1 /* 2 * Copyright (C) 2008 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_GC_HEAP_H_ 18 #define ART_RUNTIME_GC_HEAP_H_ 19 20 #include <iosfwd> 21 #include <string> 22 #include <unordered_set> 23 #include <vector> 24 25 #include "allocator_type.h" 26 #include "arch/instruction_set.h" 27 #include "atomic.h" 28 #include "base/mutex.h" 29 #include "base/time_utils.h" 30 #include "gc/gc_cause.h" 31 #include "gc/collector/gc_type.h" 32 #include "gc/collector/iteration.h" 33 #include "gc/collector_type.h" 34 #include "gc/space/large_object_space.h" 35 #include "globals.h" 36 #include "handle.h" 37 #include "obj_ptr.h" 38 #include "offsets.h" 39 #include "process_state.h" 40 #include "safe_map.h" 41 #include "verify_object.h" 42 43 namespace art { 44 45 class ConditionVariable; 46 class IsMarkedVisitor; 47 class Mutex; 48 class RootVisitor; 49 class StackVisitor; 50 class Thread; 51 class ThreadPool; 52 class TimingLogger; 53 class VariableSizedHandleScope; 54 55 namespace mirror { 56 class Class; 57 class Object; 58 } // namespace mirror 59 60 namespace gc { 61 62 class AllocationListener; 63 class AllocRecordObjectMap; 64 class GcPauseListener; 65 class ReferenceProcessor; 66 class TaskProcessor; 67 class Verification; 68 69 namespace accounting { 70 template <typename T> class AtomicStack; 71 typedef AtomicStack<mirror::Object> ObjectStack; 72 class CardTable; 73 class HeapBitmap; 74 class ModUnionTable; 75 class ReadBarrierTable; 76 class RememberedSet; 77 } // namespace accounting 78 79 namespace collector { 80 class ConcurrentCopying; 81 class GarbageCollector; 82 class MarkCompact; 83 class MarkSweep; 84 class SemiSpace; 85 } // namespace collector 86 87 namespace allocator { 88 class RosAlloc; 89 } // namespace allocator 90 91 namespace space { 92 class AllocSpace; 93 class BumpPointerSpace; 94 class ContinuousMemMapAllocSpace; 95 class DiscontinuousSpace; 96 class DlMallocSpace; 97 class ImageSpace; 98 class LargeObjectSpace; 99 class MallocSpace; 100 class RegionSpace; 101 class RosAllocSpace; 102 class Space; 103 class ZygoteSpace; 104 } // namespace space 105 106 enum HomogeneousSpaceCompactResult { 107 // Success. 108 kSuccess, 109 // Reject due to disabled moving GC. 110 kErrorReject, 111 // Unsupported due to the current configuration. 112 kErrorUnsupported, 113 // System is shutting down. 114 kErrorVMShuttingDown, 115 }; 116 117 // If true, use rosalloc/RosAllocSpace instead of dlmalloc/DlMallocSpace 118 static constexpr bool kUseRosAlloc = true; 119 120 // If true, use thread-local allocation stack. 121 static constexpr bool kUseThreadLocalAllocationStack = true; 122 123 class Heap { 124 public: 125 // If true, measure the total allocation time. 126 static constexpr size_t kDefaultStartingSize = kPageSize; 127 static constexpr size_t kDefaultInitialSize = 2 * MB; 128 static constexpr size_t kDefaultMaximumSize = 256 * MB; 129 static constexpr size_t kDefaultNonMovingSpaceCapacity = 64 * MB; 130 static constexpr size_t kDefaultMaxFree = 2 * MB; 131 static constexpr size_t kDefaultMinFree = kDefaultMaxFree / 4; 132 static constexpr size_t kDefaultLongPauseLogThreshold = MsToNs(5); 133 static constexpr size_t kDefaultLongGCLogThreshold = MsToNs(100); 134 static constexpr size_t kDefaultTLABSize = 32 * KB; 135 static constexpr double kDefaultTargetUtilization = 0.5; 136 static constexpr double kDefaultHeapGrowthMultiplier = 2.0; 137 // Primitive arrays larger than this size are put in the large object space. 138 static constexpr size_t kMinLargeObjectThreshold = 3 * kPageSize; 139 static constexpr size_t kDefaultLargeObjectThreshold = kMinLargeObjectThreshold; 140 // Whether or not parallel GC is enabled. If not, then we never create the thread pool. 141 static constexpr bool kDefaultEnableParallelGC = false; 142 143 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR 144 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous. 145 static constexpr space::LargeObjectSpaceType kDefaultLargeObjectSpaceType = 146 USE_ART_LOW_4G_ALLOCATOR ? 147 space::LargeObjectSpaceType::kFreeList 148 : space::LargeObjectSpaceType::kMap; 149 150 // Used so that we don't overflow the allocation time atomic integer. 151 static constexpr size_t kTimeAdjust = 1024; 152 153 // How often we allow heap trimming to happen (nanoseconds). 154 static constexpr uint64_t kHeapTrimWait = MsToNs(5000); 155 // How long we wait after a transition request to perform a collector transition (nanoseconds). 156 static constexpr uint64_t kCollectorTransitionWait = MsToNs(5000); 157 158 // Create a heap with the requested sizes. The possible empty 159 // image_file_names names specify Spaces to load based on 160 // ImageWriter output. 161 Heap(size_t initial_size, 162 size_t growth_limit, 163 size_t min_free, 164 size_t max_free, 165 double target_utilization, 166 double foreground_heap_growth_multiplier, 167 size_t capacity, 168 size_t non_moving_space_capacity, 169 const std::string& original_image_file_name, 170 InstructionSet image_instruction_set, 171 CollectorType foreground_collector_type, 172 CollectorType background_collector_type, 173 space::LargeObjectSpaceType large_object_space_type, 174 size_t large_object_threshold, 175 size_t parallel_gc_threads, 176 size_t conc_gc_threads, 177 bool low_memory_mode, 178 size_t long_pause_threshold, 179 size_t long_gc_threshold, 180 bool ignore_max_footprint, 181 bool use_tlab, 182 bool verify_pre_gc_heap, 183 bool verify_pre_sweeping_heap, 184 bool verify_post_gc_heap, 185 bool verify_pre_gc_rosalloc, 186 bool verify_pre_sweeping_rosalloc, 187 bool verify_post_gc_rosalloc, 188 bool gc_stress_mode, 189 bool measure_gc_performance, 190 bool use_homogeneous_space_compaction, 191 uint64_t min_interval_homogeneous_space_compaction_by_oom); 192 193 ~Heap(); 194 195 // Allocates and initializes storage for an object instance. 196 template <bool kInstrumented, typename PreFenceVisitor> AllocObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)197 mirror::Object* AllocObject(Thread* self, 198 ObjPtr<mirror::Class> klass, 199 size_t num_bytes, 200 const PreFenceVisitor& pre_fence_visitor) 201 REQUIRES_SHARED(Locks::mutator_lock_) 202 REQUIRES(!*gc_complete_lock_, 203 !*pending_task_lock_, 204 !*backtrace_lock_, 205 !Roles::uninterruptible_) { 206 return AllocObjectWithAllocator<kInstrumented, true>(self, 207 klass, 208 num_bytes, 209 GetCurrentAllocator(), 210 pre_fence_visitor); 211 } 212 213 template <bool kInstrumented, typename PreFenceVisitor> AllocNonMovableObject(Thread * self,ObjPtr<mirror::Class> klass,size_t num_bytes,const PreFenceVisitor & pre_fence_visitor)214 mirror::Object* AllocNonMovableObject(Thread* self, 215 ObjPtr<mirror::Class> klass, 216 size_t num_bytes, 217 const PreFenceVisitor& pre_fence_visitor) 218 REQUIRES_SHARED(Locks::mutator_lock_) 219 REQUIRES(!*gc_complete_lock_, 220 !*pending_task_lock_, 221 !*backtrace_lock_, 222 !Roles::uninterruptible_) { 223 return AllocObjectWithAllocator<kInstrumented, true>(self, 224 klass, 225 num_bytes, 226 GetCurrentNonMovingAllocator(), 227 pre_fence_visitor); 228 } 229 230 template <bool kInstrumented, bool kCheckLargeObject, typename PreFenceVisitor> 231 ALWAYS_INLINE mirror::Object* AllocObjectWithAllocator(Thread* self, 232 ObjPtr<mirror::Class> klass, 233 size_t byte_count, 234 AllocatorType allocator, 235 const PreFenceVisitor& pre_fence_visitor) 236 REQUIRES_SHARED(Locks::mutator_lock_) 237 REQUIRES(!*gc_complete_lock_, 238 !*pending_task_lock_, 239 !