• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/ASTLambda.h"
40 #include "clang/AST/CharUnits.h"
41 #include "clang/AST/Expr.h"
42 #include "clang/AST/RecordLayout.h"
43 #include "clang/AST/StmtVisitor.h"
44 #include "clang/AST/TypeLoc.h"
45 #include "clang/Basic/Builtins.h"
46 #include "clang/Basic/TargetInfo.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cstring>
50 #include <functional>
51 
52 using namespace clang;
53 using llvm::APSInt;
54 using llvm::APFloat;
55 
56 static bool IsGlobalLValue(APValue::LValueBase B);
57 
58 namespace {
59   struct LValue;
60   struct CallStackFrame;
61   struct EvalInfo;
62 
getType(APValue::LValueBase B)63   static QualType getType(APValue::LValueBase B) {
64     if (!B) return QualType();
65     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
66       return D->getType();
67 
68     const Expr *Base = B.get<const Expr*>();
69 
70     // For a materialized temporary, the type of the temporary we materialized
71     // may not be the type of the expression.
72     if (const MaterializeTemporaryExpr *MTE =
73             dyn_cast<MaterializeTemporaryExpr>(Base)) {
74       SmallVector<const Expr *, 2> CommaLHSs;
75       SmallVector<SubobjectAdjustment, 2> Adjustments;
76       const Expr *Temp = MTE->GetTemporaryExpr();
77       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
78                                                                Adjustments);
79       // Keep any cv-qualifiers from the reference if we generated a temporary
80       // for it.
81       if (Inner != Temp)
82         return Inner->getType();
83     }
84 
85     return Base->getType();
86   }
87 
88   /// Get an LValue path entry, which is known to not be an array index, as a
89   /// field or base class.
90   static
getAsBaseOrMember(APValue::LValuePathEntry E)91   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
92     APValue::BaseOrMemberType Value;
93     Value.setFromOpaqueValue(E.BaseOrMember);
94     return Value;
95   }
96 
97   /// Get an LValue path entry, which is known to not be an array index, as a
98   /// field declaration.
getAsField(APValue::LValuePathEntry E)99   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
100     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
101   }
102   /// Get an LValue path entry, which is known to not be an array index, as a
103   /// base class declaration.
getAsBaseClass(APValue::LValuePathEntry E)104   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
105     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
106   }
107   /// Determine whether this LValue path entry for a base class names a virtual
108   /// base class.
isVirtualBaseClass(APValue::LValuePathEntry E)109   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
110     return getAsBaseOrMember(E).getInt();
111   }
112 
113   /// Find the path length and type of the most-derived subobject in the given
114   /// path, and find the size of the containing array, if any.
115   static
findMostDerivedSubobject(ASTContext & Ctx,QualType Base,ArrayRef<APValue::LValuePathEntry> Path,uint64_t & ArraySize,QualType & Type,bool & IsArray)116   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
117                                     ArrayRef<APValue::LValuePathEntry> Path,
118                                     uint64_t &ArraySize, QualType &Type,
119                                     bool &IsArray) {
120     unsigned MostDerivedLength = 0;
121     Type = Base;
122     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
123       if (Type->isArrayType()) {
124         const ConstantArrayType *CAT =
125           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
126         Type = CAT->getElementType();
127         ArraySize = CAT->getSize().getZExtValue();
128         MostDerivedLength = I + 1;
129         IsArray = true;
130       } else if (Type->isAnyComplexType()) {
131         const ComplexType *CT = Type->castAs<ComplexType>();
132         Type = CT->getElementType();
133         ArraySize = 2;
134         MostDerivedLength = I + 1;
135         IsArray = true;
136       } else if (const FieldDecl *FD = getAsField(Path[I])) {
137         Type = FD->getType();
138         ArraySize = 0;
139         MostDerivedLength = I + 1;
140         IsArray = false;
141       } else {
142         // Path[I] describes a base class.
143         ArraySize = 0;
144         IsArray = false;
145       }
146     }
147     return MostDerivedLength;
148   }
149 
150   // The order of this enum is important for diagnostics.
151   enum CheckSubobjectKind {
152     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
153     CSK_This, CSK_Real, CSK_Imag
154   };
155 
156   /// A path from a glvalue to a subobject of that glvalue.
157   struct SubobjectDesignator {
158     /// True if the subobject was named in a manner not supported by C++11. Such
159     /// lvalues can still be folded, but they are not core constant expressions
160     /// and we cannot perform lvalue-to-rvalue conversions on them.
161     unsigned Invalid : 1;
162 
163     /// Is this a pointer one past the end of an object?
164     unsigned IsOnePastTheEnd : 1;
165 
166     /// Indicator of whether the most-derived object is an array element.
167     unsigned MostDerivedIsArrayElement : 1;
168 
169     /// The length of the path to the most-derived object of which this is a
170     /// subobject.
171     unsigned MostDerivedPathLength : 29;
172 
173     /// The size of the array of which the most-derived object is an element.
174     /// This will always be 0 if the most-derived object is not an array
175     /// element. 0 is not an indicator of whether or not the most-derived object
176     /// is an array, however, because 0-length arrays are allowed.
177     uint64_t MostDerivedArraySize;
178 
179     /// The type of the most derived object referred to by this address.
180     QualType MostDerivedType;
181 
182     typedef APValue::LValuePathEntry PathEntry;
183 
184     /// The entries on the path from the glvalue to the designated subobject.
185     SmallVector<PathEntry, 8> Entries;
186 
SubobjectDesignator__anon4b2781fb0111::SubobjectDesignator187     SubobjectDesignator() : Invalid(true) {}
188 
SubobjectDesignator__anon4b2781fb0111::SubobjectDesignator189     explicit SubobjectDesignator(QualType T)
190         : Invalid(false), IsOnePastTheEnd(false),
191           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
192           MostDerivedArraySize(0), MostDerivedType(T) {}
193 
SubobjectDesignator__anon4b2781fb0111::SubobjectDesignator194     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
195         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
196           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
197           MostDerivedArraySize(0) {
198       if (!Invalid) {
199         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
200         ArrayRef<PathEntry> VEntries = V.getLValuePath();
201         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
202         if (V.getLValueBase()) {
203           bool IsArray = false;
204           MostDerivedPathLength =
205               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
206                                        V.getLValuePath(), MostDerivedArraySize,
207                                        MostDerivedType, IsArray);
208           MostDerivedIsArrayElement = IsArray;
209         }
210       }
211     }
212 
setInvalid__anon4b2781fb0111::SubobjectDesignator213     void setInvalid() {
214       Invalid = true;
215       Entries.clear();
216     }
217 
218     /// Determine whether this is a one-past-the-end pointer.
isOnePastTheEnd__anon4b2781fb0111::SubobjectDesignator219     bool isOnePastTheEnd() const {
220       assert(!Invalid);
221       if (IsOnePastTheEnd)
222         return true;
223       if (MostDerivedIsArrayElement &&
224           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
225         return true;
226       return false;
227     }
228 
229     /// Check that this refers to a valid subobject.
isValidSubobject__anon4b2781fb0111::SubobjectDesignator230     bool isValidSubobject() const {
231       if (Invalid)
232         return false;
233       return !isOnePastTheEnd();
234     }
235     /// Check that this refers to a valid subobject, and if not, produce a
236     /// relevant diagnostic and set the designator as invalid.
237     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
238 
239     /// Update this designator to refer to the first element within this array.
addArrayUnchecked__anon4b2781fb0111::SubobjectDesignator240     void addArrayUnchecked(const ConstantArrayType *CAT) {
241       PathEntry Entry;
242       Entry.ArrayIndex = 0;
243       Entries.push_back(Entry);
244 
245       // This is a most-derived object.
246       MostDerivedType = CAT->getElementType();
247       MostDerivedIsArrayElement = true;
248       MostDerivedArraySize = CAT->getSize().getZExtValue();
249       MostDerivedPathLength = Entries.size();
250     }
251     /// Update this designator to refer to the given base or member of this
252     /// object.
addDeclUnchecked__anon4b2781fb0111::SubobjectDesignator253     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
254       PathEntry Entry;
255       APValue::BaseOrMemberType Value(D, Virtual);
256       Entry.BaseOrMember = Value.getOpaqueValue();
257       Entries.push_back(Entry);
258 
259       // If this isn't a base class, it's a new most-derived object.
260       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
261         MostDerivedType = FD->getType();
262         MostDerivedIsArrayElement = false;
263         MostDerivedArraySize = 0;
264         MostDerivedPathLength = Entries.size();
265       }
266     }
267     /// Update this designator to refer to the given complex component.
addComplexUnchecked__anon4b2781fb0111::SubobjectDesignator268     void addComplexUnchecked(QualType EltTy, bool Imag) {
269       PathEntry Entry;
270       Entry.ArrayIndex = Imag;
271       Entries.push_back(Entry);
272 
273       // This is technically a most-derived object, though in practice this
274       // is unlikely to matter.
275       MostDerivedType = EltTy;
276       MostDerivedIsArrayElement = true;
277       MostDerivedArraySize = 2;
278       MostDerivedPathLength = Entries.size();
279     }
280     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
281     /// Add N to the address of this subobject.
adjustIndex__anon4b2781fb0111::SubobjectDesignator282     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
283       if (Invalid) return;
284       if (MostDerivedPathLength == Entries.size() &&
285           MostDerivedIsArrayElement) {
286         Entries.back().ArrayIndex += N;
287         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
288           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
289           setInvalid();
290         }
291         return;
292       }
293       // [expr.add]p4: For the purposes of these operators, a pointer to a
294       // nonarray object behaves the same as a pointer to the first element of
295       // an array of length one with the type of the object as its element type.
296       if (IsOnePastTheEnd && N == (uint64_t)-1)
297         IsOnePastTheEnd = false;
298       else if (!IsOnePastTheEnd && N == 1)
299         IsOnePastTheEnd = true;
300       else if (N != 0) {
301         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
302         setInvalid();
303       }
304     }
305   };
306 
307   /// A stack frame in the constexpr call stack.
308   struct CallStackFrame {
309     EvalInfo &Info;
310 
311     /// Parent - The caller of this stack frame.
312     CallStackFrame *Caller;
313 
314     /// CallLoc - The location of the call expression for this call.
315     SourceLocation CallLoc;
316 
317     /// Callee - The function which was called.
318     const FunctionDecl *Callee;
319 
320     /// Index - The call index of this call.
321     unsigned Index;
322 
323     /// This - The binding for the this pointer in this call, if any.
324     const LValue *This;
325 
326     /// Arguments - Parameter bindings for this function call, indexed by
327     /// parameters' function scope indices.
328     APValue *Arguments;
329 
330     // Note that we intentionally use std::map here so that references to
331     // values are stable.
332     typedef std::map<const void*, APValue> MapTy;
333     typedef MapTy::const_iterator temp_iterator;
334     /// Temporaries - Temporary lvalues materialized within this stack frame.
335     MapTy Temporaries;
336 
337     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
338                    const FunctionDecl *Callee, const LValue *This,
339                    APValue *Arguments);
340     ~CallStackFrame();
341 
getTemporary__anon4b2781fb0111::CallStackFrame342     APValue *getTemporary(const void *Key) {
343       MapTy::iterator I = Temporaries.find(Key);
344       return I == Temporaries.end() ? nullptr : &I->second;
345     }
346     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
347   };
348 
349   /// Temporarily override 'this'.
350   class ThisOverrideRAII {
351   public:
ThisOverrideRAII(CallStackFrame & Frame,const LValue * NewThis,bool Enable)352     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
353         : Frame(Frame), OldThis(Frame.This) {
354       if (Enable)
355         Frame.This = NewThis;
356     }
~ThisOverrideRAII()357     ~ThisOverrideRAII() {
358       Frame.This = OldThis;
359     }
360   private:
361     CallStackFrame &Frame;
362     const LValue *OldThis;
363   };
364 
365   /// A partial diagnostic which we might know in advance that we are not going
366   /// to emit.
367   class OptionalDiagnostic {
368     PartialDiagnostic *Diag;
369 
370   public:
OptionalDiagnostic(PartialDiagnostic * Diag=nullptr)371     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
372       : Diag(Diag) {}
373 
374     template<typename T>
operator <<(const T & v)375     OptionalDiagnostic &operator<<(const T &v) {
376       if (Diag)
377         *Diag << v;
378       return *this;
379     }
380 
operator <<(const APSInt & I)381     OptionalDiagnostic &operator<<(const APSInt &I) {
382       if (Diag) {
383         SmallVector<char, 32> Buffer;
384         I.toString(Buffer);
385         *Diag << StringRef(Buffer.data(), Buffer.size());
386       }
387       return *this;
388     }
389 
operator <<(const APFloat & F)390     OptionalDiagnostic &operator<<(const APFloat &F) {
391       if (Diag) {
392         // FIXME: Force the precision of the source value down so we don't
393         // print digits which are usually useless (we don't really care here if
394         // we truncate a digit by accident in edge cases).  Ideally,
395         // APFloat::toString would automatically print the shortest
396         // representation which rounds to the correct value, but it's a bit
397         // tricky to implement.
398         unsigned precision =
399             llvm::APFloat::semanticsPrecision(F.getSemantics());
400         precision = (precision * 59 + 195) / 196;
401         SmallVector<char, 32> Buffer;
402         F.toString(Buffer, precision);
403         *Diag << StringRef(Buffer.data(), Buffer.size());
404       }
405       return *this;
406     }
407   };
408 
409   /// A cleanup, and a flag indicating whether it is lifetime-extended.
410   class Cleanup {
411     llvm::PointerIntPair<APValue*, 1, bool> Value;
412 
413   public:
Cleanup(APValue * Val,bool IsLifetimeExtended)414     Cleanup(APValue *Val, bool IsLifetimeExtended)
415         : Value(Val, IsLifetimeExtended) {}
416 
isLifetimeExtended() const417     bool isLifetimeExtended() const { return Value.getInt(); }
endLifetime()418     void endLifetime() {
419       *Value.getPointer() = APValue();
420     }
421   };
422 
423   /// EvalInfo - This is a private struct used by the evaluator to capture
424   /// information about a subexpression as it is folded.  It retains information
425   /// about the AST context, but also maintains information about the folded
426   /// expression.
427   ///
428   /// If an expression could be evaluated, it is still possible it is not a C
429   /// "integer constant expression" or constant expression.  If not, this struct
430   /// captures information about how and why not.
431   ///
432   /// One bit of information passed *into* the request for constant folding
433   /// indicates whether the subexpression is "evaluated" or not according to C
434   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
435   /// evaluate the expression regardless of what the RHS is, but C only allows
436   /// certain things in certain situations.
