325 } SubjectKind = Function;
4326 if (isa<ObjCMethodDecl>(D))
4327 SubjectKind = Method;
4328 else if (isa<ObjCPropertyDecl>(D))
4329 SubjectKind = Property;
4330 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4331 << Attr.getName() << SubjectKind << cf
4332 << Attr.getRange();
4333 }
4334 return;
4335 }
4336
4337 switch (Attr.getKind()) {
4338 default:
4339 llvm_unreachable("invalid ownership attribute");
4340 case AttributeList::AT_NSReturnsAutoreleased:
4341 D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
4342 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4343 return;
4344 case AttributeList::AT_CFReturnsNotRetained:
4345 D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
4346 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4347 return;
4348 case AttributeList::AT_NSReturnsNotRetained:
4349 D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
4350 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4351 return;
4352 case AttributeList::AT_CFReturnsRetained:
4353 D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
4354 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4355 return;
4356 case AttributeList::AT_NSReturnsRetained:
4357 D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
4358 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4359 return;
4360 };
4361 }
4362
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const AttributeList & attr)4363 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
4364 const AttributeList &attr) {
4365 const int EP_ObjCMethod = 1;
4366 const int EP_ObjCProperty = 2;
4367
4368 SourceLocation loc = attr.getLoc();
4369 QualType resultType;
4370 if (isa<ObjCMethodDecl>(D))
4371 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
4372 else
4373 resultType = cast<ObjCPropertyDecl>(D)->getType();
4374
4375 if (!resultType->isReferenceType() &&
4376 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
4377 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4378 << SourceRange(loc)
4379 << attr.getName()
4380 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
4381 << /*non-retainable pointer*/ 2;
4382
4383 // Drop the attribute.
4384 return;
4385 }
4386
4387 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
4388 attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
4389 }
4390
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const AttributeList & attr)4391 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
4392 const AttributeList &attr) {
4393 ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
4394
4395 DeclContext *DC = method->getDeclContext();
4396 if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
4397 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4398 << attr.getName() << 0;
4399 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
4400 return;
4401 }
4402 if (method->getMethodFamily() == OMF_dealloc) {
4403 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4404 << attr.getName() << 1;
4405 return;
4406 }
4407
4408 method->addAttr(::new (S.Context)
4409 ObjCRequiresSuperAttr(attr.getRange(), S.Context,
4410 attr.getAttributeSpellingListIndex()));
4411 }
4412
handleCFAuditedTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)4413 static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
4414 const AttributeList &Attr) {
4415 if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr.getRange(),
4416 Attr.getName()))
4417 return;
4418
4419 D->addAttr(::new (S.Context)
4420 CFAuditedTransferAttr(Attr.getRange(), S.Context,
4421 Attr.getAttributeSpellingListIndex()));
4422 }
4423
handleCFUnknownTransferAttr(Sema & S,Decl * D,const AttributeList & Attr)4424 static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
4425 const AttributeList &Attr) {
4426 if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr.getRange(),
4427 Attr.getName()))
4428 return;
4429
4430 D->addAttr(::new (S.Context)
4431 CFUnknownTransferAttr(Attr.getRange(), S.Context,
4432 Attr.getAttributeSpellingListIndex()));
4433 }
4434
handleObjCBridgeAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)4435 static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
4436 const AttributeList &Attr) {
4437 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
4438
4439 if (!Parm) {
4440 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
4441 return;
4442 }
4443
4444 // Typedefs only allow objc_bridge(id) and have some additional checking.
4445 if (auto TD = dyn_cast<TypedefNameDecl>(D)) {
4446 if (!Parm->Ident->isStr("id")) {
4447 S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_id)
4448 << Attr.getName();
4449 return;
4450 }
4451
4452 // Only allow 'cv void *'.
4453 QualType T = TD->getUnderlyingType();
4454 if (!T->isVoidPointerType()) {
4455 S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
4456 return;
4457 }
4458 }
4459
4460 D->addAttr(::new (S.Context)
4461 ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
4462 Attr.getAttributeSpellingListIndex()));
4463 }
4464
handleObjCBridgeMutableAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)4465 static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
4466 const AttributeList &Attr) {
4467 IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
4468
4469 if (!Parm) {
4470 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
4471 return;
4472 }
4473
4474 D->addAttr(::new (S.Context)
4475 ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
4476 Attr.getAttributeSpellingListIndex()));
4477 }
4478
handleObjCBridgeRelatedAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)4479 static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
4480 const AttributeList &Attr) {
4481 IdentifierInfo *RelatedClass =
4482 Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
4483 if (!RelatedClass) {
4484 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
4485 return;
4486 }
4487 IdentifierInfo *ClassMethod =
4488 Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
4489 IdentifierInfo *InstanceMethod =
4490 Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
4491 D->addAttr(::new (S.Context)
4492 ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
4493 ClassMethod, InstanceMethod,
4494 Attr.getAttributeSpellingListIndex()));
4495 }
4496
handleObjCDesignatedInitializer(Sema & S,Decl * D,const AttributeList & Attr)4497 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
4498 const AttributeList &Attr) {
4499 ObjCInterfaceDecl *IFace;
4500 if (ObjCCategoryDecl *CatDecl =
4501 dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
4502 IFace = CatDecl->getClassInterface();
4503 else
4504 IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
4505
4506 if (!IFace)
4507 return;
4508
4509 IFace->setHasDesignatedInitializers();
4510 D->addAttr(::new (S.Context)
4511 ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
4512 Attr.getAttributeSpellingListIndex()));
4513 }
4514
handleObjCRuntimeName(Sema & S,Decl * D,const AttributeList & Attr)4515 static void handleObjCRuntimeName(Sema &S, Decl *D,
4516 const AttributeList &Attr) {
4517 StringRef MetaDataName;
4518 if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
4519 return;
4520 D->addAttr(::new (S.Context)
4521 ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
4522 MetaDataName,
4523 Attr.getAttributeSpellingListIndex()));
4524 }
4525
4526 // When a user wants to use objc_boxable with a union or struct
4527 // but they don't have access to the declaration (legacy/third-party code)
4528 // then they can 'enable' this feature with a typedef:
4529 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
handleObjCBoxable(Sema & S,Decl * D,const AttributeList & Attr)4530 static void handleObjCBoxable(Sema &S, Decl *D, const AttributeList &Attr) {
4531 bool notify = false;
4532
4533 RecordDecl *RD = dyn_cast<RecordDecl>(D);
4534 if (RD && RD->getDefinition()) {
4535 RD = RD->getDefinition();
4536 notify = true;
4537 }
4538
4539 if (RD) {
4540 ObjCBoxableAttr *BoxableAttr = ::new (S.Context)
4541 ObjCBoxableAttr(Attr.getRange(), S.Context,
4542 Attr.getAttributeSpellingListIndex());
4543 RD->addAttr(BoxableAttr);
4544 if (notify) {
4545 // we need to notify ASTReader/ASTWriter about
4546 // modification of existing declaration
4547 if (ASTMutationListener *L = S.getASTMutationListener())
4548 L->AddedAttributeToRecord(BoxableAttr, RD);
4549 }
4550 }
4551 }
4552
handleObjCOwnershipAttr(Sema & S,Decl * D,const AttributeList & Attr)4553 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
4554 const AttributeList &Attr) {
4555 if (hasDeclarator(D)) return;
4556
4557 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4558 << Attr.getRange() << Attr.getName() << ExpectedVariable;
4559 }
4560
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const AttributeList & Attr)4561 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
4562 const AttributeList &Attr) {
4563 ValueDecl *vd = cast<ValueDecl>(D);
4564 QualType type = vd->getType();
4565
4566 if (!type->isDependentType() &&
4567 !type->isObjCLifetimeType()) {
4568 S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
4569 << type;
4570 return;
4571 }
4572
4573 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4574
4575 // If we have no lifetime yet, check the lifetime we're presumably
4576 // going to infer.
4577 if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
4578 lifetime = type->getObjCARCImplicitLifetime();
4579
4580 switch (lifetime) {
4581 case Qualifiers::OCL_None:
4582 assert(type->isDependentType() &&
4583 "didn't infer lifetime for non-dependent type?");
4584 break;
4585
4586 case Qualifiers::OCL_Weak: // meaningful
4587 case Qualifiers::OCL_Strong: // meaningful
4588 break;
4589
4590 case Qualifiers::OCL_ExplicitNone:
4591 case Qualifiers::OCL_Autoreleasing:
4592 S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
4593 << (lifetime == Qualifiers::OCL_Autoreleasing);
4594 break;
4595 }
4596
4597 D->addAttr(::new (S.Context)
4598 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
4599 Attr.getAttributeSpellingListIndex()));
4600 }
4601
4602 //===----------------------------------------------------------------------===//
4603 // Microsoft specific attribute handlers.
4604 //===----------------------------------------------------------------------===//
4605
handleUuidAttr(Sema & S,Decl * D,const AttributeList & Attr)4606 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4607 if (!S.LangOpts.CPlusPlus) {
4608 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
4609 << Attr.getName() << AttributeLangSupport::C;
4610 return;
4611 }
4612
4613 if (!isa<CXXRecordDecl>(D)) {
4614 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4615 << Attr.getName() << ExpectedClass;
4616 return;
4617 }
4618
4619 StringRef StrRef;
4620 SourceLocation LiteralLoc;
4621 if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
4622 return;
4623
4624 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
4625 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
4626 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
4627 StrRef = StrRef.drop_front().drop_back();
4628
4629 // Validate GUID length.