*backtrace_lock_, 240 !Roles::uninterruptible_); 241 GetCurrentAllocator()242 AllocatorType GetCurrentAllocator() const { 243 return current_allocator_; 244 } 245 GetCurrentNonMovingAllocator()246 AllocatorType GetCurrentNonMovingAllocator() const { 247 return current_non_moving_allocator_; 248 } 249 250 // Visit all of the live objects in the heap. 251 template <typename Visitor> 252 ALWAYS_INLINE void VisitObjects(Visitor&& visitor) 253 REQUIRES_SHARED(Locks::mutator_lock_) 254 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 255 template <typename Visitor> 256 ALWAYS_INLINE void VisitObjectsPaused(Visitor&& visitor) 257 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 258 259 void CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) 260 REQUIRES_SHARED(Locks::mutator_lock_); 261 262 void RegisterNativeAllocation(JNIEnv* env, size_t bytes) 263 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*native_blocking_gc_lock_); 264 void RegisterNativeFree(JNIEnv* env, size_t bytes); 265 266 // Change the allocator, updates entrypoints. 267 void ChangeAllocator(AllocatorType allocator) 268 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_); 269 270 // Transition the garbage collector during runtime, may copy objects from one space to another. 271 void TransitionCollector(CollectorType collector_type) REQUIRES(!*gc_complete_lock_); 272 273 // Change the collector to be one of the possible options (MS, CMS, SS). 274 void ChangeCollector(CollectorType collector_type) 275 REQUIRES(Locks::mutator_lock_); 276 277 // The given reference is believed to be to an object in the Java heap, check the soundness of it. 278 // TODO: NO_THREAD_SAFETY_ANALYSIS since we call this everywhere and it is impossible to find a 279 // proper lock ordering for it. 280 void VerifyObjectBody(ObjPtr<mirror::Object> o) NO_THREAD_SAFETY_ANALYSIS; 281 282 // Check sanity of all live references. 283 void VerifyHeap() REQUIRES(!Locks::heap_bitmap_lock_); 284 // Returns how many failures occured. 285 size_t VerifyHeapReferences(bool verify_referents = true) 286 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 287 bool VerifyMissingCardMarks() 288 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 289 290 // A weaker test than IsLiveObject or VerifyObject that doesn't require the heap lock, 291 // and doesn't abort on error, allowing the caller to report more 292 // meaningful diagnostics. 293 bool IsValidObjectAddress(const void* obj) const REQUIRES_SHARED(Locks::mutator_lock_); 294 295 // Faster alternative to IsHeapAddress since finding if an object is in the large object space is 296 // very slow. 297 bool IsNonDiscontinuousSpaceHeapAddress(const void* addr) const 298 REQUIRES_SHARED(Locks::mutator_lock_); 299 300 // Returns true if 'obj' is a live heap object, false otherwise (including for invalid addresses). 301 // Requires the heap lock to be held. 302 bool IsLiveObjectLocked(ObjPtr<mirror::Object> obj, 303 bool search_allocation_stack = true, 304 bool search_live_stack = true, 305 bool sorted = false) 306 REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_); 307 308 // Returns true if there is any chance that the object (obj) will move. 309 bool IsMovableObject(ObjPtr<mirror::Object> obj) const REQUIRES_SHARED(Locks::mutator_lock_); 310 311 // Enables us to compacting GC until objects are released. 312 void IncrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 313 void DecrementDisableMovingGC(Thread* self) REQUIRES(!*gc_complete_lock_); 314 315 // Temporarily disable thread flip for JNI critical calls. 316 void IncrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 317 void DecrementDisableThreadFlip(Thread* self) REQUIRES(!*thread_flip_lock_); 318 void ThreadFlipBegin(Thread* self) REQUIRES(!*thread_flip_lock_); 319 void ThreadFlipEnd(Thread* self) REQUIRES(!*thread_flip_lock_); 320 321 // Clear all of the mark bits, doesn't clear bitmaps which have the same live bits as mark bits. 322 // Mutator lock is required for GetContinuousSpaces. 323 void ClearMarkedObjects() 324 REQUIRES(Locks::heap_bitmap_lock_) 325 REQUIRES_SHARED(Locks::mutator_lock_); 326 327 // Initiates an explicit garbage collection. 328 void CollectGarbage(bool clear_soft_references) 329 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 330 331 // Does a concurrent GC, should only be called by the GC daemon thread 332 // through runtime. 333 void ConcurrentGC(Thread* self, GcCause cause, bool force_full) 334 REQUIRES(!Locks::runtime_shutdown_lock_, !*gc_complete_lock_, !*pending_task_lock_); 335 336 // Implements VMDebug.countInstancesOfClass and JDWP VM_InstanceCount. 337 // The boolean decides whether to use IsAssignableFrom or == when comparing classes. 338 void CountInstances(const std::vector<Handle<mirror::Class>>& classes, 339 bool use_is_assignable_from, 340 uint64_t* counts) 341 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 342 REQUIRES_SHARED(Locks::mutator_lock_); 343 344 // Implements JDWP RT_Instances. 345 void GetInstances(VariableSizedHandleScope& scope, 346 Handle<mirror::Class> c, 347 int32_t max_count, 348 std::vector<Handle<mirror::Object>>& instances) 349 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 350 REQUIRES_SHARED(Locks::mutator_lock_); 351 352 // Implements JDWP OR_ReferringObjects. 353 void GetReferringObjects(VariableSizedHandleScope& scope, 354 Handle<mirror::Object> o, 355 int32_t max_count, 356 std::vector<Handle<mirror::Object>>& referring_objects) 357 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_) 358 REQUIRES_SHARED(Locks::mutator_lock_); 359 360 // Removes the growth limit on the alloc space so it may grow to its maximum capacity. Used to 361 // implement dalvik.system.VMRuntime.clearGrowthLimit. 362 void ClearGrowthLimit(); 363 364 // Make the current growth limit the new maximum capacity, unmaps pages at the end of spaces 365 // which will never be used. Used to implement dalvik.system.VMRuntime.clampGrowthLimit. 366 void ClampGrowthLimit() REQUIRES(!Locks::heap_bitmap_lock_); 367 368 // Target ideal heap utilization ratio, implements 369 // dalvik.system.VMRuntime.getTargetHeapUtilization. GetTargetHeapUtilization()370 double GetTargetHeapUtilization() const { 371 return target_utilization_; 372 } 373 374 // Data structure memory usage tracking. 375 void RegisterGCAllocation(size_t bytes); 376 void RegisterGCDeAllocation(size_t bytes); 377 378 // Set the heap's private space pointers to be the same as the space based on it's type. Public 379 // due to usage by tests. 380 void SetSpaceAsDefault(space::ContinuousSpace* continuous_space) 381 REQUIRES(!Locks::heap_bitmap_lock_); 382 void AddSpace(space::Space* space) 383 REQUIRES(!Locks::heap_bitmap_lock_) 384 REQUIRES(Locks::mutator_lock_); 385 void RemoveSpace(space::Space* space) 386 REQUIRES(!Locks::heap_bitmap_lock_) 387 REQUIRES(Locks::mutator_lock_); 388 389 // Set target ideal heap utilization ratio, implements 390 // dalvik.system.VMRuntime.setTargetHeapUtilization. 391 void SetTargetHeapUtilization(float target); 392 393 // For the alloc space, sets the maximum number of bytes that the heap is allowed to allocate 394 // from the system. Doesn't allow the space to exceed its growth limit. 395 void SetIdealFootprint(size_t max_allowed_footprint); 396 397 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 398 // waited for. 399 collector::GcType WaitForGcToComplete(GcCause cause, Thread* self) REQUIRES(!*gc_complete_lock_); 400 401 // Update the heap's process state to a new value, may cause compaction to occur. 