1 // Copyright 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "v4l2_slice_video_decode_accelerator.h"
6
7 #include <errno.h>
8 #include <fcntl.h>
9 #include <poll.h>
10 #include <string.h>
11 #include <sys/eventfd.h>
12 #include <sys/ioctl.h>
13 #include <sys/mman.h>
14
15 #include <memory>
16
17 #include "base/bind.h"
18 #include "base/bind_helpers.h"
19 #include "base/callback.h"
20 #include "base/callback_helpers.h"
21 #include "base/command_line.h"
22 #include "base/macros.h"
23 #include "base/memory/ptr_util.h"
24 #include "base/numerics/safe_conversions.h"
25 #include "base/single_thread_task_runner.h"
26 #include "base/strings/stringprintf.h"
27 #include "base/threading/thread_task_runner_handle.h"
28 #include "shared_memory_region.h"
29
30 #define LOGF(level) LOG(level) << __func__ << "(): "
31 #define DLOGF(level) DLOG(level) << __func__ << "(): "
32 #define DVLOGF(level) DVLOG(level) << __func__ << "(): "
33 #define PLOGF(level) PLOG(level) << __func__ << "(): "
34
35 #define NOTIFY_ERROR(x) \
36 do { \
37 LOGF(ERROR) << "Setting error state:" << x; \
38 SetErrorState(x); \
39 } while (0)
40
41 #define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_str) \
42 do { \
43 if (device_->Ioctl(type, arg) != 0) { \
44 PLOGF(ERROR) << "ioctl() failed: " << type_str; \
45 return value; \
46 } \
47 } while (0)
48
49 #define IOCTL_OR_ERROR_RETURN(type, arg) \
50 IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
51
52 #define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
53 IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
54
55 #define IOCTL_OR_LOG_ERROR(type, arg) \
56 do { \
57 if (device_->Ioctl(type, arg) != 0) \
58 PLOGF(ERROR) << "ioctl() failed: " << #type; \
59 } while (0)
60
61 namespace media {
62
63 // static
64 const uint32_t V4L2SliceVideoDecodeAccelerator::supported_input_fourccs_[] = {
65 V4L2_PIX_FMT_H264_SLICE, V4L2_PIX_FMT_VP8_FRAME, V4L2_PIX_FMT_VP9_FRAME,
66 };
67
68 class V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface
69 : public base::RefCounted<V4L2DecodeSurface> {
70 public:
71 using ReleaseCB = base::Callback<void(int)>;
72
73 V4L2DecodeSurface(int32_t bitstream_id,
74 int input_record,
75 int output_record,
76 const ReleaseCB& release_cb);
77
78 // Mark the surface as decoded. This will also release all references, as
79 // they are not needed anymore and execute the done callback, if not null.
80 void SetDecoded();
decoded() const81 bool decoded() const { return decoded_; }
82
bitstream_id() const83 int32_t bitstream_id() const { return bitstream_id_; }
input_record() const84 int input_record() const { return input_record_; }
output_record() const85 int output_record() const { return output_record_; }
config_store() const86 uint32_t config_store() const { return config_store_; }
87
88 // Take references to each reference surface and keep them until the
89 // target surface is decoded.
90 void SetReferenceSurfaces(
91 const std::vector<scoped_refptr<V4L2DecodeSurface>>& ref_surfaces);
92
93 // If provided via this method, |done_cb| callback will be executed after
94 // decoding into this surface is finished. The callback is reset afterwards,
95 // so it needs to be set again before each decode operation.
SetDecodeDoneCallback(const base::Closure & done_cb)96 void SetDecodeDoneCallback(const base::Closure& done_cb) {
97 DCHECK(done_cb_.is_null());
98 done_cb_ = done_cb;
99 }
100
101 std::string ToString() const;
102
103 private:
104 friend class base::RefCounted<V4L2DecodeSurface>;
105 ~V4L2DecodeSurface();
106
107 int32_t bitstream_id_;
108 int input_record_;
109 int output_record_;
110 uint32_t config_store_;
111
112 bool decoded_;
113 ReleaseCB release_cb_;
114 base::Closure done_cb_;
115
116 std::vector<scoped_refptr<V4L2DecodeSurface>> reference_surfaces_;
117
118 DISALLOW_COPY_AND_ASSIGN(V4L2DecodeSurface);
119 };
120
V4L2DecodeSurface(int32_t bitstream_id,int input_record,int output_record,const ReleaseCB & release_cb)121 V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface::V4L2DecodeSurface(
122 int32_t bitstream_id,
123 int input_record,
124 int output_record,
125 const ReleaseCB& release_cb)
126 : bitstream_id_(bitstream_id),
127 input_record_(input_record),
128 output_record_(output_record),
129 config_store_(input_record + 1),
130 decoded_(false),
131 release_cb_(release_cb) {}
132
~V4L2DecodeSurface()133 V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface::~V4L2DecodeSurface() {
134 DVLOGF(5) << "Releasing output record id=" << output_record_;
135 release_cb_.Run(output_record_);
136 }
137
SetReferenceSurfaces(const std::vector<scoped_refptr<V4L2DecodeSurface>> & ref_surfaces)138 void V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface::SetReferenceSurfaces(
139 const std::vector<scoped_refptr<V4L2DecodeSurface>>& ref_surfaces) {
140 DCHECK(reference_surfaces_.empty());
141 reference_surfaces_ = ref_surfaces;
142 }
143
SetDecoded()144 void V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface::SetDecoded() {
145 DCHECK(!decoded_);
146 decoded_ = true;
147
148 // We can now drop references to all reference surfaces for this surface
149 // as we are done with decoding.
150 reference_surfaces_.clear();
151
152 // And finally execute and drop the decode done callback, if set.
153 if (!done_cb_.is_null())
154 base::ResetAndReturn(&done_cb_).Run();
155 }
156
ToString() const157 std::string V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface::ToString()
158 const {
159 std::string out;
160 base::StringAppendF(&out, "Buffer %d -> %d. ", input_record_, output_record_);
161 base::StringAppendF(&out, "Reference surfaces:");
162 for (const auto& ref : reference_surfaces_) {
163 DCHECK_NE(ref->output_record(), output_record_);
164 base::StringAppendF(&out, " %d", ref->output_record());
165 }
166 return out;
167 }
168
InputRecord()169 V4L2SliceVideoDecodeAccelerator::InputRecord::InputRecord()
170 : input_id(-1),
171 address(nullptr),
172 length(0),
173 bytes_used(0),
174 at_device(false) {}
175
OutputRecord()176 V4L2SliceVideoDecodeAccelerator::OutputRecord::OutputRecord()
177 : at_device(false),
178 at_client(false),
179 picture_id(-1),
180 cleared(false) {}
181
182 struct V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef {
183 BitstreamBufferRef(
184 base::WeakPtr<VideoDecodeAccelerator::Client>& client,
185 const scoped_refptr<base::SingleThreadTaskRunner>& client_task_runner,
186 SharedMemoryRegion* shm,
187 int32_t input_id);
188 ~BitstreamBufferRef();
189 const base::WeakPtr<VideoDecodeAccelerator::Client> client;
190 const scoped_refptr<base::SingleThreadTaskRunner> client_task_runner;
191 const std::unique_ptr<SharedMemoryRegion> shm;
192 off_t bytes_used;
193 const int32_t input_id;
194 };
195
BitstreamBufferRef(base::WeakPtr<VideoDecodeAccelerator::Client> & client,const scoped_refptr<base::SingleThreadTaskRunner> & client_task_runner,SharedMemoryRegion * shm,int32_t input_id)196 V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef::BitstreamBufferRef(
197 base::WeakPtr<VideoDecodeAccelerator::Client>& client,
198 const scoped_refptr<base::SingleThreadTaskRunner>& client_task_runner,
199 SharedMemoryRegion* shm,
200 int32_t input_id)
201 : client(client),
202 client_task_runner(client_task_runner),
203 shm(shm),
204 bytes_used(0),
205 input_id(input_id) {}
206
~BitstreamBufferRef()207 V4L2SliceVideoDecodeAccelerator::BitstreamBufferRef::~BitstreamBufferRef() {
208 if (input_id >= 0) {
209 DVLOGF(5) << "returning input_id: " << input_id;
210 client_task_runner->PostTask(
211 FROM_HERE,
212 base::Bind(&VideoDecodeAccelerator::Client::NotifyEndOfBitstreamBuffer,
213 client, input_id));
214 }
215 }
216
PictureRecord(bool cleared,const Picture & picture)217 V4L2SliceVideoDecodeAccelerator::PictureRecord::PictureRecord(
218 bool cleared,
219 const Picture& picture)
220 : cleared(cleared), picture(picture) {}
221
~PictureRecord()222 V4L2SliceVideoDecodeAccelerator::PictureRecord::~PictureRecord() {}
223
224 class V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator
225 : public H264Decoder::H264Accelerator {
226 public:
227 explicit V4L2H264Accelerator(V4L2SliceVideoDecodeAccelerator* v4l2_dec);
228 ~V4L2H264Accelerator() override;
229
230 // H264Decoder::H264Accelerator implementation.
231 scoped_refptr<H264Picture> CreateH264Picture() override;
232
233 bool SubmitFrameMetadata(const H264SPS* sps,
234 const H264PPS* pps,
235 const H264DPB& dpb,
236 const H264Picture::Vector& ref_pic_listp0,
237 const H264Picture::Vector& ref_pic_listb0,
238 const H264Picture::Vector& ref_pic_listb1,
239 const scoped_refptr<H264Picture>& pic) override;
240
241 bool SubmitSlice(const H264PPS* pps,
242 const H264SliceHeader* slice_hdr,
243 const H264Picture::Vector& ref_pic_list0,
244 const H264Picture::Vector& ref_pic_list1,
245 const scoped_refptr<H264Picture>& pic,
246 const uint8_t* data,
247 size_t size) override;
248
249 bool SubmitDecode(const scoped_refptr<H264Picture>& pic) override;
250 bool OutputPicture(const scoped_refptr<H264Picture>& pic) override;
251
252 void Reset() override;
253
254 private:
255 // Max size of reference list.
256 static const size_t kDPBIndicesListSize = 32;
257 void H264PictureListToDPBIndicesList(const H264Picture::Vector& src_pic_list,
258 uint8_t dst_list[kDPBIndicesListSize]);
259
260 void H264DPBToV4L2DPB(
261 const H264DPB& dpb,
262 std::vector<scoped_refptr<V4L2DecodeSurface>>* ref_surfaces);
263
264 scoped_refptr<V4L2DecodeSurface> H264PictureToV4L2DecodeSurface(
265 const scoped_refptr<H264Picture>& pic);
266
267 size_t num_slices_;
268 V4L2SliceVideoDecodeAccelerator* v4l2_dec_;
269
270 // TODO(posciak): This should be queried from hardware once supported.
271 static const size_t kMaxSlices = 16;
272 struct v4l2_ctrl_h264_slice_param v4l2_slice_params_[kMaxSlices];
273 struct v4l2_ctrl_h264_decode_param v4l2_decode_param_;
274
275 DISALLOW_COPY_AND_ASSIGN(V4L2H264Accelerator);
276 };
277
278 class V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator
279 : public VP8Decoder::VP8Accelerator {
280 public:
281 explicit V4L2VP8Accelerator(V4L2SliceVideoDecodeAccelerator* v4l2_dec);
282 ~V4L2VP8Accelerator() override;
283
284 // VP8Decoder::VP8Accelerator implementation.
285 scoped_refptr<VP8Picture> CreateVP8Picture() override;
286
287 bool SubmitDecode(const scoped_refptr<VP8Picture>& pic,
288 const Vp8FrameHeader* frame_hdr,
289 const scoped_refptr<VP8Picture>& last_frame,
290 const scoped_refptr<VP8Picture>& golden_frame,
291 const scoped_refptr<VP8Picture>& alt_frame) override;
292
293 bool OutputPicture(const scoped_refptr<VP8Picture>& pic) override;
294
295 private:
296 scoped_refptr<V4L2DecodeSurface> VP8PictureToV4L2DecodeSurface(
297 const scoped_refptr<VP8Picture>& pic);
298
299 V4L2SliceVideoDecodeAccelerator* v4l2_dec_;
300
301 DISALLOW_COPY_AND_ASSIGN(V4L2VP8Accelerator);
302 };
303
304 class V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator
305 : public VP9Decoder::VP9Accelerator {
306 public:
307 explicit V4L2VP9Accelerator(V4L2SliceVideoDecodeAccelerator* v4l2_dec);
308 ~V4L2VP9Accelerator() override;
309
310 // VP9Decoder::VP9Accelerator implementation.
311 scoped_refptr<VP9Picture> CreateVP9Picture() override;
312
313 bool SubmitDecode(const scoped_refptr<VP9Picture>& pic,
314 const Vp9SegmentationParams& segm_params,
315 const Vp9LoopFilterParams& lf_params,
316 const std::vector<scoped_refptr<VP9Picture>>& ref_pictures,
317 const base::Closure& done_cb) override;
318
319 bool OutputPicture(const scoped_refptr<VP9Picture>& pic) override;
320
321 bool GetFrameContext(const scoped_refptr<VP9Picture>& pic,
322 Vp9FrameContext* frame_ctx) override;
323
IsFrameContextRequired() const324 bool IsFrameContextRequired() const override {
325 return device_needs_frame_context_;
326 }
327
328 private:
329 scoped_refptr<V4L2DecodeSurface> VP9PictureToV4L2DecodeSurface(
330 const scoped_refptr<VP9Picture>& pic);
331
332 bool device_needs_frame_context_;
333
334 V4L2SliceVideoDecodeAccelerator* v4l2_dec_;
335
336 DISALLOW_COPY_AND_ASSIGN(V4L2VP9Accelerator);
337 };
338
339 // Codec-specific subclasses of software decoder picture classes.
340 // This allows us to keep decoders oblivious of our implementation details.
341 class V4L2H264Picture : public H264Picture {
342 public:
343 explicit V4L2H264Picture(
344 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
345 dec_surface);
346
AsV4L2H264Picture()347 V4L2H264Picture* AsV4L2H264Picture() override { return this; }
348 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
dec_surface()349 dec_surface() {
350 return dec_surface_;
351 }
352
353 private:
354 ~V4L2H264Picture() override;
355
356 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
357 dec_surface_;
358
359 DISALLOW_COPY_AND_ASSIGN(V4L2H264Picture);
360 };
361
V4L2H264Picture(const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface> & dec_surface)362 V4L2H264Picture::V4L2H264Picture(
363 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
364 dec_surface)
365 : dec_surface_(dec_surface) {}
366
~V4L2H264Picture()367 V4L2H264Picture::~V4L2H264Picture() {}
368
369 class V4L2VP8Picture : public VP8Picture {
370 public:
371 explicit V4L2VP8Picture(
372 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
373 dec_surface);
374
AsV4L2VP8Picture()375 V4L2VP8Picture* AsV4L2VP8Picture() override { return this; }
376 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
dec_surface()377 dec_surface() {
378 return dec_surface_;
379 }
380
381 private:
382 ~V4L2VP8Picture() override;
383
384 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
385 dec_surface_;
386
387 DISALLOW_COPY_AND_ASSIGN(V4L2VP8Picture);
388 };
389
V4L2VP8Picture(const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface> & dec_surface)390 V4L2VP8Picture::V4L2VP8Picture(
391 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
392 dec_surface)
393 : dec_surface_(dec_surface) {}
394
~V4L2VP8Picture()395 V4L2VP8Picture::~V4L2VP8Picture() {}
396
397 class V4L2VP9Picture : public VP9Picture {
398 public:
399 explicit V4L2VP9Picture(
400 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
401 dec_surface);
402
AsV4L2VP9Picture()403 V4L2VP9Picture* AsV4L2VP9Picture() override { return this; }
404 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
dec_surface()405 dec_surface() {
406 return dec_surface_;
407 }
408
409 private:
410 ~V4L2VP9Picture() override;
411
412 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
413 dec_surface_;
414
415 DISALLOW_COPY_AND_ASSIGN(V4L2VP9Picture);
416 };
417
V4L2VP9Picture(const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface> & dec_surface)418 V4L2VP9Picture::V4L2VP9Picture(
419 const scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>&
420 dec_surface)
421 : dec_surface_(dec_surface) {}
422
~V4L2VP9Picture()423 V4L2VP9Picture::~V4L2VP9Picture() {}
424
V4L2SliceVideoDecodeAccelerator(const scoped_refptr<V4L2Device> & device)425 V4L2SliceVideoDecodeAccelerator::V4L2SliceVideoDecodeAccelerator(
426 const scoped_refptr<V4L2Device>& device)
427 : input_planes_count_(0),
428 output_planes_count_(0),
429 child_task_runner_(base::ThreadTaskRunnerHandle::Get()),
430 device_(device),
431 decoder_thread_("V4L2SliceVideoDecodeAcceleratorThread"),
432 device_poll_thread_("V4L2SliceVideoDecodeAcceleratorDevicePollThread"),
433 input_streamon_(false),
434 input_buffer_queued_count_(0),
435 output_streamon_(false),
436 output_buffer_queued_count_(0),
437 video_profile_(VIDEO_CODEC_PROFILE_UNKNOWN),
438 input_format_fourcc_(0),
439 output_format_fourcc_(0),
440 state_(kUninitialized),
441 output_mode_(Config::OutputMode::ALLOCATE),
442 decoder_flushing_(false),
443 decoder_resetting_(false),
444 surface_set_change_pending_(false),
445 picture_clearing_count_(0),
446 weak_this_factory_(this) {
447 weak_this_ = weak_this_factory_.GetWeakPtr();
448 }
449
~V4L2SliceVideoDecodeAccelerator()450 V4L2SliceVideoDecodeAccelerator::~V4L2SliceVideoDecodeAccelerator() {
451 DVLOGF(2);
452
453 DCHECK(child_task_runner_->BelongsToCurrentThread());
454 DCHECK(!decoder_thread_.IsRunning());
455 DCHECK(!device_poll_thread_.IsRunning());
456
457 DCHECK(input_buffer_map_.empty());
458 DCHECK(output_buffer_map_.empty());
459 }
460
NotifyError(Error error)461 void V4L2SliceVideoDecodeAccelerator::NotifyError(Error error) {
462 if (!child_task_runner_->BelongsToCurrentThread()) {
463 child_task_runner_->PostTask(
464 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::NotifyError,
465 weak_this_, error));
466 return;
467 }
468
469 if (client_) {
470 client_->NotifyError(error);
471 client_ptr_factory_.reset();
472 }
473 }
474
Initialize(const Config & config,Client * client)475 bool V4L2SliceVideoDecodeAccelerator::Initialize(const Config& config,
476 Client* client) {
477 DVLOGF(3) << "profile: " << config.profile;
478 DCHECK(child_task_runner_->BelongsToCurrentThread());
479 DCHECK_EQ(state_, kUninitialized);
480
481 if (config.output_mode != Config::OutputMode::ALLOCATE &&
482 config.output_mode != Config::OutputMode::IMPORT) {
483 NOTREACHED() << "Only ALLOCATE and IMPORT OutputModes are supported";
484 return false;
485 }
486
487 client_ptr_factory_.reset(
488 new base::WeakPtrFactory<VideoDecodeAccelerator::Client>(client));
489 client_ = client_ptr_factory_->GetWeakPtr();
490 // If we haven't been set up to decode on separate thread via
491 // TryToSetupDecodeOnSeparateThread(), use the main thread/client for
492 // decode tasks.
