1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 using namespace llvm;
44
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48
49 /// AddRegOperandToRegInfo - Add this register operand to the specified
50 /// MachineRegisterInfo. If it is null, then the next/prev fields should be
51 /// explicitly nulled out.
AddRegOperandToRegInfo(MachineRegisterInfo * RegInfo)52 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
53 assert(isReg() && "Can only add reg operand to use lists");
54
55 // If the reginfo pointer is null, just explicitly null out or next/prev
56 // pointers, to ensure they are not garbage.
57 if (RegInfo == 0) {
58 Contents.Reg.Prev = 0;
59 Contents.Reg.Next = 0;
60 return;
61 }
62
63 // Otherwise, add this operand to the head of the registers use/def list.
64 MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
65
66 // For SSA values, we prefer to keep the definition at the start of the list.
67 // we do this by skipping over the definition if it is at the head of the
68 // list.
69 if (*Head && (*Head)->isDef())
70 Head = &(*Head)->Contents.Reg.Next;
71
72 Contents.Reg.Next = *Head;
73 if (Contents.Reg.Next) {
74 assert(getReg() == Contents.Reg.Next->getReg() &&
75 "Different regs on the same list!");
76 Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
77 }
78
79 Contents.Reg.Prev = Head;
80 *Head = this;
81 }
82
83 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
84 /// MachineRegisterInfo it is linked with.
RemoveRegOperandFromRegInfo()85 void MachineOperand::RemoveRegOperandFromRegInfo() {
86 assert(isOnRegUseList() && "Reg operand is not on a use list");
87 // Unlink this from the doubly linked list of operands.
88 MachineOperand *NextOp = Contents.Reg.Next;
89 *Contents.Reg.Prev = NextOp;
90 if (NextOp) {
91 assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
92 NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
93 }
94 Contents.Reg.Prev = 0;
95 Contents.Reg.Next = 0;
96 }
97
setReg(unsigned Reg)98 void MachineOperand::setReg(unsigned Reg) {
99 if (getReg() == Reg) return; // No change.
100
101 // Otherwise, we have to change the register. If this operand is embedded
102 // into a machine function, we need to update the old and new register's
103 // use/def lists.
104 if (MachineInstr *MI = getParent())
105 if (MachineBasicBlock *MBB = MI->getParent())
106 if (MachineFunction *MF = MBB->getParent()) {
107 RemoveRegOperandFromRegInfo();
108 SmallContents.RegNo = Reg;
109 AddRegOperandToRegInfo(&MF->getRegInfo());
110 return;
111 }
112
113 // Otherwise, just change the register, no problem. :)
114 SmallContents.RegNo = Reg;
115 }
116
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)117 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
118 const TargetRegisterInfo &TRI) {
119 assert(TargetRegisterInfo::isVirtualRegister(Reg));
120 if (SubIdx && getSubReg())
121 SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
122 setReg(Reg);
123 if (SubIdx)
124 setSubReg(SubIdx);
125 }
126
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)127 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
128 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
129 if (getSubReg()) {
130 Reg = TRI.getSubReg(Reg, getSubReg());
131 // Note that getSubReg() may return 0 if the sub-register doesn't exist.
132 // That won't happen in legal code.
133 setSubReg(0);
134 }
135 setReg(Reg);
136 }
137
138 /// ChangeToImmediate - Replace this operand with a new immediate operand of
139 /// the specified value. If an operand is known to be an immediate already,
140 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)141 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
142 // If this operand is currently a register operand, and if this is in a
143 // function, deregister the operand from the register's use/def list.
144 if (isReg() && getParent() && getParent()->getParent() &&
145 getParent()->getParent()->getParent())
146 RemoveRegOperandFromRegInfo();
147
148 OpKind = MO_Immediate;
149 Contents.ImmVal = ImmVal;
150 }
151
152 /// ChangeToRegister - Replace this operand with a new register operand of
153 /// the specified value. If an operand is known to be an register already,
154 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)155 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
156 bool isKill, bool isDead, bool isUndef,
157 bool isDebug) {
158 // If this operand is already a register operand, use setReg to update the
159 // register's use/def lists.
160 if (isReg()) {
161 assert(!isEarlyClobber());
162 setReg(Reg);
163 } else {
164 // Otherwise, change this to a register and set the reg#.
165 OpKind = MO_Register;
166 SmallContents.RegNo = Reg;
167
168 // If this operand is embedded in a function, add the operand to the
169 // register's use/def list.
170 if (MachineInstr *MI = getParent())
171 if (MachineBasicBlock *MBB = MI->getParent())
172 if (MachineFunction *MF = MBB->getParent())
173 AddRegOperandToRegInfo(&MF->getRegInfo());
174 }
175
176 IsDef = isDef;
177 IsImp = isImp;
178 IsKill = isKill;
179 IsDead = isDead;
180 IsUndef = isUndef;
181 IsEarlyClobber = false;
182 IsDebug = isDebug;
183 SubReg = 0;
184 }
185
186 /// isIdenticalTo - Return true if this operand is identical to the specified
187 /// operand.
isIdenticalTo(const MachineOperand & Other) const188 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
189 if (getType() != Other.getType() ||
190 getTargetFlags() != Other.getTargetFlags())
191 return false;
192
193 switch (getType()) {
194 default: llvm_unreachable("Unrecognized operand type");
195 case MachineOperand::MO_Register:
196 return getReg() == Other.getReg() && isDef() == Other.isDef() &&
197 getSubReg() == Other.getSubReg();
198 case MachineOperand::MO_Immediate:
199 return getImm() == Other.getImm();
200 case MachineOperand::MO_CImmediate:
201 return getCImm() == Other.getCImm();
202 case MachineOperand::MO_FPImmediate:
203 return getFPImm() == Other.getFPImm();
204 case MachineOperand::MO_MachineBasicBlock:
205 return getMBB() == Other.getMBB();
206 case MachineOperand::MO_FrameIndex:
207 return getIndex() == Other.getIndex();
208 case MachineOperand::MO_ConstantPoolIndex:
209 return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
210 case MachineOperand::MO_JumpTableIndex:
211 return getIndex() == Other.getIndex();
212 case MachineOperand::MO_GlobalAddress:
213 return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
214 case MachineOperand::MO_ExternalSymbol:
215 return !strcmp(getSymbolName(), Other.getSymbolName()) &&
216 getOffset() == Other.getOffset();
217 case MachineOperand::MO_BlockAddress:
218 return getBlockAddress() == Other.getBlockAddress();
219 case MachineOperand::MO_MCSymbol:
220 return getMCSymbol() == Other.getMCSymbol();
221 case MachineOperand::MO_Metadata:
222 return getMetadata() == Other.getMetadata();
223 }
224 }
225
226 /// print - Print the specified machine operand.
227 ///
print(raw_ostream & OS,const TargetMachine * TM) const228 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
229 // If the instruction is embedded into a basic block, we can find the
230 // target info for the instruction.
