1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <lz4.h>
20 #include <random>
21 #include <sys/statvfs.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24
25 #include "android-base/stringprintf.h"
26 #include "android-base/strings.h"
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/callee_save_type.h"
31 #include "base/enums.h"
32 #include "base/macros.h"
33 #include "base/stl_util.h"
34 #include "base/scoped_flock.h"
35 #include "base/systrace.h"
36 #include "base/time_utils.h"
37 #include "exec_utils.h"
38 #include "gc/accounting/space_bitmap-inl.h"
39 #include "image-inl.h"
40 #include "image_space_fs.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "oat_file.h"
45 #include "os.h"
46 #include "runtime.h"
47 #include "space-inl.h"
48 #include "utils.h"
49
50 namespace art {
51 namespace gc {
52 namespace space {
53
54 using android::base::StringAppendF;
55 using android::base::StringPrintf;
56
57 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
58
ImageSpace(const std::string & image_filename,const char * image_location,MemMap * mem_map,accounting::ContinuousSpaceBitmap * live_bitmap,uint8_t * end)59 ImageSpace::ImageSpace(const std::string& image_filename,
60 const char* image_location,
61 MemMap* mem_map,
62 accounting::ContinuousSpaceBitmap* live_bitmap,
63 uint8_t* end)
64 : MemMapSpace(image_filename,
65 mem_map,
66 mem_map->Begin(),
67 end,
68 end,
69 kGcRetentionPolicyNeverCollect),
70 oat_file_non_owned_(nullptr),
71 image_location_(image_location) {
72 DCHECK(live_bitmap != nullptr);
73 live_bitmap_.reset(live_bitmap);
74 }
75
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)76 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
77 CHECK_ALIGNED(min_delta, kPageSize);
78 CHECK_ALIGNED(max_delta, kPageSize);
79 CHECK_LT(min_delta, max_delta);
80
81 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
82 if (r % 2 == 0) {
83 r = RoundUp(r, kPageSize);
84 } else {
85 r = RoundDown(r, kPageSize);
86 }
87 CHECK_LE(min_delta, r);
88 CHECK_GE(max_delta, r);
89 CHECK_ALIGNED(r, kPageSize);
90 return r;
91 }
92
ChooseRelocationOffsetDelta()93 static int32_t ChooseRelocationOffsetDelta() {
94 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
95 }
96
GenerateImage(const std::string & image_filename,InstructionSet image_isa,std::string * error_msg)97 static bool GenerateImage(const std::string& image_filename,
98 InstructionSet image_isa,
99 std::string* error_msg) {
100 const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
101 std::vector<std::string> boot_class_path;
102 Split(boot_class_path_string, ':', &boot_class_path);
103 if (boot_class_path.empty()) {
104 *error_msg = "Failed to generate image because no boot class path specified";
105 return false;
106 }
107 // We should clean up so we are more likely to have room for the image.
108 if (Runtime::Current()->IsZygote()) {
109 LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
110 PruneDalvikCache(image_isa);
111 }
112
113 std::vector<std::string> arg_vector;
114
115 std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
116 arg_vector.push_back(dex2oat);
117
118 std::string image_option_string("--image=");
119 image_option_string += image_filename;
120 arg_vector.push_back(image_option_string);
121
122 for (size_t i = 0; i < boot_class_path.size(); i++) {
123 arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
124 }
125
126 std::string oat_file_option_string("--oat-file=");
127 oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
128 arg_vector.push_back(oat_file_option_string);
129
130 // Note: we do not generate a fully debuggable boot image so we do not pass the
131 // compiler flag --debuggable here.
132
133 Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
134 CHECK_EQ(image_isa, kRuntimeISA)
135 << "We should always be generating an image for the current isa.";
136
137 int32_t base_offset = ChooseRelocationOffsetDelta();
138 LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
139 << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
140 arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
141
142 if (!kIsTargetBuild) {
143 arg_vector.push_back("--host");
144 }
145
146 const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
147 for (size_t i = 0; i < compiler_options.size(); ++i) {
148 arg_vector.push_back(compiler_options[i].c_str());
149 }
150
151 std::string command_line(android::base::Join(arg_vector, ' '));
152 LOG(INFO) << "GenerateImage: " << command_line;
153 return Exec(arg_vector, error_msg);
154 }
155
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename,bool * dalvik_cache_exists,std::string * dalvik_cache,bool * is_global_cache,bool * has_cache,std::string * cache_filename)156 static bool FindImageFilenameImpl(const char* image_location,
157 const InstructionSet image_isa,
158 bool* has_system,
159 std::string* system_filename,
160 bool* dalvik_cache_exists,
161 std::string* dalvik_cache,
162 bool* is_global_cache,
163 bool* has_cache,
164 std::string* cache_filename) {
165 DCHECK(dalvik_cache != nullptr);
166
167 *has_system = false;
168 *has_cache = false;
169 // image_location = /system/framework/boot.art
170 // system_image_location = /system/framework/<image_isa>/boot.art
171 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
172 if (OS::FileExists(system_image_filename.c_str())) {
173 *system_filename = system_image_filename;
174 *has_system = true;
175 }
176
177 bool have_android_data = false;
178 *dalvik_cache_exists = false;
179 GetDalvikCache(GetInstructionSetString(image_isa),
180 true,
181 dalvik_cache,
182 &have_android_data,
183 dalvik_cache_exists,
184 is_global_cache);
185
186 if (have_android_data && *dalvik_cache_exists) {
187 // Always set output location even if it does not exist,
188 // so that the caller knows where to create the image.
189 //
190 // image_location = /system/framework/boot.art
191 // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
192 std::string error_msg;
193 if (!GetDalvikCacheFilename(image_location,
194 dalvik_cache->c_str(),
195 cache_filename,
196 &error_msg)) {
197 LOG(WARNING) << error_msg;
198 return *has_system;
199 }
200 *has_cache = OS::FileExists(cache_filename->c_str());
201 }
202 return *has_system || *has_cache;
203 }
204
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system,std::string * cache_filename,bool * dalvik_cache_exists,bool * has_cache,bool * is_global_cache)205 bool ImageSpace::FindImageFilename(const char* image_location,
206 const InstructionSet image_isa,
207 std::string* system_filename,
208 bool* has_system,
209 std::string* cache_filename,
210 bool* dalvik_cache_exists,
211 bool* has_cache,
212 bool* is_global_cache) {
213 std::string dalvik_cache_unused;
214 return FindImageFilenameImpl(image_location,
215 image_isa,
216 has_system,
217 system_filename,
218 dalvik_cache_exists,
219 &dalvik_cache_unused,
220 is_global_cache,
221 has_cache,
222 cache_filename);
223 }
224
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header)225 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
226 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
227 if (image_file.get() == nullptr) {
228 return false;
229 }
230 const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
231 if (!success || !image_header->IsValid()) {
232 return false;
233 }
234 return true;
235 }
236
237 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
RelocateImage(const char * image_location,const char * dest_filename,InstructionSet isa,std::string * error_msg)238 static bool RelocateImage(const char* image_location,
239 const char* dest_filename,
240 InstructionSet isa,
241 std::string* error_msg) {
242 // We should clean up so we are more likely to have room for the image.