437   struct EvalInfo {
438     ASTContext &Ctx;
439 
440     /// EvalStatus - Contains information about the evaluation.
441     Expr::EvalStatus &EvalStatus;
442 
443     /// CurrentCall - The top of the constexpr call stack.
444     CallStackFrame *CurrentCall;
445 
446     /// CallStackDepth - The number of calls in the call stack right now.
447     unsigned CallStackDepth;
448 
449     /// NextCallIndex - The next call index to assign.
450     unsigned NextCallIndex;
451 
452     /// StepsLeft - The remaining number of evaluation steps we're permitted
453     /// to perform. This is essentially a limit for the number of statements
454     /// we will evaluate.
455     unsigned StepsLeft;
456 
457     /// BottomFrame - The frame in which evaluation started. This must be
458     /// initialized after CurrentCall and CallStackDepth.
459     CallStackFrame BottomFrame;
460 
461     /// A stack of values whose lifetimes end at the end of some surrounding
462     /// evaluation frame.
463     llvm::SmallVector<Cleanup, 16> CleanupStack;
464 
465     /// EvaluatingDecl - This is the declaration whose initializer is being
466     /// evaluated, if any.
467     APValue::LValueBase EvaluatingDecl;
468 
469     /// EvaluatingDeclValue - This is the value being constructed for the
470     /// declaration whose initializer is being evaluated, if any.
471     APValue *EvaluatingDeclValue;
472 
473     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
474     /// notes attached to it will also be stored, otherwise they will not be.
475     bool HasActiveDiagnostic;
476 
477     /// \brief Have we emitted a diagnostic explaining why we couldn't constant
478     /// fold (not just why it's not strictly a constant expression)?
479     bool HasFoldFailureDiagnostic;
480 
481     /// \brief Whether or not we're currently speculatively evaluating.
482     bool IsSpeculativelyEvaluating;
483 
484     enum EvaluationMode {
485       /// Evaluate as a constant expression. Stop if we find that the expression
486       /// is not a constant expression.
487       EM_ConstantExpression,
488 
489       /// Evaluate as a potential constant expression. Keep going if we hit a
490       /// construct that we can't evaluate yet (because we don't yet know the
491       /// value of something) but stop if we hit something that could never be
492       /// a constant expression.
493       EM_PotentialConstantExpression,
494 
495       /// Fold the expression to a constant. Stop if we hit a side-effect that
496       /// we can't model.
497       EM_ConstantFold,
498 
499       /// Evaluate the expression looking for integer overflow and similar
500       /// issues. Don't worry about side-effects, and try to visit all
501       /// subexpressions.
502       EM_EvaluateForOverflow,
503 
504       /// Evaluate in any way we know how. Don't worry about side-effects that
505       /// can't be modeled.
506       EM_IgnoreSideEffects,
507 
508       /// Evaluate as a constant expression. Stop if we find that the expression
509       /// is not a constant expression. Some expressions can be retried in the
510       /// optimizer if we don't constant fold them here, but in an unevaluated
511       /// context we try to fold them immediately since the optimizer never
512       /// gets a chance to look at it.
513       EM_ConstantExpressionUnevaluated,
514 
515       /// Evaluate as a potential constant expression. Keep going if we hit a
516       /// construct that we can't evaluate yet (because we don't yet know the
517       /// value of something) but stop if we hit something that could never be
518       /// a constant expression. Some expressions can be retried in the
519       /// optimizer if we don't constant fold them here, but in an unevaluated
520       /// context we try to fold them immediately since the optimizer never
521       /// gets a chance to look at it.
522       EM_PotentialConstantExpressionUnevaluated,
523 
524       /// Evaluate as a constant expression. Continue evaluating if we find a
525       /// MemberExpr with a base that can't be evaluated.
526       EM_DesignatorFold,
527     } EvalMode;
528 
529     /// Are we checking whether the expression is a potential constant
530     /// expression?
checkingPotentialConstantExpression__anon4b2781fb0111::EvalInfo531     bool checkingPotentialConstantExpression() const {
532       return EvalMode == EM_PotentialConstantExpression ||
533              EvalMode == EM_PotentialConstantExpressionUnevaluated;
534     }
535 
536     /// Are we checking an expression for overflow?
537     // FIXME: We should check for any kind of undefined or suspicious behavior
538     // in such constructs, not just overflow.
checkingForOverflow__anon4b2781fb0111::EvalInfo539     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
540 
EvalInfo__anon4b2781fb0111::EvalInfo541     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
542       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
543         CallStackDepth(0), NextCallIndex(1),
544         StepsLeft(getLangOpts().ConstexprStepLimit),
545         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
546         EvaluatingDecl((const ValueDecl *)nullptr),
547         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
548         HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
549         EvalMode(Mode) {}
550 
setEvaluatingDecl__anon4b2781fb0111::EvalInfo551     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
552       EvaluatingDecl = Base;
553       EvaluatingDeclValue = &Value;
554     }
555 
getLangOpts__anon4b2781fb0111::EvalInfo556     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
557 
CheckCallLimit__anon4b2781fb0111::EvalInfo558     bool CheckCallLimit(SourceLocation Loc) {
559       // Don't perform any constexpr calls (other than the call we're checking)
560       // when checking a potential constant expression.
561       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
562         return false;
563       if (NextCallIndex == 0) {
564         // NextCallIndex has wrapped around.
565         FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
566         return false;
567       }
568       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
569         return true;
570       FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
571         << getLangOpts().ConstexprCallDepth;
572       return false;
573     }
574 
getCallFrame__anon4b2781fb0111::EvalInfo575     CallStackFrame *getCallFrame(unsigned CallIndex) {
576       assert(CallIndex && "no call index in getCallFrame");
577       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
578       // be null in this loop.
579       CallStackFrame *Frame = CurrentCall;
580       while (Frame->Index > CallIndex)
581         Frame = Frame->Caller;
582       return (Frame->Index == CallIndex) ? Frame : nullptr;
583     }
584 
nextStep__anon4b2781fb0111::EvalInfo585     bool nextStep(const Stmt *S) {
586       if (!StepsLeft) {
587         FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
588         return false;
589       }
590       --StepsLeft;
591       return true;
592     }
593 
594   private:
595     /// Add a diagnostic to the diagnostics list.
addDiag__anon4b2781fb0111::EvalInfo596     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
597       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
598       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
599       return EvalStatus.Diag->back().second;
600     }
601 
602     /// Add notes containing a call stack to the current point of evaluation.
603     void addCallStack(unsigned Limit);
604 
605   private:
Diag__anon4b2781fb0111::EvalInfo606     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
607                             unsigned ExtraNotes, bool IsCCEDiag) {
608 
609       if (EvalStatus.Diag) {
610         // If we have a prior diagnostic, it will be noting that the expression
611         // isn't a constant expression. This diagnostic is more important,
612         // unless we require this evaluation to produce a constant expression.
613         //
614         // FIXME: We might want to show both diagnostics to the user in
615         // EM_ConstantFold mode.
616         if (!EvalStatus.Diag->empty()) {
617           switch (EvalMode) {
618           case EM_ConstantFold:
619           case EM_IgnoreSideEffects:
620           case EM_EvaluateForOverflow:
621             if (!HasFoldFailureDiagnostic)
622               break;
623             // We've already failed to fold something. Keep that diagnostic.
624           case EM_ConstantExpression:
625           case EM_PotentialConstantExpression:
626           case EM_ConstantExpressionUnevaluated:
627           case EM_PotentialConstantExpressionUnevaluated:
628           case EM_DesignatorFold:
629             HasActiveDiagnostic = false;
630             return OptionalDiagnostic();
631           }
632         }
633 
634         unsigned CallStackNotes = CallStackDepth - 1;
635         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
636         if (Limit)
637           CallStackNotes = std::min(CallStackNotes, Limit + 1);
638         if (checkingPotentialConstantExpression())
639           CallStackNotes = 0;
640 
641         HasActiveDiagnostic = true;
642         HasFoldFailureDiagnostic = !IsCCEDiag;
643         EvalStatus.Diag->clear();
644         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
645         addDiag(Loc, DiagId);
646         if (!checkingPotentialConstantExpression())
647           addCallStack(Limit);
648         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
649       }
650       HasActiveDiagnostic = false;
651       return OptionalDiagnostic();
652     }
653   public:
654     // Diagnose that the evaluation could not be folded (FF => FoldFailure)
655     OptionalDiagnostic
FFDiag__anon4b2781fb0111::EvalInfo656     FFDiag(SourceLocation Loc,
657           diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
658           unsigned ExtraNotes = 0) {
659       return Diag(Loc, DiagId, ExtraNotes, false);
660     }
661 
FFDiag__anon4b2781fb0111::EvalInfo662     OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
663                               = diag::note_invalid_subexpr_in_const_expr,
664                             unsigned ExtraNotes = 0) {
665       if (EvalStatus.Diag)
666         return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
667       HasActiveDiagnostic = false;
668       return OptionalDiagnostic();
669     }
670 
671     /// Diagnose that the evaluation does not produce a C++11 core constant
672     /// expression.
673     ///
674     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
675     /// EM_PotentialConstantExpression mode and we produce one of these.
CCEDiag__anon4b2781fb0111::EvalInfo676     OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
677                                  = diag::note_invalid_subexpr_in_const_expr,
678                                unsigned ExtraNotes = 0) {
679       // Don't override a previous diagnostic. Don't bother collecting
680       // diagnostics if we're evaluating for overflow.
681       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
682         HasActiveDiagnostic = false;
683         return OptionalDiagnostic();
684       }
685       return Diag(Loc, DiagId, ExtraNotes, true);
686     }
CCEDiag__anon4b2781fb0111::EvalInfo687     OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
688                                  = diag::note_invalid_subexpr_in_const_expr,
689                                unsigned ExtraNotes = 0) {
690       return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
691     }
692     /// Add a note to a prior diagnostic.
Note__anon4b2781fb0111::EvalInfo693     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
694       if (!HasActiveDiagnostic)
695         return OptionalDiagnostic();
696       return OptionalDiagnostic(&addDiag(Loc, DiagId));
697     }
698 
699     /// Add a stack of notes to a prior diagnostic.
addNotes__anon4b2781fb0111::EvalInfo700     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
701       if (HasActiveDiagnostic) {
702         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
703                                 Diags.begin(), Diags.end());
704       }
705     }
706 
707     /// Should we continue evaluation after encountering a side-effect that we
708     /// couldn't model?
keepEvaluatingAfterSideEffect__anon4b2781fb0111::EvalInfo709     bool keepEvaluatingAfterSideEffect() {
710       switch (EvalMode) {
711       case EM_PotentialConstantExpression:
712       case EM_PotentialConstantExpressionUnevaluated:
713       case EM_EvaluateForOverflow:
714       case EM_IgnoreSideEffects:
715         return true;
716 
717       case EM_ConstantExpression:
718       case EM_ConstantExpressionUnevaluated:
719       case EM_ConstantFold:
720       case EM_DesignatorFold:
721         return false;
722       }
723       llvm_unreachable("Missed EvalMode case");
724     }
725 
726     /// Note that we have had a side-effect, and determine whether we should
727     /// keep evaluating.
noteSideEffect__anon4b2781fb0111::EvalInfo728     bool noteSideEffect() {
729       EvalStatus.HasSideEffects = true;
730       return keepEvaluatingAfterSideEffect();
731     }
732 
733     /// Should we continue evaluation after encountering undefined behavior?
keepEvaluatingAfterUndefinedBehavior__anon4b2781fb0111::EvalInfo734     bool keepEvaluatingAfterUndefinedBehavior() {
735       switch (EvalMode) {
736       case EM_EvaluateForOverflow:
737       case EM_IgnoreSideEffects:
738       case EM_ConstantFold:
739       case EM_DesignatorFold:
740         return true;
741 
742       case EM_PotentialConstantExpression:
743       case EM_PotentialConstantExpressionUnevaluated:
744       case EM_ConstantExpression:
745       case EM_ConstantExpressionUnevaluated:
746         return false;
747       }
748       llvm_unreachable("Missed EvalMode case");
749     }
750 
751     /// Note that we hit something that was technically undefined behavior, but
752     /// that we can evaluate past it (such as signed overflow or floating-point
753     /// division by zero.)
noteUndefinedBehavior__anon4b2781fb0111::EvalInfo754     bool noteUndefinedBehavior() {
755       EvalStatus.HasUndefinedBehavior = true;
756       return keepEvaluatingAfterUndefinedBehavior();
757     }
758 
759     /// Should we continue evaluation as much as possible after encountering a
760     /// construct which can't be reduced to a value?
keepEvaluatingAfterFailure__anon4b2781fb0111::EvalInfo761     bool keepEvaluatingAfterFailure() {
762       if (!StepsLeft)
763         return false;
764 
765       switch (EvalMode) {
766       case EM_PotentialConstantExpression:
767       case EM_PotentialConstantExpressionUnevaluated:
768       case EM_EvaluateForOverflow:
769         return true;
770 
771       case EM_ConstantExpression:
772       case EM_ConstantExpressionUnevaluated:
773       case EM_ConstantFold:
774       case EM_IgnoreSideEffects:
775       case EM_DesignatorFold:
776         return false;
777       }
778       llvm_unreachable("Missed EvalMode case");
779     }
780 
781     /// Notes that we failed to evaluate an expression that other expressions
782     /// directly depend on, and determine if we should keep evaluating. This
783     /// should only be called if we actually intend to keep evaluating.
784     ///
785     /// Call noteSideEffect() instead if we may be able to ignore the value that
786     /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
787     ///
788     /// (Foo(), 1)      // use noteSideEffect
789     /// (Foo() || true) // use noteSideEffect
790     /// Foo() + 1       // use noteFailure
noteFailure__anon4b2781fb0111::EvalInfo791     LLVM_ATTRIBUTE_UNUSED_RESULT bool noteFailure() {
792       // Failure when evaluating some expression often means there is some
793       // subexpression whose evaluation was skipped. Therefore, (because we
794       // don't track whether we skipped an expression when unwinding after an
795       // evaluation failure) every evaluation failure that bubbles up from a
796       // subexpression implies that a side-effect has potentially happened. We
797       // skip setting the HasSideEffects flag to true until we decide to
798       // continue evaluating after that point, which happens here.
799       bool KeepGoing = keepEvaluatingAfterFailure();
800       EvalStatus.HasSideEffects |= KeepGoing;
801       return KeepGoing;
802     }
803 
allowInvalidBaseExpr__anon4b2781fb0111::EvalInfo804     bool allowInvalidBaseExpr() const {
805       return EvalMode == EM_DesignatorFold;
806     }
807   };
808 
809   /// Object used to treat all foldable expressions as constant expressions.