231 if (!TM)
232 if (const MachineInstr *MI = getParent())
233 if (const MachineBasicBlock *MBB = MI->getParent())
234 if (const MachineFunction *MF = MBB->getParent())
235 TM = &MF->getTarget();
236 const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
237
238 switch (getType()) {
239 case MachineOperand::MO_Register:
240 OS << PrintReg(getReg(), TRI, getSubReg());
241
242 if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
243 isEarlyClobber()) {
244 OS << '<';
245 bool NeedComma = false;
246 if (isDef()) {
247 if (NeedComma) OS << ',';
248 if (isEarlyClobber())
249 OS << "earlyclobber,";
250 if (isImplicit())
251 OS << "imp-";
252 OS << "def";
253 NeedComma = true;
254 } else if (isImplicit()) {
255 OS << "imp-use";
256 NeedComma = true;
257 }
258
259 if (isKill() || isDead() || isUndef()) {
260 if (NeedComma) OS << ',';
261 if (isKill()) OS << "kill";
262 if (isDead()) OS << "dead";
263 if (isUndef()) {
264 if (isKill() || isDead())
265 OS << ',';
266 OS << "undef";
267 }
268 }
269 OS << '>';
270 }
271 break;
272 case MachineOperand::MO_Immediate:
273 OS << getImm();
274 break;
275 case MachineOperand::MO_CImmediate:
276 getCImm()->getValue().print(OS, false);
277 break;
278 case MachineOperand::MO_FPImmediate:
279 if (getFPImm()->getType()->isFloatTy())
280 OS << getFPImm()->getValueAPF().convertToFloat();
281 else
282 OS << getFPImm()->getValueAPF().convertToDouble();
283 break;
284 case MachineOperand::MO_MachineBasicBlock:
285 OS << "<BB#" << getMBB()->getNumber() << ">";
286 break;
287 case MachineOperand::MO_FrameIndex:
288 OS << "<fi#" << getIndex() << '>';
289 break;
290 case MachineOperand::MO_ConstantPoolIndex:
291 OS << "<cp#" << getIndex();
292 if (getOffset()) OS << "+" << getOffset();
293 OS << '>';
294 break;
295 case MachineOperand::MO_JumpTableIndex:
296 OS << "<jt#" << getIndex() << '>';
297 break;
298 case MachineOperand::MO_GlobalAddress:
299 OS << "<ga:";
300 WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
301 if (getOffset()) OS << "+" << getOffset();
302 OS << '>';
303 break;
304 case MachineOperand::MO_ExternalSymbol:
305 OS << "<es:" << getSymbolName();
306 if (getOffset()) OS << "+" << getOffset();
307 OS << '>';
308 break;
309 case MachineOperand::MO_BlockAddress:
310 OS << '<';
311 WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
312 OS << '>';
313 break;
314 case MachineOperand::MO_Metadata:
315 OS << '<';
316 WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
317 OS << '>';
318 break;
319 case MachineOperand::MO_MCSymbol:
320 OS << "<MCSym=" << *getMCSymbol() << '>';
321 break;
322 default:
323 llvm_unreachable("Unrecognized operand type");
324 }
325
326 if (unsigned TF = getTargetFlags())
327 OS << "[TF=" << TF << ']';
328 }
329
330 //===----------------------------------------------------------------------===//
331 // MachineMemOperand Implementation
332 //===----------------------------------------------------------------------===//
333
334 /// getAddrSpace - Return the LLVM IR address space number that this pointer
335 /// points into.
getAddrSpace() const336 unsigned MachinePointerInfo::getAddrSpace() const {
337 if (V == 0) return 0;
338 return cast<PointerType>(V->getType())->getAddressSpace();
339 }
340
341 /// getConstantPool - Return a MachinePointerInfo record that refers to the
342 /// constant pool.
getConstantPool()343 MachinePointerInfo MachinePointerInfo::getConstantPool() {
344 return MachinePointerInfo(PseudoSourceValue::getConstantPool());
345 }
346
347 /// getFixedStack - Return a MachinePointerInfo record that refers to the
348 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)349 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
350 return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
351 }
352
getJumpTable()353 MachinePointerInfo MachinePointerInfo::getJumpTable() {
354 return MachinePointerInfo(PseudoSourceValue::getJumpTable());
355 }
356
getGOT()357 MachinePointerInfo MachinePointerInfo::getGOT() {
358 return MachinePointerInfo(PseudoSourceValue::getGOT());
359 }
360
getStack(int64_t Offset)361 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
362 return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
363 }
364
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo)365 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
366 uint64_t s, unsigned int a,
367 const MDNode *TBAAInfo)
368 : PtrInfo(ptrinfo), Size(s),
369 Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
370 TBAAInfo(TBAAInfo) {
371 assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
372 "invalid pointer value");
373 assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
374 assert((isLoad() || isStore()) && "Not a load/store!");
375 }
376
377 /// Profile - Gather unique data for the object.
378 ///
Profile(FoldingSetNodeID & ID) const379 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
380 ID.AddInteger(getOffset());
381 ID.AddInteger(Size);
382 ID.AddPointer(getValue());
383 ID.AddInteger(Flags);
384 }
385
refineAlignment(const MachineMemOperand * MMO)386 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
387 // The Value and Offset may differ due to CSE. But the flags and size
388 // should be the same.
389 assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
390 assert(MMO->getSize() == getSize() && "Size mismatch!");
391
392 if (MMO->getBaseAlignment() >= getBaseAlignment()) {
393 // Update the alignment value.
394 Flags = (Flags & ((1 << MOMaxBits) - 1)) |
395 ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
396 // Also update the base and offset, because the new alignment may
397 // not be applicable with the old ones.
398 PtrInfo = MMO->PtrInfo;
399 }
400 }
401
402 /// getAlignment - Return the minimum known alignment in bytes of the
403 /// actual memory reference.
getAlignment() const404 uint64_t MachineMemOperand::getAlignment() const {
405 return MinAlign(getBaseAlignment(), getOffset());
406 }
407
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)408 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
409 assert((MMO.isLoad() || MMO.isStore()) &&
410 "SV has to be a load, store or both.");
411
412 if (MMO.isVolatile())
413 OS << "Volatile ";
414
415 if (MMO.isLoad())
416 OS << "LD";
417 if (MMO.isStore())
418 OS << "ST";
419 OS << MMO.getSize();
420
421 // Print the address information.
422 OS << "[";
423 if (!MMO.getValue())
424 OS << "<unknown>";
425 else
426 WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
427
428 // If the alignment of the memory reference itself differs from the alignment
429 // of the base pointer, print the base alignment explicitly, next to the base
430 // pointer.
431 if (MMO.getBaseAlignment() != MMO.getAlignment())
432 OS << "(align=" << MMO.getBaseAlignment() << ")";
433
434 if (MMO.getOffset() != 0)
435 OS << "+" << MMO.getOffset();
436 OS << "]";
437
438 // Print the alignment of the reference.
439 if (MMO.getBaseAlignment() != MMO.getAlignment() ||
440 MMO.getBaseAlignment() != MMO.getSize())
441 OS << "(align=" << MMO.getAlignment() << ")";
442
443 // Print TBAA info.
444 if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
445 OS << "(tbaa=";
446 if (TBAAInfo->getNumOperands() > 0)
447 WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
448 else
449 OS << "<unknown>";
450 OS << ")";
451 }
452
453 // Print nontemporal info.
454 if (MMO.isNonTemporal())
455 OS << "(nontemporal)";
456
457 return OS;
458 }
459
460 //===----------------------------------------------------------------------===//
461 // MachineInstr Implementation
462 //===----------------------------------------------------------------------===//
463
464 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
465 /// MCID NULL and no operands.