402 void UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) 403 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_); 404 HaveContinuousSpaces()405 bool HaveContinuousSpaces() const NO_THREAD_SAFETY_ANALYSIS { 406 // No lock since vector empty is thread safe. 407 return !continuous_spaces_.empty(); 408 } 409 GetContinuousSpaces()410 const std::vector<space::ContinuousSpace*>& GetContinuousSpaces() const 411 REQUIRES_SHARED(Locks::mutator_lock_) { 412 return continuous_spaces_; 413 } 414 GetDiscontinuousSpaces()415 const std::vector<space::DiscontinuousSpace*>& GetDiscontinuousSpaces() const { 416 return discontinuous_spaces_; 417 } 418 GetCurrentGcIteration()419 const collector::Iteration* GetCurrentGcIteration() const { 420 return ¤t_gc_iteration_; 421 } GetCurrentGcIteration()422 collector::Iteration* GetCurrentGcIteration() { 423 return ¤t_gc_iteration_; 424 } 425 426 // Enable verification of object references when the runtime is sufficiently initialized. EnableObjectValidation()427 void EnableObjectValidation() { 428 verify_object_mode_ = kVerifyObjectSupport; 429 if (verify_object_mode_ > kVerifyObjectModeDisabled) { 430 VerifyHeap(); 431 } 432 } 433 434 // Disable object reference verification for image writing. DisableObjectValidation()435 void DisableObjectValidation() { 436 verify_object_mode_ = kVerifyObjectModeDisabled; 437 } 438 439 // Other checks may be performed if we know the heap should be in a sane state. IsObjectValidationEnabled()440 bool IsObjectValidationEnabled() const { 441 return verify_object_mode_ > kVerifyObjectModeDisabled; 442 } 443 444 // Returns true if low memory mode is enabled. IsLowMemoryMode()445 bool IsLowMemoryMode() const { 446 return low_memory_mode_; 447 } 448 449 // Returns the heap growth multiplier, this affects how much we grow the heap after a GC. 450 // Scales heap growth, min free, and max free. 451 double HeapGrowthMultiplier() const; 452 453 // Freed bytes can be negative in cases where we copy objects from a compacted space to a 454 // free-list backed space. 455 void RecordFree(uint64_t freed_objects, int64_t freed_bytes); 456 457 // Record the bytes freed by thread-local buffer revoke. 458 void RecordFreeRevoke(); 459 460 // Must be called if a field of an Object in the heap changes, and before any GC safe-point. 461 // The call is not needed if null is stored in the field. 462 ALWAYS_INLINE void WriteBarrierField(ObjPtr<mirror::Object> dst, 463 MemberOffset offset, 464 ObjPtr<mirror::Object> new_value) 465 REQUIRES_SHARED(Locks::mutator_lock_); 466 467 // Write barrier for array operations that update many field positions 468 ALWAYS_INLINE void WriteBarrierArray(ObjPtr<mirror::Object> dst, 469 int start_offset, 470 // TODO: element_count or byte_count? 471 size_t length) 472 REQUIRES_SHARED(Locks::mutator_lock_); 473 474 ALWAYS_INLINE void WriteBarrierEveryFieldOf(ObjPtr<mirror::Object> obj) 475 REQUIRES_SHARED(Locks::mutator_lock_); 476 GetCardTable()477 accounting::CardTable* GetCardTable() const { 478 return card_table_.get(); 479 } 480 GetReadBarrierTable()481 accounting::ReadBarrierTable* GetReadBarrierTable() const { 482 return rb_table_.get(); 483 } 484 485 void AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object); 486 487 // Returns the number of bytes currently allocated. GetBytesAllocated()488 size_t GetBytesAllocated() const { 489 return num_bytes_allocated_.LoadSequentiallyConsistent(); 490 } 491 492 // Returns the number of objects currently allocated. 493 size_t GetObjectsAllocated() const 494 REQUIRES(!Locks::heap_bitmap_lock_); 495 496 // Returns the total number of objects allocated since the heap was created. 497 uint64_t GetObjectsAllocatedEver() const; 498 499 // Returns the total number of bytes allocated since the heap was created. 500 uint64_t GetBytesAllocatedEver() const; 501 502 // Returns the total number of objects freed since the heap was created. GetObjectsFreedEver()503 uint64_t GetObjectsFreedEver() const { 504 return total_objects_freed_ever_; 505 } 506 507 // Returns the total number of bytes freed since the heap was created. GetBytesFreedEver()508 uint64_t GetBytesFreedEver() const { 509 return total_bytes_freed_ever_; 510 } 511 512 // Implements java.lang.Runtime.maxMemory, returning the maximum amount of memory a program can 513 // consume. For a regular VM this would relate to the -Xmx option and would return -1 if no Xmx 514 // were specified. Android apps start with a growth limit (small heap size) which is 515 // cleared/extended for large apps. GetMaxMemory()516 size_t GetMaxMemory() const { 517 // There is some race conditions in the allocation code that can cause bytes allocated to 518 // become larger than growth_limit_ in rare cases. 519 return std::max(GetBytesAllocated(), growth_limit_); 520 } 521 522 // Implements java.lang.Runtime.totalMemory, returning approximate amount of memory currently 523 // consumed by an application. 524 size_t GetTotalMemory() const; 525 526 // Returns approximately how much free memory we have until the next GC happens. GetFreeMemoryUntilGC()527 size_t GetFreeMemoryUntilGC() const { 528 return max_allowed_footprint_ - GetBytesAllocated(); 529 } 530 531 // Returns approximately how much free memory we have until the next OOME happens. GetFreeMemoryUntilOOME()532 size_t GetFreeMemoryUntilOOME() const { 533 return growth_limit_ - GetBytesAllocated(); 534 } 535 536 // Returns how much free memory we have until we need to grow the heap to perform an allocation. 537 // Similar to GetFreeMemoryUntilGC. Implements java.lang.Runtime.freeMemory. GetFreeMemory()538 size_t GetFreeMemory() const { 539 size_t byte_allocated = num_bytes_allocated_.LoadSequentiallyConsistent(); 540 size_t total_memory = GetTotalMemory(); 541 // Make sure we don't get a negative number. 542 return total_memory - std::min(total_memory, byte_allocated); 543 } 544 545 // get the space that corresponds to an object's address. Current implementation searches all 546 // spaces in turn. If fail_ok is false then failing to find a space will cause an abort. 547 // TODO: consider using faster data structure like binary tree. 548 space::ContinuousSpace* FindContinuousSpaceFromObject(ObjPtr<mirror::Object>, bool fail_ok) const 549 REQUIRES_SHARED(Locks::mutator_lock_); 550 551 space::ContinuousSpace* FindContinuousSpaceFromAddress(const mirror::Object* addr) const 552 REQUIRES_SHARED(Locks::mutator_lock_); 553 554 space::DiscontinuousSpace* FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object>, 555 bool fail_ok) const 556 REQUIRES_SHARED(Locks::mutator_lock_); 557 558 space::Space* FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const 559 REQUIRES_SHARED(Locks::mutator_lock_); 560 561 space::Space* FindSpaceFromAddress(const void* ptr) const 562 REQUIRES_SHARED(Locks::mutator_lock_); 563 564 void DumpForSigQuit(std::ostream& os) REQUIRES(!*gc_complete_lock_); 565 566 // Do a pending collector transition. 567 void DoPendingCollectorTransition() REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 568 569 // Deflate monitors, ... and trim the spaces. 570 void Trim(Thread* self) REQUIRES(!*gc_complete_lock_); 571 572 void RevokeThreadLocalBuffers(Thread* thread); 573 void RevokeRosAllocThreadLocalBuffers(Thread* thread); 574 void RevokeAllThreadLocalBuffers(); 575 void AssertThreadLocalBuffersAreRevoked(Thread* thread); 576 void AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked(); 577 void RosAllocVerification(TimingLogger* timings, const char* name) 578 REQUIRES(Locks::mutator_lock_); 579 GetLiveBitmap()580 accounting::HeapBitmap* GetLiveBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 581 return live_bitmap_.get(); 582 } 583 GetMarkBitmap()584 accounting::HeapBitmap* GetMarkBitmap() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 585 return mark_bitmap_.get(); 586 } 587 GetLiveStack()588 accounting::ObjectStack* GetLiveStack() REQUIRES_SHARED(Locks::heap_bitmap_lock_) { 589 return live_stack_.get(); 590 } 591 592 void PreZygoteFork() NO_THREAD_SAFETY_ANALYSIS; 593 594 // Mark and empty stack. 