243 if (Runtime::Current()->IsZygote()) {
244 LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
245 PruneDalvikCache(isa);
246 }
247
248 std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
249
250 std::string input_image_location_arg("--input-image-location=");
251 input_image_location_arg += image_location;
252
253 std::string output_image_filename_arg("--output-image-file=");
254 output_image_filename_arg += dest_filename;
255
256 std::string instruction_set_arg("--instruction-set=");
257 instruction_set_arg += GetInstructionSetString(isa);
258
259 std::string base_offset_arg("--base-offset-delta=");
260 StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
261
262 std::vector<std::string> argv;
263 argv.push_back(patchoat);
264
265 argv.push_back(input_image_location_arg);
266 argv.push_back(output_image_filename_arg);
267
268 argv.push_back(instruction_set_arg);
269 argv.push_back(base_offset_arg);
270
271 std::string command_line(android::base::Join(argv, ' '));
272 LOG(INFO) << "RelocateImage: " << command_line;
273 return Exec(argv, error_msg);
274 }
275
ReadSpecificImageHeader(const char * filename,std::string * error_msg)276 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
277 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
278 if (!ReadSpecificImageHeader(filename, hdr.get())) {
279 *error_msg = StringPrintf("Unable to read image header for %s", filename);
280 return nullptr;
281 }
282 return hdr.release();
283 }
284
ReadImageHeader(const char * image_location,const InstructionSet image_isa,std::string * error_msg)285 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
286 const InstructionSet image_isa,
287 std::string* error_msg) {
288 std::string system_filename;
289 bool has_system = false;
290 std::string cache_filename;
291 bool has_cache = false;
292 bool dalvik_cache_exists = false;
293 bool is_global_cache = false;
294 if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
295 &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
296 if (Runtime::Current()->ShouldRelocate()) {
297 if (has_system && has_cache) {
298 std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
299 std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
300 if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
301 *error_msg = StringPrintf("Unable to read image header for %s at %s",
302 image_location, system_filename.c_str());
303 return nullptr;
304 }
305 if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
306 *error_msg = StringPrintf("Unable to read image header for %s at %s",
307 image_location, cache_filename.c_str());
308 return nullptr;
309 }
310 if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
311 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
312 image_location);
313 return nullptr;
314 }
315 return cache_hdr.release();
316 } else if (!has_cache) {
317 *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
318 image_location);
319 return nullptr;
320 } else if (!has_system && has_cache) {
321 // This can probably just use the cache one.
322 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
323 }
324 } else {
325 // We don't want to relocate, Just pick the appropriate one if we have it and return.
326 if (has_system && has_cache) {
327 // We want the cache if the checksum matches, otherwise the system.
328 std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
329 error_msg));
330 std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
331 error_msg));
332 if (system.get() == nullptr ||
333 (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
334 return cache.release();
335 } else {
336 return system.release();
337 }
338 } else if (has_system) {
339 return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
340 } else if (has_cache) {
341 return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
342 }
343 }
344 }
345
346 *error_msg = StringPrintf("Unable to find image file for %s", image_location);
347 return nullptr;
348 }
349
ChecksumsMatch(const char * image_a,const char * image_b,std::string * error_msg)350 static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
351 DCHECK(error_msg != nullptr);
352
353 ImageHeader hdr_a;
354 ImageHeader hdr_b;
355
356 if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
357 *error_msg = StringPrintf("Cannot read header of %s", image_a);
358 return false;
359 }
360 if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
361 *error_msg = StringPrintf("Cannot read header of %s", image_b);
362 return false;
363 }
364
365 if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
366 *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
367 hdr_a.GetOatChecksum(),
368 image_a,
369 hdr_b.GetOatChecksum(),
370 image_b);
371 return false;
372 }
373
374 return true;
375 }
376
CanWriteToDalvikCache(const InstructionSet isa)377 static bool CanWriteToDalvikCache(const InstructionSet isa) {
378 const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
379 if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
380 return true;
381 } else if (errno != EACCES) {
382 PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
383 }
384 return false;
385 }
386
ImageCreationAllowed(bool is_global_cache,const InstructionSet isa,std::string * error_msg)387 static bool ImageCreationAllowed(bool is_global_cache,
388 const InstructionSet isa,
389 std::string* error_msg) {
390 // Anyone can write into a "local" cache.
391 if (!is_global_cache) {
392 return true;
393 }
394
395 // Only the zygote running as root is allowed to create the global boot image.
396 // If the zygote is running as non-root (and cannot write to the dalvik-cache),
397 // then image creation is not allowed..
398 if (Runtime::Current()->IsZygote()) {
399 return CanWriteToDalvikCache(isa);
400 }
401
402 *error_msg = "Only the zygote can create the global boot image.";
403 return false;
404 }
405
VerifyImageAllocations()406 void ImageSpace::VerifyImageAllocations() {
407 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
408 while (current < End()) {
409 CHECK_ALIGNED(current, kObjectAlignment);
410 auto* obj = reinterpret_cast<mirror::Object*>(current);
411 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
412 CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
413 if (kUseBakerReadBarrier) {
414 obj->AssertReadBarrierState();
415 }
416 current += RoundUp(obj->SizeOf(), kObjectAlignment);
417 }
418 }
419
420 // Helper class for relocating from one range of memory to another.
421 class RelocationRange {
422 public:
423 RelocationRange() = default;
424 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)425 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
426 : source_(source),
427 dest_(dest),
428 length_(length) {}
429
InSource(uintptr_t address) const430 bool InSource(uintptr_t address) const {
431 return address - source_ < length_;
432 }
433
InDest(uintptr_t address) const434 bool InDest(uintptr_t address) const {
435 return address - dest_ < length_;
436 }
437
438 // Translate a source address to the destination space.
ToDest(uintptr_t address) const439 uintptr_t ToDest(uintptr_t address) const {
440 DCHECK(InSource(address));
441 return address + Delta();
442 }
443
444 // Returns the delta between the dest from the source.
Delta() const445 uintptr_t Delta() const {
446 return dest_ - source_;
447 }
448
Source() const449 uintptr_t Source() const {
450 return source_;
451 }
452
Dest() const453 uintptr_t Dest() const {
454 return dest_;
455 }
456
Length() const457 uintptr_t Length() const {
458 return length_;
459 }
460
461 private:
462 const uintptr_t source_;
463 const uintptr_t dest_;
464 const uintptr_t length_;
465 };
466
operator <<(std::ostream & os,const RelocationRange & reloc)467 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
468 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
469 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
470 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
471 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
472 }
473
474 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
475 // friend class), but not declare functions in the header.
476 class ImageSpaceLoader {
477 public:
Load(const char * image_location,const std::string & image_filename,bool is_zygote,bool is_global_cache,bool validate_oat_file,std::string * error_msg)478 static std::unique_ptr<ImageSpace> Load(const char* image_location,
479 const std::string& image_filename,
480 bool is_zygote,
481 bool is_global_cache,
482 bool validate_oat_file,
483 std::string* error_msg)
484 REQUIRES_SHARED(Locks::mutator_lock_) {
485 // Should this be a RDWR lock? This is only a defensive measure, as at
486 // this point the image should exist.
487 // However, only the zygote can write into the global dalvik-cache, so
488 // restrict to zygote processes, or any process that isn't using
489 // /data/dalvik-cache (which we assume to be allowed to write there).
490 const bool rw_lock = is_zygote || !is_global_cache;
491
492 // Note that we must not use the file descriptor associated with
493 // ScopedFlock::GetFile to Init the image file. We want the file
494 // descriptor (and the associated exclusive lock) to be released when
495 // we leave Create.
496 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
497 rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
498 true /* block */,
499 error_msg);
500
501 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
502 << image_location;
503 // If we are in /system we can assume the image is good. We can also
504 // assume this if we are using a relocated image (i.e. image checksum
505 // matches) since this is only different by the offset. We need this to
506 // make sure that host tests continue to work.
507 // Since we are the boot image, pass null since we load the oat file from the boot image oat
508 // file name.