MachineInstr()466 MachineInstr::MachineInstr()
467 : MCID(0), Flags(0), AsmPrinterFlags(0),
468 MemRefs(0), MemRefsEnd(0),
469 Parent(0) {
470 // Make sure that we get added to a machine basicblock
471 LeakDetector::addGarbageObject(this);
472 }
473
addImplicitDefUseOperands()474 void MachineInstr::addImplicitDefUseOperands() {
475 if (MCID->ImplicitDefs)
476 for (const unsigned *ImpDefs = MCID->ImplicitDefs; *ImpDefs; ++ImpDefs)
477 addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
478 if (MCID->ImplicitUses)
479 for (const unsigned *ImpUses = MCID->ImplicitUses; *ImpUses; ++ImpUses)
480 addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
481 }
482
483 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
484 /// implicit operands. It reserves space for the number of operands specified by
485 /// the MCInstrDesc.
MachineInstr(const MCInstrDesc & tid,bool NoImp)486 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
487 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
488 MemRefs(0), MemRefsEnd(0), Parent(0) {
489 unsigned NumImplicitOps = 0;
490 if (!NoImp)
491 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
492 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
493 if (!NoImp)
494 addImplicitDefUseOperands();
495 // Make sure that we get added to a machine basicblock
496 LeakDetector::addGarbageObject(this);
497 }
498
499 /// MachineInstr ctor - As above, but with a DebugLoc.
MachineInstr(const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)500 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
501 bool NoImp)
502 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
503 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
504 unsigned NumImplicitOps = 0;
505 if (!NoImp)
506 NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
507 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
508 if (!NoImp)
509 addImplicitDefUseOperands();
510 // Make sure that we get added to a machine basicblock
511 LeakDetector::addGarbageObject(this);
512 }
513
514 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
515 /// that the MachineInstr is created and added to the end of the specified
516 /// basic block.
MachineInstr(MachineBasicBlock * MBB,const MCInstrDesc & tid)517 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
518 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
519 MemRefs(0), MemRefsEnd(0), Parent(0) {
520 assert(MBB && "Cannot use inserting ctor with null basic block!");
521 unsigned NumImplicitOps =
522 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
523 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
524 addImplicitDefUseOperands();
525 // Make sure that we get added to a machine basicblock
526 LeakDetector::addGarbageObject(this);
527 MBB->push_back(this); // Add instruction to end of basic block!
528 }
529
530 /// MachineInstr ctor - As above, but with a DebugLoc.
531 ///
MachineInstr(MachineBasicBlock * MBB,const DebugLoc dl,const MCInstrDesc & tid)532 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
533 const MCInstrDesc &tid)
534 : MCID(&tid), Flags(0), AsmPrinterFlags(0),
535 MemRefs(0), MemRefsEnd(0), Parent(0), debugLoc(dl) {
536 assert(MBB && "Cannot use inserting ctor with null basic block!");
537 unsigned NumImplicitOps =
538 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
539 Operands.reserve(NumImplicitOps + MCID->getNumOperands());
540 addImplicitDefUseOperands();
541 // Make sure that we get added to a machine basicblock
542 LeakDetector::addGarbageObject(this);
543 MBB->push_back(this); // Add instruction to end of basic block!
544 }
545
546 /// MachineInstr ctor - Copies MachineInstr arg exactly
547 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)548 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
549 : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
550 MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
551 Parent(0), debugLoc(MI.getDebugLoc()) {
552 Operands.reserve(MI.getNumOperands());
553
554 // Add operands
555 for (unsigned i = 0; i != MI.getNumOperands(); ++i)
556 addOperand(MI.getOperand(i));
557
558 // Copy all the flags.
559 Flags = MI.Flags;
560
561 // Set parent to null.
562 Parent = 0;
563
564 LeakDetector::addGarbageObject(this);
565 }
566
~MachineInstr()567 MachineInstr::~MachineInstr() {
568 LeakDetector::removeGarbageObject(this);
569 #ifndef NDEBUG
570 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
571 assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
572 assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
573 "Reg operand def/use list corrupted");
574 }
575 #endif
576 }
577
578 /// getRegInfo - If this instruction is embedded into a MachineFunction,
579 /// return the MachineRegisterInfo object for the current function, otherwise
580 /// return null.
getRegInfo()581 MachineRegisterInfo *MachineInstr::getRegInfo() {
582 if (MachineBasicBlock *MBB = getParent())
583 return &MBB->getParent()->getRegInfo();
584 return 0;
585 }
586
587 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
588 /// this instruction from their respective use lists. This requires that the
589 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists()590 void MachineInstr::RemoveRegOperandsFromUseLists() {
591 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
592 if (Operands[i].isReg())
593 Operands[i].RemoveRegOperandFromRegInfo();
594 }
595 }
596
597 /// AddRegOperandsToUseLists - Add all of the register operands in
598 /// this instruction from their respective use lists. This requires that the
599 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & RegInfo)600 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
601 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
602 if (Operands[i].isReg())
603 Operands[i].AddRegOperandToRegInfo(&RegInfo);
604 }
605 }
606
607
608 /// addOperand - Add the specified operand to the instruction. If it is an
609 /// implicit operand, it is added to the end of the operand list. If it is
610 /// an explicit operand it is added at the end of the explicit operand list
611 /// (before the first implicit operand).
addOperand(const MachineOperand & Op)612 void MachineInstr::addOperand(const MachineOperand &Op) {
613 assert(MCID && "Cannot add operands before providing an instr descriptor");
614 bool isImpReg = Op.isReg() && Op.isImplicit();
615 MachineRegisterInfo *RegInfo = getRegInfo();
616
617 // If the Operands backing store is reallocated, all register operands must
618 // be removed and re-added to RegInfo. It is storing pointers to operands.
619 bool Reallocate = RegInfo &&
620 !Operands.empty() && Operands.size() == Operands.capacity();
621
622 // Find the insert location for the new operand. Implicit registers go at
623 // the end, everything goes before the implicit regs.
624 unsigned OpNo = Operands.size();
625
626 // Remove all the implicit operands from RegInfo if they need to be shifted.
627 // FIXME: Allow mixed explicit and implicit operands on inline asm.
628 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
629 // implicit-defs, but they must not be moved around. See the FIXME in
630 // InstrEmitter.cpp.
631 if (!isImpReg && !isInlineAsm()) {
632 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
633 --OpNo;
634 if (RegInfo)
635 Operands[OpNo].RemoveRegOperandFromRegInfo();
636 }
637 }
638
639 // OpNo now points as the desired insertion point. Unless this is a variadic
640 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
641 assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
642 "Trying to add an operand to a machine instr that is already done!");
643
644 // All operands from OpNo have been removed from RegInfo. If the Operands
645 // backing store needs to be reallocated, we also need to remove any other
646 // register operands.
647 if (Reallocate)
648 for (unsigned i = 0; i != OpNo; ++i)
649 if (Operands[i].isReg())
650 Operands[i].RemoveRegOperandFromRegInfo();
651
652 // Insert the new operand at OpNo.
653 Operands.insert(Operands.begin() + OpNo, Op);
654 Operands[OpNo].ParentMI = this;
655
656 // The Operands backing store has now been reallocated, so we can re-add the
657 // operands before OpNo.
658 if (Reallocate)
659 for (unsigned i = 0; i != OpNo; ++i)
660 if (Operands[i].isReg())
661 Operands[i].AddRegOperandToRegInfo(RegInfo);
662
663 // When adding a register operand, tell RegInfo about it.
664 if (Operands[OpNo].isReg()) {
665 // Add the new operand to RegInfo, even when RegInfo is NULL.
