1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "sandbox/linux/services/credentials.h"
6
7 #include <errno.h>
8 #include <limits.h>
9 #include <signal.h>
10 #include <stddef.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <sys/syscall.h>
14 #include <sys/types.h>
15 #include <sys/wait.h>
16 #include <unistd.h>
17
18 #include "base/bind.h"
19 #include "base/compiler_specific.h"
20 #include "base/files/file_path.h"
21 #include "base/files/file_util.h"
22 #include "base/logging.h"
23 #include "base/macros.h"
24 #include "base/posix/eintr_wrapper.h"
25 #include "base/process/launch.h"
26 #include "base/third_party/valgrind/valgrind.h"
27 #include "build/build_config.h"
28 #include "sandbox/linux/services/namespace_utils.h"
29 #include "sandbox/linux/services/proc_util.h"
30 #include "sandbox/linux/services/syscall_wrappers.h"
31 #include "sandbox/linux/services/thread_helpers.h"
32 #include "sandbox/linux/system_headers/capability.h"
33 #include "sandbox/linux/system_headers/linux_signal.h"
34
35 namespace sandbox {
36
37 namespace {
38
IsRunningOnValgrind()39 bool IsRunningOnValgrind() { return RUNNING_ON_VALGRIND; }
40
41 // Checks that the set of RES-uids and the set of RES-gids have
42 // one element each and return that element in |resuid| and |resgid|
43 // respectively. It's ok to pass NULL as one or both of the ids.
GetRESIds(uid_t * resuid,gid_t * resgid)44 bool GetRESIds(uid_t* resuid, gid_t* resgid) {
45 uid_t ruid, euid, suid;
46 gid_t rgid, egid, sgid;
47 PCHECK(sys_getresuid(&ruid, &euid, &suid) == 0);
48 PCHECK(sys_getresgid(&rgid, &egid, &sgid) == 0);
49 const bool uids_are_equal = (ruid == euid) && (ruid == suid);
50 const bool gids_are_equal = (rgid == egid) && (rgid == sgid);
51 if (!uids_are_equal || !gids_are_equal) return false;
52 if (resuid) *resuid = euid;
53 if (resgid) *resgid = egid;
54 return true;
55 }
56
57 const int kExitSuccess = 0;
58
59 #if defined(__clang__)
60 // Disable sanitizers that rely on TLS and may write to non-stack memory.
61 __attribute__((no_sanitize_address))
62 __attribute__((no_sanitize_thread))
63 __attribute__((no_sanitize_memory))
64 #endif
ChrootToSelfFdinfo(void *)65 int ChrootToSelfFdinfo(void*) {
66 // This function can be run from a vforked child, so it should not write to
67 // any memory other than the stack or errno. Reads from TLS may be different
68 // from in the parent process.
69 RAW_CHECK(sys_chroot("/proc/self/fdinfo/") == 0);
70
71 // CWD is essentially an implicit file descriptor, so be careful to not
72 // leave it behind.
73 RAW_CHECK(chdir("/") == 0);
74 _exit(kExitSuccess);
75 }
76
77 // chroot() to an empty dir that is "safe". To be safe, it must not contain
78 // any subdirectory (chroot-ing there would allow a chroot escape) and it must
79 // be impossible to create an empty directory there.
80 // We achieve this by doing the following:
81 // 1. We create a new process sharing file system information.
82 // 2. In the child, we chroot to /proc/self/fdinfo/
83 // This is already "safe", since fdinfo/ does not contain another directory and
84 // one cannot create another directory there.
85 // 3. The process dies
86 // After (3) happens, the directory is not available anymore in /proc.
ChrootToSafeEmptyDir()87 bool ChrootToSafeEmptyDir() {
88 // We need to chroot to a fdinfo that is unique to a process and have that
89 // process die.
90 // 1. We don't want to simply fork() because duplicating the page tables is
91 // slow with a big address space.
92 // 2. We do not use a regular thread (that would unshare CLONE_FILES) because
93 // when we are in a PID namespace, we cannot easily get a handle to the
94 // /proc/tid directory for the thread (since /proc may not be aware of the
95 // PID namespace). With a process, we can just use /proc/self.
96 pid_t pid = -1;
97 char stack_buf[PTHREAD_STACK_MIN] ALIGNAS(16);
98 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
99 defined(ARCH_CPU_MIPS_FAMILY)
100 // The stack grows downward.
101 void* stack = stack_buf + sizeof(stack_buf);
102 #else
103 #error "Unsupported architecture"
104 #endif
105
106 int clone_flags = CLONE_FS | LINUX_SIGCHLD;
107 void* tls = nullptr;
108 #if defined(ARCH_CPU_X86_64) || defined(ARCH_CPU_ARM_FAMILY)
109 // Use CLONE_VM | CLONE_VFORK as an optimization to avoid copying page tables.