509 return Init(image_filename.c_str(),
510 image_location,
511 validate_oat_file,
512 /* oat_file */nullptr,
513 error_msg);
514 }
515
Init(const char * image_filename,const char * image_location,bool validate_oat_file,const OatFile * oat_file,std::string * error_msg)516 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
517 const char* image_location,
518 bool validate_oat_file,
519 const OatFile* oat_file,
520 std::string* error_msg)
521 REQUIRES_SHARED(Locks::mutator_lock_) {
522 CHECK(image_filename != nullptr);
523 CHECK(image_location != nullptr);
524
525 TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
526 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
527
528 std::unique_ptr<File> file;
529 {
530 TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
531 file.reset(OS::OpenFileForReading(image_filename));
532 if (file == nullptr) {
533 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
534 return nullptr;
535 }
536 }
537 ImageHeader temp_image_header;
538 ImageHeader* image_header = &temp_image_header;
539 {
540 TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
541 bool success = file->ReadFully(image_header, sizeof(*image_header));
542 if (!success || !image_header->IsValid()) {
543 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
544 return nullptr;
545 }
546 }
547 // Check that the file is larger or equal to the header size + data size.
548 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
549 if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
550 *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
551 image_file_size,
552 sizeof(ImageHeader) + image_header->GetDataSize());
553 return nullptr;
554 }
555
556 if (oat_file != nullptr) {
557 // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
558 // app image case. Otherwise, we open the oat file after the image and check the checksum there.
559 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
560 const uint32_t image_oat_checksum = image_header->GetOatChecksum();
561 if (oat_checksum != image_oat_checksum) {
562 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
563 oat_checksum,
564 image_oat_checksum,
565 image_filename);
566 return nullptr;
567 }
568 }
569
570 if (VLOG_IS_ON(startup)) {
571 LOG(INFO) << "Dumping image sections";
572 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
573 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
574 auto& section = image_header->GetImageSection(section_idx);
575 LOG(INFO) << section_idx << " start="
576 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
577 << section;
578 }
579 }
580
581 const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
582 // The location we want to map from is the first aligned page after the end of the stored
583 // (possibly compressed) data.
584 const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
585 kPageSize);
586 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
587 if (end_of_bitmap != image_file_size) {
588 *error_msg = StringPrintf(
589 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
590 end_of_bitmap);
591 return nullptr;
592 }
593
594 std::unique_ptr<MemMap> map;
595
596 // GetImageBegin is the preferred address to map the image. If we manage to map the
597 // image at the image begin, the amount of fixup work required is minimized.
598 // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
599 // avoid reading proc maps for a mapping failure and slowing everything down.
600 map.reset(LoadImageFile(image_filename,
601 image_location,
602 *image_header,
603 image_header->GetImageBegin(),
604 file->Fd(),
605 logger,
606 image_header->IsPic() ? nullptr : error_msg));
607 // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
608 // relocate in-place.
609 if (map == nullptr && image_header->IsPic()) {
610 map.reset(LoadImageFile(image_filename,
611 image_location,
612 *image_header,
613 /* address */ nullptr,
614 file->Fd(),
615 logger,
616 error_msg));
617 }
618 // Were we able to load something and continue?
619 if (map == nullptr) {
620 DCHECK(!error_msg->empty());
621 return nullptr;
622 }
623 DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
624
625 std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
626 bitmap_section.Size(),
627 PROT_READ, MAP_PRIVATE,
628 file->Fd(),
629 image_bitmap_offset,
630 /*low_4gb*/false,
631 /*reuse*/false,
632 image_filename,
633 error_msg));
634 if (image_bitmap_map == nullptr) {
635 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
636 return nullptr;
637 }
638 // Loaded the map, use the image header from the file now in case we patch it with
639 // RelocateInPlace.
640 image_header = reinterpret_cast<ImageHeader*>(map->Begin());
641 const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
642 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
643 image_filename,
644 bitmap_index));
645 // Bitmap only needs to cover until the end of the mirror objects section.
646 const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
647 // We only want the mirror object, not the ArtFields and ArtMethods.
648 uint8_t* const image_end = map->Begin() + image_objects.End();
649 std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
650 {
651 TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
652 bitmap.reset(
653 accounting::ContinuousSpaceBitmap::CreateFromMemMap(
654 bitmap_name,
655 image_bitmap_map.release(),
656 reinterpret_cast<uint8_t*>(map->Begin()),
657 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
658 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
659 if (bitmap == nullptr) {
660 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
661 return nullptr;
662 }
663 }
664 {
665 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
666 if (!RelocateInPlace(*image_header,
667 map->Begin(),
668 bitmap.get(),
669 oat_file,
670 error_msg)) {
671 return nullptr;
672 }
673 }
674 // We only want the mirror object, not the ArtFields and ArtMethods.
675 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
676 image_location,
677 map.release(),
678 bitmap.release(),
679 image_end));
680
681 // VerifyImageAllocations() will be called later in Runtime::Init()
682 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
683 // and ArtField::java_lang_reflect_ArtField_, which are used from
684 // Object::SizeOf() which VerifyImageAllocations() calls, are not
685 // set yet at this point.
686 if (oat_file == nullptr) {
687 TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
688 space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
689 if (space->oat_file_ == nullptr) {
690 DCHECK(!error_msg->empty());
691 return nullptr;
692 }
693 space->oat_file_non_owned_ = space->oat_file_.get();
694 } else {
695 space->oat_file_non_owned_ = oat_file;
696 }
697
698 if (validate_oat_file) {
699 TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
700 CHECK(space->oat_file_ != nullptr);
701 if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
702 DCHECK(!error_msg->empty());
703 return nullptr;
704 }
705 }
706
707 Runtime* runtime = Runtime::Current();
708
709 // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
710 // to set the runtime methods.
711 CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
712 if (image_header->IsAppImage()) {
713 CHECK_EQ(runtime->GetResolutionMethod(),
714 image_header->GetImageMethod(ImageHeader::kResolutionMethod));
715 CHECK_EQ(runtime->GetImtConflictMethod(),
716 image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
717 CHECK_EQ(runtime->GetImtUnimplementedMethod(),
718 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
719 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
720 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
721 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
722 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
723 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
724 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
725 CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
726 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
727 } else if (!runtime->HasResolutionMethod()) {
728 runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
729 runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
730 runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
731 runtime->SetImtUnimplementedMethod(
732 image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
733 runtime->SetCalleeSaveMethod(
734 image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
735 CalleeSaveType::kSaveAllCalleeSaves);
736 runtime->SetCalleeSaveMethod(
737 image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
738 CalleeSaveType::kSaveRefsOnly);
739 runtime->SetCalleeSaveMethod(
740 image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
741 CalleeSaveType::kSaveRefsAndArgs);
742 runtime->SetCalleeSaveMethod(
743 image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod),
744 CalleeSaveType::kSaveEverything);
745 }
746
747 VLOG(image) << "ImageSpace::Init exiting " << *space.get();
748 if (VLOG_IS_ON(image)) {
749 logger.Dump(LOG_STREAM(INFO));
750 }
751 return space;
752 }
753
754 private:
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,uint8_t * address,int fd,TimingLogger & logger,std::string * error_msg)755 static MemMap* LoadImageFile(const char* image_filename,
756 const char* image_location,
757 const ImageHeader& image_header,
758 uint8_t* address,
759 int fd,
760 TimingLogger& logger,
761 std::string* error_msg) {
762 TimingLogger::ScopedTiming timing("MapImageFile", &logger);
763 const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
764 if (storage_mode == ImageHeader::kStorageModeUncompressed) {
765 return MemMap::MapFileAtAddress(address,
766 image_header.GetImageSize(),
767 PROT_READ | PROT_WRITE,
768 MAP_PRIVATE,
769 fd,
770 0,
771 /*low_4gb*/true,
772 /*reuse*/false,
773 image_filename,
774 error_msg);
775 }
776
777 if (storage_mode != ImageHeader::kStorageModeLZ4 &&
778 storage_mode != ImageHeader::kStorageModeLZ4HC) {
779 if (error_msg != nullptr) {
780 *error_msg = StringPrintf("Invalid storage mode in image header %d",
781 static_cast<int>(storage_mode));
782 }
783 return nullptr;
784 }
785
786 // Reserve output and decompress into it.