666 // This will initialize the linked list pointers.
667 Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
668 // If the register operand is flagged as early, mark the operand as such.
669 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
670 Operands[OpNo].setIsEarlyClobber(true);
671 }
672
673 // Re-add all the implicit ops.
674 if (RegInfo) {
675 for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
676 assert(Operands[i].isReg() && "Should only be an implicit reg!");
677 Operands[i].AddRegOperandToRegInfo(RegInfo);
678 }
679 }
680 }
681
682 /// RemoveOperand - Erase an operand from an instruction, leaving it with one
683 /// fewer operand than it started with.
684 ///
RemoveOperand(unsigned OpNo)685 void MachineInstr::RemoveOperand(unsigned OpNo) {
686 assert(OpNo < Operands.size() && "Invalid operand number");
687
688 // Special case removing the last one.
689 if (OpNo == Operands.size()-1) {
690 // If needed, remove from the reg def/use list.
691 if (Operands.back().isReg() && Operands.back().isOnRegUseList())
692 Operands.back().RemoveRegOperandFromRegInfo();
693
694 Operands.pop_back();
695 return;
696 }
697
698 // Otherwise, we are removing an interior operand. If we have reginfo to
699 // update, remove all operands that will be shifted down from their reg lists,
700 // move everything down, then re-add them.
701 MachineRegisterInfo *RegInfo = getRegInfo();
702 if (RegInfo) {
703 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
704 if (Operands[i].isReg())
705 Operands[i].RemoveRegOperandFromRegInfo();
706 }
707 }
708
709 Operands.erase(Operands.begin()+OpNo);
710
711 if (RegInfo) {
712 for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
713 if (Operands[i].isReg())
714 Operands[i].AddRegOperandToRegInfo(RegInfo);
715 }
716 }
717 }
718
719 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
720 /// This function should be used only occasionally. The setMemRefs function
721 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)722 void MachineInstr::addMemOperand(MachineFunction &MF,
723 MachineMemOperand *MO) {
724 mmo_iterator OldMemRefs = MemRefs;
725 mmo_iterator OldMemRefsEnd = MemRefsEnd;
726
727 size_t NewNum = (MemRefsEnd - MemRefs) + 1;
728 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
729 mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
730
731 std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
732 NewMemRefs[NewNum - 1] = MO;
733
734 MemRefs = NewMemRefs;
735 MemRefsEnd = NewMemRefsEnd;
736 }
737
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const738 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
739 MICheckType Check) const {
740 // If opcodes or number of operands are not the same then the two
741 // instructions are obviously not identical.
742 if (Other->getOpcode() != getOpcode() ||
743 Other->getNumOperands() != getNumOperands())
744 return false;
745
746 // Check operands to make sure they match.
747 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
748 const MachineOperand &MO = getOperand(i);
749 const MachineOperand &OMO = Other->getOperand(i);
750 if (!MO.isReg()) {
751 if (!MO.isIdenticalTo(OMO))
752 return false;
753 continue;
754 }
755
756 // Clients may or may not want to ignore defs when testing for equality.
757 // For example, machine CSE pass only cares about finding common
758 // subexpressions, so it's safe to ignore virtual register defs.
759 if (MO.isDef()) {
760 if (Check == IgnoreDefs)
761 continue;
762 else if (Check == IgnoreVRegDefs) {
763 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
764 TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
765 if (MO.getReg() != OMO.getReg())
766 return false;
767 } else {
768 if (!MO.isIdenticalTo(OMO))
769 return false;
770 if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
771 return false;
772 }
773 } else {
774 if (!MO.isIdenticalTo(OMO))
775 return false;
776 if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
777 return false;
778 }
779 }
780 // If DebugLoc does not match then two dbg.values are not identical.
781 if (isDebugValue())
782 if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
783 && getDebugLoc() != Other->getDebugLoc())
784 return false;
785 return true;
786 }
787
788 /// removeFromParent - This method unlinks 'this' from the containing basic
789 /// block, and returns it, but does not delete it.
removeFromParent()790 MachineInstr *MachineInstr::removeFromParent() {
791 assert(getParent() && "Not embedded in a basic block!");
792 getParent()->remove(this);
793 return this;
794 }
795
796
797 /// eraseFromParent - This method unlinks 'this' from the containing basic
798 /// block, and deletes it.
eraseFromParent()799 void MachineInstr::eraseFromParent() {
800 assert(getParent() && "Not embedded in a basic block!");
801 getParent()->erase(this);
802 }
803
804
805 /// getNumExplicitOperands - Returns the number of non-implicit operands.
806 ///
getNumExplicitOperands() const807 unsigned MachineInstr::getNumExplicitOperands() const {
808 unsigned NumOperands = MCID->getNumOperands();
809 if (!MCID->isVariadic())
810 return NumOperands;
811
812 for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
813 const MachineOperand &MO = getOperand(i);
814 if (!MO.isReg() || !MO.isImplicit())
815 NumOperands++;
816 }
817 return NumOperands;
818 }
819
isStackAligningInlineAsm() const820 bool MachineInstr::isStackAligningInlineAsm() const {
821 if (isInlineAsm()) {
822 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
823 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
824 return true;
825 }
826 return false;
827 }
828
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const829 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
830 unsigned *GroupNo) const {
831 assert(isInlineAsm() && "Expected an inline asm instruction");
832 assert(OpIdx < getNumOperands() && "OpIdx out of range");
833
834 // Ignore queries about the initial operands.
835 if (OpIdx < InlineAsm::MIOp_FirstOperand)
836 return -1;
837
838 unsigned Group = 0;
839 unsigned NumOps;
840 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
841 i += NumOps) {
842 const MachineOperand &FlagMO = getOperand(i);
843 // If we reach the implicit register operands, stop looking.
844 if (!FlagMO.isImm())
845 return -1;
846 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
847 if (i + NumOps > OpIdx) {
848 if (GroupNo)
849 *GroupNo = Group;
850 return i;
851 }
852 ++Group;
853 }
854 return -1;
855 }
856
857 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const858 MachineInstr::getRegClassConstraint(unsigned OpIdx,
859 const TargetInstrInfo *TII,
860 const TargetRegisterInfo *TRI) const {
861 // Most opcodes have fixed constraints in their MCInstrDesc.
862 if (!isInlineAsm())
863 return TII->getRegClass(getDesc(), OpIdx, TRI);
864
865 if (!getOperand(OpIdx).isReg())
866 return NULL;
867
868 // For tied uses on inline asm, get the constraint from the def.
869 unsigned DefIdx;
870 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
871 OpIdx = DefIdx;
872
873 // Inline asm stores register class constraints in the flag word.
874 int FlagIdx = findInlineAsmFlagIdx(OpIdx);
875 if (FlagIdx < 0)
876 return NULL;
877
878 unsigned Flag = getOperand(FlagIdx).getImm();
879 unsigned RCID;
880 if (InlineAsm::hasRegClassConstraint(Flag, RCID))
881 return TRI->getRegClass(RCID);
882
883 // Assume that all registers in a memory operand are pointers.