110 // Since clone writes to the new child's TLS before returning, we must set a
111 // new TLS to avoid corrupting the current process's TLS. On ARCH_CPU_X86,
112 // glibc performs syscalls by calling a function pointer in TLS, so we do not
113 // attempt this optimization.
114 clone_flags |= CLONE_VM | CLONE_VFORK | CLONE_SETTLS;
115
116 char tls_buf[PTHREAD_STACK_MIN] = {0};
117 tls = tls_buf;
118 #endif
119
120 pid = clone(ChrootToSelfFdinfo, stack, clone_flags, nullptr, nullptr, tls,
121 nullptr);
122 PCHECK(pid != -1);
123
124 int status = -1;
125 PCHECK(HANDLE_EINTR(waitpid(pid, &status, 0)) == pid);
126
127 return WIFEXITED(status) && WEXITSTATUS(status) == kExitSuccess;
128 }
129
130 // CHECK() that an attempt to move to a new user namespace raised an expected
131 // errno.
CheckCloneNewUserErrno(int error)132 void CheckCloneNewUserErrno(int error) {
133 // EPERM can happen if already in a chroot. EUSERS if too many nested
134 // namespaces are used. EINVAL for kernels that don't support the feature.
135 // Valgrind will ENOSYS unshare().
136 PCHECK(error == EPERM || error == EUSERS || error == EINVAL ||
137 error == ENOSYS);
138 }
139
140 // Converts a Capability to the corresponding Linux CAP_XXX value.
CapabilityToKernelValue(Credentials::Capability cap)141 int CapabilityToKernelValue(Credentials::Capability cap) {
142 switch (cap) {
143 case Credentials::Capability::SYS_CHROOT:
144 return CAP_SYS_CHROOT;
145 case Credentials::Capability::SYS_ADMIN:
146 return CAP_SYS_ADMIN;
147 }
148
149 LOG(FATAL) << "Invalid Capability: " << static_cast<int>(cap);
150 return 0;
151 }
152
153 } // namespace.
154
155 // static
DropAllCapabilities(int proc_fd)156 bool Credentials::DropAllCapabilities(int proc_fd) {
157 if (!SetCapabilities(proc_fd, std::vector<Capability>())) {
158 return false;
159 }
160
161 CHECK(!HasAnyCapability());
162 return true;
163 }
164
165 // static
DropAllCapabilities()166 bool Credentials::DropAllCapabilities() {
167 base::ScopedFD proc_fd(ProcUtil::OpenProc());
168 return Credentials::DropAllCapabilities(proc_fd.get());
169 }
170
171 // static
DropAllCapabilitiesOnCurrentThread()172 bool Credentials::DropAllCapabilitiesOnCurrentThread() {
173 return SetCapabilitiesOnCurrentThread(std::vector<Capability>());
174 }
175
176 // static
SetCapabilitiesOnCurrentThread(const std::vector<Capability> & caps)177 bool Credentials::SetCapabilitiesOnCurrentThread(
178 const std::vector<Capability>& caps) {
179 struct cap_hdr hdr = {};
180 hdr.version = _LINUX_CAPABILITY_VERSION_3;
181 struct cap_data data[_LINUX_CAPABILITY_U32S_3] = {{}};
182
183 // Initially, cap has no capability flags set. Enable the effective and
184 // permitted flags only for the requested capabilities.
185 for (const Capability cap : caps) {
186 const int cap_num = CapabilityToKernelValue(cap);
187 const size_t index = CAP_TO_INDEX(cap_num);
188 const uint32_t mask = CAP_TO_MASK(cap_num);
189 data[index].effective |= mask;
190 data[index].permitted |= mask;
191 }
192
193 return sys_capset(&hdr, data) == 0;
194 }
195
196 // static
SetCapabilities(int proc_fd,const std::vector<Capability> & caps)197 bool Credentials::SetCapabilities(int proc_fd,
198 const std::vector<Capability>& caps) {
199 DCHECK_LE(0, proc_fd);
200
201 #if !defined(THREAD_SANITIZER)
202 // With TSAN, accept to break the security model as it is a testing
203 // configuration.