787 std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
788 address,
789 image_header.GetImageSize(),
790 PROT_READ | PROT_WRITE,
791 /*low_4gb*/true,
792 /*reuse*/false,
793 error_msg));
794 if (map != nullptr) {
795 const size_t stored_size = image_header.GetDataSize();
796 const size_t decompress_offset = sizeof(ImageHeader); // Skip the header.
797 std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
798 PROT_READ,
799 MAP_PRIVATE,
800 fd,
801 /*offset*/0,
802 /*low_4gb*/false,
803 image_filename,
804 error_msg));
805 if (temp_map == nullptr) {
806 DCHECK(error_msg == nullptr || !error_msg->empty());
807 return nullptr;
808 }
809 memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
810 const uint64_t start = NanoTime();
811 // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
812 TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
813 const size_t decompressed_size = LZ4_decompress_safe(
814 reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
815 reinterpret_cast<char*>(map->Begin()) + decompress_offset,
816 stored_size,
817 map->Size() - decompress_offset);
818 const uint64_t time = NanoTime() - start;
819 // Add one 1 ns to prevent possible divide by 0.
820 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
821 << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
822 << "/s)";
823 if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
824 if (error_msg != nullptr) {
825 *error_msg = StringPrintf(
826 "Decompressed size does not match expected image size %zu vs %zu",
827 decompressed_size + sizeof(ImageHeader),
828 image_header.GetImageSize());
829 }
830 return nullptr;
831 }
832 }
833
834 return map.release();
835 }
836
837 class FixupVisitor : public ValueObject {
838 public:
FixupVisitor(const RelocationRange & boot_image,const RelocationRange & boot_oat,const RelocationRange & app_image,const RelocationRange & app_oat)839 FixupVisitor(const RelocationRange& boot_image,
840 const RelocationRange& boot_oat,
841 const RelocationRange& app_image,
842 const RelocationRange& app_oat)
843 : boot_image_(boot_image),
844 boot_oat_(boot_oat),
845 app_image_(app_image),
846 app_oat_(app_oat) {}
847
848 // Return the relocated address of a heap object.
849 template <typename T>
ForwardObject(T * src) const850 ALWAYS_INLINE T* ForwardObject(T* src) const {
851 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
852 if (boot_image_.InSource(uint_src)) {
853 return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
854 }
855 if (app_image_.InSource(uint_src)) {
856 return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
857 }
858 // Since we are fixing up the app image, there should only be pointers to the app image and
859 // boot image.
860 DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
861 return src;
862 }
863
864 // Return the relocated address of a code pointer (contained by an oat file).
ForwardCode(const void * src) const865 ALWAYS_INLINE const void* ForwardCode(const void* src) const {
866 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
867 if (boot_oat_.InSource(uint_src)) {
868 return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
869 }
870 if (app_oat_.InSource(uint_src)) {
871 return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
872 }
873 DCHECK(src == nullptr) << src;
874 return src;
875 }
876
877 // Must be called on pointers that already have been relocated to the destination relocation.
IsInAppImage(mirror::Object * object) const878 ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
879 return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
880 }
881
882 protected:
883 // Source section.
884 const RelocationRange boot_image_;
885 const RelocationRange boot_oat_;
886 const RelocationRange app_image_;
887 const RelocationRange app_oat_;
888 };
889
890 // Adapt for mirror::Class::FixupNativePointers.
891 class FixupObjectAdapter : public FixupVisitor {
892 public:
893 template<typename... Args>
FixupObjectAdapter(Args...args)894 explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
895
896 template <typename T>
operator ()(T * obj,void ** dest_addr ATTRIBUTE_UNUSED=nullptr) const897 T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
898 return ForwardObject(obj);
899 }
900 };
901
902 class FixupRootVisitor : public FixupVisitor {
903 public:
904 template<typename... Args>
FixupRootVisitor(Args...args)905 explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
906
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const907 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
908 REQUIRES_SHARED(Locks::mutator_lock_) {
909 if (!root->IsNull()) {
910 VisitRoot(root);
911 }
912 }
913
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const914 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
915 REQUIRES_SHARED(Locks::mutator_lock_) {
916 mirror::Object* ref = root->AsMirrorPtr();
917 mirror::Object* new_ref = ForwardObject(ref);
918 if (ref != new_ref) {
919 root->Assign(new_ref);
920 }
921 }
922 };
923
924 class FixupObjectVisitor : public FixupVisitor {
925 public:
926 template<typename... Args>
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const PointerSize pointer_size,Args...args)927 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
928 const PointerSize pointer_size,
929 Args... args)
930 : FixupVisitor(args...),
931 pointer_size_(pointer_size),
932 visited_(visited) {}
933
934 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const935 ALWAYS_INLINE void VisitRootIfNonNull(
936 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
937
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const938 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
939 const {}
940
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const941 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
942 MemberOffset offset,
943 bool is_static ATTRIBUTE_UNUSED) const
944 NO_THREAD_SAFETY_ANALYSIS {
945 // There could be overlap between ranges, we must avoid visiting the same reference twice.
946 // Avoid the class field since we already fixed it up in FixupClassVisitor.
947 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
948 // Space is not yet added to the heap, don't do a read barrier.
949 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
950 offset);
951 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
952 // image.
953 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
954 }
955 }
956
957 // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
958 // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
959 template <typename Visitor>
UpdatePointerArrayContents(mirror::PointerArray * array,const Visitor & visitor) const960 void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
961 NO_THREAD_SAFETY_ANALYSIS {
962 DCHECK(array != nullptr);
963 DCHECK(visitor.IsInAppImage(array));
964 // The bit for the array contents is different than the bit for the array. Since we may have
965 // already visited the array as a long / int array from walking the bitmap without knowing it
966 // was a pointer array.
967 static_assert(kObjectAlignment == 8u, "array bit may be in another object");
968 mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
969 reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
970 // If the bit is not set then the contents have not yet been updated.
971 if (!visited_->Test(contents_bit)) {
972 array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
973 visited_->Set(contents_bit);
974 }
975 }
976
977 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const978 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
979 ObjPtr<mirror::Reference> ref) const
980 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
981 mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
982 ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
983 mirror::Reference::ReferentOffset(),
984 ForwardObject(obj));
985 }
986
operator ()(mirror::Object * obj) const987 void operator()(mirror::Object* obj) const
988 NO_THREAD_SAFETY_ANALYSIS {
989 if (visited_->Test(obj)) {
990 // Already visited.
991 return;
992 }
993 visited_->Set(obj);
994
995 // Handle class specially first since we need it to be updated to properly visit the rest of
996 // the instance fields.
997 {
998 mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
999 DCHECK(klass != nullptr) << "Null class in image";
1000 // No AsClass since our fields aren't quite fixed up yet.
1001 mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
1002 if (klass != new_klass) {
1003 obj->SetClass<kVerifyNone>(new_klass);
1004 }
1005 if (new_klass != klass && IsInAppImage(new_klass)) {
1006 // Make sure the klass contents are fixed up since we depend on it to walk the fields.
1007 operator()(new_klass);
1008 }
1009 }
1010
1011 if (obj->IsClass()) {
1012 mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
1013 // Fixup super class before visiting instance fields which require
1014 // information from their super class to calculate offsets.