810   struct FoldConstant {
811     EvalInfo &Info;
812     bool Enabled;
813     bool HadNoPriorDiags;
814     EvalInfo::EvaluationMode OldMode;
815 
FoldConstant__anon4b2781fb0111::FoldConstant816     explicit FoldConstant(EvalInfo &Info, bool Enabled)
817       : Info(Info),
818         Enabled(Enabled),
819         HadNoPriorDiags(Info.EvalStatus.Diag &&
820                         Info.EvalStatus.Diag->empty() &&
821                         !Info.EvalStatus.HasSideEffects),
822         OldMode(Info.EvalMode) {
823       if (Enabled &&
824           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
825            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
826         Info.EvalMode = EvalInfo::EM_ConstantFold;
827     }
keepDiagnostics__anon4b2781fb0111::FoldConstant828     void keepDiagnostics() { Enabled = false; }
~FoldConstant__anon4b2781fb0111::FoldConstant829     ~FoldConstant() {
830       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
831           !Info.EvalStatus.HasSideEffects)
832         Info.EvalStatus.Diag->clear();
833       Info.EvalMode = OldMode;
834     }
835   };
836 
837   /// RAII object used to treat the current evaluation as the correct pointer
838   /// offset fold for the current EvalMode
839   struct FoldOffsetRAII {
840     EvalInfo &Info;
841     EvalInfo::EvaluationMode OldMode;
FoldOffsetRAII__anon4b2781fb0111::FoldOffsetRAII842     explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
843         : Info(Info), OldMode(Info.EvalMode) {
844       if (!Info.checkingPotentialConstantExpression())
845         Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
846                                   : EvalInfo::EM_ConstantFold;
847     }
848 
~FoldOffsetRAII__anon4b2781fb0111::FoldOffsetRAII849     ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
850   };
851 
852   /// RAII object used to optionally suppress diagnostics and side-effects from
853   /// a speculative evaluation.
854   class SpeculativeEvaluationRAII {
855     /// Pair of EvalInfo, and a bit that stores whether or not we were
856     /// speculatively evaluating when we created this RAII.
857     llvm::PointerIntPair<EvalInfo *, 1, bool> InfoAndOldSpecEval;
858     Expr::EvalStatus Old;
859 
moveFromAndCancel(SpeculativeEvaluationRAII && Other)860     void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
861       InfoAndOldSpecEval = Other.InfoAndOldSpecEval;
862       Old = Other.Old;
863       Other.InfoAndOldSpecEval.setPointer(nullptr);
864     }
865 
maybeRestoreState()866     void maybeRestoreState() {
867       EvalInfo *Info = InfoAndOldSpecEval.getPointer();
868       if (!Info)
869         return;
870 
871       Info->EvalStatus = Old;
872       Info->IsSpeculativelyEvaluating = InfoAndOldSpecEval.getInt();
873     }
874 
875   public:
876     SpeculativeEvaluationRAII() = default;
877 
SpeculativeEvaluationRAII(EvalInfo & Info,SmallVectorImpl<PartialDiagnosticAt> * NewDiag=nullptr)878     SpeculativeEvaluationRAII(
879         EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
880         : InfoAndOldSpecEval(&Info, Info.IsSpeculativelyEvaluating),
881           Old(Info.EvalStatus) {
882       Info.EvalStatus.Diag = NewDiag;
883       Info.IsSpeculativelyEvaluating = true;
884     }
885 
886     SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
SpeculativeEvaluationRAII(SpeculativeEvaluationRAII && Other)887     SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
888       moveFromAndCancel(std::move(Other));
889     }
890 
operator =(SpeculativeEvaluationRAII && Other)891     SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
892       maybeRestoreState();
893       moveFromAndCancel(std::move(Other));
894       return *this;
895     }
896 
~SpeculativeEvaluationRAII()897     ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
898   };
899 
900   /// RAII object wrapping a full-expression or block scope, and handling
901   /// the ending of the lifetime of temporaries created within it.
902   template<bool IsFullExpression>
903   class ScopeRAII {
904     EvalInfo &Info;
905     unsigned OldStackSize;
906   public:
ScopeRAII(EvalInfo & Info)907     ScopeRAII(EvalInfo &Info)
908         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
~ScopeRAII()909     ~ScopeRAII() {
910       // Body moved to a static method to encourage the compiler to inline away
911       // instances of this class.
912       cleanup(Info, OldStackSize);
913     }
914   private:
cleanup(EvalInfo & Info,unsigned OldStackSize)915     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
916       unsigned NewEnd = OldStackSize;
917       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
918            I != N; ++I) {
919         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
920           // Full-expression cleanup of a lifetime-extended temporary: nothing
921           // to do, just move this cleanup to the right place in the stack.
922           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
923           ++NewEnd;
924         } else {
925           // End the lifetime of the object.
926           Info.CleanupStack[I].endLifetime();
927         }
928       }
929       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
930                               Info.CleanupStack.end());
931     }
932   };
933   typedef ScopeRAII<false> BlockScopeRAII;
934   typedef ScopeRAII<true> FullExpressionRAII;
935 }
936 
checkSubobject(EvalInfo & Info,const Expr * E,CheckSubobjectKind CSK)937 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
938                                          CheckSubobjectKind CSK) {
939   if (Invalid)
940     return false;
941   if (isOnePastTheEnd()) {
942     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
943       << CSK;
944     setInvalid();
945     return false;
946   }
947   return true;
948 }
949 
diagnosePointerArithmetic(EvalInfo & Info,const Expr * E,uint64_t N)950 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
951                                                     const Expr *E, uint64_t N) {
952   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
953     Info.CCEDiag(E, diag::note_constexpr_array_index)
954       << static_cast<int>(N) << /*array*/ 0
955       << static_cast<unsigned>(MostDerivedArraySize);
956   else
957     Info.CCEDiag(E, diag::note_constexpr_array_index)
958       << static_cast<int>(N) << /*non-array*/ 1;
959   setInvalid();
960 }
961 
CallStackFrame(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,APValue * Arguments)962 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
963                                const FunctionDecl *Callee, const LValue *This,
964                                APValue *Arguments)
965     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
966       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
967   Info.CurrentCall = this;
968   ++Info.CallStackDepth;
969 }
970 
~CallStackFrame()971 CallStackFrame::~CallStackFrame() {
972   assert(Info.CurrentCall == this && "calls retired out of order");
973   --Info.CallStackDepth;
974   Info.CurrentCall = Caller;
975 }
976 
createTemporary(const void * Key,bool IsLifetimeExtended)977 APValue &CallStackFrame::createTemporary(const void *Key,
978                                          bool IsLifetimeExtended) {
979   APValue &Result = Temporaries[Key];
980   assert(Result.isUninit() && "temporary created multiple times");
981   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
982   return Result;
983 }
984 
985 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
986 
addCallStack(unsigned Limit)987 void EvalInfo::addCallStack(unsigned Limit) {
988   // Determine which calls to skip, if any.
989   unsigned ActiveCalls = CallStackDepth - 1;
990   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
991   if (Limit && Limit < ActiveCalls) {
992     SkipStart = Limit / 2 + Limit % 2;
993     SkipEnd = ActiveCalls - Limit / 2;
994   }
995 
996   // Walk the call stack and add the diagnostics.
997   unsigned CallIdx = 0;
998   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
999        Frame = Frame->Caller, ++CallIdx) {
1000     // Skip this call?
1001     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
1002       if (CallIdx == SkipStart) {
1003         // Note that we're skipping calls.
1004         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
1005           << unsigned(ActiveCalls - Limit);
1006       }
1007       continue;
1008     }
1009 
1010     // Use a different note for an inheriting constructor, because from the
1011     // user's perspective it's not really a function at all.
1012     if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
1013       if (CD->isInheritingConstructor()) {
1014         addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
1015           << CD->getParent();
1016         continue;
1017       }
1018     }
1019 
1020     SmallVector<char, 128> Buffer;
1021     llvm::raw_svector_ostream Out(Buffer);
1022     describeCall(Frame, Out);
1023     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
1024   }
1025 }
1026 
1027 namespace {
1028   struct ComplexValue {
1029   private:
1030     bool IsInt;
1031 
1032   public:
1033     APSInt IntReal, IntImag;
1034     APFloat FloatReal, FloatImag;
1035 
ComplexValue__anon4b2781fb0211::ComplexValue1036     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
1037 
makeComplexFloat__anon4b2781fb0211::ComplexValue1038     void makeComplexFloat() { IsInt = false; }
isComplexFloat__anon4b2781fb0211::ComplexValue1039     bool isComplexFloat() const { return !IsInt; }
getComplexFloatReal__anon4b2781fb0211::ComplexValue1040     APFloat &getComplexFloatReal() { return FloatReal; }
getComplexFloatImag__anon4b2781fb0211::ComplexValue1041     APFloat &getComplexFloatImag() { return FloatImag; }
1042 
makeComplexInt__anon4b2781fb0211::ComplexValue1043     void makeComplexInt() { IsInt = true; }
isComplexInt__anon4b2781fb0211::ComplexValue1044     bool isComplexInt() const { return IsInt; }
getComplexIntReal__anon4b2781fb0211::ComplexValue1045     APSInt &getComplexIntReal() { return IntReal; }
getComplexIntImag__anon4b2781fb0211::ComplexValue1046     APSInt &getComplexIntImag() { return IntImag; }
1047 
moveInto__anon4b2781fb0211::ComplexValue1048     void moveInto(APValue &v) const {
1049       if (isComplexFloat())
1050         v = APValue(FloatReal, FloatImag);
1051       else
1052         v = APValue(IntReal, IntImag);
1053     }
setFrom__anon4b2781fb0211::ComplexValue1054     void setFrom(const APValue &v) {
1055       assert(v.isComplexFloat() || v.isComplexInt());
1056       if (v.isComplexFloat()) {
1057         makeComplexFloat();
1058         FloatReal = v.getComplexFloatReal();
1059         FloatImag = v.getComplexFloatImag();
1060       } else {
1061         makeComplexInt();
1062         IntReal = v.getComplexIntReal();
1063         IntImag = v.getComplexIntImag();
1064       }
1065     }
1066   };
1067 
1068   struct LValue {
1069     APValue::LValueBase Base;
1070     CharUnits Offset;
1071     unsigned InvalidBase : 1;
1072     unsigned CallIndex : 31;
1073     SubobjectDesignator Designator;
1074 
getLValueBase__anon4b2781fb0211::LValue1075     const APValue::LValueBase getLValueBase() const { return Base; }
getLValueOffset__anon4b2781fb0211::LValue1076     CharUnits &getLValueOffset() { return Offset; }
getLValueOffset__anon4b2781fb0211::LValue1077     const CharUnits &getLValueOffset() const { return Offset; }
getLValueCallIndex__anon4b2781fb0211::LValue1078     unsigned getLValueCallIndex() const { return CallIndex; }
getLValueDesignator__anon4b2781fb0211::LValue1079     SubobjectDesignator &getLValueDesignator() { return Designator; }
getLValueDesignator__anon4b2781fb0211::LValue1080     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1081 
moveInto__anon4b2781fb0211::LValue1082     void moveInto(APValue &V) const {
1083       if (Designator.Invalid)
1084         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
1085       else
1086         V = APValue(Base, Offset, Designator.Entries,
1087                     Designator.IsOnePastTheEnd, CallIndex);
1088     }
setFrom__anon4b2781fb0211::LValue1089     void setFrom(ASTContext &Ctx, const APValue &V) {
1090       assert(V.isLValue());
1091       Base = V.getLValueBase();
1092       Offset = V.getLValueOffset();
1093       InvalidBase = false;
1094       CallIndex = V.getLValueCallIndex();
1095       Designator = SubobjectDesignator(Ctx, V);
1096     }
1097 
set__anon4b2781fb0211::LValue1098     void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1099       Base = B;
1100       Offset = CharUnits::Zero();
1101       InvalidBase = BInvalid;
1102       CallIndex = I;
1103       Designator = SubobjectDesignator(getType(B));
1104     }
1105 
setInvalid__anon4b2781fb0211::LValue1106     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1107       set(B, I, true);
1108     }
1109 
1110     // Check that this LValue is not based on a null pointer. If it is, produce
1111     // a diagnostic and mark the designator as invalid.
checkNullPointer__anon4b2781fb0211::LValue1112     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1113                           CheckSubobjectKind CSK) {
1114       if (Designator.Invalid)
1115         return false;
1116       if (!Base) {
1117         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1118           << CSK;
1119         Designator.setInvalid();
1120         return false;
1121       }
1122       return true;
1123     }
1124 
1125     // Check this LValue refers to an object. If not, set the designator to be
1126     // invalid and emit a diagnostic.
checkSubobject__anon4b2781fb0211::LValue1127     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1128       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1129              Designator.checkSubobject(Info, E, CSK);
1130     }
1131 
addDecl__anon4b2781fb0211::LValue1132     void addDecl(EvalInfo &Info, const Expr *E,
1133                  const Decl *D, bool Virtual = false) {
1134       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1135         Designator.addDeclUnchecked(D, Virtual);
1136     }
addArray__anon4b2781fb0211::LValue1137     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1138       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1139         Designator.addArrayUnchecked(CAT);
1140     }
addComplex__anon4b2781fb0211::LValue1141     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1142       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1143         Designator.addComplexUnchecked(EltTy, Imag);
1144     }
adjustIndex__anon4b2781fb0211::LValue1145     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
1146       if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
1147         Designator.adjustIndex(Info, E, N);
1148     }
1149   };
1150 
1151   struct MemberPtr {
MemberPtr__anon4b2781fb0211::MemberPtr1152     MemberPtr() {}
MemberPtr__anon4b2781fb0211::MemberPtr1153     explicit MemberPtr(const ValueDecl *Decl) :
1154       DeclAndIsDerivedMember(Decl, false), Path() {}
1155 
1156     /// The member or (direct or indirect) field referred to by this member
1157     /// pointer, or 0 if this is a null member pointer.
getDecl__anon4b2781fb0211::MemberPtr1158     const ValueDecl *getDecl() const {
1159       return DeclAndIsDerivedMember.getPointer();
1160     }
1161     /// Is this actually a member of some type derived from the relevant class?
isDerivedMember__anon4b2781fb0211::MemberPtr1162     bool isDerivedMember() const {
1163       return DeclAndIsDerivedMember.getInt();
1164     }
1165     /// Get the class which the declaration actually lives in.
getContainingRecord__anon4b2781fb0211::MemberPtr1166     const CXXRecordDecl *getContainingRecord() const {
1167       return cast<CXXRecordDecl>(
1168           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1169     }
1170 
moveInto__anon4b2781fb0211::MemberPtr1171     void moveInto(APValue &V) const {
1172       V = APValue(getDecl(), isDerivedMember(), Path);
1173     }
setFrom__anon4b2781fb0211::MemberPtr1174     void setFrom(const APValue &V) {
1175       assert(V.isMemberPointer());
1176       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1177       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1178       Path.clear();
1179       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1180       Path.insert(Path.end(), P.begin(), P.end());
1181     }
1182 
1183     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1184     /// whether the member is a member of some class derived from the class type
1185     /// of the member pointer.