884 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
885 return TRI->getPointerRegClass();
886
887 return NULL;
888 }
889
890 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
891 /// the specific register or -1 if it is not found. It further tightens
892 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const893 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
894 const TargetRegisterInfo *TRI) const {
895 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
896 const MachineOperand &MO = getOperand(i);
897 if (!MO.isReg() || !MO.isUse())
898 continue;
899 unsigned MOReg = MO.getReg();
900 if (!MOReg)
901 continue;
902 if (MOReg == Reg ||
903 (TRI &&
904 TargetRegisterInfo::isPhysicalRegister(MOReg) &&
905 TargetRegisterInfo::isPhysicalRegister(Reg) &&
906 TRI->isSubRegister(MOReg, Reg)))
907 if (!isKill || MO.isKill())
908 return i;
909 }
910 return -1;
911 }
912
913 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
914 /// indicating if this instruction reads or writes Reg. This also considers
915 /// partial defines.
916 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const917 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
918 SmallVectorImpl<unsigned> *Ops) const {
919 bool PartDef = false; // Partial redefine.
920 bool FullDef = false; // Full define.
921 bool Use = false;
922
923 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
924 const MachineOperand &MO = getOperand(i);
925 if (!MO.isReg() || MO.getReg() != Reg)
926 continue;
927 if (Ops)
928 Ops->push_back(i);
929 if (MO.isUse())
930 Use |= !MO.isUndef();
931 else if (MO.getSubReg() && !MO.isUndef())
932 // A partial <def,undef> doesn't count as reading the register.
933 PartDef = true;
934 else
935 FullDef = true;
936 }
937 // A partial redefine uses Reg unless there is also a full define.
938 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
939 }
940
941 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
942 /// the specified register or -1 if it is not found. If isDead is true, defs
943 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
944 /// also checks if there is a def of a super-register.
945 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const946 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
947 const TargetRegisterInfo *TRI) const {
948 bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
949 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
950 const MachineOperand &MO = getOperand(i);
951 if (!MO.isReg() || !MO.isDef())
952 continue;
953 unsigned MOReg = MO.getReg();
954 bool Found = (MOReg == Reg);
955 if (!Found && TRI && isPhys &&
956 TargetRegisterInfo::isPhysicalRegister(MOReg)) {
957 if (Overlap)
958 Found = TRI->regsOverlap(MOReg, Reg);
959 else
960 Found = TRI->isSubRegister(MOReg, Reg);
961 }
962 if (Found && (!isDead || MO.isDead()))
963 return i;
964 }
965 return -1;
966 }
967
968 /// findFirstPredOperandIdx() - Find the index of the first operand in the
969 /// operand list that is used to represent the predicate. It returns -1 if
970 /// none is found.
findFirstPredOperandIdx() const971 int MachineInstr::findFirstPredOperandIdx() const {
972 // Don't call MCID.findFirstPredOperandIdx() because this variant
973 // is sometimes called on an instruction that's not yet complete, and
974 // so the number of operands is less than the MCID indicates. In
975 // particular, the PTX target does this.
976 const MCInstrDesc &MCID = getDesc();
977 if (MCID.isPredicable()) {
978 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
979 if (MCID.OpInfo[i].isPredicate())
980 return i;
981 }
982
983 return -1;
984 }
985
986 /// isRegTiedToUseOperand - Given the index of a register def operand,
987 /// check if the register def is tied to a source operand, due to either
988 /// two-address elimination or inline assembly constraints. Returns the
989 /// first tied use operand index by reference is UseOpIdx is not null.
990 bool MachineInstr::
isRegTiedToUseOperand(unsigned DefOpIdx,unsigned * UseOpIdx) const991 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
992 if (isInlineAsm()) {
993 assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
994 const MachineOperand &MO = getOperand(DefOpIdx);
995 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
996 return false;
997 // Determine the actual operand index that corresponds to this index.
998 unsigned DefNo = 0;
999 int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1000 if (FlagIdx < 0)
1001 return false;
1002
1003 // Which part of the group is DefOpIdx?
1004 unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1005
1006 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1007 i != e; ++i) {
1008 const MachineOperand &FMO = getOperand(i);
1009 if (!FMO.isImm())
1010 continue;
1011 if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1012 continue;
1013 unsigned Idx;
1014 if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1015 Idx == DefNo) {
1016 if (UseOpIdx)
1017 *UseOpIdx = (unsigned)i + 1 + DefPart;
1018 return true;
1019 }
1020 }
1021 return false;
1022 }
1023
1024 assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1025 const MCInstrDesc &MCID = getDesc();
1026 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1027 const MachineOperand &MO = getOperand(i);
1028 if (MO.isReg() && MO.isUse() &&
1029 MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1030 if (UseOpIdx)
1031 *UseOpIdx = (unsigned)i;
1032 return true;
1033 }
1034 }
1035 return false;
1036 }
1037
1038 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1039 /// is a register use and it is tied to an def operand. It also returns the def
1040 /// operand index by reference.
1041 bool MachineInstr::
isRegTiedToDefOperand(unsigned UseOpIdx,unsigned * DefOpIdx) const1042 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1043 if (isInlineAsm()) {
1044 const MachineOperand &MO = getOperand(UseOpIdx);
1045 if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1046 return false;
1047
1048 // Find the flag operand corresponding to UseOpIdx
1049 int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1050 if (FlagIdx < 0)
1051 return false;
1052
1053 const MachineOperand &UFMO = getOperand(FlagIdx);
1054 unsigned DefNo;
1055 if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1056 if (!DefOpIdx)
1057 return true;
1058
1059 unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1060 // Remember to adjust the index. First operand is asm string, second is
1061 // the HasSideEffects and AlignStack bits, then there is a flag for each.
1062 while (DefNo) {
1063 const MachineOperand &FMO = getOperand(DefIdx);
1064 assert(FMO.isImm());
1065 // Skip over this def.
1066 DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1067 --DefNo;
1068 }
1069 *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1070 return true;
1071 }
1072 return false;
1073 }
1074
1075 const MCInstrDesc &MCID = getDesc();
1076 if (UseOpIdx >= MCID.getNumOperands())
1077 return false;
1078 const MachineOperand &MO = getOperand(UseOpIdx);
1079 if (!MO.isReg() || !MO.isUse())
1080 return false;
1081 int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1082 if (DefIdx == -1)
1083 return false;
1084 if (DefOpIdx)
1085 *DefOpIdx = (unsigned)DefIdx;
1086 return true;
1087 }
1088
1089 /// clearKillInfo - Clears kill flags on all operands.
1090 ///
clearKillInfo()1091 void MachineInstr::clearKillInfo() {
1092 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1093 MachineOperand &MO = getOperand(i);
1094 if (MO.isReg() && MO.isUse())
1095 MO.setIsKill(false);
1096 }
1097 }
1098
1099 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1100 ///
copyKillDeadInfo(const MachineInstr * MI)1101 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1102 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1103 const MachineOperand &MO = MI->getOperand(i);
1104 if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1105 continue;
1106 for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1107 MachineOperand &MOp = getOperand(j);
1108 if (!MOp.isIdenticalTo(MO))
1109 continue;
1110 if (MO.isKill())
1111 MOp.setIsKill();
1112 else
1113 MOp.setIsDead();
1114 break;
1115 }
1116 }
1117 }
1118
1119 /// copyPredicates - Copies predicate operand(s) from MI.
copyPredicates(const MachineInstr * MI)1120 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1121 const MCInstrDesc &MCID = MI->getDesc();
1122 if (!MCID.isPredicable())
1123 return;
1124 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1125 if (MCID.OpInfo[i].isPredicate()) {
1126 // Predicated operands must be last operands.