1015 mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
1016 if (super_class != nullptr) {
1017 mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class));
1018 if (new_super_class != super_class && IsInAppImage(new_super_class)) {
1019 // Recursively fix all dependencies.
1020 operator()(new_super_class);
1021 }
1022 }
1023 }
1024
1025 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1026 *this,
1027 *this);
1028 // Note that this code relies on no circular dependencies.
1029 // We want to use our own class loader and not the one in the image.
1030 if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
1031 mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
1032 FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
1033 as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
1034 pointer_size_,
1035 visitor);
1036 // Deal with the pointer arrays. Use the helper function since multiple classes can reference
1037 // the same arrays.
1038 mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1039 if (vtable != nullptr && IsInAppImage(vtable)) {
1040 operator()(vtable);
1041 UpdatePointerArrayContents(vtable, visitor);
1042 }
1043 mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1044 // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
1045 // contents.
1046 if (IsInAppImage(iftable)) {
1047 operator()(iftable);
1048 for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
1049 if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
1050 mirror::PointerArray* methods =
1051 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
1052 if (visitor.IsInAppImage(methods)) {
1053 operator()(methods);
1054 DCHECK(methods != nullptr);
1055 UpdatePointerArrayContents(methods, visitor);
1056 }
1057 }
1058 }
1059 }
1060 }
1061 }
1062
1063 private:
1064 const PointerSize pointer_size_;
1065 gc::accounting::ContinuousSpaceBitmap* const visited_;
1066 };
1067
1068 class ForwardObjectAdapter {
1069 public:
ForwardObjectAdapter(const FixupVisitor * visitor)1070 ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
1071
1072 template <typename T>
operator ()(T * src) const1073 ALWAYS_INLINE T* operator()(T* src) const {
1074 return visitor_->ForwardObject(src);
1075 }
1076
1077 private:
1078 const FixupVisitor* const visitor_;
1079 };
1080
1081 class ForwardCodeAdapter {
1082 public:
ForwardCodeAdapter(const FixupVisitor * visitor)1083 ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
1084 : visitor_(visitor) {}
1085
1086 template <typename T>
operator ()(T * src) const1087 ALWAYS_INLINE T* operator()(T* src) const {
1088 return visitor_->ForwardCode(src);
1089 }
1090
1091 private:
1092 const FixupVisitor* const visitor_;
1093 };
1094
1095 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
1096 public:
1097 template<typename... Args>
FixupArtMethodVisitor(bool fixup_heap_objects,PointerSize pointer_size,Args...args)1098 explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
1099 : FixupVisitor(args...),
1100 fixup_heap_objects_(fixup_heap_objects),
1101 pointer_size_(pointer_size) {}
1102
Visit(ArtMethod * method)1103 virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
1104 // TODO: Separate visitor for runtime vs normal methods.
1105 if (UNLIKELY(method->IsRuntimeMethod())) {
1106 ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
1107 if (table != nullptr) {
1108 ImtConflictTable* new_table = ForwardObject(table);
1109 if (table != new_table) {
1110 method->SetImtConflictTable(new_table, pointer_size_);
1111 }
1112 }
1113 const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
1114 const void* new_code = ForwardCode(old_code);
1115 if (old_code != new_code) {
1116 method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
1117 }
1118 } else {
1119 if (fixup_heap_objects_) {
1120 method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
1121 }
1122 method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
1123 }
1124 }
1125
1126 private:
1127 const bool fixup_heap_objects_;
1128 const PointerSize pointer_size_;
1129 };
1130
1131 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
1132 public:
1133 template<typename... Args>
FixupArtFieldVisitor(Args...args)1134 explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
1135
Visit(ArtField * field)1136 virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
1137 field->UpdateObjects(ForwardObjectAdapter(this));
1138 }
1139 };
1140
1141 // Relocate an image space mapped at target_base which possibly used to be at a different base
1142 // address. Only needs a single image space, not one for both source and destination.
1143 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
1144 // to another.
RelocateInPlace(ImageHeader & image_header,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1145 static bool RelocateInPlace(ImageHeader& image_header,
1146 uint8_t* target_base,
1147 accounting::ContinuousSpaceBitmap* bitmap,
1148 const OatFile* app_oat_file,
1149 std::string* error_msg) {
1150 DCHECK(error_msg != nullptr);
1151 if (!image_header.IsPic()) {
1152 if (image_header.GetImageBegin() == target_base) {
1153 return true;
1154 }
1155 *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
1156 (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
1157 return false;
1158 }
1159 // Set up sections.
1160 uint32_t boot_image_begin = 0;
1161 uint32_t boot_image_end = 0;
1162 uint32_t boot_oat_begin = 0;
1163 uint32_t boot_oat_end = 0;
1164 const PointerSize pointer_size = image_header.GetPointerSize();
1165 gc::Heap* const heap = Runtime::Current()->GetHeap();
1166 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1167 if (boot_image_begin == boot_image_end) {
1168 *error_msg = "Can not relocate app image without boot image space";
1169 return false;
1170 }
1171 if (boot_oat_begin == boot_oat_end) {
1172 *error_msg = "Can not relocate app image without boot oat file";
1173 return false;
1174 }
1175 const uint32_t boot_image_size = boot_image_end - boot_image_begin;
1176 const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
1177 const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
1178 const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
1179 if (boot_image_size != image_header_boot_image_size) {
1180 *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
1181 PRIu64,
1182 static_cast<uint64_t>(boot_image_size),
1183 static_cast<uint64_t>(image_header_boot_image_size));
1184 return false;
1185 }
1186 if (boot_oat_size != image_header_boot_oat_size) {
1187 *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
1188 PRIu64,
1189 static_cast<uint64_t>(boot_oat_size),
1190 static_cast<uint64_t>(image_header_boot_oat_size));
1191 return false;
1192 }
1193 TimingLogger logger(__FUNCTION__, true, false);
1194 RelocationRange boot_image(image_header.GetBootImageBegin(),
1195 boot_image_begin,
1196 boot_image_size);
1197 RelocationRange boot_oat(image_header.GetBootOatBegin(),
1198 boot_oat_begin,
1199 boot_oat_size);
1200 RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
1201 reinterpret_cast<uintptr_t>(target_base),
1202 image_header.GetImageSize());
1203 // Use the oat data section since this is where the OatFile::Begin is.
1204 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
1205 // Not necessarily in low 4GB.
1206 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1207 image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
1208 VLOG(image) << "App image " << app_image;
1209 VLOG(image) << "App oat " << app_oat;
1210 VLOG(image) << "Boot image " << boot_image;
1211 VLOG(image) << "Boot oat " << boot_oat;
1212 // True if we need to fixup any heap pointers, otherwise only code pointers.
1213 const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
1214 const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
1215 if (!fixup_image && !fixup_code) {
1216 // Nothing to fix up.
1217 return true;
1218 }
1219 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1220 // Need to update the image to be at the target base.
1221 const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
1222 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1223 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1224 FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
1225 if (fixup_image) {
1226 // Two pass approach, fix up all classes first, then fix up non class-objects.
1227 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1228 std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
1229 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1230 target_base,
1231 image_header.GetImageSize()));
1232 FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
1233 pointer_size,
1234 boot_image,
1235 boot_oat,
1236 app_image,
1237 app_oat);
1238 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1239 // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
1240 // its probably not required.
1241 ScopedObjectAccess soa(Thread::Current());
1242 timing.NewTiming("Fixup objects");
1243 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1244 // Fixup image roots.
1245 CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
1246 image_header.GetImageRoots<kWithoutReadBarrier>())));
1247 image_header.RelocateImageObjects(app_image.Delta());
1248 CHECK_EQ(image_header.GetImageBegin(), target_base);
1249 // Fix up dex cache DexFile pointers.