1186     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1187     /// Path - The path of base/derived classes from the member declaration's
1188     /// class (exclusive) to the class type of the member pointer (inclusive).
1189     SmallVector<const CXXRecordDecl*, 4> Path;
1190 
1191     /// Perform a cast towards the class of the Decl (either up or down the
1192     /// hierarchy).
castBack__anon4b2781fb0211::MemberPtr1193     bool castBack(const CXXRecordDecl *Class) {
1194       assert(!Path.empty());
1195       const CXXRecordDecl *Expected;
1196       if (Path.size() >= 2)
1197         Expected = Path[Path.size() - 2];
1198       else
1199         Expected = getContainingRecord();
1200       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1201         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1202         // if B does not contain the original member and is not a base or
1203         // derived class of the class containing the original member, the result
1204         // of the cast is undefined.
1205         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1206         // (D::*). We consider that to be a language defect.
1207         return false;
1208       }
1209       Path.pop_back();
1210       return true;
1211     }
1212     /// Perform a base-to-derived member pointer cast.
castToDerived__anon4b2781fb0211::MemberPtr1213     bool castToDerived(const CXXRecordDecl *Derived) {
1214       if (!getDecl())
1215         return true;
1216       if (!isDerivedMember()) {
1217         Path.push_back(Derived);
1218         return true;
1219       }
1220       if (!castBack(Derived))
1221         return false;
1222       if (Path.empty())
1223         DeclAndIsDerivedMember.setInt(false);
1224       return true;
1225     }
1226     /// Perform a derived-to-base member pointer cast.
castToBase__anon4b2781fb0211::MemberPtr1227     bool castToBase(const CXXRecordDecl *Base) {
1228       if (!getDecl())
1229         return true;
1230       if (Path.empty())
1231         DeclAndIsDerivedMember.setInt(true);
1232       if (isDerivedMember()) {
1233         Path.push_back(Base);
1234         return true;
1235       }
1236       return castBack(Base);
1237     }
1238   };
1239 
1240   /// Compare two member pointers, which are assumed to be of the same type.
operator ==(const MemberPtr & LHS,const MemberPtr & RHS)1241   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1242     if (!LHS.getDecl() || !RHS.getDecl())
1243       return !LHS.getDecl() && !RHS.getDecl();
1244     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1245       return false;
1246     return LHS.Path == RHS.Path;
1247   }
1248 }
1249 
1250 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1251 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1252                             const LValue &This, const Expr *E,
1253                             bool AllowNonLiteralTypes = false);
1254 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1255 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1256 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1257                                   EvalInfo &Info);
1258 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1259 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1260 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1261                                     EvalInfo &Info);
1262 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1263 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1264 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1265 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1266 
1267 //===----------------------------------------------------------------------===//
1268 // Misc utilities
1269 //===----------------------------------------------------------------------===//
1270 
1271 /// Produce a string describing the given constexpr call.
describeCall(CallStackFrame * Frame,raw_ostream & Out)1272 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1273   unsigned ArgIndex = 0;
1274   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1275                       !isa<CXXConstructorDecl>(Frame->Callee) &&
1276                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1277 
1278   if (!IsMemberCall)
1279     Out << *Frame->Callee << '(';
1280 
1281   if (Frame->This && IsMemberCall) {
1282     APValue Val;
1283     Frame->This->moveInto(Val);
1284     Val.printPretty(Out, Frame->Info.Ctx,
1285                     Frame->This->Designator.MostDerivedType);
1286     // FIXME: Add parens around Val if needed.
1287     Out << "->" << *Frame->Callee << '(';
1288     IsMemberCall = false;
1289   }
1290 
1291   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1292        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1293     if (ArgIndex > (unsigned)IsMemberCall)
1294       Out << ", ";
1295 
1296     const ParmVarDecl *Param = *I;
1297     const APValue &Arg = Frame->Arguments[ArgIndex];
1298     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1299 
1300     if (ArgIndex == 0 && IsMemberCall)
1301       Out << "->" << *Frame->Callee << '(';
1302   }
1303 
1304   Out << ')';
1305 }
1306 
1307 /// Evaluate an expression to see if it had side-effects, and discard its
1308 /// result.
1309 /// \return \c true if the caller should keep evaluating.
EvaluateIgnoredValue(EvalInfo & Info,const Expr * E)1310 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1311   APValue Scratch;
1312   if (!Evaluate(Scratch, Info, E))
1313     // We don't need the value, but we might have skipped a side effect here.
1314     return Info.noteSideEffect();
1315   return true;
1316 }
1317 
1318 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1319 /// return its existing value.
getExtValue(const APSInt & Value)1320 static int64_t getExtValue(const APSInt &Value) {
1321   return Value.isSigned() ? Value.getSExtValue()
1322                           : static_cast<int64_t>(Value.getZExtValue());
1323 }
1324 
1325 /// Should this call expression be treated as a string literal?
IsStringLiteralCall(const CallExpr * E)1326 static bool IsStringLiteralCall(const CallExpr *E) {
1327   unsigned Builtin = E->getBuiltinCallee();
1328   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1329           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1330 }
1331 
IsGlobalLValue(APValue::LValueBase B)1332 static bool IsGlobalLValue(APValue::LValueBase B) {
1333   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1334   // constant expression of pointer type that evaluates to...
1335 
1336   // ... a null pointer value, or a prvalue core constant expression of type
1337   // std::nullptr_t.
1338   if (!B) return true;
1339 
1340   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1341     // ... the address of an object with static storage duration,
1342     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1343       return VD->hasGlobalStorage();
1344     // ... the address of a function,
1345     return isa<FunctionDecl>(D);
1346   }
1347 
1348   const Expr *E = B.get<const Expr*>();
1349   switch (E->getStmtClass()) {
1350   default:
1351     return false;
1352   case Expr::CompoundLiteralExprClass: {
1353     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1354     return CLE->isFileScope() && CLE->isLValue();
1355   }
1356   case Expr::MaterializeTemporaryExprClass:
1357     // A materialized temporary might have been lifetime-extended to static
1358     // storage duration.
1359     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1360   // A string literal has static storage duration.
1361   case Expr::StringLiteralClass:
1362   case Expr::PredefinedExprClass:
1363   case Expr::ObjCStringLiteralClass:
1364   case Expr::ObjCEncodeExprClass:
1365   case Expr::CXXTypeidExprClass:
1366   case Expr::CXXUuidofExprClass:
1367     return true;
1368   case Expr::CallExprClass:
1369     return IsStringLiteralCall(cast<CallExpr>(E));
1370   // For GCC compatibility, &&label has static storage duration.
1371   case Expr::AddrLabelExprClass:
1372     return true;
1373   // A Block literal expression may be used as the initialization value for
1374   // Block variables at global or local static scope.
1375   case Expr::BlockExprClass:
1376     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1377   case Expr::ImplicitValueInitExprClass:
1378     // FIXME:
1379     // We can never form an lvalue with an implicit value initialization as its
1380     // base through expression evaluation, so these only appear in one case: the
1381     // implicit variable declaration we invent when checking whether a constexpr
1382     // constructor can produce a constant expression. We must assume that such
1383     // an expression might be a global lvalue.
1384     return true;
1385   }
1386 }
1387 
NoteLValueLocation(EvalInfo & Info,APValue::LValueBase Base)1388 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1389   assert(Base && "no location for a null lvalue");
1390   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1391   if (VD)
1392     Info.Note(VD->getLocation(), diag::note_declared_at);
1393   else
1394     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1395               diag::note_constexpr_temporary_here);
1396 }
1397 
1398 /// Check that this reference or pointer core constant expression is a valid
1399 /// value for an address or reference constant expression. Return true if we
1400 /// can fold this expression, whether or not it's a constant expression.
CheckLValueConstantExpression(EvalInfo & Info,SourceLocation Loc,QualType Type,const LValue & LVal)1401 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1402                                           QualType Type, const LValue &LVal) {
1403   bool IsReferenceType = Type->isReferenceType();
1404 
1405   APValue::LValueBase Base = LVal.getLValueBase();
1406   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1407 
1408   // Check that the object is a global. Note that the fake 'this' object we
1409   // manufacture when checking potential constant expressions is conservatively
1410   // assumed to be global here.
1411   if (!IsGlobalLValue(Base)) {
1412     if (Info.getLangOpts().CPlusPlus11) {
1413       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1414       Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
1415         << IsReferenceType << !Designator.Entries.empty()
1416         << !!VD << VD;
1417       NoteLValueLocation(Info, Base);
1418     } else {
1419       Info.FFDiag(Loc);
1420     }
1421     // Don't allow references to temporaries to escape.
1422     return false;
1423   }
1424   assert((Info.checkingPotentialConstantExpression() ||
1425           LVal.getLValueCallIndex() == 0) &&
1426          "have call index for global lvalue");
1427 
1428   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1429     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1430       // Check if this is a thread-local variable.
1431       if (Var->getTLSKind())
1432         return false;
1433 
1434       // A dllimport variable never acts like a constant.
1435       if (Var->hasAttr<DLLImportAttr>())
1436         return false;
1437     }
1438     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1439       // __declspec(dllimport) must be handled very carefully:
1440       // We must never initialize an expression with the thunk in C++.
1441       // Doing otherwise would allow the same id-expression to yield
1442       // different addresses for the same function in different translation
1443       // units.  However, this means that we must dynamically initialize the
1444       // expression with the contents of the import address table at runtime.
1445       //
1446       // The C language has no notion of ODR; furthermore, it has no notion of
1447       // dynamic initialization.  This means that we are permitted to
1448       // perform initialization with the address of the thunk.
1449       if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1450         return false;
1451     }
1452   }
1453 
1454   // Allow address constant expressions to be past-the-end pointers. This is
1455   // an extension: the standard requires them to point to an object.
1456   if (!IsReferenceType)
1457     return true;
1458 
1459   // A reference constant expression must refer to an object.
1460   if (!Base) {
1461     // FIXME: diagnostic
1462     Info.CCEDiag(Loc);
1463     return true;
1464   }
1465 
1466   // Does this refer one past the end of some object?
1467   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1468     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1469     Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
1470       << !Designator.Entries.empty() << !!VD << VD;
1471     NoteLValueLocation(Info, Base);
1472   }
1473 
1474   return true;
1475 }
1476 
1477 /// Check that this core constant expression is of literal type, and if not,
1478 /// produce an appropriate diagnostic.
CheckLiteralType(EvalInfo & Info,const Expr * E,const LValue * This=nullptr)1479 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1480                              const LValue *This = nullptr) {
1481   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1482     return true;
1483 
1484   // C++1y: A constant initializer for an object o [...] may also invoke
1485   // constexpr constructors for o and its subobjects even if those objects
1486   // are of non-literal class types.
1487   if (Info.getLangOpts().CPlusPlus14 && This &&
1488       Info.EvaluatingDecl == This->getLValueBase())
1489     return true;
1490 
1491   // Prvalue constant expressions must be of literal types.
1492   if (Info.getLangOpts().CPlusPlus11)
1493     Info.FFDiag(E, diag::note_constexpr_nonliteral)
1494       << E->getType();
1495   else
1496     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1497   return false;
1498 }
1499 
1500 /// Check that this core constant expression value is a valid value for a
1501 /// constant expression. If not, report an appropriate diagnostic. Does not
1502 /// check that the expression is of literal type.
CheckConstantExpression(EvalInfo & Info,SourceLocation DiagLoc,QualType Type,const APValue & Value)1503 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1504                                     QualType Type, const APValue &Value) {
1505   if (Value.isUninit()) {
1506     Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
1507       << true << Type;
1508     return false;
1509   }
1510 
1511   // We allow _Atomic(T) to be initialized from anything that T can be
1512   // initialized from.
1513   if (const AtomicType *AT = Type->getAs<AtomicType>())
1514     Type = AT->getValueType();
1515 
1516   // Core issue 1454: For a literal constant expression of array or class type,
1517   // each subobject of its value shall have been initialized by a constant
1518   // expression.
1519   if (Value.isArray()) {
1520     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1521     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1522       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1523                                    Value.getArrayInitializedElt(I)))
1524         return false;
1525     }
1526     if (!Value.hasArrayFiller())
1527       return true;
1528     return CheckConstantExpression(Info, DiagLoc, EltTy,
1529                                    Value.getArrayFiller());
1530   }
1531   if (Value.isUnion() && Value.getUnionField()) {
1532     return CheckConstantExpression(Info, DiagLoc,
1533                                    Value.getUnionField()->getType(),
1534                                    Value.getUnionValue());
1535   }
1536   if (Value.isStruct()) {
1537     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1538     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1539       unsigned BaseIndex = 0;
1540       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1541              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1542         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1543                                      Value.getStructBase(BaseIndex)))
1544           return false;
1545       }
1546     }
1547     for (const auto *I : RD->fields()) {
1548       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1549                                    Value.getStructField(I->getFieldIndex())))
1550         return false;
1551     }
1552   }
1553 
1554   if (Value.isLValue()) {
1555     LValue LVal;
1556     LVal.setFrom(Info.Ctx, Value);
1557     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1558   }
1559 
1560   // Everything else is fine.
1561   return true;
1562 }
1563 
GetLValueBaseDecl(const LValue & LVal)1564 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1565   return LVal.Base.dyn_cast<const ValueDecl*>();
1566 }
1567 
IsLiteralLValue(const LValue & Value)1568 static bool IsLiteralLValue(const LValue &Value) {
1569   if (Value.CallIndex)
1570     return false;
1571   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1572   return E && !isa<MaterializeTemporaryExpr>(E);
1573 }
1574 
IsWeakLValue(const LValue & Value)1575 static bool IsWeakLValue(const LValue &Value) {
1576   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1577   return Decl && Decl->isWeak();
1578 }
1579 
isZeroSized(const LValue & Value)1580 static bool isZeroSized(const LValue &Value) {
1581   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1582   if (Decl && isa<VarDecl>(Decl)) {
1583     QualType Ty = Decl->getType();
1584     if (Ty->isArrayType())
1585       return Ty->isIncompleteType() ||
1586              Decl->getASTContext().getTypeSize(Ty) == 0;
1587   }
1588   return false;
1589 }
1590 
EvalPointerValueAsBool(const APValue & Value,bool & Result)1591 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1592   // A null base expression indicates a null pointer.  These are always
1593   // evaluatable, and they are false unless the offset is zero.
