• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one or more
3  * contributor license agreements.  See the NOTICE file distributed with
4  * this work for additional information regarding copyright ownership.
5  * The ASF licenses this file to You under the Apache License, Version 2.0
6  * (the "License"); you may not use this file except in compliance with
7  * the License.  You may obtain a copy of the License at
8  *
9  *      http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 package org.apache.commons.math.linear;
19 
20 
21 
22 /**
23  * Interface handling decomposition algorithms that can solve A × X = B.
24  * <p>Decomposition algorithms decompose an A matrix has a product of several specific
25  * matrices from which they can solve A &times; X = B in least squares sense: they find X
26  * such that ||A &times; X - B|| is minimal.</p>
27  * <p>Some solvers like {@link LUDecomposition} can only find the solution for
28  * square matrices and when the solution is an exact linear solution, i.e. when
29  * ||A &times; X - B|| is exactly 0. Other solvers can also find solutions
30  * with non-square matrix A and with non-null minimal norm. If an exact linear
31  * solution exists it is also the minimal norm solution.</p>
32  *
33  * @version $Revision: 811685 $ $Date: 2009-09-05 19:36:48 +0200 (sam. 05 sept. 2009) $
34  * @since 2.0
35  */
36 public interface DecompositionSolver {
37 
38     /** Solve the linear equation A &times; X = B for matrices A.
39      * <p>The A matrix is implicit, it is provided by the underlying
40      * decomposition algorithm.</p>
41      * @param b right-hand side of the equation A &times; X = B
42      * @return a vector X that minimizes the two norm of A &times; X - B
43      * @exception IllegalArgumentException if matrices dimensions don't match
44      * @exception InvalidMatrixException if decomposed matrix is singular
45      */
solve(final double[] b)46     double[] solve(final double[] b)
47         throws IllegalArgumentException, InvalidMatrixException;
48 
49     /** Solve the linear equation A &times; X = B for matrices A.
50      * <p>The A matrix is implicit, it is provided by the underlying
51      * decomposition algorithm.</p>
52      * @param b right-hand side of the equation A &times; X = B
53      * @return a vector X that minimizes the two norm of A &times; X - B
54      * @exception IllegalArgumentException if matrices dimensions don't match
55      * @exception InvalidMatrixException if decomposed matrix is singular
56      */
solve(final RealVector b)57     RealVector solve(final RealVector b)
58         throws IllegalArgumentException, InvalidMatrixException;
59 
60     /** Solve the linear equation A &times; X = B for matrices A.
61      * <p>The A matrix is implicit, it is provided by the underlying
62      * decomposition algorithm.</p>
63      * @param b right-hand side of the equation A &times; X = B
64      * @return a matrix X that minimizes the two norm of A &times; X - B
65      * @exception IllegalArgumentException if matrices dimensions don't match
66      * @exception InvalidMatrixException if decomposed matrix is singular
67      */
solve(final RealMatrix b)68     RealMatrix solve(final RealMatrix b)
69         throws IllegalArgumentException, InvalidMatrixException;
70 
71     /**
72      * Check if the decomposed matrix is non-singular.
73      * @return true if the decomposed matrix is non-singular
74      */
isNonSingular()75     boolean isNonSingular();
76 
77     /** Get the inverse (or pseudo-inverse) of the decomposed matrix.
78      * @return inverse matrix
79      * @throws InvalidMatrixException if decomposed matrix is singular
80      */
getInverse()81     RealMatrix getInverse()
82         throws InvalidMatrixException;
83 
84 }
85