1250 auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
1251 AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
1252 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1253 mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
1254 // Fix up dex cache pointers.
1255 mirror::StringDexCacheType* strings = dex_cache->GetStrings();
1256 if (strings != nullptr) {
1257 mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
1258 if (strings != new_strings) {
1259 dex_cache->SetStrings(new_strings);
1260 }
1261 dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
1262 }
1263 mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
1264 if (types != nullptr) {
1265 mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
1266 if (types != new_types) {
1267 dex_cache->SetResolvedTypes(new_types);
1268 }
1269 dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
1270 }
1271 mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods();
1272 if (methods != nullptr) {
1273 mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods);
1274 if (methods != new_methods) {
1275 dex_cache->SetResolvedMethods(new_methods);
1276 }
1277 for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
1278 auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size);
1279 ArtMethod* orig = pair.object;
1280 ArtMethod* copy = fixup_adapter.ForwardObject(orig);
1281 if (orig != copy) {
1282 pair.object = copy;
1283 mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size);
1284 }
1285 }
1286 }
1287 mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
1288 if (fields != nullptr) {
1289 mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
1290 if (fields != new_fields) {
1291 dex_cache->SetResolvedFields(new_fields);
1292 }
1293 for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
1294 mirror::FieldDexCachePair orig =
1295 mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
1296 mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
1297 if (orig.object != copy.object) {
1298 mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
1299 }
1300 }
1301 }
1302
1303 mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
1304 if (method_types != nullptr) {
1305 mirror::MethodTypeDexCacheType* new_method_types =
1306 fixup_adapter.ForwardObject(method_types);
1307 if (method_types != new_method_types) {
1308 dex_cache->SetResolvedMethodTypes(new_method_types);
1309 }
1310 dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
1311 }
1312 GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
1313 if (call_sites != nullptr) {
1314 GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
1315 if (call_sites != new_call_sites) {
1316 dex_cache->SetResolvedCallSites(new_call_sites);
1317 }
1318 dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
1319 }
1320 }
1321 }
1322 {
1323 // Only touches objects in the app image, no need for mutator lock.
1324 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1325 FixupArtMethodVisitor method_visitor(fixup_image,
1326 pointer_size,
1327 boot_image,
1328 boot_oat,
1329 app_image,
1330 app_oat);
1331 image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
1332 }
1333 if (fixup_image) {
1334 {
1335 // Only touches objects in the app image, no need for mutator lock.
1336 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1337 FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
1338 image_header.VisitPackedArtFields(&field_visitor, target_base);
1339 }
1340 {
1341 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1342 image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
1343 }
1344 {
1345 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1346 image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
1347 }
1348 // In the app image case, the image methods are actually in the boot image.
1349 image_header.RelocateImageMethods(boot_image.Delta());
1350 const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
1351 if (class_table_section.Size() > 0u) {
1352 // Note that we require that ReadFromMemory does not make an internal copy of the elements.
1353 // This also relies on visit roots not doing any verification which could fail after we update
1354 // the roots to be the image addresses.
1355 ScopedObjectAccess soa(Thread::Current());
1356 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1357 ClassTable temp_table;
1358 temp_table.ReadFromMemory(target_base + class_table_section.Offset());
1359 FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
1360 temp_table.VisitRoots(root_visitor);
1361 }
1362 }
1363 if (VLOG_IS_ON(image)) {
1364 logger.Dump(LOG_STREAM(INFO));
1365 }
1366 return true;
1367 }
1368
OpenOatFile(const ImageSpace & image,const char * image_path,std::string * error_msg)1369 static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
1370 const char* image_path,
1371 std::string* error_msg) {
1372 const ImageHeader& image_header = image.GetImageHeader();
1373 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
1374
1375 CHECK(image_header.GetOatDataBegin() != nullptr);
1376
1377 std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
1378 oat_filename,
1379 image_header.GetOatDataBegin(),
1380 image_header.GetOatFileBegin(),
1381 !Runtime::Current()->IsAotCompiler(),
1382 /*low_4gb*/false,
1383 nullptr,
1384 error_msg));
1385 if (oat_file == nullptr) {
1386 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
1387 oat_filename.c_str(),
1388 image.GetName(),
1389 error_msg->c_str());
1390 return nullptr;
1391 }
1392 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
1393 uint32_t image_oat_checksum = image_header.GetOatChecksum();
1394 if (oat_checksum != image_oat_checksum) {
1395 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
1396 " in image %s",
1397 oat_checksum,
1398 image_oat_checksum,
1399 image.GetName());
1400 return nullptr;
1401 }
1402 int32_t image_patch_delta = image_header.GetPatchDelta();
1403 int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
1404 if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
1405 // We should have already relocated by this point. Bail out.
1406 *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
1407 "in image %s",
1408 oat_patch_delta,
1409 image_patch_delta,
1410 image.GetName());
1411 return nullptr;
1412 }
1413
1414 return oat_file;
1415 }
1416 };
1417
1418 static constexpr uint64_t kLowSpaceValue = 50 * MB;
1419 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
1420
1421 // Read the free space of the cache partition and make a decision whether to keep the generated
1422 // image. This is to try to mitigate situations where the system might run out of space later.
CheckSpace(const std::string & cache_filename,std::string * error_msg)1423 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
1424 // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
1425 struct statvfs buf;
1426
1427 int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
1428 if (res != 0) {
1429 // Could not stat. Conservatively tell the system to delete the image.
1430 *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
1431 return false;
1432 }
1433
1434 uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
1435 // Zygote is privileged, but other things are not. Use bavail.
1436 uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
1437
1438 // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
1439 // environment. We do not want to fail quickening the boot image there, as it is beneficial
1440 // for time-to-UI.
1441 if (fs_overall_size > kTmpFsSentinelValue) {
1442 if (fs_free_size < kLowSpaceValue) {
1443 *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
1444 "least %" PRIu64 ".",
1445 static_cast<double>(fs_free_size) / MB,
1446 kLowSpaceValue / MB);
1447 return false;
1448 }
1449 }
1450 return true;
1451 }
1452
CreateBootImage(const char * image_location,const InstructionSet image_isa,bool secondary_image,std::string * error_msg)1453 std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
1454 const InstructionSet image_isa,
1455 bool secondary_image,
1456 std::string* error_msg) {
1457 ScopedTrace trace(__FUNCTION__);
1458
1459 // Step 0: Extra zygote work.
1460
1461 // Step 0.a: If we're the zygote, mark boot.
1462 const bool is_zygote = Runtime::Current()->IsZygote();
1463 if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
1464 MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
1465 }
1466
1467 // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
1468 // if necessary. While the runtime may be fine (it is pretty tolerant to
1469 // out-of-disk-space situations), other parts of the platform are not.
1470 //
1471 // The advantage of doing this proactively is that the later steps are simplified,
1472 // i.e., we do not need to code retries.
1473 std::string system_filename;
1474 bool has_system = false;
1475 std::string cache_filename;
1476 bool has_cache = false;
1477 bool dalvik_cache_exists = false;
1478 bool is_global_cache = true;
1479 std::string dalvik_cache;
1480 bool found_image = FindImageFilenameImpl(image_location,
1481 image_isa,
1482 &has_system,
1483 &system_filename,
1484 &dalvik_cache_exists,
1485 &dalvik_cache,
1486 &is_global_cache,
1487 &has_cache,
1488 &cache_filename);
1489
1490 if (is_zygote && dalvik_cache_exists) {
1491 DCHECK(!dalvik_cache.empty());
1492 std::string local_error_msg;
1493 if (!CheckSpace(dalvik_cache, &local_error_msg)) {
1494 LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
1495 PruneDalvikCache(image_isa);
1496
1497 // Re-evaluate the image.