1127 addOperand(MI->getOperand(i));
1128 }
1129 }
1130 }
1131
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1132 void MachineInstr::substituteRegister(unsigned FromReg,
1133 unsigned ToReg,
1134 unsigned SubIdx,
1135 const TargetRegisterInfo &RegInfo) {
1136 if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1137 if (SubIdx)
1138 ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1139 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1140 MachineOperand &MO = getOperand(i);
1141 if (!MO.isReg() || MO.getReg() != FromReg)
1142 continue;
1143 MO.substPhysReg(ToReg, RegInfo);
1144 }
1145 } else {
1146 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1147 MachineOperand &MO = getOperand(i);
1148 if (!MO.isReg() || MO.getReg() != FromReg)
1149 continue;
1150 MO.substVirtReg(ToReg, SubIdx, RegInfo);
1151 }
1152 }
1153 }
1154
1155 /// isSafeToMove - Return true if it is safe to move this instruction. If
1156 /// SawStore is set to true, it means that there is a store (or call) between
1157 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1158 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1159 AliasAnalysis *AA,
1160 bool &SawStore) const {
1161 // Ignore stuff that we obviously can't move.
1162 if (MCID->mayStore() || MCID->isCall()) {
1163 SawStore = true;
1164 return false;
1165 }
1166
1167 if (isLabel() || isDebugValue() ||
1168 MCID->isTerminator() || hasUnmodeledSideEffects())
1169 return false;
1170
1171 // See if this instruction does a load. If so, we have to guarantee that the
1172 // loaded value doesn't change between the load and the its intended
1173 // destination. The check for isInvariantLoad gives the targe the chance to
1174 // classify the load as always returning a constant, e.g. a constant pool
1175 // load.
1176 if (MCID->mayLoad() && !isInvariantLoad(AA))
1177 // Otherwise, this is a real load. If there is a store between the load and
1178 // end of block, or if the load is volatile, we can't move it.
1179 return !SawStore && !hasVolatileMemoryRef();
1180
1181 return true;
1182 }
1183
1184 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1185 /// instruction which defined the specified register instead of copying it.
isSafeToReMat(const TargetInstrInfo * TII,AliasAnalysis * AA,unsigned DstReg) const1186 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1187 AliasAnalysis *AA,
1188 unsigned DstReg) const {
1189 bool SawStore = false;
1190 if (!TII->isTriviallyReMaterializable(this, AA) ||
1191 !isSafeToMove(TII, AA, SawStore))
1192 return false;
1193 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1194 const MachineOperand &MO = getOperand(i);
1195 if (!MO.isReg())
1196 continue;
1197 // FIXME: For now, do not remat any instruction with register operands.
1198 // Later on, we can loosen the restriction is the register operands have
1199 // not been modified between the def and use. Note, this is different from
1200 // MachineSink because the code is no longer in two-address form (at least
1201 // partially).
1202 if (MO.isUse())
1203 return false;
1204 else if (!MO.isDead() && MO.getReg() != DstReg)
1205 return false;
1206 }
1207 return true;
1208 }
1209
1210 /// hasVolatileMemoryRef - Return true if this instruction may have a
1211 /// volatile memory reference, or if the information describing the
1212 /// memory reference is not available. Return false if it is known to
1213 /// have no volatile memory references.
hasVolatileMemoryRef() const1214 bool MachineInstr::hasVolatileMemoryRef() const {
1215 // An instruction known never to access memory won't have a volatile access.
1216 if (!MCID->mayStore() &&
1217 !MCID->mayLoad() &&
1218 !MCID->isCall() &&
1219 !hasUnmodeledSideEffects())
1220 return false;
1221
1222 // Otherwise, if the instruction has no memory reference information,
1223 // conservatively assume it wasn't preserved.
1224 if (memoperands_empty())
1225 return true;
1226
1227 // Check the memory reference information for volatile references.
1228 for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1229 if ((*I)->isVolatile())
1230 return true;
1231
1232 return false;
1233 }
1234
1235 /// isInvariantLoad - Return true if this instruction is loading from a
1236 /// location whose value is invariant across the function. For example,
1237 /// loading a value from the constant pool or from the argument area
1238 /// of a function if it does not change. This should only return true of
1239 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1240 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1241 // If the instruction doesn't load at all, it isn't an invariant load.
1242 if (!MCID->mayLoad())
1243 return false;
1244
1245 // If the instruction has lost its memoperands, conservatively assume that
1246 // it may not be an invariant load.
1247 if (memoperands_empty())
1248 return false;
1249
1250 const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1251
1252 for (mmo_iterator I = memoperands_begin(),
1253 E = memoperands_end(); I != E; ++I) {
1254 if ((*I)->isVolatile()) return false;
1255 if ((*I)->isStore()) return false;
1256
1257 if (const Value *V = (*I)->getValue()) {
1258 // A load from a constant PseudoSourceValue is invariant.
1259 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1260 if (PSV->isConstant(MFI))
1261 continue;
1262 // If we have an AliasAnalysis, ask it whether the memory is constant.
1263 if (AA && AA->pointsToConstantMemory(
1264 AliasAnalysis::Location(V, (*I)->getSize(),
1265 (*I)->getTBAAInfo())))
1266 continue;
1267 }
1268
1269 // Otherwise assume conservatively.
1270 return false;
1271 }
1272
1273 // Everything checks out.
1274 return true;
1275 }
1276
1277 /// isConstantValuePHI - If the specified instruction is a PHI that always
1278 /// merges together the same virtual register, return the register, otherwise
1279 /// return 0.
isConstantValuePHI() const1280 unsigned MachineInstr::isConstantValuePHI() const {
1281 if (!isPHI())
1282 return 0;
1283 assert(getNumOperands() >= 3 &&
1284 "It's illegal to have a PHI without source operands");
1285
1286 unsigned Reg = getOperand(1).getReg();
1287 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1288 if (getOperand(i).getReg() != Reg)
1289 return 0;
1290 return Reg;
1291 }
1292
hasUnmodeledSideEffects() const1293 bool MachineInstr::hasUnmodeledSideEffects() const {
1294 if (getDesc().hasUnmodeledSideEffects())
1295 return true;
1296 if (isInlineAsm()) {
1297 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1298 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1299 return true;
1300 }
1301
1302 return false;
1303 }
1304
1305 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1306 ///
allDefsAreDead() const1307 bool MachineInstr::allDefsAreDead() const {
1308 for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1309 const MachineOperand &MO = getOperand(i);
1310 if (!MO.isReg() || MO.isUse())
1311 continue;
1312 if (!MO.isDead())
1313 return false;
1314 }
1315 return true;
1316 }
1317
1318 /// copyImplicitOps - Copy implicit register operands from specified
1319 /// instruction to this instruction.
copyImplicitOps(const MachineInstr * MI)1320 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1321 for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1322 i != e; ++i) {
1323 const MachineOperand &MO = MI->getOperand(i);
1324 if (MO.isReg() && MO.isImplicit())
1325 addOperand(MO);
1326 }
1327 }
1328
dump() const1329 void MachineInstr::dump() const {
1330 dbgs() << " " << *this;
1331 }
1332
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1333 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1334 raw_ostream &CommentOS) {
1335 const LLVMContext &Ctx = MF->getFunction()->getContext();
1336 if (!DL.isUnknown()) { // Print source line info.
1337 DIScope Scope(DL.getScope(Ctx));
1338 // Omit the directory, because it's likely to be long and uninteresting.