4630 if (StrRef.size() != 36) {
4631 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4632 return;
4633 }
4634
4635 for (unsigned i = 0; i < 36; ++i) {
4636 if (i == 8 || i == 13 || i == 18 || i == 23) {
4637 if (StrRef[i] != '-') {
4638 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4639 return;
4640 }
4641 } else if (!isHexDigit(StrRef[i])) {
4642 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
4643 return;
4644 }
4645 }
4646
4647 D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
4648 Attr.getAttributeSpellingListIndex()));
4649 }
4650
handleMSInheritanceAttr(Sema & S,Decl * D,const AttributeList & Attr)4651 static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4652 if (!S.LangOpts.CPlusPlus) {
4653 S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
4654 << Attr.getName() << AttributeLangSupport::C;
4655 return;
4656 }
4657 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
4658 D, Attr.getRange(), /*BestCase=*/true,
4659 Attr.getAttributeSpellingListIndex(),
4660 (MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
4661 if (IA) {
4662 D->addAttr(IA);
4663 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
4664 }
4665 }
4666
handleDeclspecThreadAttr(Sema & S,Decl * D,const AttributeList & Attr)4667 static void handleDeclspecThreadAttr(Sema &S, Decl *D,
4668 const AttributeList &Attr) {
4669 VarDecl *VD = cast<VarDecl>(D);
4670 if (!S.Context.getTargetInfo().isTLSSupported()) {
4671 S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
4672 return;
4673 }
4674 if (VD->getTSCSpec() != TSCS_unspecified) {
4675 S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
4676 return;
4677 }
4678 if (VD->hasLocalStorage()) {
4679 S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
4680 return;
4681 }
4682 VD->addAttr(::new (S.Context) ThreadAttr(
4683 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
4684 }
4685
handleAbiTagAttr(Sema & S,Decl * D,const AttributeList & Attr)4686 static void handleAbiTagAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4687 SmallVector<StringRef, 4> Tags;
4688 for (unsigned I = 0, E = Attr.getNumArgs(); I != E; ++I) {
4689 StringRef Tag;
4690 if (!S.checkStringLiteralArgumentAttr(Attr, I, Tag))
4691 return;
4692 Tags.push_back(Tag);
4693 }
4694
4695 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
4696 if (!NS->isInline()) {
4697 S.Diag(Attr.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
4698 return;
4699 }
4700 if (NS->isAnonymousNamespace()) {
4701 S.Diag(Attr.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
4702 return;
4703 }
4704 if (Attr.getNumArgs() == 0)
4705 Tags.push_back(NS->getName());
4706 } else if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
4707 return;
4708
4709 // Store tags sorted and without duplicates.
4710 std::sort(Tags.begin(), Tags.end());
4711 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
4712
4713 D->addAttr(::new (S.Context)
4714 AbiTagAttr(Attr.getRange(), S.Context, Tags.data(), Tags.size(),
4715 Attr.getAttributeSpellingListIndex()));
4716 }
4717
handleARMInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)4718 static void handleARMInterruptAttr(Sema &S, Decl *D,
4719 const AttributeList &Attr) {
4720 // Check the attribute arguments.
4721 if (Attr.getNumArgs() > 1) {
4722 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
4723 << Attr.getName() << 1;
4724 return;
4725 }
4726
4727 StringRef Str;
4728 SourceLocation ArgLoc;
4729
4730 if (Attr.getNumArgs() == 0)
4731 Str = "";
4732 else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
4733 return;
4734
4735 ARMInterruptAttr::InterruptType Kind;
4736 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
4737 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
4738 << Attr.getName() << Str << ArgLoc;
4739 return;
4740 }
4741
4742 unsigned Index = Attr.getAttributeSpellingListIndex();
4743 D->addAttr(::new (S.Context)
4744 ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
4745 }
4746
handleMSP430InterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)4747 static void handleMSP430InterruptAttr(Sema &S, Decl *D,
4748 const AttributeList &Attr) {
4749 if (!checkAttributeNumArgs(S, Attr, 1))
4750 return;
4751
4752 if (!Attr.isArgExpr(0)) {
4753 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
4754 << AANT_ArgumentIntegerConstant;
4755 return;
4756 }
4757
4758 // FIXME: Check for decl - it should be void ()(void).
4759
4760 Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4761 llvm::APSInt NumParams(32);
4762 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
4763 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4764 << Attr.getName() << AANT_ArgumentIntegerConstant
4765 << NumParamsExpr->getSourceRange();
4766 return;
4767 }
4768
4769 unsigned Num = NumParams.getLimitedValue(255);
4770 if ((Num & 1) || Num > 30) {
4771 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
4772 << Attr.getName() << (int)NumParams.getSExtValue()
4773 << NumParamsExpr->getSourceRange();
4774 return;
4775 }
4776
4777 D->addAttr(::new (S.Context)
4778 MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
4779 Attr.getAttributeSpellingListIndex()));
4780 D->addAttr(UsedAttr::CreateImplicit(S.Context));
4781 }
4782
handleMipsInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)4783 static void handleMipsInterruptAttr(Sema &S, Decl *D,
4784 const AttributeList &Attr) {
4785 // Only one optional argument permitted.
4786 if (Attr.getNumArgs() > 1) {
4787 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
4788 << Attr.getName() << 1;
4789 return;
4790 }
4791
4792 StringRef Str;
4793 SourceLocation ArgLoc;
4794
4795 if (Attr.getNumArgs() == 0)
4796 Str = "";
4797 else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
4798 return;
4799
4800 // Semantic checks for a function with the 'interrupt' attribute for MIPS:
4801 // a) Must be a function.
4802 // b) Must have no parameters.
4803 // c) Must have the 'void' return type.
4804 // d) Cannot have the 'mips16' attribute, as that instruction set
4805 // lacks the 'eret' instruction.
4806 // e) The attribute itself must either have no argument or one of the
4807 // valid interrupt types, see [MipsInterruptDocs].
4808
4809 if (!isFunctionOrMethod(D)) {
4810 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
4811 << "'interrupt'" << ExpectedFunctionOrMethod;
4812 return;
4813 }
4814
4815 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
4816 S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
4817 << 0;
4818 return;
4819 }
4820
4821 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
4822 S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
4823 << 1;
4824 return;
4825 }
4826
4827 if (checkAttrMutualExclusion<Mips16Attr>(S, D, Attr.getRange(),
4828 Attr.getName()))
4829 return;
4830
4831 MipsInterruptAttr::InterruptType Kind;
4832 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
4833 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
4834 << Attr.getName() << "'" + std::string(Str) + "'";
4835 return;
4836 }
4837
4838 D->addAttr(::new (S.Context) MipsInterruptAttr(
4839 Attr.getLoc(), S.Context, Kind, Attr.getAttributeSpellingListIndex()));
4840 }
4841
handleAnyX86InterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)4842 static void handleAnyX86InterruptAttr(Sema &S, Decl *D,
4843 const AttributeList &Attr) {
4844 // Semantic checks for a function with the 'interrupt' attribute.
4845 // a) Must be a function.
4846 // b) Must have the 'void' return type.
4847 // c) Must take 1 or 2 arguments.
4848 // d) The 1st argument must be a pointer.
4849 // e) The 2nd argument (if any) must be an unsigned integer.
4850 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
4851 CXXMethodDecl::isStaticOverloadedOperator(
4852 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
4853 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4854 << Attr.getName() << ExpectedFunctionWithProtoType;
4855 return;
4856 }
4857 // Interrupt handler must have void return type.
4858 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
4859 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
4860 diag::err_anyx86_interrupt_attribute)
4861 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
4862 ? 0
4863 : 1)
4864 << 0;
4865 return;
4866 }
4867 // Interrupt handler must have 1 or 2 parameters.
4868 unsigned NumParams = getFunctionOrMethodNumParams(D);
4869 if (NumParams < 1 || NumParams > 2) {
4870 S.Diag(D->getLocStart(), diag::err_anyx86_interrupt_attribute)
4871 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
4872 ? 0
4873 : 1)
4874 << 1;
4875 return;
4876 }
4877 // The first argument must be a pointer.
4878 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
4879 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
4880 diag::err_anyx86_interrupt_attribute)
4881 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
4882 ? 0
4883 : 1)
4884 << 2;
4885 return;
4886 }
4887 // The second argument, if present, must be an unsigned integer.
4888 unsigned TypeSize =
4889 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
4890 ? 64
4891 : 32;
4892 if (NumParams == 2 &&
4893 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
4894 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
4895 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
4896 diag::err_anyx86_interrupt_attribute)
4897 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
4898 ? 0
4899 : 1)
4900 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
4901 return;
4902 }
4903 D->addAttr(::new (S.Context) AnyX86InterruptAttr(
4904 Attr.getLoc(), S.Context, Attr.getAttributeSpellingListIndex()));
4905 D->addAttr(UsedAttr::CreateImplicit(S.Context));
4906 }
4907
handleInterruptAttr(Sema & S,Decl * D,const AttributeList & Attr)4908 static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4909 // Dispatch the interrupt attribute based on the current target.
4910 switch (S.Context.getTargetInfo().getTriple().getArch()) {
4911 case llvm::Triple::msp430:
4912 handleMSP430InterruptAttr(S, D, Attr);
4913 break;
4914 case llvm::Triple::mipsel:
4915 case llvm::Triple::mips:
4916 handleMipsInterruptAttr(S, D, Attr);
4917 break;
4918 case llvm::Triple::x86:
4919 case llvm::Triple::x86_64:
4920 handleAnyX86InterruptAttr(S, D, Attr);
4921 break;
4922 default:
4923 handleARMInterruptAttr(S, D, Attr);
4924 break;
4925 }
4926 }
4927
handleAMDGPUNumVGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)4928 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
4929 const AttributeList &Attr) {
4930 uint32_t NumRegs;
4931 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4932 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
4933 return;
4934
4935 D->addAttr(::new (S.Context)
4936 AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
4937 NumRegs,
4938 Attr.getAttributeSpellingListIndex()));
4939 }
4940
handleAMDGPUNumSGPRAttr(Sema & S,Decl * D,const AttributeList & Attr)4941 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
4942 const AttributeList &Attr) {
4943 uint32_t NumRegs;
4944 Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4945 if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
4946 return;
4947
4948 D->addAttr(::new (S.Context)
4949 AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
4950 NumRegs,
4951 Attr.getAttributeSpellingListIndex()));
4952 }
4953
handleX86ForceAlignArgPointerAttr(Sema & S,Decl * D,const AttributeList & Attr)4954 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
4955 const AttributeList& Attr) {
4956 // If we try to apply it to a function pointer, don't warn, but don't
4957 // do anything, either. It doesn't matter anyway, because there's nothing
4958 // special about calling a force_align_arg_pointer function.