1498 found_image = FindImageFilenameImpl(image_location,
1499 image_isa,
1500 &has_system,
1501 &system_filename,
1502 &dalvik_cache_exists,
1503 &dalvik_cache,
1504 &is_global_cache,
1505 &has_cache,
1506 &cache_filename);
1507 }
1508 }
1509
1510 // Collect all the errors.
1511 std::vector<std::string> error_msgs;
1512
1513 // Step 1: Check if we have an existing and relocated image.
1514
1515 // Step 1.a: Have files in system and cache. Then they need to match.
1516 if (found_image && has_system && has_cache) {
1517 std::string local_error_msg;
1518 // Check that the files are matching.
1519 if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
1520 std::unique_ptr<ImageSpace> relocated_space =
1521 ImageSpaceLoader::Load(image_location,
1522 cache_filename,
1523 is_zygote,
1524 is_global_cache,
1525 /* validate_oat_file */ false,
1526 &local_error_msg);
1527 if (relocated_space != nullptr) {
1528 return relocated_space;
1529 }
1530 }
1531 error_msgs.push_back(local_error_msg);
1532 }
1533
1534 // Step 1.b: Only have a cache file.
1535 if (found_image && !has_system && has_cache) {
1536 std::string local_error_msg;
1537 std::unique_ptr<ImageSpace> cache_space =
1538 ImageSpaceLoader::Load(image_location,
1539 cache_filename,
1540 is_zygote,
1541 is_global_cache,
1542 /* validate_oat_file */ true,
1543 &local_error_msg);
1544 if (cache_space != nullptr) {
1545 return cache_space;
1546 }
1547 error_msgs.push_back(local_error_msg);
1548 }
1549
1550 // Step 2: We have an existing image in /system.
1551
1552 // Step 2.a: We are not required to relocate it. Then we can use it directly.
1553 bool relocate = Runtime::Current()->ShouldRelocate();
1554
1555 if (found_image && has_system && !relocate) {
1556 std::string local_error_msg;
1557 std::unique_ptr<ImageSpace> system_space =
1558 ImageSpaceLoader::Load(image_location,
1559 system_filename,
1560 is_zygote,
1561 is_global_cache,
1562 /* validate_oat_file */ false,
1563 &local_error_msg);
1564 if (system_space != nullptr) {
1565 return system_space;
1566 }
1567 error_msgs.push_back(local_error_msg);
1568 }
1569
1570 // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
1571 // secondary image.
1572 if (found_image && has_system && relocate) {
1573 std::string local_error_msg;
1574 if (!Runtime::Current()->IsImageDex2OatEnabled()) {
1575 local_error_msg = "Patching disabled.";
1576 } else if (secondary_image) {
1577 local_error_msg = "Cannot patch a secondary image.";
1578 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1579 bool patch_success =
1580 RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg);
1581 if (patch_success) {
1582 std::unique_ptr<ImageSpace> patched_space =
1583 ImageSpaceLoader::Load(image_location,
1584 cache_filename,
1585 is_zygote,
1586 is_global_cache,
1587 /* validate_oat_file */ false,
1588 &local_error_msg);
1589 if (patched_space != nullptr) {
1590 return patched_space;
1591 }
1592 }
1593 }
1594 error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
1595 image_location,
1596 cache_filename.c_str(),
1597 local_error_msg.c_str()));
1598 }
1599
1600 // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
1601 // cache. This step fails if this is a secondary image.
1602 if (!has_system) {
1603 std::string local_error_msg;
1604 if (!Runtime::Current()->IsImageDex2OatEnabled()) {
1605 local_error_msg = "Image compilation disabled.";
1606 } else if (secondary_image) {
1607 local_error_msg = "Cannot compile a secondary image.";
1608 } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
1609 bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
1610 if (compilation_success) {
1611 std::unique_ptr<ImageSpace> compiled_space =
1612 ImageSpaceLoader::Load(image_location,
1613 cache_filename,
1614 is_zygote,
1615 is_global_cache,
1616 /* validate_oat_file */ false,
1617 &local_error_msg);
1618 if (compiled_space != nullptr) {
1619 return compiled_space;
1620 }
1621 }
1622 }
1623 error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
1624 cache_filename.c_str(),
1625 local_error_msg.c_str()));
1626 }
1627
1628 // We failed. Prune the cache the free up space, create a compound error message and return no
1629 // image.
1630 PruneDalvikCache(image_isa);
1631
1632 std::ostringstream oss;
1633 bool first = true;
1634 for (const auto& msg : error_msgs) {
1635 if (!first) {
1636 oss << "\n ";
1637 }
1638 oss << msg;
1639 }
1640 *error_msg = oss.str();
1641
1642 return nullptr;
1643 }
1644
LoadBootImage(const std::string & image_file_name,const InstructionSet image_instruction_set,std::vector<space::ImageSpace * > * boot_image_spaces,uint8_t ** oat_file_end)1645 bool ImageSpace::LoadBootImage(const std::string& image_file_name,
1646 const InstructionSet image_instruction_set,
1647 std::vector<space::ImageSpace*>* boot_image_spaces,
1648 uint8_t** oat_file_end) {
1649 DCHECK(boot_image_spaces != nullptr);
1650 DCHECK(boot_image_spaces->empty());
1651 DCHECK(oat_file_end != nullptr);
1652 DCHECK_NE(image_instruction_set, InstructionSet::kNone);
1653
1654 if (image_file_name.empty()) {
1655 return false;
1656 }
1657
1658 // For code reuse, handle this like a work queue.
1659 std::vector<std::string> image_file_names;
1660 image_file_names.push_back(image_file_name);
1661
1662 bool error = false;
1663 uint8_t* oat_file_end_tmp = *oat_file_end;
1664
1665 for (size_t index = 0; index < image_file_names.size(); ++index) {
1666 std::string& image_name = image_file_names[index];
1667 std::string error_msg;
1668 std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
1669 image_name.c_str(),
1670 image_instruction_set,
1671 index > 0,
1672 &error_msg);
1673 if (boot_image_space_uptr != nullptr) {
1674 space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
1675 boot_image_spaces->push_back(boot_image_space);
1676 // Oat files referenced by image files immediately follow them in memory, ensure alloc space
1677 // isn't going to get in the middle
1678 uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
1679 CHECK_GT(oat_file_end_addr, boot_image_space->End());
1680 oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
1681
1682 if (index == 0) {
1683 // If this was the first space, check whether there are more images to load.
1684 const OatFile* boot_oat_file = boot_image_space->GetOatFile();
1685 if (boot_oat_file == nullptr) {
1686 continue;
1687 }
1688
1689 const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
1690 const char* boot_classpath =
1691 boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
1692 if (boot_classpath == nullptr) {
1693 continue;
1694 }
1695
1696 ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
1697 }
1698 } else {
1699 error = true;
1700 LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
1701 << "Attempting to fall back to imageless running. Error was: " << error_msg
1702 << "\nAttempted image: " << image_name;
1703 break;
1704 }
1705 }
1706
1707 if (error) {
1708 // Remove already loaded spaces.
1709 for (space::Space* loaded_space : *boot_image_spaces) {
1710 delete loaded_space;
1711 }
1712 boot_image_spaces->clear();
1713 return false;
1714 }
1715
1716 *oat_file_end = oat_file_end_tmp;
1717 return true;
1718 }
1719
~ImageSpace()1720 ImageSpace::~ImageSpace() {
1721 Runtime* runtime = Runtime::Current();
1722 if (runtime == nullptr) {
1723 return;
1724 }
1725
1726 if (GetImageHeader().IsAppImage()) {
1727 // This image space did not modify resolution method then in Init.