493 if (!decode_task_runner_) {
494 decode_task_runner_ = child_task_runner_;
495 DCHECK(!decode_client_);
496 decode_client_ = client_;
497 }
498
499 video_profile_ = config.profile;
500
501 // TODO(posciak): This needs to be queried once supported.
502 input_planes_count_ = 1;
503 output_planes_count_ = 1;
504
505 input_format_fourcc_ =
506 V4L2Device::VideoCodecProfileToV4L2PixFmt(video_profile_, true);
507
508 if (!device_->Open(V4L2Device::Type::kDecoder, input_format_fourcc_)) {
509 DVLOGF(1) << "Failed to open device for profile: " << config.profile
510 << " fourcc: " << std::hex << "0x" << input_format_fourcc_;
511 return false;
512 }
513
514 if (video_profile_ >= H264PROFILE_MIN && video_profile_ <= H264PROFILE_MAX) {
515 h264_accelerator_.reset(new V4L2H264Accelerator(this));
516 decoder_.reset(new H264Decoder(h264_accelerator_.get()));
517 } else if (video_profile_ >= VP8PROFILE_MIN &&
518 video_profile_ <= VP8PROFILE_MAX) {
519 vp8_accelerator_.reset(new V4L2VP8Accelerator(this));
520 decoder_.reset(new VP8Decoder(vp8_accelerator_.get()));
521 } else if (video_profile_ >= VP9PROFILE_MIN &&
522 video_profile_ <= VP9PROFILE_MAX) {
523 vp9_accelerator_.reset(new V4L2VP9Accelerator(this));
524 decoder_.reset(new VP9Decoder(vp9_accelerator_.get()));
525 } else {
526 NOTREACHED() << "Unsupported profile " << video_profile_;
527 return false;
528 }
529
530 // Capabilities check.
531 struct v4l2_capability caps;
532 const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
533 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
534 if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
535 LOGF(ERROR) << "ioctl() failed: VIDIOC_QUERYCAP"
536 << ", caps check failed: 0x" << std::hex << caps.capabilities;
537 return false;
538 }
539
540 if (!SetupFormats())
541 return false;
542
543 if (!decoder_thread_.Start()) {
544 DLOGF(ERROR) << "device thread failed to start";
545 return false;
546 }
547 decoder_thread_task_runner_ = decoder_thread_.task_runner();
548
549 state_ = kInitialized;
550 output_mode_ = config.output_mode;
551
552 // InitializeTask will NOTIFY_ERROR on failure.
553 decoder_thread_task_runner_->PostTask(
554 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::InitializeTask,
555 base::Unretained(this)));
556
557 DVLOGF(1) << "V4L2SliceVideoDecodeAccelerator initialized";
558 return true;
559 }
560
InitializeTask()561 void V4L2SliceVideoDecodeAccelerator::InitializeTask() {
562 DVLOGF(3);
563 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
564 DCHECK_EQ(state_, kInitialized);
565
566 if (!CreateInputBuffers())
567 NOTIFY_ERROR(PLATFORM_FAILURE);
568
569 // Output buffers will be created once decoder gives us information
570 // about their size and required count.
571 state_ = kDecoding;
572 }
573
Destroy()574 void V4L2SliceVideoDecodeAccelerator::Destroy() {
575 DVLOGF(3);
576 DCHECK(child_task_runner_->BelongsToCurrentThread());
577
578 if (decoder_thread_.IsRunning()) {
579 decoder_thread_task_runner_->PostTask(
580 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::DestroyTask,
581 base::Unretained(this)));
582
583 // Wait for tasks to finish/early-exit.
584 decoder_thread_.Stop();
585 }
586
587 delete this;
588 DVLOGF(3) << "Destroyed";
589 }
590
DestroyTask()591 void V4L2SliceVideoDecodeAccelerator::DestroyTask() {
592 DVLOGF(3);
593 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
594
595 state_ = kError;
596
597 decoder_->Reset();
598
599 decoder_current_bitstream_buffer_.reset();
600 while (!decoder_input_queue_.empty())
601 decoder_input_queue_.pop();
602
603 // Stop streaming and the device_poll_thread_.
604 StopDevicePoll(false);
605
606 DestroyInputBuffers();
607 DestroyOutputs(false);
608
609 DCHECK(surfaces_at_device_.empty());
610 DCHECK(surfaces_at_display_.empty());
611 DCHECK(decoder_display_queue_.empty());
612 }
613
IsSupportedOutputFormat(uint32_t v4l2_format)614 static bool IsSupportedOutputFormat(uint32_t v4l2_format) {
615 // Only support V4L2_PIX_FMT_NV12 output format for now.
616 // TODO(johnylin): add more supported format if necessary.
617 uint32_t kSupportedOutputFmtFourcc[] = { V4L2_PIX_FMT_NV12 };
618 return std::find(
619 kSupportedOutputFmtFourcc,
620 kSupportedOutputFmtFourcc + arraysize(kSupportedOutputFmtFourcc),
621 v4l2_format) !=
622 kSupportedOutputFmtFourcc + arraysize(kSupportedOutputFmtFourcc);
623 }
624
SetupFormats()625 bool V4L2SliceVideoDecodeAccelerator::SetupFormats() {
626 DCHECK_EQ(state_, kUninitialized);
627
628 size_t input_size;
629 Size max_resolution, min_resolution;
630 device_->GetSupportedResolution(input_format_fourcc_, &min_resolution,
631 &max_resolution);
632 if (max_resolution.width() > 1920 && max_resolution.height() > 1088)
633 input_size = kInputBufferMaxSizeFor4k;
634 else
635 input_size = kInputBufferMaxSizeFor1080p;
636
637 struct v4l2_fmtdesc fmtdesc;
638 memset(&fmtdesc, 0, sizeof(fmtdesc));
639 fmtdesc.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
640 bool is_format_supported = false;
641 while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
642 if (fmtdesc.pixelformat == input_format_fourcc_) {
643 is_format_supported = true;
644 break;
645 }
646 ++fmtdesc.index;
647 }
648
649 if (!is_format_supported) {
650 DVLOGF(1) << "Input fourcc " << input_format_fourcc_
651 << " not supported by device.";
652 return false;
653 }
654
655 struct v4l2_format format;
656 memset(&format, 0, sizeof(format));
657 format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
658 format.fmt.pix_mp.pixelformat = input_format_fourcc_;
659 format.fmt.pix_mp.plane_fmt[0].sizeimage = input_size;
660 format.fmt.pix_mp.num_planes = input_planes_count_;
661 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
662
663 // We have to set up the format for output, because the driver may not allow
664 // changing it once we start streaming; whether it can support our chosen
665 // output format or not may depend on the input format.
666 memset(&fmtdesc, 0, sizeof(fmtdesc));
667 fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
668 output_format_fourcc_ = 0;
669 while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
670 if (IsSupportedOutputFormat(fmtdesc.pixelformat)) {
671 output_format_fourcc_ = fmtdesc.pixelformat;
672 break;
673 }
674 ++fmtdesc.index;
675 }
676
677 if (output_format_fourcc_ == 0) {
678 LOGF(ERROR) << "Could not find a usable output format";
679 return false;
680 }
681
682 // Only set fourcc for output; resolution, etc., will come from the
683 // driver once it extracts it from the stream.
684 memset(&format, 0, sizeof(format));
685 format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
686 format.fmt.pix_mp.pixelformat = output_format_fourcc_;
687 format.fmt.pix_mp.num_planes = output_planes_count_;
688 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
689
690 return true;
691 }
692
CreateInputBuffers()693 bool V4L2SliceVideoDecodeAccelerator::CreateInputBuffers() {
694 DVLOGF(3);
695 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
696 DCHECK(!input_streamon_);
697 DCHECK(input_buffer_map_.empty());
698
699 struct v4l2_requestbuffers reqbufs;
700 memset(&reqbufs, 0, sizeof(reqbufs));
701 reqbufs.count = kNumInputBuffers;
702 reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
703 reqbufs.memory = V4L2_MEMORY_MMAP;
704 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
705 if (reqbufs.count < kNumInputBuffers) {
706 PLOGF(ERROR) << "Could not allocate enough output buffers";
707 return false;
708 }
709 input_buffer_map_.resize(reqbufs.count);
710 for (size_t i = 0; i < input_buffer_map_.size(); ++i) {
711 free_input_buffers_.push_back(i);
712
713 // Query for the MEMORY_MMAP pointer.
714 struct v4l2_plane planes[VIDEO_MAX_PLANES];
715 struct v4l2_buffer buffer;
716 memset(&buffer, 0, sizeof(buffer));
717 memset(planes, 0, sizeof(planes));
718 buffer.index = i;
719 buffer.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
720 buffer.memory = V4L2_MEMORY_MMAP;
721 buffer.m.planes = planes;
722 buffer.length = input_planes_count_;
723 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYBUF, &buffer);
724 void* address = device_->Mmap(nullptr,
725 buffer.m.planes[0].length,
726 PROT_READ | PROT_WRITE,
727 MAP_SHARED,
728 buffer.m.planes[0].m.mem_offset);
729 if (address == MAP_FAILED) {
730 PLOGF(ERROR) << "mmap() failed";
731 return false;
732 }
733 input_buffer_map_[i].address = address;
734 input_buffer_map_[i].length = buffer.m.planes[0].length;
735 }
736
737 return true;
738 }
739
CreateOutputBuffers()740 bool V4L2SliceVideoDecodeAccelerator::CreateOutputBuffers() {
741 DVLOGF(3);
742 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
743 DCHECK(!output_streamon_);
744 DCHECK(output_buffer_map_.empty());
745 DCHECK(surfaces_at_display_.empty());
746 DCHECK(surfaces_at_device_.empty());
747
748 visible_size_ = decoder_->GetPicSize();
749 size_t num_pictures = decoder_->GetRequiredNumOfPictures();
750
751 DCHECK_GT(num_pictures, 0u);
752 DCHECK(!visible_size_.IsEmpty());
753
754 struct v4l2_format format;
755 memset(&format, 0, sizeof(format));
756 format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
757 format.fmt.pix_mp.pixelformat = output_format_fourcc_;
758 format.fmt.pix_mp.width = visible_size_.width();
759 format.fmt.pix_mp.height = visible_size_.height();
760 format.fmt.pix_mp.num_planes = input_planes_count_;
761
762 if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
763 PLOGF(ERROR) << "Failed setting format to: " << output_format_fourcc_;
764 NOTIFY_ERROR(PLATFORM_FAILURE);
765 return false;
766 }
767
768 coded_size_.SetSize(base::checked_cast<int>(format.fmt.pix_mp.width),
769 base::checked_cast<int>(format.fmt.pix_mp.height));
770 DCHECK_EQ(coded_size_.width() % 16, 0);
771 DCHECK_EQ(coded_size_.height() % 16, 0);
772
773 if (!Rect(coded_size_).Contains(Rect(visible_size_))) {
774 LOGF(ERROR) << "Got invalid adjusted coded size: "
775 << coded_size_.ToString();
776 return false;
777 }
778
779 DVLOGF(3) << "buffer_count=" << num_pictures
780 << ", visible size=" << visible_size_.ToString()
781 << ", coded size=" << coded_size_.ToString();
782
783 // With ALLOCATE mode the client can sample it as RGB and doesn't need to
784 // know the precise format.
785 VideoPixelFormat pixel_format =
786 (output_mode_ == Config::OutputMode::IMPORT)
787 ? V4L2Device::V4L2PixFmtToVideoPixelFormat(output_format_fourcc_)
788 : PIXEL_FORMAT_UNKNOWN;
789
790 child_task_runner_->PostTask(
791 FROM_HERE,
792 base::Bind(&VideoDecodeAccelerator::Client::ProvidePictureBuffers,
793 client_, num_pictures, pixel_format, coded_size_));
794
795 // Go into kAwaitingPictureBuffers to prevent us from doing any more decoding
796 // or event handling while we are waiting for AssignPictureBuffers(). Not
797 // having Pictures available would not have prevented us from making decoding
798 // progress entirely e.g. in the case of H.264 where we could further decode
799 // non-slice NALUs and could even get another resolution change before we were
800 // done with this one. After we get the buffers, we'll go back into kIdle and
801 // kick off further event processing, and eventually go back into kDecoding
802 // once no more events are pending (if any).
803 state_ = kAwaitingPictureBuffers;
804 return true;
805 }
806
DestroyInputBuffers()807 void V4L2SliceVideoDecodeAccelerator::DestroyInputBuffers() {
808 DVLOGF(3);
809 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread() ||
810 !decoder_thread_.IsRunning());
811 DCHECK(!input_streamon_);
812
813 if (input_buffer_map_.empty())
814 return;
815
816 for (auto& input_record : input_buffer_map_) {
817 if (input_record.address != nullptr)
818 device_->Munmap(input_record.address, input_record.length);
819 }
820
821 struct v4l2_requestbuffers reqbufs;
822 memset(&reqbufs, 0, sizeof(reqbufs));
823 reqbufs.count = 0;
824 reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
825 reqbufs.memory = V4L2_MEMORY_MMAP;
826 IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
827
828 input_buffer_map_.clear();
829 free_input_buffers_.clear();
830 }
831
DismissPictures(const std::vector<int32_t> & picture_buffer_ids,base::WaitableEvent * done)832 void V4L2SliceVideoDecodeAccelerator::DismissPictures(
833 const std::vector<int32_t>& picture_buffer_ids,
834 base::WaitableEvent* done) {
835 DVLOGF(3);
836 DCHECK(child_task_runner_->BelongsToCurrentThread());
837
838 for (auto picture_buffer_id : picture_buffer_ids) {
839 DVLOGF(1) << "dismissing PictureBuffer id=" << picture_buffer_id;
840 client_->DismissPictureBuffer(picture_buffer_id);
841 }
842
843 done->Signal();
844 }
845
DevicePollTask(bool poll_device)846 void V4L2SliceVideoDecodeAccelerator::DevicePollTask(bool poll_device) {
847 DVLOGF(4);
848 DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
849
850 bool event_pending;
851 if (!device_->Poll(poll_device, &event_pending)) {
852 NOTIFY_ERROR(PLATFORM_FAILURE);
853 return;
854 }
855
856 // All processing should happen on ServiceDeviceTask(), since we shouldn't
857 // touch encoder state from this thread.
858 decoder_thread_task_runner_->PostTask(
859 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::ServiceDeviceTask,
860 base::Unretained(this)));
861 }
862
ServiceDeviceTask()863 void V4L2SliceVideoDecodeAccelerator::ServiceDeviceTask() {
864 DVLOGF(4);
865 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
866
867 // ServiceDeviceTask() should only ever be scheduled from DevicePollTask().
868
869 Dequeue();
870 SchedulePollIfNeeded();
871 }
872
SchedulePollIfNeeded()873 void V4L2SliceVideoDecodeAccelerator::SchedulePollIfNeeded() {
874 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
875
876 if (!device_poll_thread_.IsRunning()) {
877 DVLOGF(2) << "Device poll thread stopped, will not schedule poll";
878 return;
879 }
880
881 DCHECK(input_streamon_ || output_streamon_);
882
883 if (input_buffer_queued_count_ + output_buffer_queued_count_ == 0) {
884 DVLOGF(4) << "No buffers queued, will not schedule poll";
885 return;
886 }
887
888 DVLOGF(4) << "Scheduling device poll task";
889
890 device_poll_thread_.task_runner()->PostTask(
891 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::DevicePollTask,
892 base::Unretained(this), true));
893
894 DVLOGF(2) << "buffer counts: "
895 << "INPUT[" << decoder_input_queue_.size() << "]"
896 << " => DEVICE["
897 << free_input_buffers_.size() << "+"
898 << input_buffer_queued_count_ << "/"
899 << input_buffer_map_.size() << "]->["
900 << free_output_buffers_.size() << "+"
901 << output_buffer_queued_count_ << "/"
902 << output_buffer_map_.size() << "]"
903 << " => DISPLAYQ[" << decoder_display_queue_.size() << "]"
904 << " => CLIENT[" << surfaces_at_display_.size() << "]";
905 }
906
Enqueue(const scoped_refptr<V4L2DecodeSurface> & dec_surface)907 void V4L2SliceVideoDecodeAccelerator::Enqueue(
908 const scoped_refptr<V4L2DecodeSurface>& dec_surface) {
909 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
910
911 const int old_inputs_queued = input_buffer_queued_count_;
912 const int old_outputs_queued = output_buffer_queued_count_;
913
914 if (!EnqueueInputRecord(dec_surface->input_record(),
915 dec_surface->config_store())) {
916 DVLOGF(1) << "Failed queueing an input buffer";
917 NOTIFY_ERROR(PLATFORM_FAILURE);
918 return;
919 }
920
921 if (!EnqueueOutputRecord(dec_surface->output_record())) {
922 DVLOGF(1) << "Failed queueing an output buffer";
923 NOTIFY_ERROR(PLATFORM_FAILURE);
924 return;
925 }
926
927 bool inserted =
928 surfaces_at_device_
929 .insert(std::make_pair(dec_surface->output_record(), dec_surface))
930 .second;
931 DCHECK(inserted);
932
933 if (old_inputs_queued == 0 && old_outputs_queued == 0)
934 SchedulePollIfNeeded();
935 }
936
Dequeue()937 void V4L2SliceVideoDecodeAccelerator::Dequeue() {
938 DVLOGF(3);
939 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
940
941 struct v4l2_buffer dqbuf;
942 struct v4l2_plane planes[VIDEO_MAX_PLANES];
943 while (input_buffer_queued_count_ > 0) {
944 DCHECK(input_streamon_);
945 memset(&dqbuf, 0, sizeof(dqbuf));
946 memset(&planes, 0, sizeof(planes));
947 dqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
948 dqbuf.memory = V4L2_MEMORY_MMAP;
949 dqbuf.m.planes = planes;
950 dqbuf.length = input_planes_count_;
951 if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
952 if (errno == EAGAIN) {
953 // EAGAIN if we're just out of buffers to dequeue.