595 void FlushAllocStack() 596 REQUIRES_SHARED(Locks::mutator_lock_) 597 REQUIRES(Locks::heap_bitmap_lock_); 598 599 // Revoke all the thread-local allocation stacks. 600 void RevokeAllThreadLocalAllocationStacks(Thread* self) 601 REQUIRES(Locks::mutator_lock_, !Locks::runtime_shutdown_lock_, !Locks::thread_list_lock_); 602 603 // Mark all the objects in the allocation stack in the specified bitmap. 604 // TODO: Refactor? 605 void MarkAllocStack(accounting::SpaceBitmap<kObjectAlignment>* bitmap1, 606 accounting::SpaceBitmap<kObjectAlignment>* bitmap2, 607 accounting::SpaceBitmap<kLargeObjectAlignment>* large_objects, 608 accounting::ObjectStack* stack) 609 REQUIRES_SHARED(Locks::mutator_lock_) 610 REQUIRES(Locks::heap_bitmap_lock_); 611 612 // Mark the specified allocation stack as live. 613 void MarkAllocStackAsLive(accounting::ObjectStack* stack) 614 REQUIRES_SHARED(Locks::mutator_lock_) 615 REQUIRES(Locks::heap_bitmap_lock_); 616 617 // Unbind any bound bitmaps. 618 void UnBindBitmaps() 619 REQUIRES(Locks::heap_bitmap_lock_) 620 REQUIRES_SHARED(Locks::mutator_lock_); 621 622 // Returns the boot image spaces. There may be multiple boot image spaces. GetBootImageSpaces()623 const std::vector<space::ImageSpace*>& GetBootImageSpaces() const { 624 return boot_image_spaces_; 625 } 626 627 bool ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const 628 REQUIRES_SHARED(Locks::mutator_lock_); 629 630 bool IsInBootImageOatFile(const void* p) const 631 REQUIRES_SHARED(Locks::mutator_lock_); 632 633 void GetBootImagesSize(uint32_t* boot_image_begin, 634 uint32_t* boot_image_end, 635 uint32_t* boot_oat_begin, 636 uint32_t* boot_oat_end); 637 638 // Permenantly disable moving garbage collection. 639 void DisableMovingGc() REQUIRES(!*gc_complete_lock_); 640 GetDlMallocSpace()641 space::DlMallocSpace* GetDlMallocSpace() const { 642 return dlmalloc_space_; 643 } 644 GetRosAllocSpace()645 space::RosAllocSpace* GetRosAllocSpace() const { 646 return rosalloc_space_; 647 } 648 649 // Return the corresponding rosalloc space. 650 space::RosAllocSpace* GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const 651 REQUIRES_SHARED(Locks::mutator_lock_); 652 GetNonMovingSpace()653 space::MallocSpace* GetNonMovingSpace() const { 654 return non_moving_space_; 655 } 656 GetLargeObjectsSpace()657 space::LargeObjectSpace* GetLargeObjectsSpace() const { 658 return large_object_space_; 659 } 660 661 // Returns the free list space that may contain movable objects (the 662 // one that's not the non-moving space), either rosalloc_space_ or 663 // dlmalloc_space_. GetPrimaryFreeListSpace()664 space::MallocSpace* GetPrimaryFreeListSpace() { 665 if (kUseRosAlloc) { 666 DCHECK(rosalloc_space_ != nullptr); 667 // reinterpret_cast is necessary as the space class hierarchy 668 // isn't known (#included) yet here. 669 return reinterpret_cast<space::MallocSpace*>(rosalloc_space_); 670 } else { 671 DCHECK(dlmalloc_space_ != nullptr); 672 return reinterpret_cast<space::MallocSpace*>(dlmalloc_space_); 673 } 674 } 675 676 void DumpSpaces(std::ostream& stream) const REQUIRES_SHARED(Locks::mutator_lock_); 677 std::string DumpSpaces() const REQUIRES_SHARED(Locks::mutator_lock_); 678 679 // GC performance measuring 680 void DumpGcPerformanceInfo(std::ostream& os) 681 REQUIRES(!*gc_complete_lock_); 682 void ResetGcPerformanceInfo() REQUIRES(!*gc_complete_lock_); 683 684 // Thread pool. 685 void CreateThreadPool(); 686 void DeleteThreadPool(); GetThreadPool()687 ThreadPool* GetThreadPool() { 688 return thread_pool_.get(); 689 } GetParallelGCThreadCount()690 size_t GetParallelGCThreadCount() const { 691 return parallel_gc_threads_; 692 } GetConcGCThreadCount()693 size_t GetConcGCThreadCount() const { 694 return conc_gc_threads_; 695 } 696 accounting::ModUnionTable* FindModUnionTableFromSpace(space::Space* space); 697 void AddModUnionTable(accounting::ModUnionTable* mod_union_table); 698 699 accounting::RememberedSet* FindRememberedSetFromSpace(space::Space* space); 700 void AddRememberedSet(accounting::RememberedSet* remembered_set); 701 // Also deletes the remebered set. 702 void RemoveRememberedSet(space::Space* space); 703 704 bool IsCompilingBoot() const; HasBootImageSpace()705 bool HasBootImageSpace() const { 706 return !boot_image_spaces_.empty(); 707 } 708 GetReferenceProcessor()709 ReferenceProcessor* GetReferenceProcessor() { 710 return reference_processor_.get(); 711 } GetTaskProcessor()712 TaskProcessor* GetTaskProcessor() { 713 return task_processor_.get(); 714 } 715 HasZygoteSpace()716 bool HasZygoteSpace() const { 717 return zygote_space_ != nullptr; 718 } 719 ConcurrentCopyingCollector()720 collector::ConcurrentCopying* ConcurrentCopyingCollector() { 721 return concurrent_copying_collector_; 722 } 723 CurrentCollectorType()724 CollectorType CurrentCollectorType() { 725 return collector_type_; 726 } 727 IsGcConcurrentAndMoving()728 bool IsGcConcurrentAndMoving() const { 729 if (IsGcConcurrent() && IsMovingGc(collector_type_)) { 730 // Assume no transition when a concurrent moving collector is used. 731 DCHECK_EQ(collector_type_, foreground_collector_type_); 732 return true; 733 } 734 return false; 735 } 736 IsMovingGCDisabled(Thread * self)737 bool IsMovingGCDisabled(Thread* self) REQUIRES(!*gc_complete_lock_) { 738 MutexLock mu(self, *gc_complete_lock_); 739 return disable_moving_gc_count_ > 0; 740 } 741 742 // Request an asynchronous trim. 743 void RequestTrim(Thread* self) REQUIRES(!*pending_task_lock_); 744 745 // Request asynchronous GC. 746 void RequestConcurrentGC(Thread* self, GcCause cause, bool force_full) 747 REQUIRES(!*pending_task_lock_); 748 749 // Whether or not we may use a garbage collector, used so that we only create collectors we need. 750 bool MayUseCollector(CollectorType type) const; 751 752 // Used by tests to reduce timinig-dependent flakiness in OOME behavior. SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval)753 void SetMinIntervalHomogeneousSpaceCompactionByOom(uint64_t interval) { 754 min_interval_homogeneous_space_compaction_by_oom_ = interval; 755 } 756 757 // Helpers for android.os.Debug.getRuntimeStat(). 758 uint64_t GetGcCount() const; 759 uint64_t GetGcTime() const; 760 uint64_t GetBlockingGcCount() const; 761 uint64_t GetBlockingGcTime() const; 762 void DumpGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 763 void DumpBlockingGcCountRateHistogram(std::ostream& os) const REQUIRES(!*gc_complete_lock_); 764 765 // Allocation tracking support 766 // Callers to this function use double-checked locking to ensure safety on allocation_records_ IsAllocTrackingEnabled()767 bool IsAllocTrackingEnabled() const { 768 return alloc_tracking_enabled_.LoadRelaxed(); 769 } 770 SetAllocTrackingEnabled(bool enabled)771 void SetAllocTrackingEnabled(bool enabled) REQUIRES(Locks::alloc_tracker_lock_) { 772 alloc_tracking_enabled_.StoreRelaxed(enabled); 773 } 774 GetAllocationRecords()775 AllocRecordObjectMap* GetAllocationRecords() const 776 REQUIRES(Locks::alloc_tracker_lock_) { 777 return allocation_records_.get(); 778 } 779 780 void SetAllocationRecords(AllocRecordObjectMap* records) 781 REQUIRES(Locks::alloc_tracker_lock_); 782 783 void VisitAllocationRecords(RootVisitor* visitor) const 784 REQUIRES_SHARED(Locks::mutator_lock_) 785 REQUIRES(!Locks::alloc_tracker_lock_); 786 787 void SweepAllocationRecords(IsMarkedVisitor* visitor) const 788 REQUIRES_SHARED(Locks::mutator_lock_) 789 REQUIRES(!Locks::alloc_tracker_lock_); 790 791 void DisallowNewAllocationRecords() const 792 REQUIRES_SHARED(Locks::mutator_lock_) 793 REQUIRES(!Locks::alloc_tracker_lock_); 794 795 void AllowNewAllocationRecords() const 796 REQUIRES_SHARED(Locks::mutator_lock_) 797 REQUIRES(!Locks::alloc_tracker_lock_); 798 799 void BroadcastForNewAllocationRecords() const 800 REQUIRES(!Locks::alloc_tracker_lock_); 801 802 void DisableGCForShutdown() REQUIRES(!