4959 ValueDecl *VD = dyn_cast<ValueDecl>(D);
4960 if (VD && VD->getType()->isFunctionPointerType())
4961 return;
4962 // Also don't warn on function pointer typedefs.
4963 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
4964 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
4965 TD->getUnderlyingType()->isFunctionType()))
4966 return;
4967 // Attribute can only be applied to function types.
4968 if (!isa<FunctionDecl>(D)) {
4969 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4970 << Attr.getName() << /* function */0;
4971 return;
4972 }
4973
4974 D->addAttr(::new (S.Context)
4975 X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
4976 Attr.getAttributeSpellingListIndex()));
4977 }
4978
handleLayoutVersion(Sema & S,Decl * D,const AttributeList & Attr)4979 static void handleLayoutVersion(Sema &S, Decl *D, const AttributeList &Attr) {
4980 uint32_t Version;
4981 Expr *VersionExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4982 if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), Version))
4983 return;
4984
4985 // TODO: Investigate what happens with the next major version of MSVC.
4986 if (Version != LangOptions::MSVC2015) {
4987 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
4988 << Attr.getName() << Version << VersionExpr->getSourceRange();
4989 return;
4990 }
4991
4992 D->addAttr(::new (S.Context)
4993 LayoutVersionAttr(Attr.getRange(), S.Context, Version,
4994 Attr.getAttributeSpellingListIndex()));
4995 }
4996
mergeDLLImportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)4997 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
4998 unsigned AttrSpellingListIndex) {
4999 if (D->hasAttr<DLLExportAttr>()) {
5000 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
5001 return nullptr;
5002 }
5003
5004 if (D->hasAttr<DLLImportAttr>())
5005 return nullptr;
5006
5007 return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
5008 }
5009
mergeDLLExportAttr(Decl * D,SourceRange Range,unsigned AttrSpellingListIndex)5010 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
5011 unsigned AttrSpellingListIndex) {
5012 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
5013 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
5014 D->dropAttr<DLLImportAttr>();
5015 }
5016
5017 if (D->hasAttr<DLLExportAttr>())
5018 return nullptr;
5019
5020 return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
5021 }
5022
handleDLLAttr(Sema & S,Decl * D,const AttributeList & A)5023 static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
5024 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
5025 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5026 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
5027 << A.getName();
5028 return;
5029 }
5030
5031 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
5032 if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
5033 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5034 // MinGW doesn't allow dllimport on inline functions.
5035 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
5036 << A.getName();
5037 return;
5038 }
5039 }
5040
5041 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
5042 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5043 MD->getParent()->isLambda()) {
5044 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A.getName();
5045 return;
5046 }
5047 }
5048
5049 unsigned Index = A.getAttributeSpellingListIndex();
5050 Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
5051 ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
5052 : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
5053 if (NewAttr)
5054 D->addAttr(NewAttr);
5055 }
5056
5057 MSInheritanceAttr *
mergeMSInheritanceAttr(Decl * D,SourceRange Range,bool BestCase,unsigned AttrSpellingListIndex,MSInheritanceAttr::Spelling SemanticSpelling)5058 Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
5059 unsigned AttrSpellingListIndex,
5060 MSInheritanceAttr::Spelling SemanticSpelling) {
5061 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
5062 if (IA->getSemanticSpelling() == SemanticSpelling)
5063 return nullptr;
5064 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
5065 << 1 /*previous declaration*/;
5066 Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
5067 D->dropAttr<MSInheritanceAttr>();
5068 }
5069
5070 CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
5071 if (RD->hasDefinition()) {
5072 if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
5073 SemanticSpelling)) {
5074 return nullptr;
5075 }
5076 } else {
5077 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
5078 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
5079 << 1 /*partial specialization*/;
5080 return nullptr;
5081 }
5082 if (RD->getDescribedClassTemplate()) {
5083 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
5084 << 0 /*primary template*/;
5085 return nullptr;
5086 }
5087 }
5088
5089 return ::new (Context)
5090 MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
5091 }
5092
handleCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5093 static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
5094 // The capability attributes take a single string parameter for the name of
5095 // the capability they represent. The lockable attribute does not take any
5096 // parameters. However, semantically, both attributes represent the same
5097 // concept, and so they use the same semantic attribute. Eventually, the
5098 // lockable attribute will be removed.
5099 //
5100 // For backward compatibility, any capability which has no specified string
5101 // literal will be considered a "mutex."
5102 StringRef N("mutex");
5103 SourceLocation LiteralLoc;
5104 if (Attr.getKind() == AttributeList::AT_Capability &&
5105 !S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
5106 return;
5107
5108 // Currently, there are only two names allowed for a capability: role and
5109 // mutex (case insensitive). Diagnose other capability names.
5110 if (!N.equals_lower("mutex") && !N.equals_lower("role"))
5111 S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
5112
5113 D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
5114 Attr.getAttributeSpellingListIndex()));
5115 }
5116
handleAssertCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5117 static void handleAssertCapabilityAttr(Sema &S, Decl *D,
5118 const AttributeList &Attr) {
5119 D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
5120 Attr.getArgAsExpr(0),
5121 Attr.getAttributeSpellingListIndex()));
5122 }
5123
handleAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5124 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
5125 const AttributeList &Attr) {
5126 SmallVector<Expr*, 1> Args;
5127 if (!checkLockFunAttrCommon(S, D, Attr, Args))
5128 return;
5129
5130 D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
5131 S.Context,
5132 Args.data(), Args.size(),
5133 Attr.getAttributeSpellingListIndex()));
5134 }
5135
handleTryAcquireCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5136 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
5137 const AttributeList &Attr) {
5138 SmallVector<Expr*, 2> Args;
5139 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
5140 return;
5141
5142 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
5143 S.Context,
5144 Attr.getArgAsExpr(0),
5145 Args.data(),
5146 Args.size(),
5147 Attr.getAttributeSpellingListIndex()));
5148 }
5149
handleReleaseCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5150 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
5151 const AttributeList &Attr) {
5152 // Check that all arguments are lockable objects.
5153 SmallVector<Expr *, 1> Args;
5154 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
5155
5156 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
5157 Attr.getRange(), S.Context, Args.data(), Args.size(),
5158 Attr.getAttributeSpellingListIndex()));
5159 }
5160
handleRequiresCapabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)5161 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
5162 const AttributeList &Attr) {
5163 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
5164 return;
5165
5166 // check that all arguments are lockable objects
5167 SmallVector<Expr*, 1> Args;
5168 checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
5169 if (Args.empty())
5170 return;
5171
5172 RequiresCapabilityAttr *RCA = ::new (S.Context)
5173 RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
5174 Args.size(), Attr.getAttributeSpellingListIndex());
5175
5176 D->addAttr(RCA);
5177 }
5178
handleDeprecatedAttr(Sema & S,Decl * D,const AttributeList & Attr)5179 static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
5180 if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
5181 if (NSD->isAnonymousNamespace()) {
5182 S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
5183 // Do not want to attach the attribute to the namespace because that will
5184 // cause confusing diagnostic reports for uses of declarations within the
5185 // namespace.
5186 return;
5187 }
5188 }
5189
5190 // Handle the cases where the attribute has a text message.
5191 StringRef Str, Replacement;
5192 if (Attr.isArgExpr(0) && Attr.getArgAsExpr(0) &&
5193 !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
5194 return;
5195
5196 // Only support a single optional message for Declspec and CXX11.
5197 if (Attr.isDeclspecAttribute() || Attr.isCXX11Attribute())
5198 checkAttributeAtMostNumArgs(S, Attr, 1);
5199 else if (Attr.isArgExpr(1) && Attr.getArgAsExpr(1) &&
5200 !S.checkStringLiteralArgumentAttr(Attr, 1, Replacement))
5201 return;
5202
5203 if (!S.getLangOpts().CPlusPlus14)
5204 if (Attr.isCXX11Attribute() &&
5205 !(Attr.hasScope() && Attr.getScopeName()->isStr("gnu")))
5206 S.Diag(Attr.getLoc(), diag::ext_cxx14_attr) << Attr.getName();
5207
5208 D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str,
5209 Replacement,
5210 Attr.getAttributeSpellingListIndex()));
5211 }
5212
handleNoSanitizeAttr(Sema & S,Decl * D,const AttributeList & Attr)5213 static void handleNoSanitizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
5214 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
5215 return;
5216
5217 std::vector<StringRef> Sanitizers;
5218
5219 for (unsigned I = 0, E = Attr.getNumArgs(); I != E; ++I) {
5220 StringRef SanitizerName;
5221 SourceLocation LiteralLoc;
5222
5223 if (!S.checkStringLiteralArgumentAttr(Attr, I, SanitizerName, &LiteralLoc))
5224 return;
5225
5226 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0)
5227 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
5228
5229 Sanitizers.push_back(SanitizerName);
5230 }
5231
5232 D->addAttr(::new (S.Context) NoSanitizeAttr(
5233 Attr.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(),
5234 Attr.getAttributeSpellingListIndex()));
5235 }
5236
handleNoSanitizeSpecificAttr(Sema & S,Decl * D,const AttributeList & Attr)5237 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
5238 const AttributeList &Attr) {
5239 StringRef AttrName = Attr.getName()->getName();
5240 normalizeName(AttrName);
5241 StringRef SanitizerName =
5242 llvm::StringSwitch<StringRef>(AttrName)
5243 .Case("no_address_safety_analysis", "address")
5244 .Case("no_sanitize_address", "address")
5245 .Case("no_sanitize_thread", "thread")
5246 .Case("no_sanitize_memory", "memory");
5247 D->addAttr(::new (S.Context)
5248 NoSanitizeAttr(Attr.getRange(), S.Context, &SanitizerName, 1,
5249 Attr.getAttributeSpellingListIndex()));
5250 }
5251
handleInternalLinkageAttr(Sema & S,Decl * D,const AttributeList & Attr)5252 static void handleInternalLinkageAttr(Sema &S, Decl *D,
5253 const AttributeList &Attr) {
5254 if (InternalLinkageAttr *Internal =
5255 S.mergeInternalLinkageAttr(D, Attr.getRange(), Attr.getName(),
5256 Attr.getAttributeSpellingListIndex()))
5257 D->addAttr(Internal);
5258 }
5259
handleOpenCLNoSVMAttr(Sema & S,Decl * D,const AttributeList & Attr)5260 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const AttributeList &Attr) {
5261 if (S.LangOpts.OpenCLVersion != 200)
5262 S.Diag(Attr.getLoc(), diag::err_attribute_requires_opencl_version)
5263 << Attr.getName() << "2.0" << 0;
5264 else
5265 S.Diag(Attr.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
5266 << Attr.getName() << "2.0";
5267 }
5268
5269 /// Handles semantic checking for features that are common to all attributes,
5270 /// such as checking whether a parameter was properly specified, or the correct
5271 /// number of arguments were passed, etc.