954 break;
955 }
956 PLOGF(ERROR) << "ioctl() failed: VIDIOC_DQBUF";
957 NOTIFY_ERROR(PLATFORM_FAILURE);
958 return;
959 }
960 InputRecord& input_record = input_buffer_map_[dqbuf.index];
961 DCHECK(input_record.at_device);
962 input_record.at_device = false;
963 ReuseInputBuffer(dqbuf.index);
964 input_buffer_queued_count_--;
965 DVLOGF(4) << "Dequeued input=" << dqbuf.index
966 << " count: " << input_buffer_queued_count_;
967 }
968
969 while (output_buffer_queued_count_ > 0) {
970 DCHECK(output_streamon_);
971 memset(&dqbuf, 0, sizeof(dqbuf));
972 memset(&planes, 0, sizeof(planes));
973 dqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
974 dqbuf.memory =
975 (output_mode_ == Config::OutputMode::ALLOCATE ? V4L2_MEMORY_MMAP
976 : V4L2_MEMORY_DMABUF);
977 dqbuf.m.planes = planes;
978 dqbuf.length = output_planes_count_;
979 if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
980 if (errno == EAGAIN) {
981 // EAGAIN if we're just out of buffers to dequeue.
982 break;
983 }
984 PLOGF(ERROR) << "ioctl() failed: VIDIOC_DQBUF";
985 NOTIFY_ERROR(PLATFORM_FAILURE);
986 return;
987 }
988 OutputRecord& output_record = output_buffer_map_[dqbuf.index];
989 DCHECK(output_record.at_device);
990 output_record.at_device = false;
991 output_buffer_queued_count_--;
992 DVLOGF(3) << "Dequeued output=" << dqbuf.index
993 << " count " << output_buffer_queued_count_;
994
995 V4L2DecodeSurfaceByOutputId::iterator it =
996 surfaces_at_device_.find(dqbuf.index);
997 if (it == surfaces_at_device_.end()) {
998 DLOGF(ERROR) << "Got invalid surface from device.";
999 NOTIFY_ERROR(PLATFORM_FAILURE);
1000 return;
1001 }
1002
1003 it->second->SetDecoded();
1004 surfaces_at_device_.erase(it);
1005 }
1006
1007 // A frame was decoded, see if we can output it.
1008 TryOutputSurfaces();
1009
1010 ProcessPendingEventsIfNeeded();
1011 ScheduleDecodeBufferTaskIfNeeded();
1012 }
1013
NewEventPending()1014 void V4L2SliceVideoDecodeAccelerator::NewEventPending() {
1015 // Switch to event processing mode if we are decoding. Otherwise we are either
1016 // already in it, or we will potentially switch to it later, after finishing
1017 // other tasks.
1018 if (state_ == kDecoding)
1019 state_ = kIdle;
1020
1021 ProcessPendingEventsIfNeeded();
1022 }
1023
FinishEventProcessing()1024 bool V4L2SliceVideoDecodeAccelerator::FinishEventProcessing() {
1025 DCHECK_EQ(state_, kIdle);
1026
1027 state_ = kDecoding;
1028 ScheduleDecodeBufferTaskIfNeeded();
1029
1030 return true;
1031 }
1032
ProcessPendingEventsIfNeeded()1033 void V4L2SliceVideoDecodeAccelerator::ProcessPendingEventsIfNeeded() {
1034 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1035
1036 // Process pending events, if any, in the correct order.
1037 // We always first process the surface set change, as it is an internal
1038 // event from the decoder and interleaving it with external requests would
1039 // put the decoder in an undefined state.
1040 using ProcessFunc = bool (V4L2SliceVideoDecodeAccelerator::*)();
1041 const ProcessFunc process_functions[] = {
1042 &V4L2SliceVideoDecodeAccelerator::FinishSurfaceSetChange,
1043 &V4L2SliceVideoDecodeAccelerator::FinishFlush,
1044 &V4L2SliceVideoDecodeAccelerator::FinishReset,
1045 &V4L2SliceVideoDecodeAccelerator::FinishEventProcessing,
1046 };
1047
1048 for (const auto& fn : process_functions) {
1049 if (state_ != kIdle)
1050 return;
1051
1052 if (!(this->*fn)())
1053 return;
1054 }
1055 }
1056
ReuseInputBuffer(int index)1057 void V4L2SliceVideoDecodeAccelerator::ReuseInputBuffer(int index) {
1058 DVLOGF(4) << "Reusing input buffer, index=" << index;
1059 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1060
1061 DCHECK_LT(index, static_cast<int>(input_buffer_map_.size()));
1062 InputRecord& input_record = input_buffer_map_[index];
1063
1064 DCHECK(!input_record.at_device);
1065 input_record.input_id = -1;
1066 input_record.bytes_used = 0;
1067
1068 DCHECK_EQ(
1069 std::count(free_input_buffers_.begin(), free_input_buffers_.end(), index),
1070 0);
1071 free_input_buffers_.push_back(index);
1072 }
1073
ReuseOutputBuffer(int index)1074 void V4L2SliceVideoDecodeAccelerator::ReuseOutputBuffer(int index) {
1075 DVLOGF(4) << "Reusing output buffer, index=" << index;
1076 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1077
1078 DCHECK_LT(index, static_cast<int>(output_buffer_map_.size()));
1079 OutputRecord& output_record = output_buffer_map_[index];
1080 DCHECK(!output_record.at_device);
1081 DCHECK(!output_record.at_client);
1082
1083 DCHECK_EQ(std::count(free_output_buffers_.begin(), free_output_buffers_.end(),
1084 index),
1085 0);
1086 free_output_buffers_.push_back(index);
1087
1088 ScheduleDecodeBufferTaskIfNeeded();
1089 }
1090
EnqueueInputRecord(int index,uint32_t config_store)1091 bool V4L2SliceVideoDecodeAccelerator::EnqueueInputRecord(
1092 int index,
1093 uint32_t config_store) {
1094 DVLOGF(3);
1095 DCHECK_LT(index, static_cast<int>(input_buffer_map_.size()));
1096 DCHECK_GT(config_store, 0u);
1097
1098 // Enqueue an input (VIDEO_OUTPUT) buffer for an input video frame.
1099 InputRecord& input_record = input_buffer_map_[index];
1100 DCHECK(!input_record.at_device);
1101 struct v4l2_buffer qbuf;
1102 struct v4l2_plane qbuf_planes[VIDEO_MAX_PLANES];
1103 memset(&qbuf, 0, sizeof(qbuf));
1104 memset(qbuf_planes, 0, sizeof(qbuf_planes));
1105 qbuf.index = index;
1106 qbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1107 qbuf.memory = V4L2_MEMORY_MMAP;
1108 qbuf.m.planes = qbuf_planes;
1109 qbuf.m.planes[0].bytesused = input_record.bytes_used;
1110 qbuf.length = input_planes_count_;
1111 qbuf.config_store = config_store;
1112 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
1113 input_record.at_device = true;
1114 input_buffer_queued_count_++;
1115 DVLOGF(4) << "Enqueued input=" << qbuf.index
1116 << " count: " << input_buffer_queued_count_;
1117
1118 return true;
1119 }
1120
EnqueueOutputRecord(int index)1121 bool V4L2SliceVideoDecodeAccelerator::EnqueueOutputRecord(int index) {
1122 DVLOGF(3);
1123 DCHECK_LT(index, static_cast<int>(output_buffer_map_.size()));
1124
1125 // Enqueue an output (VIDEO_CAPTURE) buffer.
1126 OutputRecord& output_record = output_buffer_map_[index];
1127 DCHECK(!output_record.at_device);
1128 DCHECK(!output_record.at_client);
1129 DCHECK_NE(output_record.picture_id, -1);
1130
1131 struct v4l2_buffer qbuf;
1132 struct v4l2_plane qbuf_planes[VIDEO_MAX_PLANES];
1133 memset(&qbuf, 0, sizeof(qbuf));
1134 memset(qbuf_planes, 0, sizeof(qbuf_planes));
1135 qbuf.index = index;
1136 qbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1137 if (output_mode_ == Config::OutputMode::ALLOCATE) {
1138 qbuf.memory = V4L2_MEMORY_MMAP;
1139 } else {
1140 qbuf.memory = V4L2_MEMORY_DMABUF;
1141 DCHECK_EQ(output_planes_count_, output_record.dmabuf_fds.size());
1142 for (size_t i = 0; i < output_record.dmabuf_fds.size(); ++i) {
1143 DCHECK(output_record.dmabuf_fds[i].is_valid());
1144 qbuf_planes[i].m.fd = output_record.dmabuf_fds[i].get();
1145 }
1146 }
1147 qbuf.m.planes = qbuf_planes;
1148 qbuf.length = output_planes_count_;
1149 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
1150 output_record.at_device = true;
1151 output_buffer_queued_count_++;
1152 DVLOGF(4) << "Enqueued output=" << qbuf.index
1153 << " count: " << output_buffer_queued_count_;
1154
1155 return true;
1156 }
1157
StartDevicePoll()1158 bool V4L2SliceVideoDecodeAccelerator::StartDevicePoll() {
1159 DVLOGF(3) << "Starting device poll";
1160 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1161 DCHECK(!device_poll_thread_.IsRunning());
1162
1163 // Start up the device poll thread and schedule its first DevicePollTask().
1164 if (!device_poll_thread_.Start()) {
1165 DLOGF(ERROR) << "Device thread failed to start";
1166 NOTIFY_ERROR(PLATFORM_FAILURE);
1167 return false;
1168 }
1169 if (!input_streamon_) {
1170 __u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1171 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMON, &type);
1172 input_streamon_ = true;
1173 }
1174
1175 if (!output_streamon_) {
1176 __u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1177 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMON, &type);
1178 output_streamon_ = true;
1179 }
1180
1181 device_poll_thread_.task_runner()->PostTask(
1182 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::DevicePollTask,
1183 base::Unretained(this), true));
1184
1185 return true;
1186 }
1187
StopDevicePoll(bool keep_input_state)1188 bool V4L2SliceVideoDecodeAccelerator::StopDevicePoll(bool keep_input_state) {
1189 DVLOGF(3) << "Stopping device poll";
1190 if (decoder_thread_.IsRunning())
1191 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1192
1193 // Signal the DevicePollTask() to stop, and stop the device poll thread.
1194 if (!device_->SetDevicePollInterrupt()) {
1195 PLOGF(ERROR) << "SetDevicePollInterrupt(): failed";
1196 NOTIFY_ERROR(PLATFORM_FAILURE);
1197 return false;
1198 }
1199 device_poll_thread_.Stop();
1200 DVLOGF(3) << "Device poll thread stopped";
1201
1202 // Clear the interrupt now, to be sure.
1203 if (!device_->ClearDevicePollInterrupt()) {
1204 NOTIFY_ERROR(PLATFORM_FAILURE);
1205 return false;
1206 }
1207
1208 if (!keep_input_state) {
1209 if (input_streamon_) {
1210 __u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1211 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
1212 }
1213 input_streamon_ = false;
1214 }
1215
1216 if (output_streamon_) {
1217 __u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1218 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
1219 }
1220 output_streamon_ = false;
1221
1222 if (!keep_input_state) {
1223 for (size_t i = 0; i < input_buffer_map_.size(); ++i) {
1224 InputRecord& input_record = input_buffer_map_[i];
1225 if (input_record.at_device) {
1226 input_record.at_device = false;
1227 ReuseInputBuffer(i);
1228 input_buffer_queued_count_--;
1229 }
1230 }
1231 DCHECK_EQ(input_buffer_queued_count_, 0);
1232 }
1233
1234 // STREAMOFF makes the driver drop all buffers without decoding and DQBUFing,
1235 // so we mark them all as at_device = false and clear surfaces_at_device_.
1236 for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
1237 OutputRecord& output_record = output_buffer_map_[i];
1238 if (output_record.at_device) {
1239 output_record.at_device = false;
1240 output_buffer_queued_count_--;
1241 }
1242 }
1243 surfaces_at_device_.clear();
1244 DCHECK_EQ(output_buffer_queued_count_, 0);
1245
1246 // Drop all surfaces that were awaiting decode before being displayed,
1247 // since we've just cancelled all outstanding decodes.
1248 while (!decoder_display_queue_.empty())
1249 decoder_display_queue_.pop();
1250
1251 DVLOGF(3) << "Device poll stopped";
1252 return true;
1253 }
1254
Decode(const BitstreamBuffer & bitstream_buffer)1255 void V4L2SliceVideoDecodeAccelerator::Decode(
1256 const BitstreamBuffer& bitstream_buffer) {
1257 DVLOGF(3) << "input_id=" << bitstream_buffer.id()
1258 << ", size=" << bitstream_buffer.size();
1259 DCHECK(decode_task_runner_->BelongsToCurrentThread());
1260
1261 if (bitstream_buffer.id() < 0) {
1262 LOGF(ERROR) << "Invalid bitstream_buffer, id: " << bitstream_buffer.id();
1263 if (base::SharedMemory::IsHandleValid(bitstream_buffer.handle()))
1264 base::SharedMemory::CloseHandle(bitstream_buffer.handle());
1265 NOTIFY_ERROR(INVALID_ARGUMENT);
1266 return;
1267 }
1268
1269 decoder_thread_task_runner_->PostTask(
1270 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::DecodeTask,
1271 base::Unretained(this), bitstream_buffer));
1272 }
1273
DecodeTask(const BitstreamBuffer & bitstream_buffer)1274 void V4L2SliceVideoDecodeAccelerator::DecodeTask(
1275 const BitstreamBuffer& bitstream_buffer) {
1276 DVLOGF(3) << "input_id=" << bitstream_buffer.id()
1277 << " size=" << bitstream_buffer.size();
1278 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1279
1280 std::unique_ptr<BitstreamBufferRef> bitstream_record(new BitstreamBufferRef(
1281 decode_client_, decode_task_runner_,
1282 new SharedMemoryRegion(bitstream_buffer, true), bitstream_buffer.id()));
1283
1284 // Skip empty buffer.
1285 if (bitstream_buffer.size() == 0)
1286 return;
1287
1288 if (!bitstream_record->shm->Map()) {
1289 LOGF(ERROR) << "Could not map bitstream_buffer";
1290 NOTIFY_ERROR(UNREADABLE_INPUT);
1291 return;
1292 }
1293 DVLOGF(3) << "mapped at=" << bitstream_record->shm->memory();
1294
1295 decoder_input_queue_.push(
1296 linked_ptr<BitstreamBufferRef>(bitstream_record.release()));
1297
1298 ScheduleDecodeBufferTaskIfNeeded();
1299 }
1300
TrySetNewBistreamBuffer()1301 bool V4L2SliceVideoDecodeAccelerator::TrySetNewBistreamBuffer() {
1302 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1303 DCHECK(!decoder_current_bitstream_buffer_);
1304
1305 if (decoder_input_queue_.empty())
1306 return false;
1307
1308 decoder_current_bitstream_buffer_.reset(
1309 decoder_input_queue_.front().release());
1310 decoder_input_queue_.pop();
1311
1312 if (decoder_current_bitstream_buffer_->input_id == kFlushBufferId) {
1313 // This is a buffer we queued for ourselves to trigger flush at this time.
1314 InitiateFlush();
1315 return false;
1316 }
1317
1318 const uint8_t* const data = reinterpret_cast<const uint8_t*>(
1319 decoder_current_bitstream_buffer_->shm->memory());
1320 const size_t data_size = decoder_current_bitstream_buffer_->shm->size();
1321 decoder_->SetStream(data, data_size);
1322
1323 return true;
1324 }
1325
ScheduleDecodeBufferTaskIfNeeded()1326 void V4L2SliceVideoDecodeAccelerator::ScheduleDecodeBufferTaskIfNeeded() {
1327 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1328 if (state_ == kDecoding) {
1329 decoder_thread_task_runner_->PostTask(
1330 FROM_HERE,
1331 base::Bind(&V4L2SliceVideoDecodeAccelerator::DecodeBufferTask,
1332 base::Unretained(this)));
1333 }
1334 }
1335
DecodeBufferTask()1336 void V4L2SliceVideoDecodeAccelerator::DecodeBufferTask() {
1337 DVLOGF(3);
1338 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1339
1340 if (state_ != kDecoding) {
1341 DVLOGF(3) << "Early exit, not in kDecoding";
1342 return;
1343 }
1344
1345 while (true) {
1346 AcceleratedVideoDecoder::DecodeResult res;
1347 res = decoder_->Decode();
1348 switch (res) {
1349 case AcceleratedVideoDecoder::kAllocateNewSurfaces:
1350 DVLOGF(2) << "Decoder requesting a new set of surfaces";
1351 InitiateSurfaceSetChange();
1352 return;
1353
1354 case AcceleratedVideoDecoder::kRanOutOfStreamData:
1355 decoder_current_bitstream_buffer_.reset();
1356 if (!TrySetNewBistreamBuffer())
1357 return;
1358
1359 break;
1360
1361 case AcceleratedVideoDecoder::kRanOutOfSurfaces:
1362 // No more surfaces for the decoder, we'll come back once we have more.
1363 DVLOGF(4) << "Ran out of surfaces";
1364 return;
1365
1366 case AcceleratedVideoDecoder::kNeedContextUpdate:
1367 DVLOGF(4) << "Awaiting context update";
1368 return;
1369
1370 case AcceleratedVideoDecoder::kDecodeError:
1371 DVLOGF(1) << "Error decoding stream";
1372 NOTIFY_ERROR(PLATFORM_FAILURE);
1373 return;
1374 }
1375 }
1376 }
1377
InitiateSurfaceSetChange()1378 void V4L2SliceVideoDecodeAccelerator::InitiateSurfaceSetChange() {
1379 DVLOGF(2);
1380 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1381 DCHECK_EQ(state_, kDecoding);
1382
1383 DCHECK(!surface_set_change_pending_);
1384 surface_set_change_pending_ = true;
1385 NewEventPending();
1386 }
1387
FinishSurfaceSetChange()1388 bool V4L2SliceVideoDecodeAccelerator::FinishSurfaceSetChange() {
1389 DVLOGF(2);
1390 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1391
1392 if (!surface_set_change_pending_)
1393 return true;
1394
1395 if (!surfaces_at_device_.empty())
1396 return false;
1397
1398 DCHECK_EQ(state_, kIdle);
1399 DCHECK(decoder_display_queue_.empty());
1400 // All output buffers should've been returned from decoder and device by now.