*gc_complete_lock_); 803 804 // Create a new alloc space and compact default alloc space to it. 805 HomogeneousSpaceCompactResult PerformHomogeneousSpaceCompact() REQUIRES(!*gc_complete_lock_); 806 bool SupportHomogeneousSpaceCompactAndCollectorTransitions() const; 807 808 // Install an allocation listener. 809 void SetAllocationListener(AllocationListener* l); 810 // Remove an allocation listener. Note: the listener must not be deleted, as for performance 811 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 812 void RemoveAllocationListener(); 813 814 // Install a gc pause listener. 815 void SetGcPauseListener(GcPauseListener* l); 816 // Get the currently installed gc pause listener, or null. GetGcPauseListener()817 GcPauseListener* GetGcPauseListener() { 818 return gc_pause_listener_.LoadAcquire(); 819 } 820 // Remove a gc pause listener. Note: the listener must not be deleted, as for performance 821 // reasons, we assume it stays valid when we read it (so that we don't require a lock). 822 void RemoveGcPauseListener(); 823 824 const Verification* GetVerification() const; 825 826 private: 827 class ConcurrentGCTask; 828 class CollectorTransitionTask; 829 class HeapTrimTask; 830 831 // Compact source space to target space. Returns the collector used. 832 collector::GarbageCollector* Compact(space::ContinuousMemMapAllocSpace* target_space, 833 space::ContinuousMemMapAllocSpace* source_space, 834 GcCause gc_cause) 835 REQUIRES(Locks::mutator_lock_); 836 837 void LogGC(GcCause gc_cause, collector::GarbageCollector* collector); 838 void StartGC(Thread* self, GcCause cause, CollectorType collector_type) 839 REQUIRES(!*gc_complete_lock_); 840 void FinishGC(Thread* self, collector::GcType gc_type) REQUIRES(!*gc_complete_lock_); 841 842 // Create a mem map with a preferred base address. 843 static MemMap* MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin, 844 size_t capacity, std::string* out_error_str); 845 SupportHSpaceCompaction()846 bool SupportHSpaceCompaction() const { 847 // Returns true if we can do hspace compaction 848 return main_space_backup_ != nullptr; 849 } 850 AllocatorHasAllocationStack(AllocatorType allocator_type)851 static ALWAYS_INLINE bool AllocatorHasAllocationStack(AllocatorType allocator_type) { 852 return 853 allocator_type != kAllocatorTypeBumpPointer && 854 allocator_type != kAllocatorTypeTLAB && 855 allocator_type != kAllocatorTypeRegion && 856 allocator_type != kAllocatorTypeRegionTLAB; 857 } AllocatorMayHaveConcurrentGC(AllocatorType allocator_type)858 static ALWAYS_INLINE bool AllocatorMayHaveConcurrentGC(AllocatorType allocator_type) { 859 if (kUseReadBarrier) { 860 // Read barrier may have the TLAB allocator but is always concurrent. TODO: clean this up. 861 return true; 862 } 863 return 864 allocator_type != kAllocatorTypeBumpPointer && 865 allocator_type != kAllocatorTypeTLAB; 866 } IsMovingGc(CollectorType collector_type)867 static bool IsMovingGc(CollectorType collector_type) { 868 return 869 collector_type == kCollectorTypeSS || 870 collector_type == kCollectorTypeGSS || 871 collector_type == kCollectorTypeCC || 872 collector_type == kCollectorTypeCCBackground || 873 collector_type == kCollectorTypeMC || 874 collector_type == kCollectorTypeHomogeneousSpaceCompact; 875 } 876 bool ShouldAllocLargeObject(ObjPtr<mirror::Class> c, size_t byte_count) const 877 REQUIRES_SHARED(Locks::mutator_lock_); 878 ALWAYS_INLINE void CheckConcurrentGC(Thread* self, 879 size_t new_num_bytes_allocated, 880 ObjPtr<mirror::Object>* obj) 881 REQUIRES_SHARED(Locks::mutator_lock_) 882 REQUIRES(!*pending_task_lock_, !*gc_complete_lock_); 883 GetMarkStack()884 accounting::ObjectStack* GetMarkStack() { 885 return mark_stack_.get(); 886 } 887 888 // We don't force this to be inlined since it is a slow path. 889 template <bool kInstrumented, typename PreFenceVisitor> 890 mirror::Object* AllocLargeObject(Thread* self, 891 ObjPtr<mirror::Class>* klass, 892 size_t byte_count, 893 const PreFenceVisitor& pre_fence_visitor) 894 REQUIRES_SHARED(Locks::mutator_lock_) 895 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_); 896 897 // Handles Allocate()'s slow allocation path with GC involved after 898 // an initial allocation attempt failed. 899 mirror::Object* AllocateInternalWithGc(Thread* self, 900 AllocatorType allocator, 901 bool instrumented, 902 size_t num_bytes, 903 size_t* bytes_allocated, 904 size_t* usable_size, 905 size_t* bytes_tl_bulk_allocated, 906 ObjPtr<mirror::Class>* klass) 907 REQUIRES(!Locks::thread_suspend_count_lock_, !*gc_complete_lock_, !*pending_task_lock_) 908 REQUIRES_SHARED(Locks::mutator_lock_); 909 910 // Allocate into a specific space. 911 mirror::Object* AllocateInto(Thread* self, 912 space::AllocSpace* space, 913 ObjPtr<mirror::Class> c, 914 size_t bytes) 915 REQUIRES_SHARED(Locks::mutator_lock_); 916 917 // Need to do this with mutators paused so that somebody doesn't accidentally allocate into the 918 // wrong space. 919 void SwapSemiSpaces() REQUIRES(Locks::mutator_lock_); 920 921 // Try to allocate a number of bytes, this function never does any GCs. Needs to be inlined so 922 // that the switch statement is constant optimized in the entrypoints. 923 template <const bool kInstrumented, const bool kGrow> 924 ALWAYS_INLINE mirror::Object* TryToAllocate(Thread* self, 925 AllocatorType allocator_type, 926 size_t alloc_size, 927 size_t* bytes_allocated, 928 size_t* usable_size, 929 size_t* bytes_tl_bulk_allocated) 930 REQUIRES_SHARED(Locks::mutator_lock_); 931 932 mirror::Object* AllocWithNewTLAB(Thread* self, 933 size_t alloc_size, 934 bool grow, 935 size_t* bytes_allocated, 936 size_t* usable_size, 937 size_t* bytes_tl_bulk_allocated) 938 REQUIRES_SHARED(Locks::mutator_lock_); 939 940 void ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) 941 REQUIRES_SHARED(Locks::mutator_lock_); 942 943 ALWAYS_INLINE bool IsOutOfMemoryOnAllocation(AllocatorType allocator_type, 944 size_t alloc_size, 945 bool grow); 946 947 // Run the finalizers. If timeout is non zero, then we use the VMRuntime version. 948 void RunFinalization(JNIEnv* env, uint64_t timeout); 949 950 // Blocks the caller until the garbage collector becomes idle and returns the type of GC we 951 // waited for. 952 collector::GcType WaitForGcToCompleteLocked(GcCause cause, Thread* self) 953 REQUIRES(gc_complete_lock_); 954 955 void RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) 956 REQUIRES(!*pending_task_lock_); 957 958 void RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, ObjPtr<mirror::Object>* obj) 959 REQUIRES_SHARED(Locks::mutator_lock_) 960 REQUIRES(!*pending_task_lock_); 961 bool IsGCRequestPending() const; 962 963 // Sometimes CollectGarbageInternal decides to run a different Gc than you requested. Returns 964 // which type of Gc was actually ran. 965 collector::GcType CollectGarbageInternal(collector::GcType gc_plan, 966 GcCause gc_cause, 967 bool clear_soft_references) 968 REQUIRES(!*gc_complete_lock_, !Locks::heap_bitmap_lock_, !Locks::thread_suspend_count_lock_, 969 !*pending_task_lock_); 970 971 void PreGcVerification(collector::GarbageCollector* gc) 972 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 973 void PreGcVerificationPaused(collector::GarbageCollector* gc) 974 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 975 void PrePauseRosAllocVerification(collector::GarbageCollector* gc) 976 REQUIRES(Locks::mutator_lock_); 977 void PreSweepingGcVerification(collector::GarbageCollector* gc) 978 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 979 void PostGcVerification(collector::GarbageCollector* gc) 980 REQUIRES(!Locks::mutator_lock_, !