1594   if (!Value.getLValueBase()) {
1595     Result = !Value.getLValueOffset().isZero();
1596     return true;
1597   }
1598 
1599   // We have a non-null base.  These are generally known to be true, but if it's
1600   // a weak declaration it can be null at runtime.
1601   Result = true;
1602   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1603   return !Decl || !Decl->isWeak();
1604 }
1605 
HandleConversionToBool(const APValue & Val,bool & Result)1606 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1607   switch (Val.getKind()) {
1608   case APValue::Uninitialized:
1609     return false;
1610   case APValue::Int:
1611     Result = Val.getInt().getBoolValue();
1612     return true;
1613   case APValue::Float:
1614     Result = !Val.getFloat().isZero();
1615     return true;
1616   case APValue::ComplexInt:
1617     Result = Val.getComplexIntReal().getBoolValue() ||
1618              Val.getComplexIntImag().getBoolValue();
1619     return true;
1620   case APValue::ComplexFloat:
1621     Result = !Val.getComplexFloatReal().isZero() ||
1622              !Val.getComplexFloatImag().isZero();
1623     return true;
1624   case APValue::LValue:
1625     return EvalPointerValueAsBool(Val, Result);
1626   case APValue::MemberPointer:
1627     Result = Val.getMemberPointerDecl();
1628     return true;
1629   case APValue::Vector:
1630   case APValue::Array:
1631   case APValue::Struct:
1632   case APValue::Union:
1633   case APValue::AddrLabelDiff:
1634     return false;
1635   }
1636 
1637   llvm_unreachable("unknown APValue kind");
1638 }
1639 
EvaluateAsBooleanCondition(const Expr * E,bool & Result,EvalInfo & Info)1640 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1641                                        EvalInfo &Info) {
1642   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1643   APValue Val;
1644   if (!Evaluate(Val, Info, E))
1645     return false;
1646   return HandleConversionToBool(Val, Result);
1647 }
1648 
1649 template<typename T>
HandleOverflow(EvalInfo & Info,const Expr * E,const T & SrcValue,QualType DestType)1650 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1651                            const T &SrcValue, QualType DestType) {
1652   Info.CCEDiag(E, diag::note_constexpr_overflow)
1653     << SrcValue << DestType;
1654   return Info.noteUndefinedBehavior();
1655 }
1656 
HandleFloatToIntCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APFloat & Value,QualType DestType,APSInt & Result)1657 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1658                                  QualType SrcType, const APFloat &Value,
1659                                  QualType DestType, APSInt &Result) {
1660   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1661   // Determine whether we are converting to unsigned or signed.
1662   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1663 
1664   Result = APSInt(DestWidth, !DestSigned);
1665   bool ignored;
1666   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1667       & APFloat::opInvalidOp)
1668     return HandleOverflow(Info, E, Value, DestType);
1669   return true;
1670 }
1671 
HandleFloatToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,QualType DestType,APFloat & Result)1672 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1673                                    QualType SrcType, QualType DestType,
1674                                    APFloat &Result) {
1675   APFloat Value = Result;
1676   bool ignored;
1677   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1678                      APFloat::rmNearestTiesToEven, &ignored)
1679       & APFloat::opOverflow)
1680     return HandleOverflow(Info, E, Value, DestType);
1681   return true;
1682 }
1683 
HandleIntToIntCast(EvalInfo & Info,const Expr * E,QualType DestType,QualType SrcType,const APSInt & Value)1684 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1685                                  QualType DestType, QualType SrcType,
1686                                  const APSInt &Value) {
1687   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1688   APSInt Result = Value;
1689   // Figure out if this is a truncate, extend or noop cast.
1690   // If the input is signed, do a sign extend, noop, or truncate.
1691   Result = Result.extOrTrunc(DestWidth);
1692   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1693   return Result;
1694 }
1695 
HandleIntToFloatCast(EvalInfo & Info,const Expr * E,QualType SrcType,const APSInt & Value,QualType DestType,APFloat & Result)1696 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1697                                  QualType SrcType, const APSInt &Value,
1698                                  QualType DestType, APFloat &Result) {
1699   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1700   if (Result.convertFromAPInt(Value, Value.isSigned(),
1701                               APFloat::rmNearestTiesToEven)
1702       & APFloat::opOverflow)
1703     return HandleOverflow(Info, E, Value, DestType);
1704   return true;
1705 }
1706 
truncateBitfieldValue(EvalInfo & Info,const Expr * E,APValue & Value,const FieldDecl * FD)1707 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1708                                   APValue &Value, const FieldDecl *FD) {
1709   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1710 
1711   if (!Value.isInt()) {
1712     // Trying to store a pointer-cast-to-integer into a bitfield.
1713     // FIXME: In this case, we should provide the diagnostic for casting
1714     // a pointer to an integer.
1715     assert(Value.isLValue() && "integral value neither int nor lvalue?");
1716     Info.FFDiag(E);
1717     return false;
1718   }
1719 
1720   APSInt &Int = Value.getInt();
1721   unsigned OldBitWidth = Int.getBitWidth();
1722   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1723   if (NewBitWidth < OldBitWidth)
1724     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1725   return true;
1726 }
1727 
EvalAndBitcastToAPInt(EvalInfo & Info,const Expr * E,llvm::APInt & Res)1728 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1729                                   llvm::APInt &Res) {
1730   APValue SVal;
1731   if (!Evaluate(SVal, Info, E))
1732     return false;
1733   if (SVal.isInt()) {
1734     Res = SVal.getInt();
1735     return true;
1736   }
1737   if (SVal.isFloat()) {
1738     Res = SVal.getFloat().bitcastToAPInt();
1739     return true;
1740   }
1741   if (SVal.isVector()) {
1742     QualType VecTy = E->getType();
1743     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1744     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1745     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1746     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1747     Res = llvm::APInt::getNullValue(VecSize);
1748     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1749       APValue &Elt = SVal.getVectorElt(i);
1750       llvm::APInt EltAsInt;
1751       if (Elt.isInt()) {
1752         EltAsInt = Elt.getInt();
1753       } else if (Elt.isFloat()) {
1754         EltAsInt = Elt.getFloat().bitcastToAPInt();
1755       } else {
1756         // Don't try to handle vectors of anything other than int or float
1757         // (not sure if it's possible to hit this case).
1758         Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1759         return false;
1760       }
1761       unsigned BaseEltSize = EltAsInt.getBitWidth();
1762       if (BigEndian)
1763         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1764       else
1765         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1766     }
1767     return true;
1768   }
1769   // Give up if the input isn't an int, float, or vector.  For example, we
1770   // reject "(v4i16)(intptr_t)&a".
1771   Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
1772   return false;
1773 }
1774 
1775 /// Perform the given integer operation, which is known to need at most BitWidth
1776 /// bits, and check for overflow in the original type (if that type was not an
1777 /// unsigned type).
1778 template<typename Operation>
CheckedIntArithmetic(EvalInfo & Info,const Expr * E,const APSInt & LHS,const APSInt & RHS,unsigned BitWidth,Operation Op,APSInt & Result)1779 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1780                                  const APSInt &LHS, const APSInt &RHS,
1781                                  unsigned BitWidth, Operation Op,
1782                                  APSInt &Result) {
1783   if (LHS.isUnsigned()) {
1784     Result = Op(LHS, RHS);
1785     return true;
1786   }
1787 
1788   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1789   Result = Value.trunc(LHS.getBitWidth());
1790   if (Result.extend(BitWidth) != Value) {
1791     if (Info.checkingForOverflow())
1792       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1793                                        diag::warn_integer_constant_overflow)
1794           << Result.toString(10) << E->getType();
1795     else
1796       return HandleOverflow(Info, E, Value, E->getType());
1797   }
1798   return true;
1799 }
1800 
1801 /// Perform the given binary integer operation.
handleIntIntBinOp(EvalInfo & Info,const Expr * E,const APSInt & LHS,BinaryOperatorKind Opcode,APSInt RHS,APSInt & Result)1802 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1803                               BinaryOperatorKind Opcode, APSInt RHS,
1804                               APSInt &Result) {
1805   switch (Opcode) {
1806   default:
1807     Info.FFDiag(E);
1808     return false;
1809   case BO_Mul:
1810     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1811                                 std::multiplies<APSInt>(), Result);
1812   case BO_Add:
1813     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1814                                 std::plus<APSInt>(), Result);
1815   case BO_Sub:
1816     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1817                                 std::minus<APSInt>(), Result);
1818   case BO_And: Result = LHS & RHS; return true;
1819   case BO_Xor: Result = LHS ^ RHS; return true;
1820   case BO_Or:  Result = LHS | RHS; return true;
1821   case BO_Div:
1822   case BO_Rem:
1823     if (RHS == 0) {
1824       Info.FFDiag(E, diag::note_expr_divide_by_zero);
1825       return false;
1826     }
1827     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1828     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
1829     // this operation and gives the two's complement result.
1830     if (RHS.isNegative() && RHS.isAllOnesValue() &&
1831         LHS.isSigned() && LHS.isMinSignedValue())
1832       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
1833                             E->getType());
1834     return true;
1835   case BO_Shl: {
1836     if (Info.getLangOpts().OpenCL)
1837       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1838       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1839                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1840                     RHS.isUnsigned());
1841     else if (RHS.isSigned() && RHS.isNegative()) {
1842       // During constant-folding, a negative shift is an opposite shift. Such
1843       // a shift is not a constant expression.
1844       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1845       RHS = -RHS;
1846       goto shift_right;
1847     }
1848   shift_left:
1849     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1850     // the shifted type.
1851     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1852     if (SA != RHS) {
1853       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1854         << RHS << E->getType() << LHS.getBitWidth();
1855     } else if (LHS.isSigned()) {
1856       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1857       // operand, and must not overflow the corresponding unsigned type.
1858       if (LHS.isNegative())
1859         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1860       else if (LHS.countLeadingZeros() < SA)
1861         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1862     }
1863     Result = LHS << SA;
1864     return true;
1865   }
1866   case BO_Shr: {
1867     if (Info.getLangOpts().OpenCL)
1868       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1869       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1870                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1871                     RHS.isUnsigned());
1872     else if (RHS.isSigned() && RHS.isNegative()) {
1873       // During constant-folding, a negative shift is an opposite shift. Such a
1874       // shift is not a constant expression.
1875       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1876       RHS = -RHS;
1877       goto shift_left;
1878     }
1879   shift_right:
1880     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1881     // shifted type.
1882     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1883     if (SA != RHS)
1884       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1885         << RHS << E->getType() << LHS.getBitWidth();
1886     Result = LHS >> SA;
1887     return true;
1888   }
1889 
1890   case BO_LT: Result = LHS < RHS; return true;
1891   case BO_GT: Result = LHS > RHS; return true;
1892   case BO_LE: Result = LHS <= RHS; return true;
1893   case BO_GE: Result = LHS >= RHS; return true;
1894   case BO_EQ: Result = LHS == RHS; return true;
1895   case BO_NE: Result = LHS != RHS; return true;
1896   }
1897 }
1898 
1899 /// Perform the given binary floating-point operation, in-place, on LHS.
handleFloatFloatBinOp(EvalInfo & Info,const Expr * E,APFloat & LHS,BinaryOperatorKind Opcode,const APFloat & RHS)1900 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1901                                   APFloat &LHS, BinaryOperatorKind Opcode,
1902                                   const APFloat &RHS) {
1903   switch (Opcode) {
1904   default:
1905     Info.FFDiag(E);
1906     return false;
1907   case BO_Mul:
1908     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1909     break;
1910   case BO_Add:
1911     LHS.add(RHS, APFloat::rmNearestTiesToEven);
1912     break;
1913   case BO_Sub:
1914     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1915     break;
1916   case BO_Div:
1917     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1918     break;
1919   }
1920 
1921   if (LHS.isInfinity() || LHS.isNaN()) {
1922     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1923     return Info.noteUndefinedBehavior();
1924   }
1925   return true;
1926 }
1927 
1928 /// Cast an lvalue referring to a base subobject to a derived class, by
1929 /// truncating the lvalue's path to the given length.
CastToDerivedClass(EvalInfo & Info,const Expr * E,LValue & Result,const RecordDecl * TruncatedType,unsigned TruncatedElements)1930 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1931                                const RecordDecl *TruncatedType,
1932                                unsigned TruncatedElements) {
1933   SubobjectDesignator &D = Result.Designator;
1934 
1935   // Check we actually point to a derived class object.
1936   if (TruncatedElements == D.Entries.size())
1937     return true;
1938   assert(TruncatedElements >= D.MostDerivedPathLength &&
1939          "not casting to a derived class");
1940   if (!Result.checkSubobject(Info, E, CSK_Derived))
1941     return false;
1942 
1943   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1944   const RecordDecl *RD = TruncatedType;
1945   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1946     if (RD->isInvalidDecl()) return false;
1947     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1948     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1949     if (isVirtualBaseClass(D.Entries[I]))
1950       Result.Offset -= Layout.getVBaseClassOffset(Base);
1951     else
1952       Result.Offset -= Layout.getBaseClassOffset(Base);
1953     RD = Base;
1954   }
1955   D.Entries.resize(TruncatedElements);
1956   return true;
1957 }
1958 
HandleLValueDirectBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,const ASTRecordLayout * RL=nullptr)1959 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1960                                    const CXXRecordDecl *Derived,
1961                                    const CXXRecordDecl *Base,
1962                                    const ASTRecordLayout *RL = nullptr) {
1963   if (!RL) {
1964     if (Derived->isInvalidDecl()) return false;
1965     RL = &Info.Ctx.getASTRecordLayout(Derived);
1966   }
1967 
1968   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1969   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1970   return true;
1971 }
1972 
HandleLValueBase(EvalInfo & Info,const Expr * E,LValue & Obj,const CXXRecordDecl * DerivedDecl,const CXXBaseSpecifier * Base)1973 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1974                              const CXXRecordDecl *DerivedDecl,
1975                              const CXXBaseSpecifier *Base) {
1976   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1977 
1978   if (!Base->isVirtual())
1979     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1980 
1981   SubobjectDesignator &D = Obj.Designator;
1982   if (D.Invalid)
1983     return false;
1984 
1985   // Extract most-derived object and corresponding type.