1401 // The only remaining owner of surfaces may be display (client), and we will
1402 // dismiss them when destroying output buffers below.
1403 DCHECK_EQ(free_output_buffers_.size() + surfaces_at_display_.size(),
1404 output_buffer_map_.size());
1405
1406 // Keep input queue running while we switch outputs.
1407 if (!StopDevicePoll(true)) {
1408 NOTIFY_ERROR(PLATFORM_FAILURE);
1409 return false;
1410 }
1411
1412 // This will return only once all buffers are dismissed and destroyed.
1413 // This does not wait until they are displayed however, as display retains
1414 // references to the buffers bound to textures and will release them
1415 // after displaying.
1416 if (!DestroyOutputs(true)) {
1417 NOTIFY_ERROR(PLATFORM_FAILURE);
1418 return false;
1419 }
1420
1421 if (!CreateOutputBuffers()) {
1422 NOTIFY_ERROR(PLATFORM_FAILURE);
1423 return false;
1424 }
1425
1426 surface_set_change_pending_ = false;
1427 DVLOGF(3) << "Surface set change finished";
1428 return true;
1429 }
1430
DestroyOutputs(bool dismiss)1431 bool V4L2SliceVideoDecodeAccelerator::DestroyOutputs(bool dismiss) {
1432 DVLOGF(3);
1433 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1434 std::vector<int32_t> picture_buffers_to_dismiss;
1435
1436 if (output_buffer_map_.empty())
1437 return true;
1438
1439 for (const auto& output_record : output_buffer_map_) {
1440 DCHECK(!output_record.at_device);
1441 picture_buffers_to_dismiss.push_back(output_record.picture_id);
1442 }
1443
1444 if (dismiss) {
1445 DVLOGF(2) << "Scheduling picture dismissal";
1446 base::WaitableEvent done(base::WaitableEvent::ResetPolicy::AUTOMATIC,
1447 base::WaitableEvent::InitialState::NOT_SIGNALED);
1448 child_task_runner_->PostTask(
1449 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::DismissPictures,
1450 weak_this_, picture_buffers_to_dismiss, &done));
1451 done.Wait();
1452 }
1453
1454 // At this point client can't call ReusePictureBuffer on any of the pictures
1455 // anymore, so it's safe to destroy.
1456 return DestroyOutputBuffers();
1457 }
1458
DestroyOutputBuffers()1459 bool V4L2SliceVideoDecodeAccelerator::DestroyOutputBuffers() {
1460 DVLOGF(3);
1461 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread() ||
1462 !decoder_thread_.IsRunning());
1463 DCHECK(!output_streamon_);
1464 DCHECK(surfaces_at_device_.empty());
1465 DCHECK(decoder_display_queue_.empty());
1466 DCHECK_EQ(surfaces_at_display_.size() + free_output_buffers_.size(),
1467 output_buffer_map_.size());
1468
1469 if (output_buffer_map_.empty())
1470 return true;
1471
1472 // It's ok to do this, client will retain references to textures, but we are
1473 // not interested in reusing the surfaces anymore.
1474 // This will prevent us from reusing old surfaces in case we have some
1475 // ReusePictureBuffer() pending on ChildThread already. It's ok to ignore
1476 // them, because we have already dismissed them (in DestroyOutputs()).
1477 for (const auto& surface_at_display : surfaces_at_display_) {
1478 size_t index = surface_at_display.second->output_record();
1479 DCHECK_LT(index, output_buffer_map_.size());
1480 OutputRecord& output_record = output_buffer_map_[index];
1481 DCHECK(output_record.at_client);
1482 output_record.at_client = false;
1483 }
1484 surfaces_at_display_.clear();
1485 DCHECK_EQ(free_output_buffers_.size(), output_buffer_map_.size());
1486
1487 free_output_buffers_.clear();
1488 output_buffer_map_.clear();
1489
1490 struct v4l2_requestbuffers reqbufs;
1491 memset(&reqbufs, 0, sizeof(reqbufs));
1492 reqbufs.count = 0;
1493 reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1494 reqbufs.memory = V4L2_MEMORY_MMAP;
1495 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
1496
1497 return true;
1498 }
1499
AssignPictureBuffers(const std::vector<PictureBuffer> & buffers)1500 void V4L2SliceVideoDecodeAccelerator::AssignPictureBuffers(
1501 const std::vector<PictureBuffer>& buffers) {
1502 DVLOGF(3);
1503 DCHECK(child_task_runner_->BelongsToCurrentThread());
1504
1505 decoder_thread_task_runner_->PostTask(
1506 FROM_HERE,
1507 base::Bind(&V4L2SliceVideoDecodeAccelerator::AssignPictureBuffersTask,
1508 base::Unretained(this), buffers));
1509 }
1510
AssignPictureBuffersTask(const std::vector<PictureBuffer> & buffers)1511 void V4L2SliceVideoDecodeAccelerator::AssignPictureBuffersTask(
1512 const std::vector<PictureBuffer>& buffers) {
1513 DVLOGF(3);
1514 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1515 DCHECK_EQ(state_, kAwaitingPictureBuffers);
1516
1517 const uint32_t req_buffer_count = decoder_->GetRequiredNumOfPictures();
1518
1519 if (buffers.size() < req_buffer_count) {
1520 DLOG(ERROR) << "Failed to provide requested picture buffers. "
1521 << "(Got " << buffers.size()
1522 << ", requested " << req_buffer_count << ")";
1523 NOTIFY_ERROR(INVALID_ARGUMENT);
1524 return;
1525 }
1526
1527 // Allocate the output buffers.
1528 struct v4l2_requestbuffers reqbufs;
1529 memset(&reqbufs, 0, sizeof(reqbufs));
1530 reqbufs.count = buffers.size();
1531 reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1532 reqbufs.memory =
1533 (output_mode_ == Config::OutputMode::ALLOCATE ? V4L2_MEMORY_MMAP
1534 : V4L2_MEMORY_DMABUF);
1535 IOCTL_OR_ERROR_RETURN(VIDIOC_REQBUFS, &reqbufs);
1536
1537 if (reqbufs.count != buffers.size()) {
1538 DLOGF(ERROR) << "Could not allocate enough output buffers";
1539 NOTIFY_ERROR(PLATFORM_FAILURE);
1540 return;
1541 }
1542
1543 DCHECK(free_output_buffers_.empty());
1544 DCHECK(output_buffer_map_.empty());
1545 output_buffer_map_.resize(buffers.size());
1546 for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
1547 DCHECK(buffers[i].size() == coded_size_);
1548
1549 OutputRecord& output_record = output_buffer_map_[i];
1550 DCHECK(!output_record.at_device);
1551 DCHECK(!output_record.at_client);
1552 DCHECK_EQ(output_record.picture_id, -1);
1553 DCHECK(output_record.dmabuf_fds.empty());
1554 DCHECK_EQ(output_record.cleared, false);
1555
1556 output_record.picture_id = buffers[i].id();
1557
1558 // This will remain true until ImportBufferForPicture is called, either by
1559 // the client, or by ourselves, if we are allocating.
1560 output_record.at_client = true;
1561 if (output_mode_ == Config::OutputMode::ALLOCATE) {
1562 std::vector<base::ScopedFD> dmabuf_fds = device_->GetDmabufsForV4L2Buffer(
1563 i, output_planes_count_, V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
1564 if (dmabuf_fds.empty()) {
1565 NOTIFY_ERROR(PLATFORM_FAILURE);
1566 return;
1567 }
1568
1569 auto passed_dmabuf_fds(base::WrapUnique(
1570 new std::vector<base::ScopedFD>(std::move(dmabuf_fds))));
1571 ImportBufferForPictureTask(output_record.picture_id,
1572 std::move(passed_dmabuf_fds));
1573 } // else we'll get triggered via ImportBufferForPicture() from client.
1574 DVLOGF(3) << "buffer[" << i << "]: picture_id=" << output_record.picture_id;
1575 }
1576
1577 if (!StartDevicePoll()) {
1578 NOTIFY_ERROR(PLATFORM_FAILURE);
1579 return;
1580 }
1581
1582 // Put us in kIdle to allow further event processing.
1583 // ProcessPendingEventsIfNeeded() will put us back into kDecoding after all
1584 // other pending events are processed successfully.
1585 state_ = kIdle;
1586 ProcessPendingEventsIfNeeded();
1587 }
1588
ImportBufferForPicture(int32_t picture_buffer_id,const std::vector<base::FileDescriptor> & dmabuf_fds)1589 void V4L2SliceVideoDecodeAccelerator::ImportBufferForPicture(
1590 int32_t picture_buffer_id,
1591 const std::vector<base::FileDescriptor>& dmabuf_fds) {
1592 DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
1593 DCHECK(child_task_runner_->BelongsToCurrentThread());
1594
1595 auto passed_dmabuf_fds(base::WrapUnique(new std::vector<base::ScopedFD>()));
1596 for (const auto& fd : dmabuf_fds) {
1597 DCHECK_NE(fd.fd, -1);
1598 passed_dmabuf_fds->push_back(base::ScopedFD(fd.fd));
1599 }
1600
1601 if (output_mode_ != Config::OutputMode::IMPORT) {
1602 LOGF(ERROR) << "Cannot import in non-import mode";
1603 NOTIFY_ERROR(INVALID_ARGUMENT);
1604 return;
1605 }
1606
1607 decoder_thread_task_runner_->PostTask(
1608 FROM_HERE,
1609 base::Bind(&V4L2SliceVideoDecodeAccelerator::ImportBufferForPictureTask,
1610 base::Unretained(this), picture_buffer_id,
1611 base::Passed(&passed_dmabuf_fds)));
1612 }
1613
ImportBufferForPictureTask(int32_t picture_buffer_id,std::unique_ptr<std::vector<base::ScopedFD>> passed_dmabuf_fds)1614 void V4L2SliceVideoDecodeAccelerator::ImportBufferForPictureTask(
1615 int32_t picture_buffer_id,
1616 std::unique_ptr<std::vector<base::ScopedFD>> passed_dmabuf_fds) {
1617 DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
1618 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1619
1620 const auto iter =
1621 std::find_if(output_buffer_map_.begin(), output_buffer_map_.end(),
1622 [picture_buffer_id](const OutputRecord& output_record) {
1623 return output_record.picture_id == picture_buffer_id;
1624 });
1625 if (iter == output_buffer_map_.end()) {
1626 // It's possible that we've already posted a DismissPictureBuffer for this
1627 // picture, but it has not yet executed when this ImportBufferForPicture was
1628 // posted to us by the client. In that case just ignore this (we've already
1629 // dismissed it and accounted for that).
1630 DVLOGF(3) << "got picture id=" << picture_buffer_id
1631 << " not in use (anymore?).";
1632 return;
1633 }
1634
1635 if (!iter->at_client) {
1636 LOGF(ERROR) << "Cannot import buffer that not owned by client";
1637 NOTIFY_ERROR(INVALID_ARGUMENT);
1638 return;
1639 }
1640
1641 size_t index = iter - output_buffer_map_.begin();
1642 DCHECK_EQ(std::count(free_output_buffers_.begin(), free_output_buffers_.end(),
1643 index),
1644 0);
1645
1646 DCHECK(!iter->at_device);
1647 iter->at_client = false;
1648
1649 DCHECK_EQ(output_planes_count_, passed_dmabuf_fds->size());
1650 iter->dmabuf_fds.swap(*passed_dmabuf_fds);
1651 free_output_buffers_.push_back(index);
1652 ScheduleDecodeBufferTaskIfNeeded();
1653 }
1654
ReusePictureBuffer(int32_t picture_buffer_id)1655 void V4L2SliceVideoDecodeAccelerator::ReusePictureBuffer(
1656 int32_t picture_buffer_id) {
1657 DCHECK(child_task_runner_->BelongsToCurrentThread());
1658 DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
1659
1660 decoder_thread_task_runner_->PostTask(
1661 FROM_HERE,
1662 base::Bind(&V4L2SliceVideoDecodeAccelerator::ReusePictureBufferTask,
1663 base::Unretained(this), picture_buffer_id));
1664 }
1665
ReusePictureBufferTask(int32_t picture_buffer_id)1666 void V4L2SliceVideoDecodeAccelerator::ReusePictureBufferTask(
1667 int32_t picture_buffer_id) {
1668 DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
1669 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1670
1671 V4L2DecodeSurfaceByPictureBufferId::iterator it =
1672 surfaces_at_display_.find(picture_buffer_id);
1673 if (it == surfaces_at_display_.end()) {
1674 // It's possible that we've already posted a DismissPictureBuffer for this
1675 // picture, but it has not yet executed when this ReusePictureBuffer was
1676 // posted to us by the client. In that case just ignore this (we've already
1677 // dismissed it and accounted for that) and let the sync object get
1678 // destroyed.
1679 DVLOGF(3) << "got picture id=" << picture_buffer_id
1680 << " not in use (anymore?).";
1681 return;
1682 }
1683
1684 OutputRecord& output_record = output_buffer_map_[it->second->output_record()];
1685 if (output_record.at_device || !output_record.at_client) {
1686 DVLOGF(1) << "picture_buffer_id not reusable";
1687 NOTIFY_ERROR(INVALID_ARGUMENT);
1688 return;
1689 }
1690
1691 DCHECK(!output_record.at_device);
1692 output_record.at_client = false;
1693
1694 surfaces_at_display_.erase(it);
1695 }
1696
Flush()1697 void V4L2SliceVideoDecodeAccelerator::Flush() {
1698 DVLOGF(3);
1699 DCHECK(child_task_runner_->BelongsToCurrentThread());
1700
1701 decoder_thread_task_runner_->PostTask(
1702 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::FlushTask,
1703 base::Unretained(this)));
1704 }
1705
FlushTask()1706 void V4L2SliceVideoDecodeAccelerator::FlushTask() {
1707 DVLOGF(3);
1708 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1709
1710 // Queue an empty buffer which - when reached - will trigger flush sequence.
1711 decoder_input_queue_.push(
1712 linked_ptr<BitstreamBufferRef>(new BitstreamBufferRef(
1713 decode_client_, decode_task_runner_, nullptr, kFlushBufferId)));
1714
1715 ScheduleDecodeBufferTaskIfNeeded();
1716 }
1717
InitiateFlush()1718 void V4L2SliceVideoDecodeAccelerator::InitiateFlush() {
1719 DVLOGF(3);
1720 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1721
1722 // This will trigger output for all remaining surfaces in the decoder.
1723 // However, not all of them may be decoded yet (they would be queued
1724 // in hardware then).
1725 if (!decoder_->Flush()) {
1726 DVLOGF(1) << "Failed flushing the decoder.";
1727 NOTIFY_ERROR(PLATFORM_FAILURE);
1728 return;
1729 }
1730
1731 // Put the decoder in an idle state, ready to resume.
1732 decoder_->Reset();
1733
1734 DCHECK(!decoder_flushing_);
1735 decoder_flushing_ = true;
1736 NewEventPending();
1737 }
1738
FinishFlush()1739 bool V4L2SliceVideoDecodeAccelerator::FinishFlush() {
1740 DVLOGF(3);
1741 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1742
1743 if (!decoder_flushing_)
1744 return true;
1745
1746 if (!surfaces_at_device_.empty())
1747 return false;
1748
1749 DCHECK_EQ(state_, kIdle);
1750
1751 // At this point, all remaining surfaces are decoded and dequeued, and since
1752 // we have already scheduled output for them in InitiateFlush(), their
1753 // respective PictureReady calls have been posted (or they have been queued on
1754 // pending_picture_ready_). So at this time, once we SendPictureReady(),
1755 // we will have all remaining PictureReady() posted to the client and we
1756 // can post NotifyFlushDone().
1757 DCHECK(decoder_display_queue_.empty());
1758
1759 // Decoder should have already returned all surfaces and all surfaces are
1760 // out of hardware. There can be no other owners of input buffers.
1761 DCHECK_EQ(free_input_buffers_.size(), input_buffer_map_.size());
1762
1763 SendPictureReady();
1764
1765 decoder_flushing_ = false;
1766 DVLOGF(3) << "Flush finished";
1767
1768 child_task_runner_->PostTask(FROM_HERE,
1769 base::Bind(&Client::NotifyFlushDone, client_));
1770
1771 return true;
1772 }
1773
Reset()1774 void V4L2SliceVideoDecodeAccelerator::Reset() {
1775 DVLOGF(3);
1776 DCHECK(child_task_runner_->BelongsToCurrentThread());
1777
1778 decoder_thread_task_runner_->PostTask(
1779 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::ResetTask,
1780 base::Unretained(this)));
1781 }
1782
ResetTask()1783 void V4L2SliceVideoDecodeAccelerator::ResetTask() {
1784 DVLOGF(3);
1785 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1786
1787 if (decoder_resetting_) {
1788 // This is a bug in the client, multiple Reset()s before NotifyResetDone()
1789 // are not allowed.
1790 NOTREACHED() << "Client should not be requesting multiple Reset()s";
1791 return;
1792 }
1793
1794 // Put the decoder in an idle state, ready to resume.
1795 decoder_->Reset();
1796
1797 // Drop all remaining inputs.
1798 decoder_current_bitstream_buffer_.reset();
1799 while (!decoder_input_queue_.empty())
1800 decoder_input_queue_.pop();
1801
1802 decoder_resetting_ = true;
1803 NewEventPending();
1804 }
1805
FinishReset()1806 bool V4L2SliceVideoDecodeAccelerator::FinishReset() {
1807 DVLOGF(3);
1808 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
1809
1810 if (!decoder_resetting_)
1811 return true;
1812
1813 if (!surfaces_at_device_.empty())
1814 return false;
1815
1816 DCHECK_EQ(state_, kIdle);
1817 DCHECK(!decoder_flushing_);
1818 SendPictureReady();
1819
1820 // Drop any pending outputs.