handleCommonAttributeFeatures(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)5272 static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
5273 const AttributeList &Attr) {
5274 // Several attributes carry different semantics than the parsing requires, so
5275 // those are opted out of the common handling.
5276 //
5277 // We also bail on unknown and ignored attributes because those are handled
5278 // as part of the target-specific handling logic.
5279 if (Attr.hasCustomParsing() ||
5280 Attr.getKind() == AttributeList::UnknownAttribute)
5281 return false;
5282
5283 // Check whether the attribute requires specific language extensions to be
5284 // enabled.
5285 if (!Attr.diagnoseLangOpts(S))
5286 return true;
5287
5288 if (Attr.getMinArgs() == Attr.getMaxArgs()) {
5289 // If there are no optional arguments, then checking for the argument count
5290 // is trivial.
5291 if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
5292 return true;
5293 } else {
5294 // There are optional arguments, so checking is slightly more involved.
5295 if (Attr.getMinArgs() &&
5296 !checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
5297 return true;
5298 else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
5299 !checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
5300 return true;
5301 }
5302
5303 // Check whether the attribute appertains to the given subject.
5304 if (!Attr.diagnoseAppertainsTo(S, D))
5305 return true;
5306
5307 return false;
5308 }
5309
handleOpenCLAccessAttr(Sema & S,Decl * D,const AttributeList & Attr)5310 static void handleOpenCLAccessAttr(Sema &S, Decl *D,
5311 const AttributeList &Attr) {
5312 if (D->isInvalidDecl())
5313 return;
5314
5315 // Check if there is only one access qualifier.
5316 if (D->hasAttr<OpenCLAccessAttr>()) {
5317 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers)
5318 << D->getSourceRange();
5319 D->setInvalidDecl(true);
5320 return;
5321 }
5322
5323 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
5324 // image object can be read and written.
5325 // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
5326 // object. Using the read_write (or __read_write) qualifier with the pipe
5327 // qualifier is a compilation error.
5328 if (const ParmVarDecl *PDecl = dyn_cast<ParmVarDecl>(D)) {
5329 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
5330 if (Attr.getName()->getName().find("read_write") != StringRef::npos) {
5331 if (S.getLangOpts().OpenCLVersion < 200 || DeclTy->isPipeType()) {
5332 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_read_write)
5333 << Attr.getName() << PDecl->getType() << DeclTy->isImageType();
5334 D->setInvalidDecl(true);
5335 return;
5336 }
5337 }
5338 }
5339
5340 D->addAttr(::new (S.Context) OpenCLAccessAttr(
5341 Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
5342 }
5343
5344 //===----------------------------------------------------------------------===//
5345 // Top Level Sema Entry Points
5346 //===----------------------------------------------------------------------===//
5347
5348 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
5349 /// the attribute applies to decls. If the attribute is a type attribute, just
5350 /// silently ignore it if a GNU attribute.
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr,bool IncludeCXX11Attributes)5351 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
5352 const AttributeList &Attr,
5353 bool IncludeCXX11Attributes) {
5354 if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
5355 return;
5356
5357 // Ignore C++11 attributes on declarator chunks: they appertain to the type
5358 // instead.
5359 if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
5360 return;
5361
5362 // Unknown attributes are automatically warned on. Target-specific attributes
5363 // which do not apply to the current target architecture are treated as
5364 // though they were unknown attributes.
5365 if (Attr.getKind() == AttributeList::UnknownAttribute ||
5366 !Attr.existsInTarget(S.Context.getTargetInfo())) {
5367 S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
5368 ? diag::warn_unhandled_ms_attribute_ignored
5369 : diag::warn_unknown_attribute_ignored)
5370 << Attr.getName();
5371 return;
5372 }
5373
5374 if (handleCommonAttributeFeatures(S, scope, D, Attr))
5375 return;
5376
5377 switch (Attr.getKind()) {
5378 default:
5379 if (!Attr.isStmtAttr()) {
5380 // Type attributes are handled elsewhere; silently move on.
5381 assert(Attr.isTypeAttr() && "Non-type attribute not handled");
5382 break;
5383 }
5384 S.Diag(Attr.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
5385 << Attr.getName() << D->getLocation();
5386 break;
5387 case AttributeList::AT_Interrupt:
5388 handleInterruptAttr(S, D, Attr);
5389 break;
5390 case AttributeList::AT_X86ForceAlignArgPointer:
5391 handleX86ForceAlignArgPointerAttr(S, D, Attr);
5392 break;
5393 case AttributeList::AT_DLLExport:
5394 case AttributeList::AT_DLLImport:
5395 handleDLLAttr(S, D, Attr);
5396 break;
5397 case AttributeList::AT_Mips16:
5398 handleSimpleAttributeWithExclusions<Mips16Attr, MipsInterruptAttr>(S, D,
5399 Attr);
5400 break;
5401 case AttributeList::AT_NoMips16:
5402 handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
5403 break;
5404 case AttributeList::AT_AMDGPUNumVGPR:
5405 handleAMDGPUNumVGPRAttr(S, D, Attr);
5406 break;
5407 case AttributeList::AT_AMDGPUNumSGPR:
5408 handleAMDGPUNumSGPRAttr(S, D, Attr);
5409 break;
5410 case AttributeList::AT_IBAction:
5411 handleSimpleAttribute<IBActionAttr>(S, D, Attr);
5412 break;
5413 case AttributeList::AT_IBOutlet:
5414 handleIBOutlet(S, D, Attr);
5415 break;
5416 case AttributeList::AT_IBOutletCollection:
5417 handleIBOutletCollection(S, D, Attr);
5418 break;
5419 case AttributeList::AT_IFunc:
5420 handleIFuncAttr(S, D, Attr);
5421 break;
5422 case AttributeList::AT_Alias:
5423 handleAliasAttr(S, D, Attr);
5424 break;
5425 case AttributeList::AT_Aligned:
5426 handleAlignedAttr(S, D, Attr);
5427 break;
5428 case AttributeList::AT_AlignValue:
5429 handleAlignValueAttr(S, D, Attr);
5430 break;
5431 case AttributeList::AT_AlwaysInline:
5432 handleAlwaysInlineAttr(S, D, Attr);
5433 break;
5434 case AttributeList::AT_AnalyzerNoReturn:
5435 handleAnalyzerNoReturnAttr(S, D, Attr);
5436 break;
5437 case AttributeList::AT_TLSModel:
5438 handleTLSModelAttr(S, D, Attr);
5439 break;
5440 case AttributeList::AT_Annotate:
5441 handleAnnotateAttr(S, D, Attr);
5442 break;
5443 case AttributeList::AT_Availability:
5444 handleAvailabilityAttr(S, D, Attr);
5445 break;
5446 case AttributeList::AT_CarriesDependency:
5447 handleDependencyAttr(S, scope, D, Attr);
5448 break;
5449 case AttributeList::AT_Common:
5450 handleCommonAttr(S, D, Attr);
5451 break;
5452 case AttributeList::AT_CUDAConstant:
5453 handleSimpleAttributeWithExclusions<CUDAConstantAttr, CUDASharedAttr>(S, D,
5454 Attr);
5455 break;
5456 case AttributeList::AT_PassObjectSize:
5457 handlePassObjectSizeAttr(S, D, Attr);
5458 break;
5459 case AttributeList::AT_Constructor:
5460 handleConstructorAttr(S, D, Attr);
5461 break;
5462 case AttributeList::AT_CXX11NoReturn:
5463 handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
5464 break;
5465 case AttributeList::AT_Deprecated:
5466 handleDeprecatedAttr(S, D, Attr);
5467 break;
5468 case AttributeList::AT_Destructor:
5469 handleDestructorAttr(S, D, Attr);
5470 break;
5471 case AttributeList::AT_EnableIf:
5472 handleEnableIfAttr(S, D, Attr);
5473 break;
5474 case AttributeList::AT_ExtVectorType:
5475 handleExtVectorTypeAttr(S, scope, D, Attr);
5476 break;
5477 case AttributeList::AT_MinSize:
5478 handleMinSizeAttr(S, D, Attr);
5479 break;
5480 case AttributeList::AT_OptimizeNone:
5481 handleOptimizeNoneAttr(S, D, Attr);
5482 break;
5483 case AttributeList::AT_FlagEnum:
5484 handleSimpleAttribute<FlagEnumAttr>(S, D, Attr);
5485 break;
5486 case AttributeList::AT_Flatten:
5487 handleSimpleAttribute<FlattenAttr>(S, D, Attr);
5488 break;
5489 case AttributeList::AT_Format:
5490 handleFormatAttr(S, D, Attr);
5491 break;
5492 case AttributeList::AT_FormatArg:
5493 handleFormatArgAttr(S, D, Attr);
5494 break;
5495 case AttributeList::AT_CUDAGlobal:
5496 handleGlobalAttr(S, D, Attr);
5497 break;
5498 case AttributeList::AT_CUDADevice:
5499 handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
5500 Attr);
5501 break;
5502 case AttributeList::AT_CUDAHost:
5503 handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D,
5504 Attr);
5505 break;
5506 case AttributeList::AT_GNUInline:
5507 handleGNUInlineAttr(S, D, Attr);
5508 break;