1728 return;
1729 }
1730
1731 if (!runtime->HasResolutionMethod()) {
1732 // Another image space has already unloaded the below methods.
1733 return;
1734 }
1735
1736 runtime->ClearInstructionSet();
1737 runtime->ClearResolutionMethod();
1738 runtime->ClearImtConflictMethod();
1739 runtime->ClearImtUnimplementedMethod();
1740 runtime->ClearCalleeSaveMethods();
1741 }
1742
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)1743 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
1744 const OatFile* oat_file,
1745 std::string* error_msg) {
1746 return ImageSpaceLoader::Init(image,
1747 image,
1748 /*validate_oat_file*/false,
1749 oat_file,
1750 /*out*/error_msg);
1751 }
1752
GetOatFile() const1753 const OatFile* ImageSpace::GetOatFile() const {
1754 return oat_file_non_owned_;
1755 }
1756
ReleaseOatFile()1757 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
1758 CHECK(oat_file_ != nullptr);
1759 return std::move(oat_file_);
1760 }
1761
Dump(std::ostream & os) const1762 void ImageSpace::Dump(std::ostream& os) const {
1763 os << GetType()
1764 << " begin=" << reinterpret_cast<void*>(Begin())
1765 << ",end=" << reinterpret_cast<void*>(End())
1766 << ",size=" << PrettySize(Size())
1767 << ",name=\"" << GetName() << "\"]";
1768 }
1769
GetMultiImageBootClassPath(const std::vector<const char * > & dex_locations,const std::vector<const char * > & oat_filenames,const std::vector<const char * > & image_filenames)1770 std::string ImageSpace::GetMultiImageBootClassPath(
1771 const std::vector<const char*>& dex_locations,
1772 const std::vector<const char*>& oat_filenames,
1773 const std::vector<const char*>& image_filenames) {
1774 DCHECK_GT(oat_filenames.size(), 1u);
1775 // If the image filename was adapted (e.g., for our tests), we need to change this here,
1776 // too, but need to strip all path components (they will be re-established when loading).
1777 std::ostringstream bootcp_oss;
1778 bool first_bootcp = true;
1779 for (size_t i = 0; i < dex_locations.size(); ++i) {
1780 if (!first_bootcp) {
1781 bootcp_oss << ":";
1782 }
1783
1784 std::string dex_loc = dex_locations[i];
1785 std::string image_filename = image_filenames[i];
1786
1787 // Use the dex_loc path, but the image_filename name (without path elements).
1788 size_t dex_last_slash = dex_loc.rfind('/');
1789
1790 // npos is max(size_t). That makes this a bit ugly.
1791 size_t image_last_slash = image_filename.rfind('/');
1792 size_t image_last_at = image_filename.rfind('@');
1793 size_t image_last_sep = (image_last_slash == std::string::npos)
1794 ? image_last_at
1795 : (image_last_at == std::string::npos)
1796 ? std::string::npos
1797 : std::max(image_last_slash, image_last_at);
1798 // Note: whenever image_last_sep == npos, +1 overflow means using the full string.
1799
1800 if (dex_last_slash == std::string::npos) {
1801 dex_loc = image_filename.substr(image_last_sep + 1);
1802 } else {
1803 dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
1804 image_filename.substr(image_last_sep + 1);
1805 }
1806
1807 // Image filenames already end with .art, no need to replace.
1808
1809 bootcp_oss << dex_loc;
1810 first_bootcp = false;
1811 }
1812 return bootcp_oss.str();
1813 }
1814
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)1815 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
1816 for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
1817 const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
1818
1819 // Skip multidex locations - These will be checked when we visit their
1820 // corresponding primary non-multidex location.
1821 if (DexFile::IsMultiDexLocation(dex_file_location.c_str())) {
1822 continue;
1823 }
1824
1825 std::vector<uint32_t> checksums;
1826 if (!DexFile::GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
1827 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
1828 "referenced by oat file %s: %s",
1829 dex_file_location.c_str(),
1830 oat_file.GetLocation().c_str(),
1831 error_msg->c_str());
1832 return false;
1833 }
1834 CHECK(!checksums.empty());
1835 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
1836 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1837 "'%s' and dex file '%s' (0x%x != 0x%x)",
1838 oat_file.GetLocation().c_str(),
1839 dex_file_location.c_str(),
1840 oat_dex_file->GetDexFileLocationChecksum(),
1841 checksums[0]);
1842 return false;
1843 }
1844
1845 // Verify checksums for any related multidex entries.
1846 for (size_t i = 1; i < checksums.size(); i++) {
1847 std::string multi_dex_location = DexFile::GetMultiDexLocation(i, dex_file_location.c_str());
1848 const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
1849 nullptr,
1850 error_msg);
1851 if (multi_dex == nullptr) {
1852 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
1853 oat_file.GetLocation().c_str(),
1854 multi_dex_location.c_str());
1855 return false;
1856 }
1857
1858 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
1859 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
1860 "'%s' and dex file '%s' (0x%x != 0x%x)",
1861 oat_file.GetLocation().c_str(),
1862 multi_dex_location.c_str(),
1863 multi_dex->GetDexFileLocationChecksum(),
1864 checksums[i]);
1865 return false;
1866 }
1867 }
1868 }
1869 return true;
1870 }
1871
ExtractMultiImageLocations(const std::string & input_image_file_name,const std::string & boot_classpath,std::vector<std::string> * image_file_names)1872 void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
1873 const std::string& boot_classpath,
1874 std::vector<std::string>* image_file_names) {
1875 DCHECK(image_file_names != nullptr);
1876
1877 std::vector<std::string> images;
1878 Split(boot_classpath, ':', &images);
1879
1880 // Add the rest into the list. We have to adjust locations, possibly:
1881 //
1882 // For example, image_file_name is /a/b/c/d/e.art
1883 // images[0] is f/c/d/e.art
1884 // ----------------------------------------------
1885 // images[1] is g/h/i/j.art -> /a/b/h/i/j.art
1886 const std::string& first_image = images[0];
1887 // Length of common suffix.
1888 size_t common = 0;
1889 while (common < input_image_file_name.size() &&
1890 common < first_image.size() &&
1891 *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
1892 ++common;
1893 }
1894 // We want to replace the prefix of the input image with the prefix of the boot class path.
1895 // This handles the case where the image file contains @ separators.
1896 // Example image_file_name is oats/system@framework@boot.art
1897 // images[0] is .../arm/boot.art
1898 // means that the image name prefix will be oats/system@framework@
1899 // so that the other images are openable.
1900 const size_t old_prefix_length = first_image.size() - common;
1901 const std::string new_prefix = input_image_file_name.substr(
1902 0,
1903 input_image_file_name.size() - common);
1904
1905 // Apply pattern to images[1] .. images[n].
1906 for (size_t i = 1; i < images.size(); ++i) {
1907 const std::string& image = images[i];
1908 CHECK_GT(image.length(), old_prefix_length);
1909 std::string suffix = image.substr(old_prefix_length);
1910 image_file_names->push_back(new_prefix + suffix);
1911 }
1912 }
1913
DumpSections(std::ostream & os) const1914 void ImageSpace::DumpSections(std::ostream& os) const {
1915 const uint8_t* base = Begin();
1916 const ImageHeader& header = GetImageHeader();
1917 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
1918 auto section_type = static_cast<ImageHeader::ImageSections>(i);
1919 const ImageSection& section = header.GetImageSection(section_type);
1920 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
1921 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
1922 }
1923 }
1924
1925 } // namespace space
1926 } // namespace gc
1927 } // namespace art
1928