*gc_complete_lock_); 981 void PostGcVerificationPaused(collector::GarbageCollector* gc) 982 REQUIRES(Locks::mutator_lock_, !*gc_complete_lock_); 983 984 // Find a collector based on GC type. 985 collector::GarbageCollector* FindCollectorByGcType(collector::GcType gc_type); 986 987 // Create the main free list malloc space, either a RosAlloc space or DlMalloc space. 988 void CreateMainMallocSpace(MemMap* mem_map, 989 size_t initial_size, 990 size_t growth_limit, 991 size_t capacity); 992 993 // Create a malloc space based on a mem map. Does not set the space as default. 994 space::MallocSpace* CreateMallocSpaceFromMemMap(MemMap* mem_map, 995 size_t initial_size, 996 size_t growth_limit, 997 size_t capacity, 998 const char* name, 999 bool can_move_objects); 1000 1001 // Given the current contents of the alloc space, increase the allowed heap footprint to match 1002 // the target utilization ratio. This should only be called immediately after a full garbage 1003 // collection. bytes_allocated_before_gc is used to measure bytes / second for the period which 1004 // the GC was run. 1005 void GrowForUtilization(collector::GarbageCollector* collector_ran, 1006 uint64_t bytes_allocated_before_gc = 0); 1007 1008 size_t GetPercentFree(); 1009 1010 // Swap the allocation stack with the live stack. 1011 void SwapStacks() REQUIRES_SHARED(Locks::mutator_lock_); 1012 1013 // Clear cards and update the mod union table. When process_alloc_space_cards is true, 1014 // if clear_alloc_space_cards is true, then we clear cards instead of ageing them. We do 1015 // not process the alloc space if process_alloc_space_cards is false. 1016 void ProcessCards(TimingLogger* timings, 1017 bool use_rem_sets, 1018 bool process_alloc_space_cards, 1019 bool clear_alloc_space_cards) 1020 REQUIRES_SHARED(Locks::mutator_lock_); 1021 1022 // Push an object onto the allocation stack. 1023 void PushOnAllocationStack(Thread* self, ObjPtr<mirror::Object>* obj) 1024 REQUIRES_SHARED(Locks::mutator_lock_) 1025 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1026 void PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) 1027 REQUIRES_SHARED(Locks::mutator_lock_) 1028 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1029 void PushOnThreadLocalAllocationStackWithInternalGC(Thread* thread, ObjPtr<mirror::Object>* obj) 1030 REQUIRES_SHARED(Locks::mutator_lock_) 1031 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_); 1032 1033 void ClearConcurrentGCRequest(); 1034 void ClearPendingTrim(Thread* self) REQUIRES(!*pending_task_lock_); 1035 void ClearPendingCollectorTransition(Thread* self) REQUIRES(!*pending_task_lock_); 1036 1037 // What kind of concurrency behavior is the runtime after? Currently true for concurrent mark 1038 // sweep GC, false for other GC types. IsGcConcurrent()1039 bool IsGcConcurrent() const ALWAYS_INLINE { 1040 return collector_type_ == kCollectorTypeCMS || 1041 collector_type_ == kCollectorTypeCC || 1042 collector_type_ == kCollectorTypeCCBackground; 1043 } 1044 1045 // Trim the managed and native spaces by releasing unused memory back to the OS. 1046 void TrimSpaces(Thread* self) REQUIRES(!*gc_complete_lock_); 1047 1048 // Trim 0 pages at the end of reference tables. 1049 void TrimIndirectReferenceTables(Thread* self); 1050 1051 template <typename Visitor> 1052 ALWAYS_INLINE void VisitObjectsInternal(Visitor&& visitor) 1053 REQUIRES_SHARED(Locks::mutator_lock_) 1054 REQUIRES(!Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1055 template <typename Visitor> 1056 ALWAYS_INLINE void VisitObjectsInternalRegionSpace(Visitor&& visitor) 1057 REQUIRES(Locks::mutator_lock_, !Locks::heap_bitmap_lock_, !*gc_complete_lock_); 1058 1059 void UpdateGcCountRateHistograms() REQUIRES(gc_complete_lock_); 1060 1061 // GC stress mode attempts to do one GC per unique backtrace. 1062 void CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) 1063 REQUIRES_SHARED(Locks::mutator_lock_) 1064 REQUIRES(!*gc_complete_lock_, !*pending_task_lock_, !*backtrace_lock_); 1065 NonStickyGcType()1066 collector::GcType NonStickyGcType() const { 1067 return HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull; 1068 } 1069 1070 // How large new_native_bytes_allocated_ can grow before we trigger a new 1071 // GC. NativeAllocationGcWatermark()1072 ALWAYS_INLINE size_t NativeAllocationGcWatermark() const { 1073 // Reuse max_free_ for the native allocation gc watermark, so that the 1074 // native heap is treated in the same way as the Java heap in the case 1075 // where the gc watermark update would exceed max_free_. Using max_free_ 1076 // instead of the target utilization means the watermark doesn't depend on 1077 // the current number of registered native allocations. 1078 return max_free_; 1079 } 1080 1081 // How large new_native_bytes_allocated_ can grow while GC is in progress 1082 // before we block the allocating thread to allow GC to catch up. NativeAllocationBlockingGcWatermark()1083 ALWAYS_INLINE size_t NativeAllocationBlockingGcWatermark() const { 1084 // Historically the native allocations were bounded by growth_limit_. This 1085 // uses that same value, dividing growth_limit_ by 2 to account for 1086 // the fact that now the bound is relative to the number of retained 1087 // registered native allocations rather than absolute. 1088 return growth_limit_ / 2; 1089 } 1090 1091 void TraceHeapSize(size_t heap_size); 1092 1093 // All-known continuous spaces, where objects lie within fixed bounds. 1094 std::vector<space::ContinuousSpace*> continuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1095 1096 // All-known discontinuous spaces, where objects may be placed throughout virtual memory. 1097 std::vector<space::DiscontinuousSpace*> discontinuous_spaces_ GUARDED_BY(Locks::mutator_lock_); 1098 1099 // All-known alloc spaces, where objects may be or have been allocated. 1100 std::vector<space::AllocSpace*> alloc_spaces_; 1101 1102 // A space where non-movable objects are allocated, when compaction is enabled it contains 1103 // Classes, ArtMethods, ArtFields, and non moving objects. 1104 space::MallocSpace* non_moving_space_; 1105 1106 // Space which we use for the kAllocatorTypeROSAlloc. 1107 space::RosAllocSpace* rosalloc_space_; 1108 1109 // Space which we use for the kAllocatorTypeDlMalloc. 1110 space::DlMallocSpace* dlmalloc_space_; 1111 1112 // The main space is the space which the GC copies to and from on process state updates. This 1113 // space is typically either the dlmalloc_space_ or the rosalloc_space_. 1114 space::MallocSpace* main_space_; 1115 1116 // The large object space we are currently allocating into. 1117 space::LargeObjectSpace* large_object_space_; 1118 1119 // The card table, dirtied by the write barrier. 1120 std::unique_ptr<accounting::CardTable> card_table_; 1121 1122 std::unique_ptr<accounting::ReadBarrierTable> rb_table_; 1123 1124 // A mod-union table remembers all of the references from the it's space to other spaces. 1125 AllocationTrackingSafeMap<space::Space*, accounting::ModUnionTable*, kAllocatorTagHeap> 1126 mod_union_tables_; 1127 1128 // A remembered set remembers all of the references from the it's space to the target space. 1129 AllocationTrackingSafeMap<space::Space*, accounting::RememberedSet*, kAllocatorTagHeap> 1130 remembered_sets_; 1131 1132 // The current collector type. 1133 CollectorType collector_type_; 1134 // Which collector we use when the app is in the foreground. 1135 CollectorType foreground_collector_type_; 1136 // Which collector we will use when the app is notified of a transition to background. 