1821 while (!decoder_display_queue_.empty())
1822 decoder_display_queue_.pop();
1823
1824 // At this point we can have no input buffers in the decoder, because we
1825 // Reset()ed it in ResetTask(), and have not scheduled any new Decode()s
1826 // having been in kIdle since. We don't have any surfaces in the HW either -
1827 // we just checked that surfaces_at_device_.empty(), and inputs are tied
1828 // to surfaces. Since there can be no other owners of input buffers, we can
1829 // simply mark them all as available.
1830 DCHECK_EQ(input_buffer_queued_count_, 0);
1831 free_input_buffers_.clear();
1832 for (size_t i = 0; i < input_buffer_map_.size(); ++i) {
1833 DCHECK(!input_buffer_map_[i].at_device);
1834 ReuseInputBuffer(i);
1835 }
1836
1837 decoder_resetting_ = false;
1838 DVLOGF(3) << "Reset finished";
1839
1840 child_task_runner_->PostTask(FROM_HERE,
1841 base::Bind(&Client::NotifyResetDone, client_));
1842
1843 return true;
1844 }
1845
SetErrorState(Error error)1846 void V4L2SliceVideoDecodeAccelerator::SetErrorState(Error error) {
1847 // We can touch decoder_state_ only if this is the decoder thread or the
1848 // decoder thread isn't running.
1849 if (decoder_thread_.IsRunning() &&
1850 !decoder_thread_task_runner_->BelongsToCurrentThread()) {
1851 decoder_thread_task_runner_->PostTask(
1852 FROM_HERE, base::Bind(&V4L2SliceVideoDecodeAccelerator::SetErrorState,
1853 base::Unretained(this), error));
1854 return;
1855 }
1856
1857 // Post NotifyError only if we are already initialized, as the API does
1858 // not allow doing so before that.
1859 if (state_ != kError && state_ != kUninitialized)
1860 NotifyError(error);
1861
1862 state_ = kError;
1863 }
1864
V4L2H264Accelerator(V4L2SliceVideoDecodeAccelerator * v4l2_dec)1865 V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::V4L2H264Accelerator(
1866 V4L2SliceVideoDecodeAccelerator* v4l2_dec)
1867 : num_slices_(0), v4l2_dec_(v4l2_dec) {
1868 DCHECK(v4l2_dec_);
1869 }
1870
~V4L2H264Accelerator()1871 V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::~V4L2H264Accelerator() {}
1872
1873 scoped_refptr<H264Picture>
CreateH264Picture()1874 V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::CreateH264Picture() {
1875 scoped_refptr<V4L2DecodeSurface> dec_surface = v4l2_dec_->CreateSurface();
1876 if (!dec_surface)
1877 return nullptr;
1878
1879 return new V4L2H264Picture(dec_surface);
1880 }
1881
1882 void V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::
H264PictureListToDPBIndicesList(const H264Picture::Vector & src_pic_list,uint8_t dst_list[kDPBIndicesListSize])1883 H264PictureListToDPBIndicesList(const H264Picture::Vector& src_pic_list,
1884 uint8_t dst_list[kDPBIndicesListSize]) {
1885 size_t i;
1886 for (i = 0; i < src_pic_list.size() && i < kDPBIndicesListSize; ++i) {
1887 const scoped_refptr<H264Picture>& pic = src_pic_list[i];
1888 dst_list[i] = pic ? pic->dpb_position : VIDEO_MAX_FRAME;
1889 }
1890
1891 while (i < kDPBIndicesListSize)
1892 dst_list[i++] = VIDEO_MAX_FRAME;
1893 }
1894
H264DPBToV4L2DPB(const H264DPB & dpb,std::vector<scoped_refptr<V4L2DecodeSurface>> * ref_surfaces)1895 void V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::H264DPBToV4L2DPB(
1896 const H264DPB& dpb,
1897 std::vector<scoped_refptr<V4L2DecodeSurface>>* ref_surfaces) {
1898 memset(v4l2_decode_param_.dpb, 0, sizeof(v4l2_decode_param_.dpb));
1899 size_t i = 0;
1900 for (const auto& pic : dpb) {
1901 if (i >= arraysize(v4l2_decode_param_.dpb)) {
1902 DVLOGF(1) << "Invalid DPB size";
1903 break;
1904 }
1905
1906 int index = VIDEO_MAX_FRAME;
1907 if (!pic->nonexisting) {
1908 scoped_refptr<V4L2DecodeSurface> dec_surface =
1909 H264PictureToV4L2DecodeSurface(pic);
1910 index = dec_surface->output_record();
1911 ref_surfaces->push_back(dec_surface);
1912 }
1913
1914 struct v4l2_h264_dpb_entry& entry = v4l2_decode_param_.dpb[i++];
1915 entry.buf_index = index;
1916 entry.frame_num = pic->frame_num;
1917 entry.pic_num = pic->pic_num;
1918 entry.top_field_order_cnt = pic->top_field_order_cnt;
1919 entry.bottom_field_order_cnt = pic->bottom_field_order_cnt;
1920 entry.flags = (pic->ref ? V4L2_H264_DPB_ENTRY_FLAG_ACTIVE : 0) |
1921 (pic->long_term ? V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM : 0);
1922 }
1923 }
1924
SubmitFrameMetadata(const H264SPS * sps,const H264PPS * pps,const H264DPB & dpb,const H264Picture::Vector & ref_pic_listp0,const H264Picture::Vector & ref_pic_listb0,const H264Picture::Vector & ref_pic_listb1,const scoped_refptr<H264Picture> & pic)1925 bool V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::SubmitFrameMetadata(
1926 const H264SPS* sps,
1927 const H264PPS* pps,
1928 const H264DPB& dpb,
1929 const H264Picture::Vector& ref_pic_listp0,
1930 const H264Picture::Vector& ref_pic_listb0,
1931 const H264Picture::Vector& ref_pic_listb1,
1932 const scoped_refptr<H264Picture>& pic) {
1933 struct v4l2_ext_control ctrl;
1934 std::vector<struct v4l2_ext_control> ctrls;
1935
1936 struct v4l2_ctrl_h264_sps v4l2_sps;
1937 memset(&v4l2_sps, 0, sizeof(v4l2_sps));
1938 v4l2_sps.constraint_set_flags =
1939 (sps->constraint_set0_flag ? V4L2_H264_SPS_CONSTRAINT_SET0_FLAG : 0) |
1940 (sps->constraint_set1_flag ? V4L2_H264_SPS_CONSTRAINT_SET1_FLAG : 0) |
1941 (sps->constraint_set2_flag ? V4L2_H264_SPS_CONSTRAINT_SET2_FLAG : 0) |
1942 (sps->constraint_set3_flag ? V4L2_H264_SPS_CONSTRAINT_SET3_FLAG : 0) |
1943 (sps->constraint_set4_flag ? V4L2_H264_SPS_CONSTRAINT_SET4_FLAG : 0) |
1944 (sps->constraint_set5_flag ? V4L2_H264_SPS_CONSTRAINT_SET5_FLAG : 0);
1945 #define SPS_TO_V4L2SPS(a) v4l2_sps.a = sps->a
1946 SPS_TO_V4L2SPS(profile_idc);
1947 SPS_TO_V4L2SPS(level_idc);
1948 SPS_TO_V4L2SPS(seq_parameter_set_id);
1949 SPS_TO_V4L2SPS(chroma_format_idc);
1950 SPS_TO_V4L2SPS(bit_depth_luma_minus8);
1951 SPS_TO_V4L2SPS(bit_depth_chroma_minus8);
1952 SPS_TO_V4L2SPS(log2_max_frame_num_minus4);
1953 SPS_TO_V4L2SPS(pic_order_cnt_type);
1954 SPS_TO_V4L2SPS(log2_max_pic_order_cnt_lsb_minus4);
1955 SPS_TO_V4L2SPS(offset_for_non_ref_pic);
1956 SPS_TO_V4L2SPS(offset_for_top_to_bottom_field);
1957 SPS_TO_V4L2SPS(num_ref_frames_in_pic_order_cnt_cycle);
1958
1959 static_assert(arraysize(v4l2_sps.offset_for_ref_frame) ==
1960 arraysize(sps->offset_for_ref_frame),
1961 "offset_for_ref_frame arrays must be same size");
1962 for (size_t i = 0; i < arraysize(v4l2_sps.offset_for_ref_frame); ++i)
1963 v4l2_sps.offset_for_ref_frame[i] = sps->offset_for_ref_frame[i];
1964 SPS_TO_V4L2SPS(max_num_ref_frames);
1965 SPS_TO_V4L2SPS(pic_width_in_mbs_minus1);
1966 SPS_TO_V4L2SPS(pic_height_in_map_units_minus1);
1967 #undef SPS_TO_V4L2SPS
1968
1969 #define SET_V4L2_SPS_FLAG_IF(cond, flag) \
1970 v4l2_sps.flags |= ((sps->cond) ? (flag) : 0)
1971 SET_V4L2_SPS_FLAG_IF(separate_colour_plane_flag,
1972 V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE);
1973 SET_V4L2_SPS_FLAG_IF(qpprime_y_zero_transform_bypass_flag,
1974 V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS);
1975 SET_V4L2_SPS_FLAG_IF(delta_pic_order_always_zero_flag,
1976 V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO);
1977 SET_V4L2_SPS_FLAG_IF(gaps_in_frame_num_value_allowed_flag,
1978 V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED);
1979 SET_V4L2_SPS_FLAG_IF(frame_mbs_only_flag, V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY);
1980 SET_V4L2_SPS_FLAG_IF(mb_adaptive_frame_field_flag,
1981 V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD);
1982 SET_V4L2_SPS_FLAG_IF(direct_8x8_inference_flag,
1983 V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE);
1984 #undef SET_V4L2_SPS_FLAG_IF
1985 memset(&ctrl, 0, sizeof(ctrl));
1986 ctrl.id = V4L2_CID_MPEG_VIDEO_H264_SPS;
1987 ctrl.size = sizeof(v4l2_sps);
1988 ctrl.p_h264_sps = &v4l2_sps;
1989 ctrls.push_back(ctrl);
1990
1991 struct v4l2_ctrl_h264_pps v4l2_pps;
1992 memset(&v4l2_pps, 0, sizeof(v4l2_pps));
1993 #define PPS_TO_V4L2PPS(a) v4l2_pps.a = pps->a
1994 PPS_TO_V4L2PPS(pic_parameter_set_id);
1995 PPS_TO_V4L2PPS(seq_parameter_set_id);
1996 PPS_TO_V4L2PPS(num_slice_groups_minus1);
1997 PPS_TO_V4L2PPS(num_ref_idx_l0_default_active_minus1);
1998 PPS_TO_V4L2PPS(num_ref_idx_l1_default_active_minus1);
1999 PPS_TO_V4L2PPS(weighted_bipred_idc);
2000 PPS_TO_V4L2PPS(pic_init_qp_minus26);
2001 PPS_TO_V4L2PPS(pic_init_qs_minus26);
2002 PPS_TO_V4L2PPS(chroma_qp_index_offset);
2003 PPS_TO_V4L2PPS(second_chroma_qp_index_offset);
2004 #undef PPS_TO_V4L2PPS
2005
2006 #define SET_V4L2_PPS_FLAG_IF(cond, flag) \
2007 v4l2_pps.flags |= ((pps->cond) ? (flag) : 0)
2008 SET_V4L2_PPS_FLAG_IF(entropy_coding_mode_flag,
2009 V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE);
2010 SET_V4L2_PPS_FLAG_IF(
2011 bottom_field_pic_order_in_frame_present_flag,
2012 V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT);
2013 SET_V4L2_PPS_FLAG_IF(weighted_pred_flag, V4L2_H264_PPS_FLAG_WEIGHTED_PRED);
2014 SET_V4L2_PPS_FLAG_IF(deblocking_filter_control_present_flag,
2015 V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT);
2016 SET_V4L2_PPS_FLAG_IF(constrained_intra_pred_flag,
2017 V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED);
2018 SET_V4L2_PPS_FLAG_IF(redundant_pic_cnt_present_flag,
2019 V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT);
2020 SET_V4L2_PPS_FLAG_IF(transform_8x8_mode_flag,
2021 V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE);
2022 SET_V4L2_PPS_FLAG_IF(pic_scaling_matrix_present_flag,
2023 V4L2_H264_PPS_FLAG_PIC_SCALING_MATRIX_PRESENT);
2024 #undef SET_V4L2_PPS_FLAG_IF
2025 memset(&ctrl, 0, sizeof(ctrl));
2026 ctrl.id = V4L2_CID_MPEG_VIDEO_H264_PPS;
2027 ctrl.size = sizeof(v4l2_pps);
2028 ctrl.p_h264_pps = &v4l2_pps;
2029 ctrls.push_back(ctrl);
2030
2031 struct v4l2_ctrl_h264_scaling_matrix v4l2_scaling_matrix;
2032 memset(&v4l2_scaling_matrix, 0, sizeof(v4l2_scaling_matrix));
2033
2034 static_assert(arraysize(v4l2_scaling_matrix.scaling_list_4x4) <=
2035 arraysize(pps->scaling_list4x4) &&
2036 arraysize(v4l2_scaling_matrix.scaling_list_4x4[0]) <=
2037 arraysize(pps->scaling_list4x4[0]) &&
2038 arraysize(v4l2_scaling_matrix.scaling_list_8x8) <=
2039 arraysize(pps->scaling_list8x8) &&
2040 arraysize(v4l2_scaling_matrix.scaling_list_8x8[0]) <=
2041 arraysize(pps->scaling_list8x8[0]),
2042 "scaling_lists must be of correct size");
2043 static_assert(arraysize(v4l2_scaling_matrix.scaling_list_4x4) <=
2044 arraysize(sps->scaling_list4x4) &&
2045 arraysize(v4l2_scaling_matrix.scaling_list_4x4[0]) <=
2046 arraysize(sps->scaling_list4x4[0]) &&
2047 arraysize(v4l2_scaling_matrix.scaling_list_8x8) <=
2048 arraysize(sps->scaling_list8x8) &&
2049 arraysize(v4l2_scaling_matrix.scaling_list_8x8[0]) <=
2050 arraysize(sps->scaling_list8x8[0]),
2051 "scaling_lists must be of correct size");
2052
2053 const auto* scaling_list4x4 = &sps->scaling_list4x4[0];
2054 const auto* scaling_list8x8 = &sps->scaling_list8x8[0];
2055 if (pps->pic_scaling_matrix_present_flag) {
2056 scaling_list4x4 = &pps->scaling_list4x4[0];
2057 scaling_list8x8 = &pps->scaling_list8x8[0];
2058 }
2059
2060 for (size_t i = 0; i < arraysize(v4l2_scaling_matrix.scaling_list_4x4); ++i) {
2061 for (size_t j = 0; j < arraysize(v4l2_scaling_matrix.scaling_list_4x4[i]);
2062 ++j) {
2063 v4l2_scaling_matrix.scaling_list_4x4[i][j] = scaling_list4x4[i][j];
2064 }
2065 }
2066 for (size_t i = 0; i < arraysize(v4l2_scaling_matrix.scaling_list_8x8); ++i) {
2067 for (size_t j = 0; j < arraysize(v4l2_scaling_matrix.scaling_list_8x8[i]);
2068 ++j) {
2069 v4l2_scaling_matrix.scaling_list_8x8[i][j] = scaling_list8x8[i][j];
2070 }
2071 }
2072
2073 memset(&ctrl, 0, sizeof(ctrl));
2074 ctrl.id = V4L2_CID_MPEG_VIDEO_H264_SCALING_MATRIX;
2075 ctrl.size = sizeof(v4l2_scaling_matrix);
2076 ctrl.p_h264_scal_mtrx = &v4l2_scaling_matrix;
2077 ctrls.push_back(ctrl);
2078
2079 scoped_refptr<V4L2DecodeSurface> dec_surface =
2080 H264PictureToV4L2DecodeSurface(pic);
2081
2082 struct v4l2_ext_controls ext_ctrls;
2083 memset(&ext_ctrls, 0, sizeof(ext_ctrls));
2084 ext_ctrls.count = ctrls.size();
2085 ext_ctrls.controls = &ctrls[0];
2086 ext_ctrls.config_store = dec_surface->config_store();
2087 v4l2_dec_->SubmitExtControls(&ext_ctrls);
2088
2089 H264PictureListToDPBIndicesList(ref_pic_listp0,
2090 v4l2_decode_param_.ref_pic_list_p0);
2091 H264PictureListToDPBIndicesList(ref_pic_listb0,
2092 v4l2_decode_param_.ref_pic_list_b0);
2093 H264PictureListToDPBIndicesList(ref_pic_listb1,
2094 v4l2_decode_param_.ref_pic_list_b1);
2095
2096 std::vector<scoped_refptr<V4L2DecodeSurface>> ref_surfaces;
2097 H264DPBToV4L2DPB(dpb, &ref_surfaces);
2098 dec_surface->SetReferenceSurfaces(ref_surfaces);
2099
2100 return true;
2101 }
2102
SubmitSlice(const H264PPS * pps,const H264SliceHeader * slice_hdr,const H264Picture::Vector & ref_pic_list0,const H264Picture::Vector & ref_pic_list1,const scoped_refptr<H264Picture> & pic,const uint8_t * data,size_t size)2103 bool V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::SubmitSlice(
2104 const H264PPS* pps,
2105 const H264SliceHeader* slice_hdr,
2106 const H264Picture::Vector& ref_pic_list0,
2107 const H264Picture::Vector& ref_pic_list1,
2108 const scoped_refptr<H264Picture>& pic,
2109 const uint8_t* data,
2110 size_t size) {
2111 if (num_slices_ == kMaxSlices) {
2112 LOGF(ERROR) << "Over limit of supported slices per frame";
2113 return false;
2114 }
2115
2116 struct v4l2_ctrl_h264_slice_param& v4l2_slice_param =
2117 v4l2_slice_params_[num_slices_++];
2118 memset(&v4l2_slice_param, 0, sizeof(v4l2_slice_param));
2119
2120 v4l2_slice_param.size = size;
2121 #define SHDR_TO_V4L2SPARM(a) v4l2_slice_param.a = slice_hdr->a
2122 SHDR_TO_V4L2SPARM(header_bit_size);
2123 SHDR_TO_V4L2SPARM(first_mb_in_slice);
2124 SHDR_TO_V4L2SPARM(slice_type);
2125 SHDR_TO_V4L2SPARM(pic_parameter_set_id);
2126 SHDR_TO_V4L2SPARM(colour_plane_id);
2127 SHDR_TO_V4L2SPARM(frame_num);
2128 SHDR_TO_V4L2SPARM(idr_pic_id);
2129 SHDR_TO_V4L2SPARM(pic_order_cnt_lsb);
2130 SHDR_TO_V4L2SPARM(delta_pic_order_cnt_bottom);
2131 SHDR_TO_V4L2SPARM(delta_pic_order_cnt0);
2132 SHDR_TO_V4L2SPARM(delta_pic_order_cnt1);
2133 SHDR_TO_V4L2SPARM(redundant_pic_cnt);
2134 SHDR_TO_V4L2SPARM(dec_ref_pic_marking_bit_size);
2135 SHDR_TO_V4L2SPARM(cabac_init_idc);
2136 SHDR_TO_V4L2SPARM(slice_qp_delta);
2137 SHDR_TO_V4L2SPARM(slice_qs_delta);
2138 SHDR_TO_V4L2SPARM(disable_deblocking_filter_idc);
2139 SHDR_TO_V4L2SPARM(slice_alpha_c0_offset_div2);
2140 SHDR_TO_V4L2SPARM(slice_beta_offset_div2);
2141 SHDR_TO_V4L2SPARM(num_ref_idx_l0_active_minus1);
2142 SHDR_TO_V4L2SPARM(num_ref_idx_l1_active_minus1);
2143 SHDR_TO_V4L2SPARM(pic_order_cnt_bit_size);
2144 #undef SHDR_TO_V4L2SPARM
2145
2146 #define SET_V4L2_SPARM_FLAG_IF(cond, flag) \
2147 v4l2_slice_param.flags |= ((slice_hdr->cond) ? (flag) : 0)
2148 SET_V4L2_SPARM_FLAG_IF(field_pic_flag, V4L2_SLICE_FLAG_FIELD_PIC);
2149 SET_V4L2_SPARM_FLAG_IF(bottom_field_flag, V4L2_SLICE_FLAG_BOTTOM_FIELD);
2150 SET_V4L2_SPARM_FLAG_IF(direct_spatial_mv_pred_flag,
2151 V4L2_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED);
2152 SET_V4L2_SPARM_FLAG_IF(sp_for_switch_flag, V4L2_SLICE_FLAG_SP_FOR_SWITCH);
2153 #undef SET_V4L2_SPARM_FLAG_IF
2154
2155 struct v4l2_h264_pred_weight_table* pred_weight_table =
2156 &v4l2_slice_param.pred_weight_table;
2157
2158 if (((slice_hdr->IsPSlice() || slice_hdr->IsSPSlice()) &&
2159 pps->weighted_pred_flag) ||
2160 (slice_hdr->IsBSlice() && pps->weighted_bipred_idc == 1)) {
2161 pred_weight_table->luma_log2_weight_denom =
2162 slice_hdr->luma_log2_weight_denom;
2163 pred_weight_table->chroma_log2_weight_denom =
2164 slice_hdr->chroma_log2_weight_denom;
2165
2166 struct v4l2_h264_weight_factors* factorsl0 =
2167 &pred_weight_table->weight_factors[0];
2168
2169 for (int i = 0; i < 32; ++i) {
2170 factorsl0->luma_weight[i] =
2171 slice_hdr->pred_weight_table_l0.luma_weight[i];
2172 factorsl0->luma_offset[i] =
2173 slice_hdr->pred_weight_table_l0.luma_offset[i];
2174
2175 for (int j = 0; j < 2; ++j) {
2176 factorsl0->chroma_weight[i][j] =
2177 slice_hdr->pred_weight_table_l0.chroma_weight[i][j];
2178 factorsl0->chroma_offset[i][j] =
2179 slice_hdr->pred_weight_table_l0.chroma_offset[i][j];
2180 }
2181 }
2182
2183 if (slice_hdr->IsBSlice()) {
2184 struct v4l2_h264_weight_factors* factorsl1 =
2185 &pred_weight_table->weight_factors[1];
2186
2187 for (int i = 0; i < 32; ++i) {
2188 factorsl1->luma_weight[i] =
2189 slice_hdr->pred_weight_table_l1.luma_weight[i];
2190 factorsl1->luma_offset[i] =
2191 slice_hdr->pred_weight_table_l1.luma_offset[i];
2192
2193 for (int j = 0; j < 2; ++j) {
2194 factorsl1->chroma_weight[i][j] =
2195 slice_hdr->pred_weight_table_l1.chroma_weight[i][j];
2196 factorsl1->chroma_offset[i][j] =
2197 slice_hdr->pred_weight_table_l1.chroma_offset[i][j];
2198 }
2199 }
2200 }
2201 }
2202
2203 H264PictureListToDPBIndicesList(ref_pic_list0,
2204 v4l2_slice_param.ref_pic_list0);
2205 H264PictureListToDPBIndicesList(ref_pic_list1,
2206 v4l2_slice_param.ref_pic_list1);
2207
2208 scoped_refptr<V4L2DecodeSurface> dec_surface =
2209 H264PictureToV4L2DecodeSurface(pic);
2210
2211 v4l2_decode_param_.nal_ref_idc = slice_hdr->nal_ref_idc;
2212
2213 // TODO(posciak): Don't add start code back here, but have it passed from
2214 // the parser.