204 CHECK(ThreadHelpers::IsSingleThreaded(proc_fd));
205 #endif
206
207 return SetCapabilitiesOnCurrentThread(caps);
208 }
209
HasAnyCapability()210 bool Credentials::HasAnyCapability() {
211 struct cap_hdr hdr = {};
212 hdr.version = _LINUX_CAPABILITY_VERSION_3;
213 struct cap_data data[_LINUX_CAPABILITY_U32S_3] = {{}};
214
215 PCHECK(sys_capget(&hdr, data) == 0);
216
217 for (size_t i = 0; i < arraysize(data); ++i) {
218 if (data[i].effective || data[i].permitted || data[i].inheritable) {
219 return true;
220 }
221 }
222
223 return false;
224 }
225
HasCapability(Capability cap)226 bool Credentials::HasCapability(Capability cap) {
227 struct cap_hdr hdr = {};
228 hdr.version = _LINUX_CAPABILITY_VERSION_3;
229 struct cap_data data[_LINUX_CAPABILITY_U32S_3] = {{}};
230
231 PCHECK(sys_capget(&hdr, data) == 0);
232
233 const int cap_num = CapabilityToKernelValue(cap);
234 const size_t index = CAP_TO_INDEX(cap_num);
235 const uint32_t mask = CAP_TO_MASK(cap_num);
236
237 return (data[index].effective | data[index].permitted |
238 data[index].inheritable) &
239 mask;
240 }
241
242 // static
CanCreateProcessInNewUserNS()243 bool Credentials::CanCreateProcessInNewUserNS() {
244 // Valgrind will let clone(2) pass-through, but doesn't support unshare(),
245 // so always consider UserNS unsupported there.
246 if (IsRunningOnValgrind()) {
247 return false;
248 }
249
250 #if defined(THREAD_SANITIZER)
251 // With TSAN, processes will always have threads running and can never
252 // enter a new user namespace with MoveToNewUserNS().
253 return false;
254 #endif
255
256 // This is roughly a fork().
257 const pid_t pid = sys_clone(CLONE_NEWUSER | SIGCHLD, 0, 0, 0, 0);
258
259 if (pid == -1) {
260 CheckCloneNewUserErrno(errno);
261 return false;
262 }
263
264 // The parent process could have had threads. In the child, these threads
265 // have disappeared. Make sure to not do anything in the child, as this is a
266 // fragile execution environment.
267 if (pid == 0) {
268 _exit(kExitSuccess);
269 }
270
271 // Always reap the child.
272 int status = -1;
273 PCHECK(HANDLE_EINTR(waitpid(pid, &status, 0)) == pid);
274 CHECK(WIFEXITED(status));
275 CHECK_EQ(kExitSuccess, WEXITSTATUS(status));
276
277 // clone(2) succeeded, we can use CLONE_NEWUSER.
278 return true;
279 }
280
MoveToNewUserNS()281 bool Credentials::MoveToNewUserNS() {
282 uid_t uid;
283 gid_t gid;
284 if (!GetRESIds(&uid, &gid)) {
285 // If all the uids (or gids) are not equal to each other, the security
286 // model will most likely confuse the caller, abort.
287 DVLOG(1) << "uids or gids differ!";
288 return false;
289 }
290 int ret = sys_unshare(CLONE_NEWUSER);
291 if (ret) {
292 const int unshare_errno = errno;
293 VLOG(1) << "Looks like unprivileged CLONE_NEWUSER may not be available "
294 << "on this kernel.";
295 CheckCloneNewUserErrno(unshare_errno);
296 return false;
297 }
298
299 if (NamespaceUtils::KernelSupportsDenySetgroups()) {
300 PCHECK(NamespaceUtils::DenySetgroups());
301 }
302
303 // The current {r,e,s}{u,g}id is now an overflow id (c.f.
304 // /proc/sys/kernel/overflowuid). Setup the uid and gid maps.
305 DCHECK(GetRESIds(NULL, NULL));
306 const char kGidMapFile[] = "/proc/self/gid_map";
307 const char kUidMapFile[] = "/proc/self/uid_map";
308 PCHECK(NamespaceUtils::WriteToIdMapFile(kGidMapFile, gid));
309 PCHECK(NamespaceUtils::WriteToIdMapFile(kUidMapFile, uid));
310 DCHECK(GetRESIds(NULL, NULL));
311 return true;
312 }
313
DropFileSystemAccess(int proc_fd)314 bool Credentials::DropFileSystemAccess(int proc_fd) {
315 CHECK_LE(0, proc_fd);
316
317 CHECK(ChrootToSafeEmptyDir());
318 CHECK(!base::DirectoryExists(base::FilePath("/proc")));
319 CHECK(!ProcUtil::HasOpenDirectory(proc_fd));
320 // We never let this function fail.
321 return true;
322 }
323
ForkAndDropCapabilitiesInChild()324 pid_t Credentials::ForkAndDropCapabilitiesInChild() {
325 pid_t pid = fork();
326 if (pid != 0) {
327 return pid;
328 }
329
330 // Since we just forked, we are single threaded.
331 PCHECK(DropAllCapabilitiesOnCurrentThread());
332 return 0;
333 }
334
335 } // namespace sandbox.
336