5509 case AttributeList::AT_CUDALaunchBounds:
5510 handleLaunchBoundsAttr(S, D, Attr);
5511 break;
5512 case AttributeList::AT_Restrict:
5513 handleRestrictAttr(S, D, Attr);
5514 break;
5515 case AttributeList::AT_MayAlias:
5516 handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
5517 break;
5518 case AttributeList::AT_Mode:
5519 handleModeAttr(S, D, Attr);
5520 break;
5521 case AttributeList::AT_NoAlias:
5522 handleSimpleAttribute<NoAliasAttr>(S, D, Attr);
5523 break;
5524 case AttributeList::AT_NoCommon:
5525 handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
5526 break;
5527 case AttributeList::AT_NoSplitStack:
5528 handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
5529 break;
5530 case AttributeList::AT_NonNull:
5531 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
5532 handleNonNullAttrParameter(S, PVD, Attr);
5533 else
5534 handleNonNullAttr(S, D, Attr);
5535 break;
5536 case AttributeList::AT_ReturnsNonNull:
5537 handleReturnsNonNullAttr(S, D, Attr);
5538 break;
5539 case AttributeList::AT_AssumeAligned:
5540 handleAssumeAlignedAttr(S, D, Attr);
5541 break;
5542 case AttributeList::AT_Overloadable:
5543 handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
5544 break;
5545 case AttributeList::AT_Ownership:
5546 handleOwnershipAttr(S, D, Attr);
5547 break;
5548 case AttributeList::AT_Cold:
5549 handleColdAttr(S, D, Attr);
5550 break;
5551 case AttributeList::AT_Hot:
5552 handleHotAttr(S, D, Attr);
5553 break;
5554 case AttributeList::AT_Naked:
5555 handleNakedAttr(S, D, Attr);
5556 break;
5557 case AttributeList::AT_NoReturn:
5558 handleNoReturnAttr(S, D, Attr);
5559 break;
5560 case AttributeList::AT_NoThrow:
5561 handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
5562 break;
5563 case AttributeList::AT_CUDAShared:
5564 handleSimpleAttributeWithExclusions<CUDASharedAttr, CUDAConstantAttr>(S, D,
5565 Attr);
5566 break;
5567 case AttributeList::AT_VecReturn:
5568 handleVecReturnAttr(S, D, Attr);
5569 break;
5570 case AttributeList::AT_ObjCOwnership:
5571 handleObjCOwnershipAttr(S, D, Attr);
5572 break;
5573 case AttributeList::AT_ObjCPreciseLifetime:
5574 handleObjCPreciseLifetimeAttr(S, D, Attr);
5575 break;
5576 case AttributeList::AT_ObjCReturnsInnerPointer:
5577 handleObjCReturnsInnerPointerAttr(S, D, Attr);
5578 break;
5579 case AttributeList::AT_ObjCRequiresSuper:
5580 handleObjCRequiresSuperAttr(S, D, Attr);
5581 break;
5582 case AttributeList::AT_ObjCBridge:
5583 handleObjCBridgeAttr(S, scope, D, Attr);
5584 break;
5585 case AttributeList::AT_ObjCBridgeMutable:
5586 handleObjCBridgeMutableAttr(S, scope, D, Attr);
5587 break;
5588 case AttributeList::AT_ObjCBridgeRelated:
5589 handleObjCBridgeRelatedAttr(S, scope, D, Attr);
5590 break;
5591 case AttributeList::AT_ObjCDesignatedInitializer:
5592 handleObjCDesignatedInitializer(S, D, Attr);
5593 break;
5594 case AttributeList::AT_ObjCRuntimeName:
5595 handleObjCRuntimeName(S, D, Attr);
5596 break;
5597 case AttributeList::AT_ObjCRuntimeVisible:
5598 handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, Attr);
5599 break;
5600 case AttributeList::AT_ObjCBoxable:
5601 handleObjCBoxable(S, D, Attr);
5602 break;
5603 case AttributeList::AT_CFAuditedTransfer:
5604 handleCFAuditedTransferAttr(S, D, Attr);
5605 break;
5606 case AttributeList::AT_CFUnknownTransfer:
5607 handleCFUnknownTransferAttr(S, D, Attr);
5608 break;
5609 case AttributeList::AT_CFConsumed:
5610 case AttributeList::AT_NSConsumed:
5611 handleNSConsumedAttr(S, D, Attr);
5612 break;
5613 case AttributeList::AT_NSConsumesSelf:
5614 handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
5615 break;
5616 case AttributeList::AT_NSReturnsAutoreleased:
5617 case AttributeList::AT_NSReturnsNotRetained:
5618 case AttributeList::AT_CFReturnsNotRetained:
5619 case AttributeList::AT_NSReturnsRetained:
5620 case AttributeList::AT_CFReturnsRetained:
5621 handleNSReturnsRetainedAttr(S, D, Attr);
5622 break;
5623 case AttributeList::AT_WorkGroupSizeHint:
5624 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
5625 break;
5626 case AttributeList::AT_ReqdWorkGroupSize:
5627 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
5628 break;
5629 case AttributeList::AT_VecTypeHint:
5630 handleVecTypeHint(S, D, Attr);
5631 break;
5632 case AttributeList::AT_InitPriority:
5633 handleInitPriorityAttr(S, D, Attr);
5634 break;
5635 case AttributeList::AT_Packed:
5636 handlePackedAttr(S, D, Attr);
5637 break;
5638 case AttributeList::AT_Section:
5639 handleSectionAttr(S, D, Attr);
5640 break;
5641 case AttributeList::AT_Target:
5642 handleTargetAttr(S, D, Attr);
5643 break;
5644 case AttributeList::AT_Unavailable:
5645 handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
5646 break;
5647 case AttributeList::AT_ArcWeakrefUnavailable:
5648 handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
5649 break;
5650 case AttributeList::AT_ObjCRootClass:
5651 handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
5652 break;
5653 case AttributeList::AT_ObjCExplicitProtocolImpl:
5654 handleObjCSuppresProtocolAttr(S, D, Attr);
5655 break;
5656 case AttributeList::AT_ObjCRequiresPropertyDefs:
5657 handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
5658 break;
5659 case AttributeList::AT_Unused:
5660 handleUnusedAttr(S, D, Attr);
5661 break;
5662 case AttributeList::AT_ReturnsTwice:
5663 handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
5664 break;
5665 case AttributeList::AT_NotTailCalled:
5666 handleNotTailCalledAttr(S, D, Attr);
5667 break;
5668 case AttributeList::AT_DisableTailCalls:
5669 handleDisableTailCallsAttr(S, D, Attr);
5670 break;
5671 case AttributeList::AT_Used:
5672 handleUsedAttr(S, D, Attr);
5673 break;
5674 case AttributeList::AT_Visibility:
5675 handleVisibilityAttr(S, D, Attr, false);
5676 break;
5677 case AttributeList::AT_TypeVisibility:
5678 handleVisibilityAttr(S, D, Attr, true);
5679 break;
5680 case AttributeList::AT_WarnUnused:
5681 handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
5682 break;
5683 case AttributeList::AT_WarnUnusedResult:
5684 handleWarnUnusedResult(S, D, Attr);
5685 break;
5686 case AttributeList::AT_Weak:
5687 handleSimpleAttribute<WeakAttr>(S, D, Attr);
5688 break;
5689 case AttributeList::AT_WeakRef:
5690 handleWeakRefAttr(S, D, Attr);
5691 break;
5692 case AttributeList::AT_WeakImport:
5693 handleWeakImportAttr(S, D, Attr);
5694 break;
5695 case AttributeList::AT_TransparentUnion:
5696 handleTransparentUnionAttr(S, D, Attr);
5697 break;
5698 case AttributeList::AT_ObjCException:
5699 handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
5700 break;
5701 case AttributeList::AT_ObjCMethodFamily:
5702 handleObjCMethodFamilyAttr(S, D, Attr);
5703 break;
5704 case AttributeList::AT_ObjCNSObject:
5705 handleObjCNSObject(S, D, Attr);
5706 break;
5707 case AttributeList::AT_ObjCIndependentClass:
5708 handleObjCIndependentClass(S, D, Attr);
5709 break;
5710 case AttributeList::AT_Blocks:
5711 handleBlocksAttr(S, D, Attr);
5712 break;
5713 case AttributeList::AT_Sentinel:
5714 handleSentinelAttr(S, D, Attr);
5715 break;
5716 case AttributeList::AT_Const:
5717 handleSimpleAttribute<ConstAttr>(S, D, Attr);
5718 break;
5719 case AttributeList::AT_Pure:
5720 handleSimpleAttribute<PureAttr>(S, D, Attr);
5721 break;
5722 case AttributeList::AT_Cleanup:
5723 handleCleanupAttr(S, D, Attr);
5724 break;
5725 case AttributeList::AT_NoDebug:
5726 handleNoDebugAttr(S, D, Attr);
5727 break;
5728 case AttributeList::AT_NoDuplicate:
5729 handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
5730 break;
5731 case AttributeList::AT_NoInline:
5732 handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
5733 break;
5734 case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
5735 handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
5736 break;
5737 case AttributeList::AT_StdCall:
5738 case AttributeList::AT_CDecl:
5739 case AttributeList::AT_FastCall:
5740 case AttributeList::AT_ThisCall:
5741 case AttributeList::AT_Pascal:
5742 case AttributeList::AT_SwiftCall:
5743 case AttributeList::AT_VectorCall:
5744 case AttributeList::AT_MSABI:
5745 case AttributeList::AT_SysVABI:
5746 case AttributeList::AT_Pcs:
5747 case AttributeList::AT_IntelOclBicc:
5748 case AttributeList::AT_PreserveMost:
5749 case AttributeList::AT_PreserveAll:
5750 handleCallConvAttr(S, D, Attr);
5751 break;
5752 case AttributeList::AT_OpenCLKernel:
5753 handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
5754 break;
5755 case AttributeList::AT_OpenCLAccess:
5756 handleOpenCLAccessAttr(S, D, Attr);
5757 break;
5758 case AttributeList::AT_OpenCLNoSVM:
5759 handleOpenCLNoSVMAttr(S, D, Attr);
5760 break;
5761 case AttributeList::AT_SwiftContext:
5762 handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftContext);
5763 break;
5764 case AttributeList::AT_SwiftErrorResult:
5765 handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftErrorResult);
5766 break;
5767 case AttributeList::AT_SwiftIndirectResult:
5768 handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftIndirectResult);
5769 break;
5770 case AttributeList::AT_InternalLinkage:
5771 handleInternalLinkageAttr(S, D, Attr);
5772 break;
5773 case AttributeList::AT_LTOVisibilityPublic:
5774 handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, Attr);
5775 break;
5776
5777 // Microsoft attributes:
5778 case AttributeList::AT_EmptyBases:
5779 handleSimpleAttribute<EmptyBasesAttr>(S, D, Attr);
5780 break;
5781 case AttributeList::AT_LayoutVersion:
5782 handleLayoutVersion(S, D, Attr);
5783 break;
5784 case AttributeList::AT_MSNoVTable:
5785 handleSimpleAttribute<MSNoVTableAttr>(S, D, Attr);
5786 break;
5787 case AttributeList::AT_MSStruct:
5788 handleSimpleAttribute<MSStructAttr>(S, D, Attr);
5789 break;
5790 case AttributeList::AT_Uuid:
5791 handleUuidAttr(S, D, Attr);
5792 break;
5793 case AttributeList::AT_MSInheritance:
5794 handleMSInheritanceAttr(S, D, Attr);
5795 break;
5796 case AttributeList::AT_SelectAny:
5797 handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
5798 break;
5799 case AttributeList::AT_Thread:
5800 handleDeclspecThreadAttr(S, D, Attr);
5801 break;
5802
5803 case AttributeList::AT_AbiTag:
5804 handleAbiTagAttr(S, D, Attr);
5805 break;
5806
5807 // Thread safety attributes:
5808 case AttributeList::AT_AssertExclusiveLock:
5809 handleAssertExclusiveLockAttr(S, D, Attr);
5810 break;
5811 case AttributeList::AT_AssertSharedLock:
5812 handleAssertSharedLockAttr(S, D, Attr);
5813 break;
5814 case AttributeList::AT_GuardedVar:
5815 handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
5816 break;
5817 case AttributeList::AT_PtGuardedVar:
5818 handlePtGuardedVarAttr(S, D, Attr);
5819 break;
5820 case AttributeList::AT_ScopedLockable:
5821 handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
5822 break;
5823 case AttributeList::AT_NoSanitize:
5824 handleNoSanitizeAttr(S, D, Attr);
5825 break;
5826 case AttributeList::AT_NoSanitizeSpecific:
5827 handleNoSanitizeSpecificAttr(S, D, Attr);
5828 break;
5829 case AttributeList::AT_NoThreadSafetyAnalysis:
5830 handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
5831 break;
5832 case AttributeList::AT_GuardedBy:
5833 handleGuardedByAttr(S, D, Attr);
5834 break;
5835 case AttributeList::AT_PtGuardedBy:
5836 handlePtGuardedByAttr(S, D, Attr);
5837 break;
5838 case AttributeList::AT_ExclusiveTrylockFunction:
5839 handleExclusiveTrylockFunctionAttr(S, D, Attr);
5840 break;
5841 case AttributeList::AT_LockReturned:
5842 handleLockReturnedAttr(S, D, Attr);
5843 break;
5844 case AttributeList::AT_LocksExcluded:
5845 handleLocksExcludedAttr(S, D, Attr);
5846 break;
5847 case AttributeList::AT_SharedTrylockFunction:
5848 handleSharedTrylockFunctionAttr(S, D, Attr);
5849 break;
5850 case AttributeList::AT_AcquiredBefore:
5851 handleAcquiredBeforeAttr(S, D, Attr);
5852 break;
5853 case AttributeList::AT_AcquiredAfter:
5854 handleAcquiredAfterAttr(S, D, Attr);
5855 break;
5856
5857 // Capability analysis attributes.
5858 case AttributeList::AT_Capability:
5859 case AttributeList::AT_Lockable:
5860 handleCapabilityAttr(S, D, Attr);
5861 break;
5862 case AttributeList::AT_RequiresCapability:
5863 handleRequiresCapabilityAttr(S, D, Attr);
5864 break;
5865
5866 case AttributeList::AT_AssertCapability:
5867 handleAssertCapabilityAttr(S, D, Attr);
5868 break;
5869 case AttributeList::AT_AcquireCapability:
5870 handleAcquireCapabilityAttr(S, D, Attr);
5871 break;
5872 case AttributeList::AT_ReleaseCapability:
5873 handleReleaseCapabilityAttr(S, D, Attr);
5874 break;
5875 case AttributeList::AT_TryAcquireCapability:
5876 handleTryAcquireCapabilityAttr(S, D, Attr);
5877 break;
5878
5879 // Consumed analysis attributes.
5880 case AttributeList::AT_Consumable:
5881 handleConsumableAttr(S, D, Attr);
5882 break;
5883 case AttributeList::AT_ConsumableAutoCast:
5884 handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
5885 break;
5886 case AttributeList::AT_ConsumableSetOnRead:
5887 handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
5888 break;
5889 case AttributeList::AT_CallableWhen:
5890 handleCallableWhenAttr(S, D, Attr);
5891 break;
5892 case AttributeList::AT_ParamTypestate:
5893 handleParamTypestateAttr(S, D, Attr);
5894 break;
5895 case AttributeList::AT_ReturnTypestate:
5896 handleReturnTypestateAttr(S, D, Attr);
5897 break;
5898 case AttributeList::AT_SetTypestate:
5899 handleSetTypestateAttr(S, D, Attr);
5900 break;
5901 case AttributeList::AT_TestTypestate:
5902 handleTestTypestateAttr(S, D, Attr);
5903 break;
5904
5905 // Type safety attributes.
5906 case AttributeList::AT_ArgumentWithTypeTag:
5907 handleArgumentWithTypeTagAttr(S, D, Attr);
5908 break;
5909 case AttributeList::AT_TypeTagForDatatype:
5910 handleTypeTagForDatatypeAttr(S, D, Attr);
5911 break;
5912 case AttributeList::AT_RenderScriptKernel:
5913 handleSimpleAttribute<RenderScriptKernelAttr>(S, D, Attr);
5914 break;
5915 // XRay attributes.
5916 case AttributeList::AT_XRayInstrument:
5917 handleSimpleAttribute<XRayInstrumentAttr>(S, D, Attr);
5918 break;
5919 }
5920 }
5921
5922 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
5923 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const AttributeList * AttrList,bool IncludeCXX11Attributes)5924 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
5925 const AttributeList *AttrList,
5926 bool IncludeCXX11Attributes) {
5927 for (const AttributeList* l = AttrList; l; l = l->getNext())
5928 ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
5929
5930 // FIXME: We should be able to handle these cases in TableGen.
5931 // GCC accepts
5932 // static int a9 __attribute__((weakref));
5933 // but that looks really pointless. We reject it.
5934 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
5935 Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
5936 << cast<NamedDecl>(D);
5937 D->dropAttr<WeakRefAttr>();
5938 return;
5939 }
5940
5941 // FIXME: We should be able to handle this in TableGen as well. It would be
5942 // good to have a way to specify "these attributes must appear as a group",
5943 // for these. Additionally, it would be good to have a way to specify "these
5944 // attribute must never appear as a group" for attributes like cold and hot.
5945 if (!D->hasAttr<OpenCLKernelAttr>()) {
5946 // These attributes cannot be applied to a non-kernel function.
5947 if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
5948 // FIXME: This emits a different error message than
5949 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
5950 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
5951 D->setInvalidDecl();
5952 } else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
5953 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
5954 D->setInvalidDecl();
5955 } else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
5956 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
5957 D->setInvalidDecl();
5958 } else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
5959 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
5960 << A << ExpectedKernelFunction;
5961 D->setInvalidDecl();
5962 } else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
5963 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
5964 << A << ExpectedKernelFunction;
5965 D->setInvalidDecl();
5966 }
5967 }
5968 }
5969
5970 // Annotation attributes are the only attributes allowed after an access
5971 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const AttributeList * AttrList)5972 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
5973 const AttributeList *AttrList) {
5974 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5975 if (l->getKind() == AttributeList::AT_Annotate) {
5976 ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
5977 } else {
5978 Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
5979 return true;
5980 }
5981 }
5982
5983 return false;
5984 }
5985
5986 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
5987 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const AttributeList * A)5988 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
5989 for ( ; A; A = A->getNext()) {
5990 // Only warn if the attribute is an unignored, non-type attribute.