1137 CollectorType background_collector_type_; 1138 // Desired collector type, heap trimming daemon transitions the heap if it is != collector_type_. 1139 CollectorType desired_collector_type_; 1140 1141 // Lock which guards pending tasks. 1142 Mutex* pending_task_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1143 1144 // How many GC threads we may use for paused parts of garbage collection. 1145 const size_t parallel_gc_threads_; 1146 1147 // How many GC threads we may use for unpaused parts of garbage collection. 1148 const size_t conc_gc_threads_; 1149 1150 // Boolean for if we are in low memory mode. 1151 const bool low_memory_mode_; 1152 1153 // If we get a pause longer than long pause log threshold, then we print out the GC after it 1154 // finishes. 1155 const size_t long_pause_log_threshold_; 1156 1157 // If we get a GC longer than long GC log threshold, then we print out the GC after it finishes. 1158 const size_t long_gc_log_threshold_; 1159 1160 // If we ignore the max footprint it lets the heap grow until it hits the heap capacity, this is 1161 // useful for benchmarking since it reduces time spent in GC to a low %. 1162 const bool ignore_max_footprint_; 1163 1164 // Lock which guards zygote space creation. 1165 Mutex zygote_creation_lock_; 1166 1167 // Non-null iff we have a zygote space. Doesn't contain the large objects allocated before 1168 // zygote space creation. 1169 space::ZygoteSpace* zygote_space_; 1170 1171 // Minimum allocation size of large object. 1172 size_t large_object_threshold_; 1173 1174 // Guards access to the state of GC, associated conditional variable is used to signal when a GC 1175 // completes. 1176 Mutex* gc_complete_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1177 std::unique_ptr<ConditionVariable> gc_complete_cond_ GUARDED_BY(gc_complete_lock_); 1178 1179 // Used to synchronize between JNI critical calls and the thread flip of the CC collector. 1180 Mutex* thread_flip_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1181 std::unique_ptr<ConditionVariable> thread_flip_cond_ GUARDED_BY(thread_flip_lock_); 1182 // This counter keeps track of how many threads are currently in a JNI critical section. This is 1183 // incremented once per thread even with nested enters. 1184 size_t disable_thread_flip_count_ GUARDED_BY(thread_flip_lock_); 1185 bool thread_flip_running_ GUARDED_BY(thread_flip_lock_); 1186 1187 // Reference processor; 1188 std::unique_ptr<ReferenceProcessor> reference_processor_; 1189 1190 // Task processor, proxies heap trim requests to the daemon threads. 1191 std::unique_ptr<TaskProcessor> task_processor_; 1192 1193 // Collector type of the running GC. 1194 volatile CollectorType collector_type_running_ GUARDED_BY(gc_complete_lock_); 1195 1196 // Cause of the last running GC. 1197 volatile GcCause last_gc_cause_ GUARDED_BY(gc_complete_lock_); 1198 1199 // The thread currently running the GC. 1200 volatile Thread* thread_running_gc_ GUARDED_BY(gc_complete_lock_); 1201 1202 // Last Gc type we ran. Used by WaitForConcurrentGc to know which Gc was waited on. 1203 volatile collector::GcType last_gc_type_ GUARDED_BY(gc_complete_lock_); 1204 collector::GcType next_gc_type_; 1205 1206 // Maximum size that the heap can reach. 1207 size_t capacity_; 1208 1209 // The size the heap is limited to. This is initially smaller than capacity, but for largeHeap 1210 // programs it is "cleared" making it the same as capacity. 1211 size_t growth_limit_; 1212 1213 // When the number of bytes allocated exceeds the footprint TryAllocate returns null indicating 1214 // a GC should be triggered. 1215 size_t max_allowed_footprint_; 1216 1217 // When num_bytes_allocated_ exceeds this amount then a concurrent GC should be requested so that 1218 // it completes ahead of an allocation failing. 1219 size_t concurrent_start_bytes_; 1220 1221 // Since the heap was created, how many bytes have been freed. 1222 uint64_t total_bytes_freed_ever_; 1223 1224 // Since the heap was created, how many objects have been freed. 1225 uint64_t total_objects_freed_ever_; 1226 1227 // Number of bytes allocated. Adjusted after each allocation and free. 1228 Atomic<size_t> num_bytes_allocated_; 1229 1230 // Number of registered native bytes allocated since the last time GC was 1231 // triggered. Adjusted after each RegisterNativeAllocation and 1232 // RegisterNativeFree. Used to determine when to trigger GC for native 1233 // allocations. 1234 // See the REDESIGN section of go/understanding-register-native-allocation. 1235 Atomic<size_t> new_native_bytes_allocated_; 1236 1237 // Number of registered native bytes allocated prior to the last time GC was 1238 // triggered, for debugging purposes. The current number of registered 1239 // native bytes is determined by taking the sum of 1240 // old_native_bytes_allocated_ and new_native_bytes_allocated_. 1241 Atomic<size_t> old_native_bytes_allocated_; 1242 1243 // Used for synchronization when multiple threads call into 1244 // RegisterNativeAllocation and require blocking GC. 1245 // * If a previous blocking GC is in progress, all threads will wait for 1246 // that GC to complete, then wait for one of the threads to complete another 1247 // blocking GC. 1248 // * If a blocking GC is assigned but not in progress, a thread has been 1249 // assigned to run a blocking GC but has not started yet. Threads will wait 1250 // for the assigned blocking GC to complete. 1251 // * If a blocking GC is not assigned nor in progress, the first thread will 1252 // run a blocking GC and signal to other threads that blocking GC has been 1253 // assigned. 1254 Mutex* native_blocking_gc_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1255 std::unique_ptr<ConditionVariable> native_blocking_gc_cond_ GUARDED_BY(native_blocking_gc_lock_); 1256 bool native_blocking_gc_is_assigned_ GUARDED_BY(native_blocking_gc_lock_); 1257 bool native_blocking_gc_in_progress_ GUARDED_BY(native_blocking_gc_lock_); 1258 uint32_t native_blocking_gcs_finished_ GUARDED_BY(native_blocking_gc_lock_); 1259 1260 // Number of bytes freed by thread local buffer revokes. This will 1261 // cancel out the ahead-of-time bulk counting of bytes allocated in 1262 // rosalloc thread-local buffers. It is temporarily accumulated 1263 // here to be subtracted from num_bytes_allocated_ later at the next 1264 // GC. 1265 Atomic<size_t> num_bytes_freed_revoke_; 1266 1267 // Info related to the current or previous GC iteration. 1268 collector::Iteration current_gc_iteration_; 1269 1270 // Heap verification flags. 1271 const bool verify_missing_card_marks_; 1272 const bool verify_system_weaks_; 1273 const bool verify_pre_gc_heap_; 1274 const bool verify_pre_sweeping_heap_; 1275 const bool verify_post_gc_heap_; 1276 const bool verify_mod_union_table_; 1277 bool verify_pre_gc_rosalloc_; 1278 bool verify_pre_sweeping_rosalloc_; 1279 bool verify_post_gc_rosalloc_; 1280 const bool gc_stress_mode_; 1281 1282 // RAII that temporarily disables the rosalloc verification during 1283 // the zygote fork. 1284 class ScopedDisableRosAllocVerification { 1285 private: 1286 Heap* const heap_; 1287 const bool orig_verify_pre_gc_; 1288 const bool orig_verify_pre_sweeping_; 1289 const bool orig_verify_post_gc_; 1290 1291 public: ScopedDisableRosAllocVerification(Heap * heap)1292 explicit ScopedDisableRosAllocVerification(Heap* heap) 1293 : heap_(heap), 1294 orig_verify_pre_gc_(heap_->verify_pre_gc_rosalloc_), 1295 orig_verify_pre_sweeping_(heap_->verify_pre_sweeping_rosalloc_), 1296 orig_verify_post_gc_(heap_->verify_post_gc_rosalloc_) { 1297 heap_->verify_pre_gc_rosalloc_ = false; 1298 heap_->verify_pre_sweeping_rosalloc_ = false; 1299 heap_->verify_post_gc_rosalloc_ = false; 1300 } ~ScopedDisableRosAllocVerification()1301 ~ScopedDisableRosAllocVerification() { 1302 heap_->verify_pre_gc_rosalloc_ = orig_verify_pre_gc_; 1303 heap_->verify_pre_sweeping_rosalloc_ = orig_verify_pre_sweeping_; 1304 heap_->verify_post_gc_rosalloc_ = orig_verify_post_gc_; 1305 } 1306 }; 1307 1308 // Parallel GC data structures. 