1339 if (Scope.Verify())
1340 CommentOS << Scope.getFilename();
1341 else
1342 CommentOS << "<unknown>";
1343 CommentOS << ':' << DL.getLine();
1344 if (DL.getCol() != 0)
1345 CommentOS << ':' << DL.getCol();
1346 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1347 if (!InlinedAtDL.isUnknown()) {
1348 CommentOS << " @[ ";
1349 printDebugLoc(InlinedAtDL, MF, CommentOS);
1350 CommentOS << " ]";
1351 }
1352 }
1353 }
1354
print(raw_ostream & OS,const TargetMachine * TM) const1355 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1356 // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1357 const MachineFunction *MF = 0;
1358 const MachineRegisterInfo *MRI = 0;
1359 if (const MachineBasicBlock *MBB = getParent()) {
1360 MF = MBB->getParent();
1361 if (!TM && MF)
1362 TM = &MF->getTarget();
1363 if (MF)
1364 MRI = &MF->getRegInfo();
1365 }
1366
1367 // Save a list of virtual registers.
1368 SmallVector<unsigned, 8> VirtRegs;
1369
1370 // Print explicitly defined operands on the left of an assignment syntax.
1371 unsigned StartOp = 0, e = getNumOperands();
1372 for (; StartOp < e && getOperand(StartOp).isReg() &&
1373 getOperand(StartOp).isDef() &&
1374 !getOperand(StartOp).isImplicit();
1375 ++StartOp) {
1376 if (StartOp != 0) OS << ", ";
1377 getOperand(StartOp).print(OS, TM);
1378 unsigned Reg = getOperand(StartOp).getReg();
1379 if (TargetRegisterInfo::isVirtualRegister(Reg))
1380 VirtRegs.push_back(Reg);
1381 }
1382
1383 if (StartOp != 0)
1384 OS << " = ";
1385
1386 // Print the opcode name.
1387 OS << getDesc().getName();
1388
1389 // Print the rest of the operands.
1390 bool OmittedAnyCallClobbers = false;
1391 bool FirstOp = true;
1392 unsigned AsmDescOp = ~0u;
1393 unsigned AsmOpCount = 0;
1394
1395 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1396 // Print asm string.
1397 OS << " ";
1398 getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1399
1400 // Print HasSideEffects, IsAlignStack
1401 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1402 if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1403 OS << " [sideeffect]";
1404 if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1405 OS << " [alignstack]";
1406
1407 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1408 FirstOp = false;
1409 }
1410
1411
1412 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1413 const MachineOperand &MO = getOperand(i);
1414
1415 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1416 VirtRegs.push_back(MO.getReg());
1417
1418 // Omit call-clobbered registers which aren't used anywhere. This makes
1419 // call instructions much less noisy on targets where calls clobber lots
1420 // of registers. Don't rely on MO.isDead() because we may be called before
1421 // LiveVariables is run, or we may be looking at a non-allocatable reg.
1422 if (MF && getDesc().isCall() &&
1423 MO.isReg() && MO.isImplicit() && MO.isDef()) {
1424 unsigned Reg = MO.getReg();
1425 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1426 const MachineRegisterInfo &MRI = MF->getRegInfo();
1427 if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1428 bool HasAliasLive = false;
1429 for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1430 unsigned AliasReg = *Alias; ++Alias)
1431 if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1432 HasAliasLive = true;
1433 break;
1434 }
1435 if (!HasAliasLive) {
1436 OmittedAnyCallClobbers = true;
1437 continue;
1438 }
1439 }
1440 }
1441 }
1442
1443 if (FirstOp) FirstOp = false; else OS << ",";
1444 OS << " ";
1445 if (i < getDesc().NumOperands) {
1446 const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1447 if (MCOI.isPredicate())
1448 OS << "pred:";
1449 if (MCOI.isOptionalDef())
1450 OS << "opt:";
1451 }
1452 if (isDebugValue() && MO.isMetadata()) {
1453 // Pretty print DBG_VALUE instructions.
1454 const MDNode *MD = MO.getMetadata();
1455 if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1456 OS << "!\"" << MDS->getString() << '\"';
1457 else
1458 MO.print(OS, TM);
1459 } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1460 OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1461 } else if (i == AsmDescOp && MO.isImm()) {
1462 // Pretty print the inline asm operand descriptor.
1463 OS << '$' << AsmOpCount++;
1464 unsigned Flag = MO.getImm();
1465 switch (InlineAsm::getKind(Flag)) {
1466 case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
1467 case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
1468 case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1469 case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
1470 case InlineAsm::Kind_Imm: OS << ":[imm"; break;
1471 case InlineAsm::Kind_Mem: OS << ":[mem"; break;
1472 default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1473 }
1474
1475 unsigned RCID = 0;
1476 if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1477 if (TM)
1478 OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1479 else
1480 OS << ":RC" << RCID;
1481 }
1482
1483 unsigned TiedTo = 0;
1484 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1485 OS << " tiedto:$" << TiedTo;
1486
1487 OS << ']';
1488
1489 // Compute the index of the next operand descriptor.
1490 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1491 } else
1492 MO.print(OS, TM);
1493 }
1494
1495 // Briefly indicate whether any call clobbers were omitted.
1496 if (OmittedAnyCallClobbers) {
1497 if (!FirstOp) OS << ",";
1498 OS << " ...";
1499 }
1500
1501 bool HaveSemi = false;
1502 if (Flags) {
1503 if (!HaveSemi) OS << ";"; HaveSemi = true;
1504 OS << " flags: ";
1505
1506 if (Flags & FrameSetup)
1507 OS << "FrameSetup";
1508 }
1509
1510 if (!memoperands_empty()) {
1511 if (!HaveSemi) OS << ";"; HaveSemi = true;
1512
1513 OS << " mem:";
1514 for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1515 i != e; ++i) {
1516 OS << **i;
1517 if (llvm::next(i) != e)
1518 OS << " ";
1519 }
1520 }
1521
1522 // Print the regclass of any virtual registers encountered.
1523 if (MRI && !VirtRegs.empty()) {
1524 if (!HaveSemi) OS << ";"; HaveSemi = true;
1525 for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1526 const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1527 OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1528 for (unsigned j = i+1; j != VirtRegs.size();) {
1529 if (MRI->getRegClass(VirtRegs[j]) != RC) {
1530 ++j;
1531 continue;
1532 }
1533 if (VirtRegs[i] != VirtRegs[j])
1534 OS << "," << PrintReg(VirtRegs[j]);
1535 VirtRegs.erase(VirtRegs.begin()+j);
1536 }
1537 }
1538 }
1539
1540 // Print debug location information.
1541 if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1542 if (!HaveSemi) OS << ";"; HaveSemi = true;
1543 DIVariable DV(getOperand(e - 1).getMetadata());
1544 OS << " line no:" << DV.getLineNumber();
1545 if (MDNode *InlinedAt = DV.getInlinedAt()) {
1546 DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1547 if (!InlinedAtDL.isUnknown()) {
1548 OS << " inlined @[ ";
1549 printDebugLoc(InlinedAtDL, MF, OS);
1550 OS << " ]";
1551 }
1552 }
1553 } else if (!debugLoc.isUnknown() && MF) {
1554 if (!HaveSemi) OS << ";"; HaveSemi = true;
1555 OS << " dbg:";
1556 printDebugLoc(debugLoc, MF, OS);
1557 }
1558
1559 OS << '\n';
1560 }
1561
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1562 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1563 const TargetRegisterInfo *RegInfo,
1564 bool AddIfNotFound) {
1565 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1566 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1567 bool Found = false;
1568 SmallVector<unsigned,4> DeadOps;
1569 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1570 MachineOperand &MO = getOperand(i);
1571 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1572 continue;
1573 unsigned Reg = MO.getReg();
1574 if (!Reg)
1575 continue;
1576
1577 if (Reg == IncomingReg) {
1578 if (!Found) {
1579 if (MO.isKill())
1580 // The register is already marked kill.