2215 size_t data_copy_size = size + 3;
2216 std::unique_ptr<uint8_t[]> data_copy(new uint8_t[data_copy_size]);
2217 memset(data_copy.get(), 0, data_copy_size);
2218 data_copy[2] = 0x01;
2219 memcpy(data_copy.get() + 3, data, size);
2220 return v4l2_dec_->SubmitSlice(dec_surface->input_record(), data_copy.get(),
2221 data_copy_size);
2222 }
2223
SubmitSlice(int index,const uint8_t * data,size_t size)2224 bool V4L2SliceVideoDecodeAccelerator::SubmitSlice(int index,
2225 const uint8_t* data,
2226 size_t size) {
2227 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2228
2229 InputRecord& input_record = input_buffer_map_[index];
2230
2231 if (input_record.bytes_used + size > input_record.length) {
2232 DVLOGF(1) << "Input buffer too small";
2233 return false;
2234 }
2235
2236 memcpy(static_cast<uint8_t*>(input_record.address) + input_record.bytes_used,
2237 data, size);
2238 input_record.bytes_used += size;
2239
2240 return true;
2241 }
2242
SubmitExtControls(struct v4l2_ext_controls * ext_ctrls)2243 bool V4L2SliceVideoDecodeAccelerator::SubmitExtControls(
2244 struct v4l2_ext_controls* ext_ctrls) {
2245 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2246 DCHECK_GT(ext_ctrls->config_store, 0u);
2247 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_EXT_CTRLS, ext_ctrls);
2248 return true;
2249 }
2250
GetExtControls(struct v4l2_ext_controls * ext_ctrls)2251 bool V4L2SliceVideoDecodeAccelerator::GetExtControls(
2252 struct v4l2_ext_controls* ext_ctrls) {
2253 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2254 DCHECK_GT(ext_ctrls->config_store, 0u);
2255 IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_G_EXT_CTRLS, ext_ctrls);
2256 return true;
2257 }
2258
IsCtrlExposed(uint32_t ctrl_id)2259 bool V4L2SliceVideoDecodeAccelerator::IsCtrlExposed(uint32_t ctrl_id) {
2260 struct v4l2_queryctrl query_ctrl;
2261 memset(&query_ctrl, 0, sizeof(query_ctrl));
2262 query_ctrl.id = ctrl_id;
2263
2264 return (device_->Ioctl(VIDIOC_QUERYCTRL, &query_ctrl) == 0);
2265 }
2266
SubmitDecode(const scoped_refptr<H264Picture> & pic)2267 bool V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::SubmitDecode(
2268 const scoped_refptr<H264Picture>& pic) {
2269 scoped_refptr<V4L2DecodeSurface> dec_surface =
2270 H264PictureToV4L2DecodeSurface(pic);
2271
2272 v4l2_decode_param_.num_slices = num_slices_;
2273 v4l2_decode_param_.idr_pic_flag = pic->idr;
2274 v4l2_decode_param_.top_field_order_cnt = pic->top_field_order_cnt;
2275 v4l2_decode_param_.bottom_field_order_cnt = pic->bottom_field_order_cnt;
2276
2277 struct v4l2_ext_control ctrl;
2278 std::vector<struct v4l2_ext_control> ctrls;
2279
2280 memset(&ctrl, 0, sizeof(ctrl));
2281 ctrl.id = V4L2_CID_MPEG_VIDEO_H264_SLICE_PARAM;
2282 ctrl.size = sizeof(v4l2_slice_params_);
2283 ctrl.p_h264_slice_param = v4l2_slice_params_;
2284 ctrls.push_back(ctrl);
2285
2286 memset(&ctrl, 0, sizeof(ctrl));
2287 ctrl.id = V4L2_CID_MPEG_VIDEO_H264_DECODE_PARAM;
2288 ctrl.size = sizeof(v4l2_decode_param_);
2289 ctrl.p_h264_decode_param = &v4l2_decode_param_;
2290 ctrls.push_back(ctrl);
2291
2292 struct v4l2_ext_controls ext_ctrls;
2293 memset(&ext_ctrls, 0, sizeof(ext_ctrls));
2294 ext_ctrls.count = ctrls.size();
2295 ext_ctrls.controls = &ctrls[0];
2296 ext_ctrls.config_store = dec_surface->config_store();
2297 if (!v4l2_dec_->SubmitExtControls(&ext_ctrls))
2298 return false;
2299
2300 Reset();
2301
2302 v4l2_dec_->DecodeSurface(dec_surface);
2303 return true;
2304 }
2305
OutputPicture(const scoped_refptr<H264Picture> & pic)2306 bool V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::OutputPicture(
2307 const scoped_refptr<H264Picture>& pic) {
2308 scoped_refptr<V4L2DecodeSurface> dec_surface =
2309 H264PictureToV4L2DecodeSurface(pic);
2310 v4l2_dec_->SurfaceReady(dec_surface);
2311 return true;
2312 }
2313
Reset()2314 void V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::Reset() {
2315 num_slices_ = 0;
2316 memset(&v4l2_decode_param_, 0, sizeof(v4l2_decode_param_));
2317 memset(&v4l2_slice_params_, 0, sizeof(v4l2_slice_params_));
2318 }
2319
2320 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
2321 V4L2SliceVideoDecodeAccelerator::V4L2H264Accelerator::
H264PictureToV4L2DecodeSurface(const scoped_refptr<H264Picture> & pic)2322 H264PictureToV4L2DecodeSurface(const scoped_refptr<H264Picture>& pic) {
2323 V4L2H264Picture* v4l2_pic = pic->AsV4L2H264Picture();
2324 CHECK(v4l2_pic);
2325 return v4l2_pic->dec_surface();
2326 }
2327
V4L2VP8Accelerator(V4L2SliceVideoDecodeAccelerator * v4l2_dec)2328 V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::V4L2VP8Accelerator(
2329 V4L2SliceVideoDecodeAccelerator* v4l2_dec)
2330 : v4l2_dec_(v4l2_dec) {
2331 DCHECK(v4l2_dec_);
2332 }
2333
~V4L2VP8Accelerator()2334 V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::~V4L2VP8Accelerator() {}
2335
2336 scoped_refptr<VP8Picture>
CreateVP8Picture()2337 V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::CreateVP8Picture() {
2338 scoped_refptr<V4L2DecodeSurface> dec_surface = v4l2_dec_->CreateSurface();
2339 if (!dec_surface)
2340 return nullptr;
2341
2342 return new V4L2VP8Picture(dec_surface);
2343 }
2344
2345 #define ARRAY_MEMCPY_CHECKED(to, from) \
2346 do { \
2347 static_assert(sizeof(to) == sizeof(from), \
2348 #from " and " #to " arrays must be of same size"); \
2349 memcpy(to, from, sizeof(to)); \
2350 } while (0)
2351
FillV4L2SegmentationHeader(const Vp8SegmentationHeader & vp8_sgmnt_hdr,struct v4l2_vp8_sgmnt_hdr * v4l2_sgmnt_hdr)2352 static void FillV4L2SegmentationHeader(
2353 const Vp8SegmentationHeader& vp8_sgmnt_hdr,
2354 struct v4l2_vp8_sgmnt_hdr* v4l2_sgmnt_hdr) {
2355 #define SET_V4L2_SGMNT_HDR_FLAG_IF(cond, flag) \
2356 v4l2_sgmnt_hdr->flags |= ((vp8_sgmnt_hdr.cond) ? (flag) : 0)
2357 SET_V4L2_SGMNT_HDR_FLAG_IF(segmentation_enabled,
2358 V4L2_VP8_SEGMNT_HDR_FLAG_ENABLED);
2359 SET_V4L2_SGMNT_HDR_FLAG_IF(update_mb_segmentation_map,
2360 V4L2_VP8_SEGMNT_HDR_FLAG_UPDATE_MAP);
2361 SET_V4L2_SGMNT_HDR_FLAG_IF(update_segment_feature_data,
2362 V4L2_VP8_SEGMNT_HDR_FLAG_UPDATE_FEATURE_DATA);
2363 #undef SET_V4L2_SPARM_FLAG_IF
2364 v4l2_sgmnt_hdr->segment_feature_mode = vp8_sgmnt_hdr.segment_feature_mode;
2365
2366 ARRAY_MEMCPY_CHECKED(v4l2_sgmnt_hdr->quant_update,
2367 vp8_sgmnt_hdr.quantizer_update_value);
2368 ARRAY_MEMCPY_CHECKED(v4l2_sgmnt_hdr->lf_update,
2369 vp8_sgmnt_hdr.lf_update_value);
2370 ARRAY_MEMCPY_CHECKED(v4l2_sgmnt_hdr->segment_probs,
2371 vp8_sgmnt_hdr.segment_prob);
2372 }
2373
FillV4L2LoopfilterHeader(const Vp8LoopFilterHeader & vp8_loopfilter_hdr,struct v4l2_vp8_loopfilter_hdr * v4l2_lf_hdr)2374 static void FillV4L2LoopfilterHeader(
2375 const Vp8LoopFilterHeader& vp8_loopfilter_hdr,
2376 struct v4l2_vp8_loopfilter_hdr* v4l2_lf_hdr) {
2377 #define SET_V4L2_LF_HDR_FLAG_IF(cond, flag) \
2378 v4l2_lf_hdr->flags |= ((vp8_loopfilter_hdr.cond) ? (flag) : 0)
2379 SET_V4L2_LF_HDR_FLAG_IF(loop_filter_adj_enable, V4L2_VP8_LF_HDR_ADJ_ENABLE);
2380 SET_V4L2_LF_HDR_FLAG_IF(mode_ref_lf_delta_update,
2381 V4L2_VP8_LF_HDR_DELTA_UPDATE);
2382 #undef SET_V4L2_SGMNT_HDR_FLAG_IF
2383
2384 #define LF_HDR_TO_V4L2_LF_HDR(a) v4l2_lf_hdr->a = vp8_loopfilter_hdr.a;
2385 LF_HDR_TO_V4L2_LF_HDR(type);
2386 LF_HDR_TO_V4L2_LF_HDR(level);
2387 LF_HDR_TO_V4L2_LF_HDR(sharpness_level);
2388 #undef LF_HDR_TO_V4L2_LF_HDR
2389
2390 ARRAY_MEMCPY_CHECKED(v4l2_lf_hdr->ref_frm_delta_magnitude,
2391 vp8_loopfilter_hdr.ref_frame_delta);
2392 ARRAY_MEMCPY_CHECKED(v4l2_lf_hdr->mb_mode_delta_magnitude,
2393 vp8_loopfilter_hdr.mb_mode_delta);
2394 }
2395
FillV4L2QuantizationHeader(const Vp8QuantizationHeader & vp8_quant_hdr,struct v4l2_vp8_quantization_hdr * v4l2_quant_hdr)2396 static void FillV4L2QuantizationHeader(
2397 const Vp8QuantizationHeader& vp8_quant_hdr,
2398 struct v4l2_vp8_quantization_hdr* v4l2_quant_hdr) {
2399 v4l2_quant_hdr->y_ac_qi = vp8_quant_hdr.y_ac_qi;
2400 v4l2_quant_hdr->y_dc_delta = vp8_quant_hdr.y_dc_delta;
2401 v4l2_quant_hdr->y2_dc_delta = vp8_quant_hdr.y2_dc_delta;
2402 v4l2_quant_hdr->y2_ac_delta = vp8_quant_hdr.y2_ac_delta;
2403 v4l2_quant_hdr->uv_dc_delta = vp8_quant_hdr.uv_dc_delta;
2404 v4l2_quant_hdr->uv_ac_delta = vp8_quant_hdr.uv_ac_delta;
2405 }
2406
FillV4L2Vp8EntropyHeader(const Vp8EntropyHeader & vp8_entropy_hdr,struct v4l2_vp8_entropy_hdr * v4l2_entropy_hdr)2407 static void FillV4L2Vp8EntropyHeader(
2408 const Vp8EntropyHeader& vp8_entropy_hdr,
2409 struct v4l2_vp8_entropy_hdr* v4l2_entropy_hdr) {
2410 ARRAY_MEMCPY_CHECKED(v4l2_entropy_hdr->coeff_probs,
2411 vp8_entropy_hdr.coeff_probs);
2412 ARRAY_MEMCPY_CHECKED(v4l2_entropy_hdr->y_mode_probs,
2413 vp8_entropy_hdr.y_mode_probs);
2414 ARRAY_MEMCPY_CHECKED(v4l2_entropy_hdr->uv_mode_probs,
2415 vp8_entropy_hdr.uv_mode_probs);
2416 ARRAY_MEMCPY_CHECKED(v4l2_entropy_hdr->mv_probs, vp8_entropy_hdr.mv_probs);
2417 }
2418
SubmitDecode(const scoped_refptr<VP8Picture> & pic,const Vp8FrameHeader * frame_hdr,const scoped_refptr<VP8Picture> & last_frame,const scoped_refptr<VP8Picture> & golden_frame,const scoped_refptr<VP8Picture> & alt_frame)2419 bool V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::SubmitDecode(
2420 const scoped_refptr<VP8Picture>& pic,
2421 const Vp8FrameHeader* frame_hdr,
2422 const scoped_refptr<VP8Picture>& last_frame,
2423 const scoped_refptr<VP8Picture>& golden_frame,
2424 const scoped_refptr<VP8Picture>& alt_frame) {
2425 struct v4l2_ctrl_vp8_frame_hdr v4l2_frame_hdr;
2426 memset(&v4l2_frame_hdr, 0, sizeof(v4l2_frame_hdr));
2427
2428 #define FHDR_TO_V4L2_FHDR(a) v4l2_frame_hdr.a = frame_hdr->a
2429 FHDR_TO_V4L2_FHDR(key_frame);
2430 FHDR_TO_V4L2_FHDR(version);
2431 FHDR_TO_V4L2_FHDR(width);
2432 FHDR_TO_V4L2_FHDR(horizontal_scale);
2433 FHDR_TO_V4L2_FHDR(height);
2434 FHDR_TO_V4L2_FHDR(vertical_scale);
2435 FHDR_TO_V4L2_FHDR(sign_bias_golden);
2436 FHDR_TO_V4L2_FHDR(sign_bias_alternate);
2437 FHDR_TO_V4L2_FHDR(prob_skip_false);
2438 FHDR_TO_V4L2_FHDR(prob_intra);
2439 FHDR_TO_V4L2_FHDR(prob_last);
2440 FHDR_TO_V4L2_FHDR(prob_gf);
2441 FHDR_TO_V4L2_FHDR(bool_dec_range);
2442 FHDR_TO_V4L2_FHDR(bool_dec_value);
2443 FHDR_TO_V4L2_FHDR(bool_dec_count);
2444 #undef FHDR_TO_V4L2_FHDR
2445
2446 #define SET_V4L2_FRM_HDR_FLAG_IF(cond, flag) \
2447 v4l2_frame_hdr.flags |= ((frame_hdr->cond) ? (flag) : 0)
2448 SET_V4L2_FRM_HDR_FLAG_IF(is_experimental,
2449 V4L2_VP8_FRAME_HDR_FLAG_EXPERIMENTAL);
2450 SET_V4L2_FRM_HDR_FLAG_IF(show_frame, V4L2_VP8_FRAME_HDR_FLAG_SHOW_FRAME);
2451 SET_V4L2_FRM_HDR_FLAG_IF(mb_no_skip_coeff,
2452 V4L2_VP8_FRAME_HDR_FLAG_MB_NO_SKIP_COEFF);
2453 #undef SET_V4L2_FRM_HDR_FLAG_IF
2454
2455 FillV4L2SegmentationHeader(frame_hdr->segmentation_hdr,
2456 &v4l2_frame_hdr.sgmnt_hdr);
2457
2458 FillV4L2LoopfilterHeader(frame_hdr->loopfilter_hdr, &v4l2_frame_hdr.lf_hdr);
2459
2460 FillV4L2QuantizationHeader(frame_hdr->quantization_hdr,
2461 &v4l2_frame_hdr.quant_hdr);
2462
2463 FillV4L2Vp8EntropyHeader(frame_hdr->entropy_hdr, &v4l2_frame_hdr.entropy_hdr);
2464
2465 v4l2_frame_hdr.first_part_size =
2466 base::checked_cast<__u32>(frame_hdr->first_part_size);
2467 v4l2_frame_hdr.first_part_offset =
2468 base::checked_cast<__u32>(frame_hdr->first_part_offset);
2469 v4l2_frame_hdr.macroblock_bit_offset =
2470 base::checked_cast<__u32>(frame_hdr->macroblock_bit_offset);
2471 v4l2_frame_hdr.num_dct_parts = frame_hdr->num_of_dct_partitions;
2472
2473 static_assert(arraysize(v4l2_frame_hdr.dct_part_sizes) ==
2474 arraysize(frame_hdr->dct_partition_sizes),
2475 "DCT partition size arrays must have equal number of elements");
2476 for (size_t i = 0; i < frame_hdr->num_of_dct_partitions &&
2477 i < arraysize(v4l2_frame_hdr.dct_part_sizes);
2478 ++i)
2479 v4l2_frame_hdr.dct_part_sizes[i] = frame_hdr->dct_partition_sizes[i];
2480
2481 scoped_refptr<V4L2DecodeSurface> dec_surface =
2482 VP8PictureToV4L2DecodeSurface(pic);
2483 std::vector<scoped_refptr<V4L2DecodeSurface>> ref_surfaces;
2484
2485 if (last_frame) {
2486 scoped_refptr<V4L2DecodeSurface> last_frame_surface =
2487 VP8PictureToV4L2DecodeSurface(last_frame);
2488 v4l2_frame_hdr.last_frame = last_frame_surface->output_record();
2489 ref_surfaces.push_back(last_frame_surface);
2490 } else {
2491 v4l2_frame_hdr.last_frame = VIDEO_MAX_FRAME;
2492 }
2493
2494 if (golden_frame) {
2495 scoped_refptr<V4L2DecodeSurface> golden_frame_surface =
2496 VP8PictureToV4L2DecodeSurface(golden_frame);
2497 v4l2_frame_hdr.golden_frame = golden_frame_surface->output_record();
2498 ref_surfaces.push_back(golden_frame_surface);
2499 } else {
2500 v4l2_frame_hdr.golden_frame = VIDEO_MAX_FRAME;
2501 }
2502
2503 if (alt_frame) {
2504 scoped_refptr<V4L2DecodeSurface> alt_frame_surface =
2505 VP8PictureToV4L2DecodeSurface(alt_frame);
2506 v4l2_frame_hdr.alt_frame = alt_frame_surface->output_record();
2507 ref_surfaces.push_back(alt_frame_surface);
2508 } else {
2509 v4l2_frame_hdr.alt_frame = VIDEO_MAX_FRAME;
2510 }
2511
2512 struct v4l2_ext_control ctrl;
2513 memset(&ctrl, 0, sizeof(ctrl));