1986   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1987   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1988     return false;
1989 
1990   // Find the virtual base class.
1991   if (DerivedDecl->isInvalidDecl()) return false;
1992   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1993   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1994   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1995   return true;
1996 }
1997 
HandleLValueBasePath(EvalInfo & Info,const CastExpr * E,QualType Type,LValue & Result)1998 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1999                                  QualType Type, LValue &Result) {
2000   for (CastExpr::path_const_iterator PathI = E->path_begin(),
2001                                      PathE = E->path_end();
2002        PathI != PathE; ++PathI) {
2003     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
2004                           *PathI))
2005       return false;
2006     Type = (*PathI)->getType();
2007   }
2008   return true;
2009 }
2010 
2011 /// Update LVal to refer to the given field, which must be a member of the type
2012 /// currently described by LVal.
HandleLValueMember(EvalInfo & Info,const Expr * E,LValue & LVal,const FieldDecl * FD,const ASTRecordLayout * RL=nullptr)2013 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
2014                                const FieldDecl *FD,
2015                                const ASTRecordLayout *RL = nullptr) {
2016   if (!RL) {
2017     if (FD->getParent()->isInvalidDecl()) return false;
2018     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
2019   }
2020 
2021   unsigned I = FD->getFieldIndex();
2022   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
2023   LVal.addDecl(Info, E, FD);
2024   return true;
2025 }
2026 
2027 /// Update LVal to refer to the given indirect field.
HandleLValueIndirectMember(EvalInfo & Info,const Expr * E,LValue & LVal,const IndirectFieldDecl * IFD)2028 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
2029                                        LValue &LVal,
2030                                        const IndirectFieldDecl *IFD) {
2031   for (const auto *C : IFD->chain())
2032     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
2033       return false;
2034   return true;
2035 }
2036 
2037 /// Get the size of the given type in char units.
HandleSizeof(EvalInfo & Info,SourceLocation Loc,QualType Type,CharUnits & Size)2038 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
2039                          QualType Type, CharUnits &Size) {
2040   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
2041   // extension.
2042   if (Type->isVoidType() || Type->isFunctionType()) {
2043     Size = CharUnits::One();
2044     return true;
2045   }
2046 
2047   if (Type->isDependentType()) {
2048     Info.FFDiag(Loc);
2049     return false;
2050   }
2051 
2052   if (!Type->isConstantSizeType()) {
2053     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
2054     // FIXME: Better diagnostic.
2055     Info.FFDiag(Loc);
2056     return false;
2057   }
2058 
2059   Size = Info.Ctx.getTypeSizeInChars(Type);
2060   return true;
2061 }
2062 
2063 /// Update a pointer value to model pointer arithmetic.
2064 /// \param Info - Information about the ongoing evaluation.
2065 /// \param E - The expression being evaluated, for diagnostic purposes.
2066 /// \param LVal - The pointer value to be updated.
2067 /// \param EltTy - The pointee type represented by LVal.
2068 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
HandleLValueArrayAdjustment(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,int64_t Adjustment)2069 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
2070                                         LValue &LVal, QualType EltTy,
2071                                         int64_t Adjustment) {
2072   CharUnits SizeOfPointee;
2073   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
2074     return false;
2075 
2076   // Compute the new offset in the appropriate width.
2077   LVal.Offset += Adjustment * SizeOfPointee;
2078   LVal.adjustIndex(Info, E, Adjustment);
2079   return true;
2080 }
2081 
2082 /// Update an lvalue to refer to a component of a complex number.
2083 /// \param Info - Information about the ongoing evaluation.
2084 /// \param LVal - The lvalue to be updated.
2085 /// \param EltTy - The complex number's component type.
2086 /// \param Imag - False for the real component, true for the imaginary.
HandleLValueComplexElement(EvalInfo & Info,const Expr * E,LValue & LVal,QualType EltTy,bool Imag)2087 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2088                                        LValue &LVal, QualType EltTy,
2089                                        bool Imag) {
2090   if (Imag) {
2091     CharUnits SizeOfComponent;
2092     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2093       return false;
2094     LVal.Offset += SizeOfComponent;
2095   }
2096   LVal.addComplex(Info, E, EltTy, Imag);
2097   return true;
2098 }
2099 
2100 /// Try to evaluate the initializer for a variable declaration.
2101 ///
2102 /// \param Info   Information about the ongoing evaluation.
2103 /// \param E      An expression to be used when printing diagnostics.
2104 /// \param VD     The variable whose initializer should be obtained.
2105 /// \param Frame  The frame in which the variable was created. Must be null
2106 ///               if this variable is not local to the evaluation.
2107 /// \param Result Filled in with a pointer to the value of the variable.
evaluateVarDeclInit(EvalInfo & Info,const Expr * E,const VarDecl * VD,CallStackFrame * Frame,APValue * & Result)2108 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2109                                 const VarDecl *VD, CallStackFrame *Frame,
2110                                 APValue *&Result) {
2111   // If this is a parameter to an active constexpr function call, perform
2112   // argument substitution.
2113   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2114     // Assume arguments of a potential constant expression are unknown
2115     // constant expressions.
2116     if (Info.checkingPotentialConstantExpression())
2117       return false;
2118     if (!Frame || !Frame->Arguments) {
2119       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2120       return false;
2121     }
2122     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2123     return true;
2124   }
2125 
2126   // If this is a local variable, dig out its value.
2127   if (Frame) {
2128     Result = Frame->getTemporary(VD);
2129     if (!Result) {
2130       // Assume variables referenced within a lambda's call operator that were
2131       // not declared within the call operator are captures and during checking
2132       // of a potential constant expression, assume they are unknown constant
2133       // expressions.
2134       assert(isLambdaCallOperator(Frame->Callee) &&
2135              (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
2136              "missing value for local variable");
2137       if (Info.checkingPotentialConstantExpression())
2138         return false;
2139       // FIXME: implement capture evaluation during constant expr evaluation.
2140       Info.FFDiag(E->getLocStart(),
2141            diag::note_unimplemented_constexpr_lambda_feature_ast)
2142           << "captures not currently allowed";
2143       return false;
2144     }
2145     return true;
2146   }
2147 
2148   // Dig out the initializer, and use the declaration which it's attached to.
2149   const Expr *Init = VD->getAnyInitializer(VD);
2150   if (!Init || Init->isValueDependent()) {
2151     // If we're checking a potential constant expression, the variable could be
2152     // initialized later.
2153     if (!Info.checkingPotentialConstantExpression())
2154       Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2155     return false;
2156   }
2157 
2158   // If we're currently evaluating the initializer of this declaration, use that
2159   // in-flight value.
2160   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2161     Result = Info.EvaluatingDeclValue;
2162     return true;
2163   }
2164 
2165   // Never evaluate the initializer of a weak variable. We can't be sure that
2166   // this is the definition which will be used.
2167   if (VD->isWeak()) {
2168     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2169     return false;
2170   }
2171 
2172   // Check that we can fold the initializer. In C++, we will have already done
2173   // this in the cases where it matters for conformance.
2174   SmallVector<PartialDiagnosticAt, 8> Notes;
2175   if (!VD->evaluateValue(Notes)) {
2176     Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
2177               Notes.size() + 1) << VD;
2178     Info.Note(VD->getLocation(), diag::note_declared_at);
2179     Info.addNotes(Notes);
2180     return false;
2181   } else if (!VD->checkInitIsICE()) {
2182     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2183                  Notes.size() + 1) << VD;
2184     Info.Note(VD->getLocation(), diag::note_declared_at);
2185     Info.addNotes(Notes);
2186   }
2187 
2188   Result = VD->getEvaluatedValue();
2189   return true;
2190 }
2191 
IsConstNonVolatile(QualType T)2192 static bool IsConstNonVolatile(QualType T) {
2193   Qualifiers Quals = T.getQualifiers();
2194   return Quals.hasConst() && !Quals.hasVolatile();
2195 }
2196 
2197 /// Get the base index of the given base class within an APValue representing
2198 /// the given derived class.
getBaseIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * Base)2199 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2200                              const CXXRecordDecl *Base) {
2201   Base = Base->getCanonicalDecl();
2202   unsigned Index = 0;
2203   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2204          E = Derived->bases_end(); I != E; ++I, ++Index) {
2205     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2206       return Index;
2207   }
2208 
2209   llvm_unreachable("base class missing from derived class's bases list");
2210 }
2211 
2212 /// Extract the value of a character from a string literal.
extractStringLiteralCharacter(EvalInfo & Info,const Expr * Lit,uint64_t Index)2213 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2214                                             uint64_t Index) {
2215   // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2216   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2217     Lit = PE->getFunctionName();
2218   const StringLiteral *S = cast<StringLiteral>(Lit);
2219   const ConstantArrayType *CAT =
2220       Info.Ctx.getAsConstantArrayType(S->getType());
2221   assert(CAT && "string literal isn't an array");
2222   QualType CharType = CAT->getElementType();
2223   assert(CharType->isIntegerType() && "unexpected character type");
2224 
2225   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2226                CharType->isUnsignedIntegerType());
2227   if (Index < S->getLength())
2228     Value = S->getCodeUnit(Index);
2229   return Value;
2230 }
2231 
2232 // Expand a string literal into an array of characters.
expandStringLiteral(EvalInfo & Info,const Expr * Lit,APValue & Result)2233 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2234                                 APValue &Result) {
2235   const StringLiteral *S = cast<StringLiteral>(Lit);
2236   const ConstantArrayType *CAT =
2237       Info.Ctx.getAsConstantArrayType(S->getType());
2238   assert(CAT && "string literal isn't an array");
2239   QualType CharType = CAT->getElementType();
2240   assert(CharType->isIntegerType() && "unexpected character type");
2241 
2242   unsigned Elts = CAT->getSize().getZExtValue();
2243   Result = APValue(APValue::UninitArray(),
2244                    std::min(S->getLength(), Elts), Elts);
2245   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2246                CharType->isUnsignedIntegerType());
2247   if (Result.hasArrayFiller())
2248     Result.getArrayFiller() = APValue(Value);
2249   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2250     Value = S->getCodeUnit(I);
2251     Result.getArrayInitializedElt(I) = APValue(Value);
2252   }
2253 }
2254 
2255 // Expand an array so that it has more than Index filled elements.
expandArray(APValue & Array,unsigned Index)2256 static void expandArray(APValue &Array, unsigned Index) {
2257   unsigned Size = Array.getArraySize();
2258   assert(Index < Size);
2259 
2260   // Always at least double the number of elements for which we store a value.
2261   unsigned OldElts = Array.getArrayInitializedElts();
2262   unsigned NewElts = std::max(Index+1, OldElts * 2);
2263   NewElts = std::min(Size, std::max(NewElts, 8u));
2264 
2265   // Copy the data across.
2266   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2267   for (unsigned I = 0; I != OldElts; ++I)
2268     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2269   for (unsigned I = OldElts; I != NewElts; ++I)
2270     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2271   if (NewValue.hasArrayFiller())
2272     NewValue.getArrayFiller() = Array.getArrayFiller();
2273   Array.swap(NewValue);
2274 }
2275 
2276 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2277 /// conversion. If it's of class type, we may assume that the copy operation
2278 /// is trivial. Note that this is never true for a union type with fields
2279 /// (because the copy always "reads" the active member) and always true for
2280 /// a non-class type.
isReadByLvalueToRvalueConversion(QualType T)2281 static bool isReadByLvalueToRvalueConversion(QualType T) {
2282   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2283   if (!RD || (RD->isUnion() && !RD->field_empty()))
2284     return true;
2285   if (RD->isEmpty())
2286     return false;
2287 
2288   for (auto *Field : RD->fields())
2289     if (isReadByLvalueToRvalueConversion(Field->getType()))
2290       return true;
2291 
2292   for (auto &BaseSpec : RD->bases())
2293     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2294       return true;
2295 
2296   return false;
2297 }
2298 
2299 /// Diagnose an attempt to read from any unreadable field within the specified
2300 /// type, which might be a class type.
diagnoseUnreadableFields(EvalInfo & Info,const Expr * E,QualType T)2301 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2302                                      QualType T) {
2303   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2304   if (!RD)
2305     return false;
2306 
2307   if (!RD->hasMutableFields())
2308     return false;
2309 
2310   for (auto *Field : RD->fields()) {
2311     // If we're actually going to read this field in some way, then it can't
2312     // be mutable. If we're in a union, then assigning to a mutable field
2313     // (even an empty one) can change the active member, so that's not OK.
2314     // FIXME: Add core issue number for the union case.
2315     if (Field->isMutable() &&
2316         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2317       Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2318       Info.Note(Field->getLocation(), diag::note_declared_at);
2319       return true;
2320     }
2321 
2322     if (diagnoseUnreadableFields(Info, E, Field->getType()))
2323       return true;
2324   }
2325 
2326   for (auto &BaseSpec : RD->bases())
2327     if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2328       return true;
2329 
2330   // All mutable fields were empty, and thus not actually read.
2331   return false;
2332 }
2333 
2334 /// Kinds of access we can perform on an object, for diagnostics.
2335 enum AccessKinds {
2336   AK_Read,
2337   AK_Assign,
2338   AK_Increment,
2339   AK_Decrement
2340 };
2341 
2342 namespace {
2343 /// A handle to a complete object (an object that is not a subobject of
2344 /// another object).
2345 struct CompleteObject {
2346   /// The value of the complete object.
2347   APValue *Value;
2348   /// The type of the complete object.
2349   QualType Type;
2350 
CompleteObject__anon4b2781fb0311::CompleteObject2351   CompleteObject() : Value(nullptr) {}
CompleteObject__anon4b2781fb0311::CompleteObject2352   CompleteObject(APValue *Value, QualType Type)
2353       : Value(Value), Type(Type) {
2354     assert(Value && "missing value for complete object");
2355   }
2356 
operator bool__anon4b2781fb0311::CompleteObject2357   explicit operator bool() const { return Value; }
2358 };
2359 } // end anonymous namespace
2360 
2361 /// Find the designated sub-object of an rvalue.
2362 template<typename SubobjectHandler>
2363 typename SubobjectHandler::result_type
findSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,SubobjectHandler & handler)2364 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2365               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2366   if (Sub.Invalid)
2367     // A diagnostic will have already been produced.
2368     return handler.failed();
2369   if (Sub.isOnePastTheEnd()) {
2370     if (Info.getLangOpts().CPlusPlus11)
2371       Info.FFDiag(E, diag::note_constexpr_access_past_end)
2372         << handler.AccessKind;
2373     else
2374       Info.FFDiag(E);
2375     return handler.failed();
2376   }
2377 
2378   APValue *O = Obj.Value;
2379   QualType ObjType = Obj.Type;
2380   const FieldDecl *LastField = nullptr;
2381 
2382   // Walk the designator's path to find the subobject.