1309 std::unique_ptr<ThreadPool> thread_pool_; 1310 1311 // Estimated allocation rate (bytes / second). Computed between the time of the last GC cycle 1312 // and the start of the current one. 1313 uint64_t allocation_rate_; 1314 1315 // For a GC cycle, a bitmap that is set corresponding to the 1316 std::unique_ptr<accounting::HeapBitmap> live_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1317 std::unique_ptr<accounting::HeapBitmap> mark_bitmap_ GUARDED_BY(Locks::heap_bitmap_lock_); 1318 1319 // Mark stack that we reuse to avoid re-allocating the mark stack. 1320 std::unique_ptr<accounting::ObjectStack> mark_stack_; 1321 1322 // Allocation stack, new allocations go here so that we can do sticky mark bits. This enables us 1323 // to use the live bitmap as the old mark bitmap. 1324 const size_t max_allocation_stack_size_; 1325 std::unique_ptr<accounting::ObjectStack> allocation_stack_; 1326 1327 // Second allocation stack so that we can process allocation with the heap unlocked. 1328 std::unique_ptr<accounting::ObjectStack> live_stack_; 1329 1330 // Allocator type. 1331 AllocatorType current_allocator_; 1332 const AllocatorType current_non_moving_allocator_; 1333 1334 // Which GCs we run in order when we an allocation fails. 1335 std::vector<collector::GcType> gc_plan_; 1336 1337 // Bump pointer spaces. 1338 space::BumpPointerSpace* bump_pointer_space_; 1339 // Temp space is the space which the semispace collector copies to. 1340 space::BumpPointerSpace* temp_space_; 1341 1342 space::RegionSpace* region_space_; 1343 1344 // Minimum free guarantees that you always have at least min_free_ free bytes after growing for 1345 // utilization, regardless of target utilization ratio. 1346 size_t min_free_; 1347 1348 // The ideal maximum free size, when we grow the heap for utilization. 1349 size_t max_free_; 1350 1351 // Target ideal heap utilization ratio 1352 double target_utilization_; 1353 1354 // How much more we grow the heap when we are a foreground app instead of background. 1355 double foreground_heap_growth_multiplier_; 1356 1357 // Total time which mutators are paused or waiting for GC to complete. 1358 uint64_t total_wait_time_; 1359 1360 // The current state of heap verification, may be enabled or disabled. 1361 VerifyObjectMode verify_object_mode_; 1362 1363 // Compacting GC disable count, prevents compacting GC from running iff > 0. 1364 size_t disable_moving_gc_count_ GUARDED_BY(gc_complete_lock_); 1365 1366 std::vector<collector::GarbageCollector*> garbage_collectors_; 1367 collector::SemiSpace* semi_space_collector_; 1368 collector::MarkCompact* mark_compact_collector_; 1369 collector::ConcurrentCopying* concurrent_copying_collector_; 1370 1371 const bool is_running_on_memory_tool_; 1372 const bool use_tlab_; 1373 1374 // Pointer to the space which becomes the new main space when we do homogeneous space compaction. 1375 // Use unique_ptr since the space is only added during the homogeneous compaction phase. 1376 std::unique_ptr<space::MallocSpace> main_space_backup_; 1377 1378 // Minimal interval allowed between two homogeneous space compactions caused by OOM. 1379 uint64_t min_interval_homogeneous_space_compaction_by_oom_; 1380 1381 // Times of the last homogeneous space compaction caused by OOM. 1382 uint64_t last_time_homogeneous_space_compaction_by_oom_; 1383 1384 // Saved OOMs by homogeneous space compaction. 1385 Atomic<size_t> count_delayed_oom_; 1386 1387 // Count for requested homogeneous space compaction. 1388 Atomic<size_t> count_requested_homogeneous_space_compaction_; 1389 1390 // Count for ignored homogeneous space compaction. 1391 Atomic<size_t> count_ignored_homogeneous_space_compaction_; 1392 1393 // Count for performed homogeneous space compaction. 1394 Atomic<size_t> count_performed_homogeneous_space_compaction_; 1395 1396 // Whether or not a concurrent GC is pending. 1397 Atomic<bool> concurrent_gc_pending_; 1398 1399 // Active tasks which we can modify (change target time, desired collector type, etc..). 1400 CollectorTransitionTask* pending_collector_transition_ GUARDED_BY(pending_task_lock_); 1401 HeapTrimTask* pending_heap_trim_ GUARDED_BY(pending_task_lock_); 1402 1403 // Whether or not we use homogeneous space compaction to avoid OOM errors. 1404 bool use_homogeneous_space_compaction_for_oom_; 1405 1406 // True if the currently running collection has made some thread wait. 1407 bool running_collection_is_blocking_ GUARDED_BY(gc_complete_lock_); 1408 // The number of blocking GC runs. 1409 uint64_t blocking_gc_count_; 1410 // The total duration of blocking GC runs. 1411 uint64_t blocking_gc_time_; 1412 // The duration of the window for the GC count rate histograms. 1413 static constexpr uint64_t kGcCountRateHistogramWindowDuration = MsToNs(10 * 1000); // 10s. 1414 // The last time when the GC count rate histograms were updated. 1415 // This is rounded by kGcCountRateHistogramWindowDuration (a multiple of 10s). 1416 uint64_t last_update_time_gc_count_rate_histograms_; 1417 // The running count of GC runs in the last window. 1418 uint64_t gc_count_last_window_; 1419 // The running count of blocking GC runs in the last window. 1420 uint64_t blocking_gc_count_last_window_; 1421 // The maximum number of buckets in the GC count rate histograms. 1422 static constexpr size_t kGcCountRateMaxBucketCount = 200; 1423 // The histogram of the number of GC invocations per window duration. 1424 Histogram<uint64_t> gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1425 // The histogram of the number of blocking GC invocations per window duration. 1426 Histogram<uint64_t> blocking_gc_count_rate_histogram_ GUARDED_BY(gc_complete_lock_); 1427 1428 // Allocation tracking support 1429 Atomic<bool> alloc_tracking_enabled_; 1430 std::unique_ptr<AllocRecordObjectMap> allocation_records_; 1431 1432 // GC stress related data structures. 1433 Mutex* backtrace_lock_ DEFAULT_MUTEX_ACQUIRED_AFTER; 1434 // Debugging variables, seen backtraces vs unique backtraces. 1435 Atomic<uint64_t> seen_backtrace_count_; 1436 Atomic<uint64_t> unique_backtrace_count_; 1437 // Stack trace hashes that we already saw, 1438 std::unordered_set<uint64_t> seen_backtraces_ GUARDED_BY(backtrace_lock_); 1439 1440 // We disable GC when we are shutting down the runtime in case there are daemon threads still 1441 // allocating. 1442 bool gc_disabled_for_shutdown_ GUARDED_BY(gc_complete_lock_); 1443 1444 // Boot image spaces. 1445 std::vector<space::ImageSpace*> boot_image_spaces_; 1446 1447 // An installed allocation listener. 1448 Atomic<AllocationListener*> alloc_listener_; 1449 // An installed GC Pause listener. 1450 Atomic<GcPauseListener*> gc_pause_listener_; 1451 1452 std::unique_ptr<Verification> verification_; 1453 1454 friend class CollectorTransitionTask; 1455 friend class collector::GarbageCollector; 1456 friend class collector::MarkCompact; 1457 friend class collector::ConcurrentCopying; 1458 friend class collector::MarkSweep; 1459 friend class collector::SemiSpace; 1460 friend class ReferenceQueue; 1461 friend class ScopedGCCriticalSection; 1462 friend class VerifyReferenceCardVisitor; 1463 friend class VerifyReferenceVisitor; 1464 friend class VerifyObjectVisitor; 1465 1466 DISALLOW_IMPLICIT_CONSTRUCTORS(Heap); 1467 }; 1468 1469 } // namespace gc 1470 } // namespace art 1471 1472 #endif // ART_RUNTIME_GC_HEAP_H_ 1473