2514 ctrl.id = V4L2_CID_MPEG_VIDEO_VP8_FRAME_HDR;
2515 ctrl.size = sizeof(v4l2_frame_hdr);
2516 ctrl.p_vp8_frame_hdr = &v4l2_frame_hdr;
2517
2518 struct v4l2_ext_controls ext_ctrls;
2519 memset(&ext_ctrls, 0, sizeof(ext_ctrls));
2520 ext_ctrls.count = 1;
2521 ext_ctrls.controls = &ctrl;
2522 ext_ctrls.config_store = dec_surface->config_store();
2523
2524 if (!v4l2_dec_->SubmitExtControls(&ext_ctrls))
2525 return false;
2526
2527 dec_surface->SetReferenceSurfaces(ref_surfaces);
2528
2529 if (!v4l2_dec_->SubmitSlice(dec_surface->input_record(), frame_hdr->data,
2530 frame_hdr->frame_size))
2531 return false;
2532
2533 v4l2_dec_->DecodeSurface(dec_surface);
2534 return true;
2535 }
2536
OutputPicture(const scoped_refptr<VP8Picture> & pic)2537 bool V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::OutputPicture(
2538 const scoped_refptr<VP8Picture>& pic) {
2539 scoped_refptr<V4L2DecodeSurface> dec_surface =
2540 VP8PictureToV4L2DecodeSurface(pic);
2541
2542 v4l2_dec_->SurfaceReady(dec_surface);
2543 return true;
2544 }
2545
2546 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
2547 V4L2SliceVideoDecodeAccelerator::V4L2VP8Accelerator::
VP8PictureToV4L2DecodeSurface(const scoped_refptr<VP8Picture> & pic)2548 VP8PictureToV4L2DecodeSurface(const scoped_refptr<VP8Picture>& pic) {
2549 V4L2VP8Picture* v4l2_pic = pic->AsV4L2VP8Picture();
2550 CHECK(v4l2_pic);
2551 return v4l2_pic->dec_surface();
2552 }
2553
V4L2VP9Accelerator(V4L2SliceVideoDecodeAccelerator * v4l2_dec)2554 V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::V4L2VP9Accelerator(
2555 V4L2SliceVideoDecodeAccelerator* v4l2_dec)
2556 : v4l2_dec_(v4l2_dec) {
2557 DCHECK(v4l2_dec_);
2558
2559 device_needs_frame_context_ =
2560 v4l2_dec_->IsCtrlExposed(V4L2_CID_MPEG_VIDEO_VP9_ENTROPY);
2561 DVLOG_IF(1, device_needs_frame_context_)
2562 << "Device requires frame context parsing";
2563 }
2564
~V4L2VP9Accelerator()2565 V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::~V4L2VP9Accelerator() {}
2566
2567 scoped_refptr<VP9Picture>
CreateVP9Picture()2568 V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::CreateVP9Picture() {
2569 scoped_refptr<V4L2DecodeSurface> dec_surface = v4l2_dec_->CreateSurface();
2570 if (!dec_surface)
2571 return nullptr;
2572
2573 return new V4L2VP9Picture(dec_surface);
2574 }
2575
FillV4L2VP9LoopFilterParams(const Vp9LoopFilterParams & vp9_lf_params,struct v4l2_vp9_loop_filter_params * v4l2_lf_params)2576 static void FillV4L2VP9LoopFilterParams(
2577 const Vp9LoopFilterParams& vp9_lf_params,
2578 struct v4l2_vp9_loop_filter_params* v4l2_lf_params) {
2579 #define SET_LF_PARAMS_FLAG_IF(cond, flag) \
2580 v4l2_lf_params->flags |= ((vp9_lf_params.cond) ? (flag) : 0)
2581 SET_LF_PARAMS_FLAG_IF(delta_enabled, V4L2_VP9_LOOP_FLTR_FLAG_DELTA_ENABLED);
2582 SET_LF_PARAMS_FLAG_IF(delta_update, V4L2_VP9_LOOP_FLTR_FLAG_DELTA_UPDATE);
2583 #undef SET_LF_PARAMS_FLAG_IF
2584
2585 v4l2_lf_params->level = vp9_lf_params.level;
2586 v4l2_lf_params->sharpness = vp9_lf_params.sharpness;
2587
2588 ARRAY_MEMCPY_CHECKED(v4l2_lf_params->deltas, vp9_lf_params.ref_deltas);
2589 ARRAY_MEMCPY_CHECKED(v4l2_lf_params->mode_deltas, vp9_lf_params.mode_deltas);
2590 ARRAY_MEMCPY_CHECKED(v4l2_lf_params->lvl_lookup, vp9_lf_params.lvl);
2591 }
2592
FillV4L2VP9QuantizationParams(const Vp9QuantizationParams & vp9_quant_params,struct v4l2_vp9_quantization_params * v4l2_q_params)2593 static void FillV4L2VP9QuantizationParams(
2594 const Vp9QuantizationParams& vp9_quant_params,
2595 struct v4l2_vp9_quantization_params* v4l2_q_params) {
2596 #define SET_Q_PARAMS_FLAG_IF(cond, flag) \
2597 v4l2_q_params->flags |= ((vp9_quant_params.cond) ? (flag) : 0)
2598 SET_Q_PARAMS_FLAG_IF(IsLossless(), V4L2_VP9_QUANT_PARAMS_FLAG_LOSSLESS);
2599 #undef SET_Q_PARAMS_FLAG_IF
2600
2601 #define Q_PARAMS_TO_V4L2_Q_PARAMS(a) v4l2_q_params->a = vp9_quant_params.a
2602 Q_PARAMS_TO_V4L2_Q_PARAMS(base_q_idx);
2603 Q_PARAMS_TO_V4L2_Q_PARAMS(delta_q_y_dc);
2604 Q_PARAMS_TO_V4L2_Q_PARAMS(delta_q_uv_dc);
2605 Q_PARAMS_TO_V4L2_Q_PARAMS(delta_q_uv_ac);
2606 #undef Q_PARAMS_TO_V4L2_Q_PARAMS
2607 }
2608
FillV4L2VP9SegmentationParams(const Vp9SegmentationParams & vp9_segm_params,struct v4l2_vp9_segmentation_params * v4l2_segm_params)2609 static void FillV4L2VP9SegmentationParams(
2610 const Vp9SegmentationParams& vp9_segm_params,
2611 struct v4l2_vp9_segmentation_params* v4l2_segm_params) {
2612 #define SET_SEG_PARAMS_FLAG_IF(cond, flag) \
2613 v4l2_segm_params->flags |= ((vp9_segm_params.cond) ? (flag) : 0)
2614 SET_SEG_PARAMS_FLAG_IF(enabled, V4L2_VP9_SGMNT_PARAM_FLAG_ENABLED);
2615 SET_SEG_PARAMS_FLAG_IF(update_map, V4L2_VP9_SGMNT_PARAM_FLAG_UPDATE_MAP);
2616 SET_SEG_PARAMS_FLAG_IF(temporal_update,
2617 V4L2_VP9_SGMNT_PARAM_FLAG_TEMPORAL_UPDATE);
2618 SET_SEG_PARAMS_FLAG_IF(update_data, V4L2_VP9_SGMNT_PARAM_FLAG_UPDATE_DATA);
2619 SET_SEG_PARAMS_FLAG_IF(abs_or_delta_update,
2620 V4L2_VP9_SGMNT_PARAM_FLAG_ABS_OR_DELTA_UPDATE);
2621 #undef SET_SEG_PARAMS_FLAG_IF
2622
2623 ARRAY_MEMCPY_CHECKED(v4l2_segm_params->tree_probs,
2624 vp9_segm_params.tree_probs);
2625 ARRAY_MEMCPY_CHECKED(v4l2_segm_params->pred_probs,
2626 vp9_segm_params.pred_probs);
2627 ARRAY_MEMCPY_CHECKED(v4l2_segm_params->feature_data,
2628 vp9_segm_params.feature_data);
2629
2630 static_assert(arraysize(v4l2_segm_params->feature_enabled) ==
2631 arraysize(vp9_segm_params.feature_enabled) &&
2632 arraysize(v4l2_segm_params->feature_enabled[0]) ==
2633 arraysize(vp9_segm_params.feature_enabled[0]),
2634 "feature_enabled arrays must be of same size");
2635 for (size_t i = 0; i < arraysize(v4l2_segm_params->feature_enabled); ++i) {
2636 for (size_t j = 0; j < arraysize(v4l2_segm_params->feature_enabled[i]);
2637 ++j) {
2638 v4l2_segm_params->feature_enabled[i][j] =
2639 vp9_segm_params.feature_enabled[i][j];
2640 }
2641 }
2642 }
2643
FillV4L2Vp9EntropyContext(const Vp9FrameContext & vp9_frame_ctx,struct v4l2_vp9_entropy_ctx * v4l2_entropy_ctx)2644 static void FillV4L2Vp9EntropyContext(
2645 const Vp9FrameContext& vp9_frame_ctx,
2646 struct v4l2_vp9_entropy_ctx* v4l2_entropy_ctx) {
2647 #define ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(a) \
2648 ARRAY_MEMCPY_CHECKED(v4l2_entropy_ctx->a, vp9_frame_ctx.a)
2649 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(tx_probs_8x8);
2650 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(tx_probs_16x16);
2651 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(tx_probs_32x32);
2652
2653 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(coef_probs);
2654 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(skip_prob);
2655 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(inter_mode_probs);
2656 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(interp_filter_probs);
2657 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(is_inter_prob);
2658
2659 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(comp_mode_prob);
2660 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(single_ref_prob);
2661 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(comp_ref_prob);
2662
2663 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(y_mode_probs);
2664 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(uv_mode_probs);
2665
2666 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(partition_probs);
2667
2668 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_joint_probs);
2669 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_sign_prob);
2670 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_class_probs);
2671 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_class0_bit_prob);
2672 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_bits_prob);
2673 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_class0_fr_probs);
2674 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_fr_probs);
2675 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_class0_hp_prob);
2676 ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR(mv_hp_prob);
2677 #undef ARRAY_MEMCPY_CHECKED_FRM_CTX_TO_V4L2_ENTR
2678 }
2679
SubmitDecode(const scoped_refptr<VP9Picture> & pic,const Vp9SegmentationParams & segm_params,const Vp9LoopFilterParams & lf_params,const std::vector<scoped_refptr<VP9Picture>> & ref_pictures,const base::Closure & done_cb)2680 bool V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::SubmitDecode(
2681 const scoped_refptr<VP9Picture>& pic,
2682 const Vp9SegmentationParams& segm_params,
2683 const Vp9LoopFilterParams& lf_params,
2684 const std::vector<scoped_refptr<VP9Picture>>& ref_pictures,
2685 const base::Closure& done_cb) {
2686 const Vp9FrameHeader* frame_hdr = pic->frame_hdr.get();
2687 DCHECK(frame_hdr);
2688
2689 struct v4l2_ctrl_vp9_frame_hdr v4l2_frame_hdr;
2690 memset(&v4l2_frame_hdr, 0, sizeof(v4l2_frame_hdr));
2691
2692 #define FHDR_TO_V4L2_FHDR(a) v4l2_frame_hdr.a = frame_hdr->a
2693 FHDR_TO_V4L2_FHDR(profile);
2694 FHDR_TO_V4L2_FHDR(frame_type);
2695
2696 FHDR_TO_V4L2_FHDR(bit_depth);
2697 FHDR_TO_V4L2_FHDR(color_range);
2698 FHDR_TO_V4L2_FHDR(subsampling_x);
2699 FHDR_TO_V4L2_FHDR(subsampling_y);
2700
2701 FHDR_TO_V4L2_FHDR(frame_width);
2702 FHDR_TO_V4L2_FHDR(frame_height);
2703 FHDR_TO_V4L2_FHDR(render_width);
2704 FHDR_TO_V4L2_FHDR(render_height);
2705
2706 FHDR_TO_V4L2_FHDR(reset_frame_context);
2707
2708 FHDR_TO_V4L2_FHDR(interpolation_filter);
2709 FHDR_TO_V4L2_FHDR(frame_context_idx);
2710
2711 FHDR_TO_V4L2_FHDR(tile_cols_log2);
2712 FHDR_TO_V4L2_FHDR(tile_rows_log2);
2713
2714 FHDR_TO_V4L2_FHDR(header_size_in_bytes);
2715 #undef FHDR_TO_V4L2_FHDR
2716 v4l2_frame_hdr.color_space = static_cast<uint8_t>(frame_hdr->color_space);
2717
2718 FillV4L2VP9QuantizationParams(frame_hdr->quant_params,
2719 &v4l2_frame_hdr.quant_params);
2720
2721 #define SET_V4L2_FRM_HDR_FLAG_IF(cond, flag) \
2722 v4l2_frame_hdr.flags |= ((frame_hdr->cond) ? (flag) : 0)
2723 SET_V4L2_FRM_HDR_FLAG_IF(show_frame, V4L2_VP9_FRAME_HDR_FLAG_SHOW_FRAME);
2724 SET_V4L2_FRM_HDR_FLAG_IF(error_resilient_mode,
2725 V4L2_VP9_FRAME_HDR_FLAG_ERR_RES);
2726 SET_V4L2_FRM_HDR_FLAG_IF(intra_only, V4L2_VP9_FRAME_HDR_FLAG_FRAME_INTRA);
2727 SET_V4L2_FRM_HDR_FLAG_IF(allow_high_precision_mv,
2728 V4L2_VP9_FRAME_HDR_ALLOW_HIGH_PREC_MV);
2729 SET_V4L2_FRM_HDR_FLAG_IF(refresh_frame_context,
2730 V4L2_VP9_FRAME_HDR_REFRESH_FRAME_CTX);
2731 SET_V4L2_FRM_HDR_FLAG_IF(frame_parallel_decoding_mode,
2732 V4L2_VP9_FRAME_HDR_PARALLEL_DEC_MODE);
2733 #undef SET_V4L2_FRM_HDR_FLAG_IF
2734
2735 FillV4L2VP9LoopFilterParams(lf_params, &v4l2_frame_hdr.lf_params);
2736 FillV4L2VP9SegmentationParams(segm_params, &v4l2_frame_hdr.sgmnt_params);
2737
2738 std::vector<struct v4l2_ext_control> ctrls;
2739
2740 struct v4l2_ext_control ctrl;
2741 memset(&ctrl, 0, sizeof(ctrl));
2742 ctrl.id = V4L2_CID_MPEG_VIDEO_VP9_FRAME_HDR;
2743 ctrl.size = sizeof(v4l2_frame_hdr);
2744 ctrl.p_vp9_frame_hdr = &v4l2_frame_hdr;
2745 ctrls.push_back(ctrl);
2746
2747 struct v4l2_ctrl_vp9_decode_param v4l2_decode_param;
2748 memset(&v4l2_decode_param, 0, sizeof(v4l2_decode_param));
2749 DCHECK_EQ(ref_pictures.size(), arraysize(v4l2_decode_param.ref_frames));
2750
2751 std::vector<scoped_refptr<V4L2DecodeSurface>> ref_surfaces;
2752 for (size_t i = 0; i < ref_pictures.size(); ++i) {
2753 if (ref_pictures[i]) {
2754 scoped_refptr<V4L2DecodeSurface> ref_surface =
2755 VP9PictureToV4L2DecodeSurface(ref_pictures[i]);
2756
2757 v4l2_decode_param.ref_frames[i] = ref_surface->output_record();
2758 ref_surfaces.push_back(ref_surface);
2759 } else {
2760 v4l2_decode_param.ref_frames[i] = VIDEO_MAX_FRAME;
2761 }
2762 }
2763
2764 static_assert(arraysize(v4l2_decode_param.active_ref_frames) ==
2765 arraysize(frame_hdr->ref_frame_idx),
2766 "active reference frame array sizes mismatch");
2767
2768 for (size_t i = 0; i < arraysize(frame_hdr->ref_frame_idx); ++i) {
2769 uint8_t idx = frame_hdr->ref_frame_idx[i];
2770 if (idx >= ref_pictures.size())
2771 return false;
2772
2773 struct v4l2_vp9_reference_frame* v4l2_ref_frame =
2774 &v4l2_decode_param.active_ref_frames[i];
2775
2776 scoped_refptr<VP9Picture> ref_pic = ref_pictures[idx];
2777 if (ref_pic) {
2778 scoped_refptr<V4L2DecodeSurface> ref_surface =
2779 VP9PictureToV4L2DecodeSurface(ref_pic);
2780 v4l2_ref_frame->buf_index = ref_surface->output_record();
2781 #define REF_TO_V4L2_REF(a) v4l2_ref_frame->a = ref_pic->frame_hdr->a
2782 REF_TO_V4L2_REF(frame_width);
2783 REF_TO_V4L2_REF(frame_height);
2784 REF_TO_V4L2_REF(bit_depth);
2785 REF_TO_V4L2_REF(subsampling_x);
2786 REF_TO_V4L2_REF(subsampling_y);
2787 #undef REF_TO_V4L2_REF
2788 } else {
2789 v4l2_ref_frame->buf_index = VIDEO_MAX_FRAME;
2790 }
2791 }
2792
2793 memset(&ctrl, 0, sizeof(ctrl));
2794 ctrl.id = V4L2_CID_MPEG_VIDEO_VP9_DECODE_PARAM;
2795 ctrl.size = sizeof(v4l2_decode_param);
2796 ctrl.p_vp9_decode_param = &v4l2_decode_param;
2797 ctrls.push_back(ctrl);
2798
2799 // Defined outside of the if() clause below as it must remain valid until
2800 // the call to SubmitExtControls().