2383   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2384     if (O->isUninit()) {
2385       if (!Info.checkingPotentialConstantExpression())
2386         Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2387       return handler.failed();
2388     }
2389 
2390     if (I == N) {
2391       // If we are reading an object of class type, there may still be more
2392       // things we need to check: if there are any mutable subobjects, we
2393       // cannot perform this read. (This only happens when performing a trivial
2394       // copy or assignment.)
2395       if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2396           diagnoseUnreadableFields(Info, E, ObjType))
2397         return handler.failed();
2398 
2399       if (!handler.found(*O, ObjType))
2400         return false;
2401 
2402       // If we modified a bit-field, truncate it to the right width.
2403       if (handler.AccessKind != AK_Read &&
2404           LastField && LastField->isBitField() &&
2405           !truncateBitfieldValue(Info, E, *O, LastField))
2406         return false;
2407 
2408       return true;
2409     }
2410 
2411     LastField = nullptr;
2412     if (ObjType->isArrayType()) {
2413       // Next subobject is an array element.
2414       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2415       assert(CAT && "vla in literal type?");
2416       uint64_t Index = Sub.Entries[I].ArrayIndex;
2417       if (CAT->getSize().ule(Index)) {
2418         // Note, it should not be possible to form a pointer with a valid
2419         // designator which points more than one past the end of the array.
2420         if (Info.getLangOpts().CPlusPlus11)
2421           Info.FFDiag(E, diag::note_constexpr_access_past_end)
2422             << handler.AccessKind;
2423         else
2424           Info.FFDiag(E);
2425         return handler.failed();
2426       }
2427 
2428       ObjType = CAT->getElementType();
2429 
2430       // An array object is represented as either an Array APValue or as an
2431       // LValue which refers to a string literal.
2432       if (O->isLValue()) {
2433         assert(I == N - 1 && "extracting subobject of character?");
2434         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2435         if (handler.AccessKind != AK_Read)
2436           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2437                               *O);
2438         else
2439           return handler.foundString(*O, ObjType, Index);
2440       }
2441 
2442       if (O->getArrayInitializedElts() > Index)
2443         O = &O->getArrayInitializedElt(Index);
2444       else if (handler.AccessKind != AK_Read) {
2445         expandArray(*O, Index);
2446         O = &O->getArrayInitializedElt(Index);
2447       } else
2448         O = &O->getArrayFiller();
2449     } else if (ObjType->isAnyComplexType()) {
2450       // Next subobject is a complex number.
2451       uint64_t Index = Sub.Entries[I].ArrayIndex;
2452       if (Index > 1) {
2453         if (Info.getLangOpts().CPlusPlus11)
2454           Info.FFDiag(E, diag::note_constexpr_access_past_end)
2455             << handler.AccessKind;
2456         else
2457           Info.FFDiag(E);
2458         return handler.failed();
2459       }
2460 
2461       bool WasConstQualified = ObjType.isConstQualified();
2462       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2463       if (WasConstQualified)
2464         ObjType.addConst();
2465 
2466       assert(I == N - 1 && "extracting subobject of scalar?");
2467       if (O->isComplexInt()) {
2468         return handler.found(Index ? O->getComplexIntImag()
2469                                    : O->getComplexIntReal(), ObjType);
2470       } else {
2471         assert(O->isComplexFloat());
2472         return handler.found(Index ? O->getComplexFloatImag()
2473                                    : O->getComplexFloatReal(), ObjType);
2474       }
2475     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2476       if (Field->isMutable() && handler.AccessKind == AK_Read) {
2477         Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
2478           << Field;
2479         Info.Note(Field->getLocation(), diag::note_declared_at);
2480         return handler.failed();
2481       }
2482 
2483       // Next subobject is a class, struct or union field.
2484       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2485       if (RD->isUnion()) {
2486         const FieldDecl *UnionField = O->getUnionField();
2487         if (!UnionField ||
2488             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2489           Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
2490             << handler.AccessKind << Field << !UnionField << UnionField;
2491           return handler.failed();
2492         }
2493         O = &O->getUnionValue();
2494       } else
2495         O = &O->getStructField(Field->getFieldIndex());
2496 
2497       bool WasConstQualified = ObjType.isConstQualified();
2498       ObjType = Field->getType();
2499       if (WasConstQualified && !Field->isMutable())
2500         ObjType.addConst();
2501 
2502       if (ObjType.isVolatileQualified()) {
2503         if (Info.getLangOpts().CPlusPlus) {
2504           // FIXME: Include a description of the path to the volatile subobject.
2505           Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2506             << handler.AccessKind << 2 << Field;
2507           Info.Note(Field->getLocation(), diag::note_declared_at);
2508         } else {
2509           Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
2510         }
2511         return handler.failed();
2512       }
2513 
2514       LastField = Field;
2515     } else {
2516       // Next subobject is a base class.
2517       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2518       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2519       O = &O->getStructBase(getBaseIndex(Derived, Base));
2520 
2521       bool WasConstQualified = ObjType.isConstQualified();
2522       ObjType = Info.Ctx.getRecordType(Base);
2523       if (WasConstQualified)
2524         ObjType.addConst();
2525     }
2526   }
2527 }
2528 
2529 namespace {
2530 struct ExtractSubobjectHandler {
2531   EvalInfo &Info;
2532   APValue &Result;
2533 
2534   static const AccessKinds AccessKind = AK_Read;
2535 
2536   typedef bool result_type;
failed__anon4b2781fb0411::ExtractSubobjectHandler2537   bool failed() { return false; }
found__anon4b2781fb0411::ExtractSubobjectHandler2538   bool found(APValue &Subobj, QualType SubobjType) {
2539     Result = Subobj;
2540     return true;
2541   }
found__anon4b2781fb0411::ExtractSubobjectHandler2542   bool found(APSInt &Value, QualType SubobjType) {
2543     Result = APValue(Value);
2544     return true;
2545   }
found__anon4b2781fb0411::ExtractSubobjectHandler2546   bool found(APFloat &Value, QualType SubobjType) {
2547     Result = APValue(Value);
2548     return true;
2549   }
foundString__anon4b2781fb0411::ExtractSubobjectHandler2550   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2551     Result = APValue(extractStringLiteralCharacter(
2552         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2553     return true;
2554   }
2555 };
2556 } // end anonymous namespace
2557 
2558 const AccessKinds ExtractSubobjectHandler::AccessKind;
2559 
2560 /// Extract the designated sub-object of an rvalue.
extractSubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & Result)2561 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2562                              const CompleteObject &Obj,
2563                              const SubobjectDesignator &Sub,
2564                              APValue &Result) {
2565   ExtractSubobjectHandler Handler = { Info, Result };
2566   return findSubobject(Info, E, Obj, Sub, Handler);
2567 }
2568 
2569 namespace {
2570 struct ModifySubobjectHandler {
2571   EvalInfo &Info;
2572   APValue &NewVal;
2573   const Expr *E;
2574 
2575   typedef bool result_type;
2576   static const AccessKinds AccessKind = AK_Assign;
2577 
checkConst__anon4b2781fb0511::ModifySubobjectHandler2578   bool checkConst(QualType QT) {
2579     // Assigning to a const object has undefined behavior.
2580     if (QT.isConstQualified()) {
2581       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2582       return false;
2583     }
2584     return true;
2585   }
2586 
failed__anon4b2781fb0511::ModifySubobjectHandler2587   bool failed() { return false; }
found__anon4b2781fb0511::ModifySubobjectHandler2588   bool found(APValue &Subobj, QualType SubobjType) {
2589     if (!checkConst(SubobjType))
2590       return false;
2591     // We've been given ownership of NewVal, so just swap it in.
2592     Subobj.swap(NewVal);
2593     return true;
2594   }
found__anon4b2781fb0511::ModifySubobjectHandler2595   bool found(APSInt &Value, QualType SubobjType) {
2596     if (!checkConst(SubobjType))
2597       return false;
2598     if (!NewVal.isInt()) {
2599       // Maybe trying to write a cast pointer value into a complex?
2600       Info.FFDiag(E);
2601       return false;
2602     }
2603     Value = NewVal.getInt();
2604     return true;
2605   }
found__anon4b2781fb0511::ModifySubobjectHandler2606   bool found(APFloat &Value, QualType SubobjType) {
2607     if (!checkConst(SubobjType))
2608       return false;
2609     Value = NewVal.getFloat();
2610     return true;
2611   }
foundString__anon4b2781fb0511::ModifySubobjectHandler2612   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2613     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2614   }
2615 };
2616 } // end anonymous namespace
2617 
2618 const AccessKinds ModifySubobjectHandler::AccessKind;
2619 
2620 /// Update the designated sub-object of an rvalue to the given value.
modifySubobject(EvalInfo & Info,const Expr * E,const CompleteObject & Obj,const SubobjectDesignator & Sub,APValue & NewVal)2621 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2622                             const CompleteObject &Obj,
2623                             const SubobjectDesignator &Sub,
2624                             APValue &NewVal) {
2625   ModifySubobjectHandler Handler = { Info, NewVal, E };
2626   return findSubobject(Info, E, Obj, Sub, Handler);
2627 }
2628 
2629 /// Find the position where two subobject designators diverge, or equivalently
2630 /// the length of the common initial subsequence.
FindDesignatorMismatch(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B,bool & WasArrayIndex)2631 static unsigned FindDesignatorMismatch(QualType ObjType,
2632                                        const SubobjectDesignator &A,
2633                                        const SubobjectDesignator &B,
2634                                        bool &WasArrayIndex) {
2635   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2636   for (/**/; I != N; ++I) {
2637     if (!ObjType.isNull() &&
2638         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2639       // Next subobject is an array element.
2640       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2641         WasArrayIndex = true;
2642         return I;
2643       }
2644       if (ObjType->isAnyComplexType())
2645         ObjType = ObjType->castAs<ComplexType>()->getElementType();
2646       else
2647         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2648     } else {
2649       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2650         WasArrayIndex = false;
2651         return I;
2652       }
2653       if (const FieldDecl *FD = getAsField(A.Entries[I]))
2654         // Next subobject is a field.
2655         ObjType = FD->getType();
2656       else
2657         // Next subobject is a base class.
2658         ObjType = QualType();
2659     }
2660   }
2661   WasArrayIndex = false;
2662   return I;
2663 }
2664 
2665 /// Determine whether the given subobject designators refer to elements of the
2666 /// same array object.
AreElementsOfSameArray(QualType ObjType,const SubobjectDesignator & A,const SubobjectDesignator & B)2667 static bool AreElementsOfSameArray(QualType ObjType,
2668                                    const SubobjectDesignator &A,
2669                                    const SubobjectDesignator &B) {
2670   if (A.Entries.size() != B.Entries.size())
2671     return false;
2672 
2673   bool IsArray = A.MostDerivedIsArrayElement;
2674   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2675     // A is a subobject of the array element.
2676     return false;
2677 
2678   // If A (and B) designates an array element, the last entry will be the array
2679   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2680   // of length 1' case, and the entire path must match.
2681   bool WasArrayIndex;
2682   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2683   return CommonLength >= A.Entries.size() - IsArray;
2684 }
2685 
2686 /// Find the complete object to which an LValue refers.
findCompleteObject(EvalInfo & Info,const Expr * E,AccessKinds AK,const LValue & LVal,QualType LValType)2687 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2688                                          AccessKinds AK, const LValue &LVal,
2689                                          QualType LValType) {
2690   if (!LVal.Base) {
2691     Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
2692     return CompleteObject();
2693   }
2694 
2695   CallStackFrame *Frame = nullptr;
2696   if (LVal.CallIndex) {
2697     Frame = Info.getCallFrame(LVal.CallIndex);
2698     if (!Frame) {
2699       Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
2700         << AK << LVal.Base.is<const ValueDecl*>();
2701       NoteLValueLocation(Info, LVal.Base);
2702       return CompleteObject();
2703     }
2704   }
2705 
2706   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2707   // is not a constant expression (even if the object is non-volatile). We also
2708   // apply this rule to C++98, in order to conform to the expected 'volatile'
2709   // semantics.
2710   if (LValType.isVolatileQualified()) {
2711     if (Info.getLangOpts().CPlusPlus)
2712       Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
2713         << AK << LValType;
2714     else
2715       Info.FFDiag(E);
2716     return CompleteObject();
2717   }
2718 
2719   // Compute value storage location and type of base object.
2720   APValue *BaseVal = nullptr;
2721   QualType BaseType = getType(LVal.Base);
2722 
2723   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2724     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2725     // In C++11, constexpr, non-volatile variables initialized with constant
2726     // expressions are constant expressions too. Inside constexpr functions,
2727     // parameters are constant expressions even if they're non-const.
2728     // In C++1y, objects local to a constant expression (those with a Frame) are
2729     // both readable and writable inside constant expressions.
2730     // In C, such things can also be folded, although they are not ICEs.
2731     const VarDecl *VD = dyn_cast<VarDecl>(D);
2732     if (VD) {
2733       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2734         VD = VDef;
2735     }
2736     if (!VD || VD->isInvalidDecl()) {
2737       Info.FFDiag(E);
2738       return CompleteObject();
2739     }
2740 
2741     // Accesses of volatile-qualified objects are not allowed.
2742     if (BaseType.isVolatileQualified()) {
2743       if (Info.getLangOpts().CPlusPlus) {
2744         Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2745           << AK << 1 << VD;
2746         Info.Note(VD->getLocation(), diag::note_declared_at);
2747       } else {
2748         Info.FFDiag(E);
2749       }
2750       return CompleteObject();
2751     }
2752 
2753     // Unless we're looking at a local variable or argument in a constexpr call,
2754     // the variable we're reading must be const.
2755     if (!Frame) {
2756       if (Info.getLangOpts().CPlusPlus14 &&
2757           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2758         // OK, we can read and modify an object if we're in the process of
2759         // evaluating its initializer, because its lifetime began in this
2760         // evaluation.
2761       } else if (AK != AK_Read) {
2762         // All the remaining cases only permit reading.
2763         Info.FFDiag(E, diag::note_constexpr_modify_global);
2764         return CompleteObject();
2765       } else if (VD->isConstexpr()) {
2766         // OK, we can read this variable.
2767       } else if (BaseType->isIntegralOrEnumerationType()) {
2768         // In OpenCL if a variable is in constant address space it is a const value.