5991 if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
5992 if (A->getKind() == AttributeList::IgnoredAttribute) continue;
5993
5994 if (A->getKind() == AttributeList::UnknownAttribute) {
5995 S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
5996 << A->getName() << A->getRange();
5997 } else {
5998 S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
5999 << A->getName() << A->getRange();
6000 }
6001 }
6002 }
6003
6004 /// checkUnusedDeclAttributes - Given a declarator which is not being
6005 /// used to build a declaration, complain about any decl attributes
6006 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)6007 void Sema::checkUnusedDeclAttributes(Declarator &D) {
6008 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
6009 ::checkUnusedDeclAttributes(*this, D.getAttributes());
6010 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
6011 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
6012 }
6013
6014 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
6015 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)6016 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
6017 SourceLocation Loc) {
6018 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
6019 NamedDecl *NewD = nullptr;
6020 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
6021 FunctionDecl *NewFD;
6022 // FIXME: Missing call to CheckFunctionDeclaration().
6023 // FIXME: Mangling?
6024 // FIXME: Is the qualifier info correct?
6025 // FIXME: Is the DeclContext correct?
6026 NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
6027 Loc, Loc, DeclarationName(II),
6028 FD->getType(), FD->getTypeSourceInfo(),
6029 SC_None, false/*isInlineSpecified*/,
6030 FD->hasPrototype(),
6031 false/*isConstexprSpecified*/);
6032 NewD = NewFD;
6033
6034 if (FD->getQualifier())
6035 NewFD->setQualifierInfo(FD->getQualifierLoc());
6036
6037 // Fake up parameter variables; they are declared as if this were
6038 // a typedef.
6039 QualType FDTy = FD->getType();
6040 if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
6041 SmallVector<ParmVarDecl*, 16> Params;
6042 for (const auto &AI : FT->param_types()) {
6043 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
6044 Param->setScopeInfo(0, Params.size());
6045 Params.push_back(Param);
6046 }
6047 NewFD->setParams(Params);
6048 }
6049 } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
6050 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
6051 VD->getInnerLocStart(), VD->getLocation(), II,
6052 VD->getType(), VD->getTypeSourceInfo(),
6053 VD->getStorageClass());
6054 if (VD->getQualifier()) {
6055 VarDecl *NewVD = cast<VarDecl>(NewD);
6056 NewVD->setQualifierInfo(VD->getQualifierLoc());
6057 }
6058 }
6059 return NewD;
6060 }
6061
6062 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
6063 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)6064 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
6065 if (W.getUsed()) return; // only do this once
6066 W.setUsed(true);
6067 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
6068 IdentifierInfo *NDId = ND->getIdentifier();
6069 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
6070 NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
6071 W.getLocation()));
6072 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
6073 WeakTopLevelDecl.push_back(NewD);
6074 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
6075 // to insert Decl at TU scope, sorry.
6076 DeclContext *SavedContext = CurContext;
6077 CurContext = Context.getTranslationUnitDecl();
6078 NewD->setDeclContext(CurContext);
6079 NewD->setLexicalDeclContext(CurContext);
6080 PushOnScopeChains(NewD, S);
6081 CurContext = SavedContext;
6082 } else { // just add weak to existing
6083 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
6084 }
6085 }
6086
ProcessPragmaWeak(Scope * S,Decl * D)6087 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
6088 // It's valid to "forward-declare" #pragma weak, in which case we
6089 // have to do this.
6090 LoadExternalWeakUndeclaredIdentifiers();
6091 if (!WeakUndeclaredIdentifiers.empty()) {
6092 NamedDecl *ND = nullptr;
6093 if (VarDecl *VD = dyn_cast<VarDecl>(D))
6094 if (VD->isExternC())
6095 ND = VD;
6096 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6097 if (FD->isExternC())
6098 ND = FD;
6099 if (ND) {
6100 if (IdentifierInfo *Id = ND->getIdentifier()) {
6101 auto I = WeakUndeclaredIdentifiers.find(Id);
6102 if (I != WeakUndeclaredIdentifiers.end()) {
6103 WeakInfo W = I->second;
6104 DeclApplyPragmaWeak(S, ND, W);
6105 WeakUndeclaredIdentifiers[Id] = W;
6106 }
6107 }
6108 }
6109 }
6110 }
6111
6112 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
6113 /// it, apply them to D. This is a bit tricky because PD can have attributes
6114 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD)6115 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
6116 // Apply decl attributes from the DeclSpec if present.
6117 if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
6118 ProcessDeclAttributeList(S, D, Attrs);
6119
6120 // Walk the declarator structure, applying decl attributes that were in a type
6121 // position to the decl itself. This handles cases like:
6122 // int *__attr__(x)** D;
6123 // when X is a decl attribute.
6124 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
6125 if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
6126 ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
6127
6128 // Finally, apply any attributes on the decl itself.
6129 if (const AttributeList *Attrs = PD.getAttributes())
6130 ProcessDeclAttributeList(S, D, Attrs);
6131 }
6132
6133 /// Is the given declaration allowed to use a forbidden type?
6134 /// If so, it'll still be annotated with an attribute that makes it
6135 /// illegal to actually use.
isForbiddenTypeAllowed(Sema & S,Decl * decl,const DelayedDiagnostic & diag,UnavailableAttr::ImplicitReason & reason)6136 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl,
6137 const DelayedDiagnostic &diag,
6138 UnavailableAttr::ImplicitReason &reason) {
6139 // Private ivars are always okay. Unfortunately, people don't
6140 // always properly make their ivars private, even in system headers.
6141 // Plus we need to make fields okay, too.
6142 if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
6143 !isa<FunctionDecl>(decl))
6144 return false;
6145
6146 // Silently accept unsupported uses of __weak in both user and system
6147 // declarations when it's been disabled, for ease of integration with
6148 // -fno-objc-arc files. We do have to take some care against attempts
6149 // to define such things; for now, we've only done that for ivars
6150 // and properties.
6151 if ((isa<ObjCIvarDecl>(decl) || isa<ObjCPropertyDecl>(decl))) {
6152 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
6153 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
6154 reason = UnavailableAttr::IR_ForbiddenWeak;
6155 return true;
6156 }
6157 }
6158
6159 // Allow all sorts of things in system headers.
6160 if (S.Context.getSourceManager().isInSystemHeader(decl->getLocation())) {
6161 // Currently, all the failures dealt with this way are due to ARC
6162 // restrictions.
6163 reason = UnavailableAttr::IR_ARCForbiddenType;
6164 return true;
6165 }
6166
6167 return false;
6168 }
6169
6170 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & diag,Decl * decl)6171 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
6172 Decl *decl) {
6173 auto reason = UnavailableAttr::IR_None;
6174 if (decl && isForbiddenTypeAllowed(S, decl, diag, reason)) {
6175 assert(reason && "didn't set reason?");
6176 decl->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", reason,
6177 diag.Loc));
6178 return;
6179 }
6180 if (S.getLangOpts().ObjCAutoRefCount)
6181 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
6182 // FIXME: we may want to suppress diagnostics for all
6183 // kind of forbidden type messages on unavailable functions.
6184 if (FD->hasAttr<UnavailableAttr>() &&
6185 diag.getForbiddenTypeDiagnostic() ==
6186 diag::err_arc_array_param_no_ownership) {
6187 diag.Triggered = true;
6188 return;
6189 }
6190 }
6191
6192 S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
6193 << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
6194 diag.Triggered = true;
6195 }
6196
isDeclDeprecated(Decl * D)6197 static bool isDeclDeprecated(Decl *D) {
6198 do {
6199 if (D->isDeprecated())
6200 return true;
6201 // A category implicitly has the availability of the interface.
6202 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
6203 if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
6204 return Interface->isDeprecated();
6205 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
6206 return false;
6207 }
6208
isDeclUnavailable(Decl * D)6209 static bool isDeclUnavailable(Decl *D) {
6210 do {
6211 if (D->isUnavailable())
6212 return true;
6213 // A category implicitly has the availability of the interface.
6214 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
6215 if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
6216 return Interface->isUnavailable();
6217 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
6218 return false;
6219 }
6220
getAttrForPlatform(ASTContext & Context,const Decl * D)6221 static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context,
6222 const Decl *D) {
6223 // Check each AvailabilityAttr to find the one for this platform.
6224 for (const auto *A : D->attrs()) {
6225 if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
6226 // FIXME: this is copied from CheckAvailability. We should try to
6227 // de-duplicate.
6228
6229 // Check if this is an App Extension "platform", and if so chop off
6230 // the suffix for matching with the actual platform.
6231 StringRef ActualPlatform = Avail->getPlatform()->getName();
6232 StringRef RealizedPlatform = ActualPlatform;
6233 if (Context.getLangOpts().AppExt) {
6234 size_t suffix = RealizedPlatform.rfind("_app_extension");
6235 if (suffix != StringRef::npos)
6236 RealizedPlatform = RealizedPlatform.slice(0, suffix);
6237 }
6238
6239 StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
6240
6241 // Match the platform name.
6242 if (RealizedPlatform == TargetPlatform)
6243 return Avail;
6244 }
6245 }
6246 return nullptr;
6247 }
6248
DoEmitAvailabilityWarning(Sema & S,Sema::AvailabilityDiagnostic K,Decl * Ctx,const NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)6249 static void DoEmitAvailabilityWarning(Sema &S, Sema::AvailabilityDiagnostic K,
6250 Decl *Ctx, const NamedDecl *D,
6251 StringRef Message, SourceLocation Loc,
6252 const ObjCInterfaceDecl *UnknownObjCClass,
6253 const ObjCPropertyDecl *ObjCProperty,
6254 bool ObjCPropertyAccess) {
6255 // Diagnostics for deprecated or unavailable.