2801 struct v4l2_ctrl_vp9_entropy v4l2_entropy;
2802 if (device_needs_frame_context_) {
2803 memset(&v4l2_entropy, 0, sizeof(v4l2_entropy));
2804 FillV4L2Vp9EntropyContext(frame_hdr->initial_frame_context,
2805 &v4l2_entropy.initial_entropy_ctx);
2806 FillV4L2Vp9EntropyContext(frame_hdr->frame_context,
2807 &v4l2_entropy.current_entropy_ctx);
2808 v4l2_entropy.tx_mode = frame_hdr->compressed_header.tx_mode;
2809 v4l2_entropy.reference_mode = frame_hdr->compressed_header.reference_mode;
2810
2811 memset(&ctrl, 0, sizeof(ctrl));
2812 ctrl.id = V4L2_CID_MPEG_VIDEO_VP9_ENTROPY;
2813 ctrl.size = sizeof(v4l2_entropy);
2814 ctrl.p_vp9_entropy = &v4l2_entropy;
2815 ctrls.push_back(ctrl);
2816 }
2817
2818 scoped_refptr<V4L2DecodeSurface> dec_surface =
2819 VP9PictureToV4L2DecodeSurface(pic);
2820
2821 struct v4l2_ext_controls ext_ctrls;
2822 memset(&ext_ctrls, 0, sizeof(ext_ctrls));
2823 ext_ctrls.count = ctrls.size();
2824 ext_ctrls.controls = &ctrls[0];
2825 ext_ctrls.config_store = dec_surface->config_store();
2826 if (!v4l2_dec_->SubmitExtControls(&ext_ctrls))
2827 return false;
2828
2829 dec_surface->SetReferenceSurfaces(ref_surfaces);
2830 dec_surface->SetDecodeDoneCallback(done_cb);
2831
2832 if (!v4l2_dec_->SubmitSlice(dec_surface->input_record(), frame_hdr->data,
2833 frame_hdr->frame_size))
2834 return false;
2835
2836 v4l2_dec_->DecodeSurface(dec_surface);
2837 return true;
2838 }
2839
OutputPicture(const scoped_refptr<VP9Picture> & pic)2840 bool V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::OutputPicture(
2841 const scoped_refptr<VP9Picture>& pic) {
2842 scoped_refptr<V4L2DecodeSurface> dec_surface =
2843 VP9PictureToV4L2DecodeSurface(pic);
2844
2845 v4l2_dec_->SurfaceReady(dec_surface);
2846 return true;
2847 }
2848
FillVp9FrameContext(struct v4l2_vp9_entropy_ctx & v4l2_entropy_ctx,Vp9FrameContext * vp9_frame_ctx)2849 static void FillVp9FrameContext(struct v4l2_vp9_entropy_ctx& v4l2_entropy_ctx,
2850 Vp9FrameContext* vp9_frame_ctx) {
2851 #define ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(a) \
2852 ARRAY_MEMCPY_CHECKED(vp9_frame_ctx->a, v4l2_entropy_ctx.a)
2853 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(tx_probs_8x8);
2854 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(tx_probs_16x16);
2855 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(tx_probs_32x32);
2856
2857 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(coef_probs);
2858 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(skip_prob);
2859 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(inter_mode_probs);
2860 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(interp_filter_probs);
2861 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(is_inter_prob);
2862
2863 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(comp_mode_prob);
2864 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(single_ref_prob);
2865 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(comp_ref_prob);
2866
2867 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(y_mode_probs);
2868 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(uv_mode_probs);
2869
2870 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(partition_probs);
2871
2872 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_joint_probs);
2873 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_sign_prob);
2874 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_class_probs);
2875 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_class0_bit_prob);
2876 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_bits_prob);
2877 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_class0_fr_probs);
2878 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_fr_probs);
2879 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_class0_hp_prob);
2880 ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX(mv_hp_prob);
2881 #undef ARRAY_MEMCPY_CHECKED_V4L2_ENTR_TO_FRM_CTX
2882 }
2883
GetFrameContext(const scoped_refptr<VP9Picture> & pic,Vp9FrameContext * frame_ctx)2884 bool V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::GetFrameContext(
2885 const scoped_refptr<VP9Picture>& pic,
2886 Vp9FrameContext* frame_ctx) {
2887 struct v4l2_ctrl_vp9_entropy v4l2_entropy;
2888 memset(&v4l2_entropy, 0, sizeof(v4l2_entropy));
2889
2890 struct v4l2_ext_control ctrl;
2891 memset(&ctrl, 0, sizeof(ctrl));
2892 ctrl.id = V4L2_CID_MPEG_VIDEO_VP9_ENTROPY;
2893 ctrl.size = sizeof(v4l2_entropy);
2894 ctrl.p_vp9_entropy = &v4l2_entropy;
2895
2896 scoped_refptr<V4L2DecodeSurface> dec_surface =
2897 VP9PictureToV4L2DecodeSurface(pic);
2898
2899 struct v4l2_ext_controls ext_ctrls;
2900 memset(&ext_ctrls, 0, sizeof(ext_ctrls));
2901 ext_ctrls.count = 1;
2902 ext_ctrls.controls = &ctrl;
2903 ext_ctrls.config_store = dec_surface->config_store();
2904
2905 if (!v4l2_dec_->GetExtControls(&ext_ctrls))
2906 return false;
2907
2908 FillVp9FrameContext(v4l2_entropy.current_entropy_ctx, frame_ctx);
2909 return true;
2910 }
2911
2912 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
2913 V4L2SliceVideoDecodeAccelerator::V4L2VP9Accelerator::
VP9PictureToV4L2DecodeSurface(const scoped_refptr<VP9Picture> & pic)2914 VP9PictureToV4L2DecodeSurface(const scoped_refptr<VP9Picture>& pic) {
2915 V4L2VP9Picture* v4l2_pic = pic->AsV4L2VP9Picture();
2916 CHECK(v4l2_pic);
2917 return v4l2_pic->dec_surface();
2918 }
2919
DecodeSurface(const scoped_refptr<V4L2DecodeSurface> & dec_surface)2920 void V4L2SliceVideoDecodeAccelerator::DecodeSurface(
2921 const scoped_refptr<V4L2DecodeSurface>& dec_surface) {
2922 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2923
2924 DVLOGF(3) << "Submitting decode for surface: " << dec_surface->ToString();
2925 Enqueue(dec_surface);
2926 }
2927
SurfaceReady(const scoped_refptr<V4L2DecodeSurface> & dec_surface)2928 void V4L2SliceVideoDecodeAccelerator::SurfaceReady(
2929 const scoped_refptr<V4L2DecodeSurface>& dec_surface) {
2930 DVLOGF(3);
2931 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2932
2933 decoder_display_queue_.push(dec_surface);
2934 TryOutputSurfaces();
2935 }
2936
TryOutputSurfaces()2937 void V4L2SliceVideoDecodeAccelerator::TryOutputSurfaces() {
2938 while (!decoder_display_queue_.empty()) {
2939 scoped_refptr<V4L2DecodeSurface> dec_surface =
2940 decoder_display_queue_.front();
2941
2942 if (!dec_surface->decoded())
2943 break;
2944
2945 decoder_display_queue_.pop();
2946 OutputSurface(dec_surface);
2947 }
2948 }
2949
OutputSurface(const scoped_refptr<V4L2DecodeSurface> & dec_surface)2950 void V4L2SliceVideoDecodeAccelerator::OutputSurface(
2951 const scoped_refptr<V4L2DecodeSurface>& dec_surface) {
2952 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2953
2954 OutputRecord& output_record =
2955 output_buffer_map_[dec_surface->output_record()];
2956
2957 bool inserted =
2958 surfaces_at_display_
2959 .insert(std::make_pair(output_record.picture_id, dec_surface))
2960 .second;
2961 DCHECK(inserted);
2962
2963 DCHECK(!output_record.at_client);
2964 DCHECK(!output_record.at_device);
2965 DCHECK_NE(output_record.picture_id, -1);
2966 output_record.at_client = true;
2967
2968 // TODO(posciak): Use visible size from decoder here instead
2969 // (crbug.com/402760). Passing (0, 0) results in the client using the
2970 // visible size extracted from the container instead.
2971 Picture picture(output_record.picture_id, dec_surface->bitstream_id(),
2972 Rect(0, 0), false);
2973 DVLOGF(3) << dec_surface->ToString()
2974 << ", bitstream_id: " << picture.bitstream_buffer_id()
2975 << ", picture_id: " << picture.picture_buffer_id();
2976 pending_picture_ready_.push(PictureRecord(output_record.cleared, picture));
2977 SendPictureReady();
2978 output_record.cleared = true;
2979 }
2980
2981 scoped_refptr<V4L2SliceVideoDecodeAccelerator::V4L2DecodeSurface>
CreateSurface()2982 V4L2SliceVideoDecodeAccelerator::CreateSurface() {
2983 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
2984 DCHECK_EQ(state_, kDecoding);
2985
2986 if (free_input_buffers_.empty() || free_output_buffers_.empty())
2987 return nullptr;
2988
2989 int input = free_input_buffers_.front();
2990 free_input_buffers_.pop_front();
2991 int output = free_output_buffers_.front();
2992 free_output_buffers_.pop_front();
2993
2994 InputRecord& input_record = input_buffer_map_[input];
2995 DCHECK_EQ(input_record.bytes_used, 0u);
2996 DCHECK_EQ(input_record.input_id, -1);
2997 DCHECK(decoder_current_bitstream_buffer_ != nullptr);
2998 input_record.input_id = decoder_current_bitstream_buffer_->input_id;
2999
3000 scoped_refptr<V4L2DecodeSurface> dec_surface = new V4L2DecodeSurface(
3001 decoder_current_bitstream_buffer_->input_id, input, output,
3002 base::Bind(&V4L2SliceVideoDecodeAccelerator::ReuseOutputBuffer,
3003 base::Unretained(this)));
3004
3005 DVLOGF(4) << "Created surface " << input << " -> " << output;
3006 return dec_surface;
3007 }
3008
SendPictureReady()3009 void V4L2SliceVideoDecodeAccelerator::SendPictureReady() {
3010 DVLOGF(3);
3011 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
3012 bool resetting_or_flushing = (decoder_resetting_ || decoder_flushing_);
3013 while (!pending_picture_ready_.empty()) {
3014 bool cleared = pending_picture_ready_.front().cleared;
3015 const Picture& picture = pending_picture_ready_.front().picture;
3016 if (cleared && picture_clearing_count_ == 0) {
3017 DVLOGF(4) << "Posting picture ready to decode task runner for: "
3018 << picture.picture_buffer_id();
3019 // This picture is cleared. It can be posted to a thread different than
3020 // the main GPU thread to reduce latency. This should be the case after
3021 // all pictures are cleared at the beginning.
3022 decode_task_runner_->PostTask(
3023 FROM_HERE,
3024 base::Bind(&Client::PictureReady, decode_client_, picture));
3025 pending_picture_ready_.pop();
3026 } else if (!cleared || resetting_or_flushing) {
3027 DVLOGF(3) << "cleared=" << pending_picture_ready_.front().cleared
3028 << ", decoder_resetting_=" << decoder_resetting_
3029 << ", decoder_flushing_=" << decoder_flushing_
3030 << ", picture_clearing_count_=" << picture_clearing_count_;
3031 DVLOGF(4) << "Posting picture ready to GPU for: "
3032 << picture.picture_buffer_id();
3033 // If the picture is not cleared, post it to the child thread because it
3034 // has to be cleared in the child thread. A picture only needs to be
3035 // cleared once. If the decoder is resetting or flushing, send all
3036 // pictures to ensure PictureReady arrive before reset or flush done.
3037 child_task_runner_->PostTaskAndReply(
3038 FROM_HERE, base::Bind(&Client::PictureReady, client_, picture),
3039 // Unretained is safe. If Client::PictureReady gets to run, |this| is
3040 // alive. Destroy() will wait the decode thread to finish.
3041 base::Bind(&V4L2SliceVideoDecodeAccelerator::PictureCleared,
3042 base::Unretained(this)));
3043 picture_clearing_count_++;
3044 pending_picture_ready_.pop();
3045 } else {
3046 // This picture is cleared. But some pictures are about to be cleared on
3047 // the child thread. To preserve the order, do not send this until those
3048 // pictures are cleared.
3049 break;
3050 }
3051 }
3052 }
3053
PictureCleared()3054 void V4L2SliceVideoDecodeAccelerator::PictureCleared() {
3055 DVLOGF(3) << "clearing count=" << picture_clearing_count_;
3056 DCHECK(decoder_thread_task_runner_->BelongsToCurrentThread());
3057 DCHECK_GT(picture_clearing_count_, 0);
3058 picture_clearing_count_--;
3059 SendPictureReady();
3060 }
3061
TryToSetupDecodeOnSeparateThread(const base::WeakPtr<Client> & decode_client,const scoped_refptr<base::SingleThreadTaskRunner> & decode_task_runner)3062 bool V4L2SliceVideoDecodeAccelerator::TryToSetupDecodeOnSeparateThread(
3063 const base::WeakPtr<Client>& decode_client,
3064 const scoped_refptr<base::SingleThreadTaskRunner>& decode_task_runner) {
3065 decode_client_ = decode_client;
3066 decode_task_runner_ = decode_task_runner;
3067 return true;
3068 }
3069
3070 // static
3071 VideoDecodeAccelerator::SupportedProfiles
GetSupportedProfiles()3072 V4L2SliceVideoDecodeAccelerator::GetSupportedProfiles() {
3073 scoped_refptr<V4L2Device> device(new V4L2Device());
3074 if (!device)
3075 return SupportedProfiles();
3076
3077 return device->GetSupportedDecodeProfiles(arraysize(supported_input_fourccs_),
3078 supported_input_fourccs_);
3079 }
3080
3081 } // namespace media
3082