1581 return true;
1582 if (isPhysReg && isRegTiedToDefOperand(i))
1583 // Two-address uses of physregs must not be marked kill.
1584 return true;
1585 MO.setIsKill();
1586 Found = true;
1587 }
1588 } else if (hasAliases && MO.isKill() &&
1589 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1590 // A super-register kill already exists.
1591 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1592 return true;
1593 if (RegInfo->isSubRegister(IncomingReg, Reg))
1594 DeadOps.push_back(i);
1595 }
1596 }
1597
1598 // Trim unneeded kill operands.
1599 while (!DeadOps.empty()) {
1600 unsigned OpIdx = DeadOps.back();
1601 if (getOperand(OpIdx).isImplicit())
1602 RemoveOperand(OpIdx);
1603 else
1604 getOperand(OpIdx).setIsKill(false);
1605 DeadOps.pop_back();
1606 }
1607
1608 // If not found, this means an alias of one of the operands is killed. Add a
1609 // new implicit operand if required.
1610 if (!Found && AddIfNotFound) {
1611 addOperand(MachineOperand::CreateReg(IncomingReg,
1612 false /*IsDef*/,
1613 true /*IsImp*/,
1614 true /*IsKill*/));
1615 return true;
1616 }
1617 return Found;
1618 }
1619
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1620 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1621 const TargetRegisterInfo *RegInfo,
1622 bool AddIfNotFound) {
1623 bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1624 bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1625 bool Found = false;
1626 SmallVector<unsigned,4> DeadOps;
1627 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1628 MachineOperand &MO = getOperand(i);
1629 if (!MO.isReg() || !MO.isDef())
1630 continue;
1631 unsigned Reg = MO.getReg();
1632 if (!Reg)
1633 continue;
1634
1635 if (Reg == IncomingReg) {
1636 MO.setIsDead();
1637 Found = true;
1638 } else if (hasAliases && MO.isDead() &&
1639 TargetRegisterInfo::isPhysicalRegister(Reg)) {
1640 // There exists a super-register that's marked dead.
1641 if (RegInfo->isSuperRegister(IncomingReg, Reg))
1642 return true;
1643 if (RegInfo->getSubRegisters(IncomingReg) &&
1644 RegInfo->getSuperRegisters(Reg) &&
1645 RegInfo->isSubRegister(IncomingReg, Reg))
1646 DeadOps.push_back(i);
1647 }
1648 }
1649
1650 // Trim unneeded dead operands.
1651 while (!DeadOps.empty()) {
1652 unsigned OpIdx = DeadOps.back();
1653 if (getOperand(OpIdx).isImplicit())
1654 RemoveOperand(OpIdx);
1655 else
1656 getOperand(OpIdx).setIsDead(false);
1657 DeadOps.pop_back();
1658 }
1659
1660 // If not found, this means an alias of one of the operands is dead. Add a
1661 // new implicit operand if required.
1662 if (Found || !AddIfNotFound)
1663 return Found;
1664
1665 addOperand(MachineOperand::CreateReg(IncomingReg,
1666 true /*IsDef*/,
1667 true /*IsImp*/,
1668 false /*IsKill*/,
1669 true /*IsDead*/));
1670 return true;
1671 }
1672
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1673 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1674 const TargetRegisterInfo *RegInfo) {
1675 if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1676 MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1677 if (MO)
1678 return;
1679 } else {
1680 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1681 const MachineOperand &MO = getOperand(i);
1682 if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1683 MO.getSubReg() == 0)
1684 return;
1685 }
1686 }
1687 addOperand(MachineOperand::CreateReg(IncomingReg,
1688 true /*IsDef*/,
1689 true /*IsImp*/));
1690 }
1691
setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> & UsedRegs,const TargetRegisterInfo & TRI)1692 void MachineInstr::setPhysRegsDeadExcept(const SmallVectorImpl<unsigned> &UsedRegs,
1693 const TargetRegisterInfo &TRI) {
1694 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1695 MachineOperand &MO = getOperand(i);
1696 if (!MO.isReg() || !MO.isDef()) continue;
1697 unsigned Reg = MO.getReg();
1698 if (Reg == 0) continue;
1699 bool Dead = true;
1700 for (SmallVectorImpl<unsigned>::const_iterator I = UsedRegs.begin(),
1701 E = UsedRegs.end(); I != E; ++I)
1702 if (TRI.regsOverlap(*I, Reg)) {
1703 Dead = false;
1704 break;
1705 }
1706 // If there are no uses, including partial uses, the def is dead.
1707 if (Dead) MO.setIsDead();
1708 }
1709 }
1710
1711 unsigned
getHashValue(const MachineInstr * const & MI)1712 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1713 unsigned Hash = MI->getOpcode() * 37;
1714 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1715 const MachineOperand &MO = MI->getOperand(i);
1716 uint64_t Key = (uint64_t)MO.getType() << 32;
1717 switch (MO.getType()) {
1718 default: break;
1719 case MachineOperand::MO_Register:
1720 if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1721 continue; // Skip virtual register defs.
1722 Key |= MO.getReg();
1723 break;
1724 case MachineOperand::MO_Immediate:
1725 Key |= MO.getImm();
1726 break;
1727 case MachineOperand::MO_FrameIndex:
1728 case MachineOperand::MO_ConstantPoolIndex:
1729 case MachineOperand::MO_JumpTableIndex:
1730 Key |= MO.getIndex();
1731 break;
1732 case MachineOperand::MO_MachineBasicBlock:
1733 Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1734 break;
1735 case MachineOperand::MO_GlobalAddress:
1736 Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1737 break;
1738 case MachineOperand::MO_BlockAddress:
1739 Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1740 break;
1741 case MachineOperand::MO_MCSymbol:
1742 Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1743 break;
1744 }
1745 Key += ~(Key << 32);
1746 Key ^= (Key >> 22);
1747 Key += ~(Key << 13);
1748 Key ^= (Key >> 8);
1749 Key += (Key << 3);
1750 Key ^= (Key >> 15);
1751 Key += ~(Key << 27);
1752 Key ^= (Key >> 31);
1753 Hash = (unsigned)Key + Hash * 37;
1754 }
1755 return Hash;
1756 }
1757
emitError(StringRef Msg) const1758 void MachineInstr::emitError(StringRef Msg) const {
1759 // Find the source location cookie.
1760 unsigned LocCookie = 0;
1761 const MDNode *LocMD = 0;
1762 for (unsigned i = getNumOperands(); i != 0; --i) {
1763 if (getOperand(i-1).isMetadata() &&
1764 (LocMD = getOperand(i-1).getMetadata()) &&
1765 LocMD->getNumOperands() != 0) {
1766 if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1767 LocCookie = CI->getZExtValue();
1768 break;
1769 }
1770 }
1771 }
1772
1773 if (const MachineBasicBlock *MBB = getParent())
1774 if (const MachineFunction *MF = MBB->getParent())
1775 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1776 report_fatal_error(Msg);
1777 }
1778