6256 unsigned diag, diag_message, diag_fwdclass_message;
6257 unsigned diag_available_here = diag::note_availability_specified_here;
6258
6259 // Matches 'diag::note_property_attribute' options.
6260 unsigned property_note_select;
6261
6262 // Matches diag::note_availability_specified_here.
6263 unsigned available_here_select_kind;
6264
6265 // Don't warn if our current context is deprecated or unavailable.
6266 switch (K) {
6267 case Sema::AD_Deprecation:
6268 if (isDeclDeprecated(Ctx) || isDeclUnavailable(Ctx))
6269 return;
6270 diag = !ObjCPropertyAccess ? diag::warn_deprecated
6271 : diag::warn_property_method_deprecated;
6272 diag_message = diag::warn_deprecated_message;
6273 diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
6274 property_note_select = /* deprecated */ 0;
6275 available_here_select_kind = /* deprecated */ 2;
6276 break;
6277
6278 case Sema::AD_Unavailable:
6279 if (isDeclUnavailable(Ctx))
6280 return;
6281 diag = !ObjCPropertyAccess ? diag::err_unavailable
6282 : diag::err_property_method_unavailable;
6283 diag_message = diag::err_unavailable_message;
6284 diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
6285 property_note_select = /* unavailable */ 1;
6286 available_here_select_kind = /* unavailable */ 0;
6287
6288 if (auto attr = D->getAttr<UnavailableAttr>()) {
6289 if (attr->isImplicit() && attr->getImplicitReason()) {
6290 // Most of these failures are due to extra restrictions in ARC;
6291 // reflect that in the primary diagnostic when applicable.
6292 auto flagARCError = [&] {
6293 if (S.getLangOpts().ObjCAutoRefCount &&
6294 S.getSourceManager().isInSystemHeader(D->getLocation()))
6295 diag = diag::err_unavailable_in_arc;
6296 };
6297
6298 switch (attr->getImplicitReason()) {
6299 case UnavailableAttr::IR_None: break;
6300
6301 case UnavailableAttr::IR_ARCForbiddenType:
6302 flagARCError();
6303 diag_available_here = diag::note_arc_forbidden_type;
6304 break;
6305
6306 case UnavailableAttr::IR_ForbiddenWeak:
6307 if (S.getLangOpts().ObjCWeakRuntime)
6308 diag_available_here = diag::note_arc_weak_disabled;
6309 else
6310 diag_available_here = diag::note_arc_weak_no_runtime;
6311 break;
6312
6313 case UnavailableAttr::IR_ARCForbiddenConversion:
6314 flagARCError();
6315 diag_available_here = diag::note_performs_forbidden_arc_conversion;
6316 break;
6317
6318 case UnavailableAttr::IR_ARCInitReturnsUnrelated:
6319 flagARCError();
6320 diag_available_here = diag::note_arc_init_returns_unrelated;
6321 break;
6322
6323 case UnavailableAttr::IR_ARCFieldWithOwnership:
6324 flagARCError();
6325 diag_available_here = diag::note_arc_field_with_ownership;
6326 break;
6327 }
6328 }
6329 }
6330 break;
6331
6332 case Sema::AD_Partial:
6333 diag = diag::warn_partial_availability;
6334 diag_message = diag::warn_partial_message;
6335 diag_fwdclass_message = diag::warn_partial_fwdclass_message;
6336 property_note_select = /* partial */ 2;
6337 available_here_select_kind = /* partial */ 3;
6338 break;
6339 }
6340
6341 CharSourceRange UseRange;
6342 StringRef Replacement;
6343 if (K == Sema::AD_Deprecation) {
6344 if (auto attr = D->getAttr<DeprecatedAttr>())
6345 Replacement = attr->getReplacement();
6346 if (auto attr = getAttrForPlatform(S.Context, D))
6347 Replacement = attr->getReplacement();
6348
6349 if (!Replacement.empty())
6350 UseRange =
6351 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
6352 }
6353
6354 if (!Message.empty()) {
6355 S.Diag(Loc, diag_message) << D << Message
6356 << (UseRange.isValid() ?
6357 FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
6358 if (ObjCProperty)
6359 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
6360 << ObjCProperty->getDeclName() << property_note_select;
6361 } else if (!UnknownObjCClass) {
6362 S.Diag(Loc, diag) << D
6363 << (UseRange.isValid() ?
6364 FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
6365 if (ObjCProperty)
6366 S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
6367 << ObjCProperty->getDeclName() << property_note_select;
6368 } else {
6369 S.Diag(Loc, diag_fwdclass_message) << D
6370 << (UseRange.isValid() ?
6371 FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
6372 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
6373 }
6374
6375 // The declaration can have multiple availability attributes, we are looking
6376 // at one of them.
6377 const AvailabilityAttr *A = getAttrForPlatform(S.Context, D);
6378 if (A && A->isInherited()) {
6379 for (const Decl *Redecl = D->getMostRecentDecl(); Redecl;
6380 Redecl = Redecl->getPreviousDecl()) {
6381 const AvailabilityAttr *AForRedecl = getAttrForPlatform(S.Context,
6382 Redecl);
6383 if (AForRedecl && !AForRedecl->isInherited()) {
6384 // If D is a declaration with inherited attributes, the note should
6385 // point to the declaration with actual attributes.
6386 S.Diag(Redecl->getLocation(), diag_available_here) << D
6387 << available_here_select_kind;
6388 break;
6389 }
6390 }
6391 }
6392 else
6393 S.Diag(D->getLocation(), diag_available_here)
6394 << D << available_here_select_kind;
6395
6396 if (K == Sema::AD_Partial)
6397 S.Diag(Loc, diag::note_partial_availability_silence) << D;
6398 }
6399
handleDelayedAvailabilityCheck(Sema & S,DelayedDiagnostic & DD,Decl * Ctx)6400 static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
6401 Decl *Ctx) {
6402 assert(DD.Kind == DelayedDiagnostic::Deprecation ||
6403 DD.Kind == DelayedDiagnostic::Unavailable);
6404 Sema::AvailabilityDiagnostic AD = DD.Kind == DelayedDiagnostic::Deprecation
6405 ? Sema::AD_Deprecation
6406 : Sema::AD_Unavailable;
6407 DD.Triggered = true;
6408 DoEmitAvailabilityWarning(
6409 S, AD, Ctx, DD.getDeprecationDecl(), DD.getDeprecationMessage(), DD.Loc,
6410 DD.getUnknownObjCClass(), DD.getObjCProperty(), false);
6411 }
6412
PopParsingDeclaration(ParsingDeclState state,Decl * decl)6413 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
6414 assert(DelayedDiagnostics.getCurrentPool());
6415 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
6416 DelayedDiagnostics.popWithoutEmitting(state);
6417
6418 // When delaying diagnostics to run in the context of a parsed
6419 // declaration, we only want to actually emit anything if parsing
6420 // succeeds.
6421 if (!decl) return;
6422
6423 // We emit all the active diagnostics in this pool or any of its
6424 // parents. In general, we'll get one pool for the decl spec
6425 // and a child pool for each declarator; in a decl group like:
6426 // deprecated_typedef foo, *bar, baz();
6427 // only the declarator pops will be passed decls. This is correct;
6428 // we really do need to consider delayed diagnostics from the decl spec
6429 // for each of the different declarations.
6430 const DelayedDiagnosticPool *pool = &poppedPool;
6431 do {
6432 for (DelayedDiagnosticPool::pool_iterator
6433 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
6434 // This const_cast is a bit lame. Really, Triggered should be mutable.
6435 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
6436 if (diag.Triggered)
6437 continue;
6438
6439 switch (diag.Kind) {
6440 case DelayedDiagnostic::Deprecation:
6441 case DelayedDiagnostic::Unavailable:
6442 // Don't bother giving deprecation/unavailable diagnostics if
6443 // the decl is invalid.
6444 if (!decl->isInvalidDecl())
6445 handleDelayedAvailabilityCheck(*this, diag, decl);
6446 break;
6447
6448 case DelayedDiagnostic::Access:
6449 HandleDelayedAccessCheck(diag, decl);
6450 break;
6451
6452 case DelayedDiagnostic::ForbiddenType:
6453 handleDelayedForbiddenType(*this, diag, decl);
6454 break;
6455 }
6456 }
6457 } while ((pool = pool->getParent()));
6458 }
6459
6460 /// Given a set of delayed diagnostics, re-emit them as if they had
6461 /// been delayed in the current context instead of in the given pool.
6462 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)6463 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
6464 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
6465 assert(curPool && "re-emitting in undelayed context not supported");
6466 curPool->steal(pool);
6467 }
6468
EmitAvailabilityWarning(AvailabilityDiagnostic AD,NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty,bool ObjCPropertyAccess)6469 void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
6470 NamedDecl *D, StringRef Message,
6471 SourceLocation Loc,
6472 const ObjCInterfaceDecl *UnknownObjCClass,
6473 const ObjCPropertyDecl *ObjCProperty,
6474 bool ObjCPropertyAccess) {
6475 // Delay if we're currently parsing a declaration.
6476 if (DelayedDiagnostics.shouldDelayDiagnostics() && AD != AD_Partial) {
6477 DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
6478 AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
6479 ObjCPropertyAccess));
6480 return;
6481 }
6482
6483 Decl *Ctx = cast<Decl>(getCurLexicalContext());
6484 DoEmitAvailabilityWarning(*this, AD, Ctx, D, Message, Loc, UnknownObjCClass,
6485 ObjCProperty, ObjCPropertyAccess);
6486 }
6487