2769         if (!(BaseType.isConstQualified() ||
2770               (Info.getLangOpts().OpenCL &&
2771                BaseType.getAddressSpace() == LangAS::opencl_constant))) {
2772           if (Info.getLangOpts().CPlusPlus) {
2773             Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2774             Info.Note(VD->getLocation(), diag::note_declared_at);
2775           } else {
2776             Info.FFDiag(E);
2777           }
2778           return CompleteObject();
2779         }
2780       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2781         // We support folding of const floating-point types, in order to make
2782         // static const data members of such types (supported as an extension)
2783         // more useful.
2784         if (Info.getLangOpts().CPlusPlus11) {
2785           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2786           Info.Note(VD->getLocation(), diag::note_declared_at);
2787         } else {
2788           Info.CCEDiag(E);
2789         }
2790       } else {
2791         // FIXME: Allow folding of values of any literal type in all languages.
2792         if (Info.checkingPotentialConstantExpression() &&
2793             VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
2794           // The definition of this variable could be constexpr. We can't
2795           // access it right now, but may be able to in future.
2796         } else if (Info.getLangOpts().CPlusPlus11) {
2797           Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2798           Info.Note(VD->getLocation(), diag::note_declared_at);
2799         } else {
2800           Info.FFDiag(E);
2801         }
2802         return CompleteObject();
2803       }
2804     }
2805 
2806     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2807       return CompleteObject();
2808   } else {
2809     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2810 
2811     if (!Frame) {
2812       if (const MaterializeTemporaryExpr *MTE =
2813               dyn_cast<MaterializeTemporaryExpr>(Base)) {
2814         assert(MTE->getStorageDuration() == SD_Static &&
2815                "should have a frame for a non-global materialized temporary");
2816 
2817         // Per C++1y [expr.const]p2:
2818         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2819         //   - a [...] glvalue of integral or enumeration type that refers to
2820         //     a non-volatile const object [...]
2821         //   [...]
2822         //   - a [...] glvalue of literal type that refers to a non-volatile
2823         //     object whose lifetime began within the evaluation of e.
2824         //
2825         // C++11 misses the 'began within the evaluation of e' check and
2826         // instead allows all temporaries, including things like:
2827         //   int &&r = 1;
2828         //   int x = ++r;
2829         //   constexpr int k = r;
2830         // Therefore we use the C++1y rules in C++11 too.
2831         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2832         const ValueDecl *ED = MTE->getExtendingDecl();
2833         if (!(BaseType.isConstQualified() &&
2834               BaseType->isIntegralOrEnumerationType()) &&
2835             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2836           Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2837           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2838           return CompleteObject();
2839         }
2840 
2841         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2842         assert(BaseVal && "got reference to unevaluated temporary");
2843       } else {
2844         Info.FFDiag(E);
2845         return CompleteObject();
2846       }
2847     } else {
2848       BaseVal = Frame->getTemporary(Base);
2849       assert(BaseVal && "missing value for temporary");
2850     }
2851 
2852     // Volatile temporary objects cannot be accessed in constant expressions.
2853     if (BaseType.isVolatileQualified()) {
2854       if (Info.getLangOpts().CPlusPlus) {
2855         Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
2856           << AK << 0;
2857         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2858       } else {
2859         Info.FFDiag(E);
2860       }
2861       return CompleteObject();
2862     }
2863   }
2864 
2865   // During the construction of an object, it is not yet 'const'.
2866   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2867   // and this doesn't do quite the right thing for const subobjects of the
2868   // object under construction.
2869   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2870     BaseType = Info.Ctx.getCanonicalType(BaseType);
2871     BaseType.removeLocalConst();
2872   }
2873 
2874   // In C++1y, we can't safely access any mutable state when we might be
2875   // evaluating after an unmodeled side effect.
2876   //
2877   // FIXME: Not all local state is mutable. Allow local constant subobjects
2878   // to be read here (but take care with 'mutable' fields).
2879   if ((Frame && Info.getLangOpts().CPlusPlus14 &&
2880        Info.EvalStatus.HasSideEffects) ||
2881       (AK != AK_Read && Info.IsSpeculativelyEvaluating))
2882     return CompleteObject();
2883 
2884   return CompleteObject(BaseVal, BaseType);
2885 }
2886 
2887 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2888 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2889 /// glvalue referred to by an entity of reference type.
2890 ///
2891 /// \param Info - Information about the ongoing evaluation.
2892 /// \param Conv - The expression for which we are performing the conversion.
2893 ///               Used for diagnostics.
2894 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2895 ///               case of a non-class type).
2896 /// \param LVal - The glvalue on which we are attempting to perform this action.
2897 /// \param RVal - The produced value will be placed here.
handleLValueToRValueConversion(EvalInfo & Info,const Expr * Conv,QualType Type,const LValue & LVal,APValue & RVal)2898 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2899                                            QualType Type,
2900                                            const LValue &LVal, APValue &RVal) {
2901   if (LVal.Designator.Invalid)
2902     return false;
2903 
2904   // Check for special cases where there is no existing APValue to look at.
2905   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2906   if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
2907     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2908       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2909       // initializer until now for such expressions. Such an expression can't be
2910       // an ICE in C, so this only matters for fold.
2911       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2912       if (Type.isVolatileQualified()) {
2913         Info.FFDiag(Conv);
2914         return false;
2915       }
2916       APValue Lit;
2917       if (!Evaluate(Lit, Info, CLE->getInitializer()))
2918         return false;
2919       CompleteObject LitObj(&Lit, Base->getType());
2920       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2921     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2922       // We represent a string literal array as an lvalue pointing at the
2923       // corresponding expression, rather than building an array of chars.
2924       // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2925       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2926       CompleteObject StrObj(&Str, Base->getType());
2927       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2928     }
2929   }
2930 
2931   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2932   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2933 }
2934 
2935 /// Perform an assignment of Val to LVal. Takes ownership of Val.
handleAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,APValue & Val)2936 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2937                              QualType LValType, APValue &Val) {
2938   if (LVal.Designator.Invalid)
2939     return false;
2940 
2941   if (!Info.getLangOpts().CPlusPlus14) {
2942     Info.FFDiag(E);
2943     return false;
2944   }
2945 
2946   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2947   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2948 }
2949 
isOverflowingIntegerType(ASTContext & Ctx,QualType T)2950 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2951   return T->isSignedIntegerType() &&
2952          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2953 }
2954 
2955 namespace {
2956 struct CompoundAssignSubobjectHandler {
2957   EvalInfo &Info;
2958   const Expr *E;
2959   QualType PromotedLHSType;
2960   BinaryOperatorKind Opcode;
2961   const APValue &RHS;
2962 
2963   static const AccessKinds AccessKind = AK_Assign;
2964 
2965   typedef bool result_type;
2966 
checkConst__anon4b2781fb0611::CompoundAssignSubobjectHandler2967   bool checkConst(QualType QT) {
2968     // Assigning to a const object has undefined behavior.
2969     if (QT.isConstQualified()) {
2970       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
2971       return false;
2972     }
2973     return true;
2974   }
2975 
failed__anon4b2781fb0611::CompoundAssignSubobjectHandler2976   bool failed() { return false; }
found__anon4b2781fb0611::CompoundAssignSubobjectHandler2977   bool found(APValue &Subobj, QualType SubobjType) {
2978     switch (Subobj.getKind()) {
2979     case APValue::Int:
2980       return found(Subobj.getInt(), SubobjType);
2981     case APValue::Float:
2982       return found(Subobj.getFloat(), SubobjType);
2983     case APValue::ComplexInt:
2984     case APValue::ComplexFloat:
2985       // FIXME: Implement complex compound assignment.
2986       Info.FFDiag(E);
2987       return false;
2988     case APValue::LValue:
2989       return foundPointer(Subobj, SubobjType);
2990     default:
2991       // FIXME: can this happen?
2992       Info.FFDiag(E);
2993       return false;
2994     }
2995   }
found__anon4b2781fb0611::CompoundAssignSubobjectHandler2996   bool found(APSInt &Value, QualType SubobjType) {
2997     if (!checkConst(SubobjType))
2998       return false;
2999 
3000     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
3001       // We don't support compound assignment on integer-cast-to-pointer
3002       // values.
3003       Info.FFDiag(E);
3004       return false;
3005     }
3006 
3007     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
3008                                     SubobjType, Value);
3009     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
3010       return false;
3011     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
3012     return true;
3013   }
found__anon4b2781fb0611::CompoundAssignSubobjectHandler3014   bool found(APFloat &Value, QualType SubobjType) {
3015     return checkConst(SubobjType) &&
3016            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
3017                                   Value) &&
3018            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
3019            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
3020   }
foundPointer__anon4b2781fb0611::CompoundAssignSubobjectHandler3021   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3022     if (!checkConst(SubobjType))
3023       return false;
3024 
3025     QualType PointeeType;
3026     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3027       PointeeType = PT->getPointeeType();
3028 
3029     if (PointeeType.isNull() || !RHS.isInt() ||
3030         (Opcode != BO_Add && Opcode != BO_Sub)) {
3031       Info.FFDiag(E);
3032       return false;
3033     }
3034 
3035     int64_t Offset = getExtValue(RHS.getInt());
3036     if (Opcode == BO_Sub)
3037       Offset = -Offset;
3038 
3039     LValue LVal;
3040     LVal.setFrom(Info.Ctx, Subobj);
3041     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
3042       return false;
3043     LVal.moveInto(Subobj);
3044     return true;
3045   }
foundString__anon4b2781fb0611::CompoundAssignSubobjectHandler3046   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3047     llvm_unreachable("shouldn't encounter string elements here");
3048   }
3049 };
3050 } // end anonymous namespace
3051 
3052 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
3053 
3054 /// Perform a compound assignment of LVal <op>= RVal.
handleCompoundAssignment(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,QualType PromotedLValType,BinaryOperatorKind Opcode,const APValue & RVal)3055 static bool handleCompoundAssignment(
3056     EvalInfo &Info, const Expr *E,
3057     const LValue &LVal, QualType LValType, QualType PromotedLValType,
3058     BinaryOperatorKind Opcode, const APValue &RVal) {
3059   if (LVal.Designator.Invalid)
3060     return false;
3061 
3062   if (!Info.getLangOpts().CPlusPlus14) {
3063     Info.FFDiag(E);
3064     return false;
3065   }
3066 
3067   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
3068   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
3069                                              RVal };
3070   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3071 }
3072 
3073 namespace {
3074 struct IncDecSubobjectHandler {
3075   EvalInfo &Info;
3076   const Expr *E;
3077   AccessKinds AccessKind;
3078   APValue *Old;
3079 
3080   typedef bool result_type;
3081 
checkConst__anon4b2781fb0711::IncDecSubobjectHandler3082   bool checkConst(QualType QT) {
3083     // Assigning to a const object has undefined behavior.
3084     if (QT.isConstQualified()) {
3085       Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
3086       return false;
3087     }
3088     return true;
3089   }
3090 
failed__anon4b2781fb0711::IncDecSubobjectHandler3091   bool failed() { return false; }
found__anon4b2781fb0711::IncDecSubobjectHandler3092   bool found(APValue &Subobj, QualType SubobjType) {
3093     // Stash the old value. Also clear Old, so we don't clobber it later
3094     // if we're post-incrementing a complex.
3095     if (Old) {
3096       *Old = Subobj;
3097       Old = nullptr;
3098     }
3099 
3100     switch (Subobj.getKind()) {
3101     case APValue::Int:
3102       return found(Subobj.getInt(), SubobjType);
3103     case APValue::Float:
3104       return found(Subobj.getFloat(), SubobjType);
3105     case APValue::ComplexInt:
3106       return found(Subobj.getComplexIntReal(),
3107                    SubobjType->castAs<ComplexType>()->getElementType()
3108                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3109     case APValue::ComplexFloat:
3110       return found(Subobj.getComplexFloatReal(),
3111                    SubobjType->castAs<ComplexType>()->getElementType()
3112                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3113     case APValue::LValue:
3114       return foundPointer(Subobj, SubobjType);
3115     default:
3116       // FIXME: can this happen?
3117       Info.FFDiag(E);
3118       return false;
3119     }
3120   }
found__anon4b2781fb0711::IncDecSubobjectHandler3121   bool found(APSInt &Value, QualType SubobjType) {
3122     if (!checkConst(SubobjType))
3123       return false;
3124 
3125     if (!SubobjType->isIntegerType()) {
3126       // We don't support increment / decrement on integer-cast-to-pointer
3127       // values.
3128       Info.FFDiag(E);
3129       return false;
3130     }
3131 
3132     if (Old) *Old = APValue(Value);
3133 
3134     // bool arithmetic promotes to int, and the conversion back to bool
3135     // doesn't reduce mod 2^n, so special-case it.
3136     if (SubobjType->isBooleanType()) {
3137       if (AccessKind == AK_Increment)
3138         Value = 1;
3139       else
3140         Value = !Value;
3141       return true;
3142     }
3143 
3144     bool WasNegative = Value.isNegative();
3145     if (AccessKind == AK_Increment) {
3146       ++Value;
3147 
3148       if (!WasNegative && Value.isNegative() &&
3149           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3150         APSInt ActualValue(Value, /*IsUnsigned*/true);
3151         return HandleOverflow(Info, E, ActualValue, SubobjType);
3152       }
3153     } else {
3154       --Value;
3155 
3156       if (WasNegative && !Value.isNegative() &&
3157           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3158         unsigned BitWidth = Value.getBitWidth();
3159         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3160         ActualValue.setBit(BitWidth);
3161         return HandleOverflow(Info, E, ActualValue, SubobjType);
3162       }
3163     }
3164     return true;
3165   }
found__anon4b2781fb0711::IncDecSubobjectHandler3166   bool found(APFloat &Value, QualType SubobjType) {
3167     if (!checkConst(SubobjType))
3168       return false;
3169 
3170     if (Old) *Old = APValue(Value);
3171 
3172     APFloat One(Value.getSemantics(), 1);
3173     if (AccessKind == AK_Increment)
3174       Value.add(One, APFloat::rmNearestTiesToEven);
3175     else
3176       Value.subtract(One, APFloat::rmNearestTiesToEven);
3177     return true;
3178   }
foundPointer__anon4b2781fb0711::IncDecSubobjectHandler3179   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3180     if (!checkConst(SubobjType))
3181       return false;
3182 
3183     QualType PointeeType;
3184     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3185       PointeeType = PT->getPointeeType();
3186     else {
3187       Info.FFDiag(E);
3188       return false;
3189     }
3190 
3191     LValue LVal;
3192     LVal.setFrom(Info.Ctx, Subobj);
3193     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3194                                      AccessKind == AK_Increment ? 1 : -1))
3195       return false;
3196     LVal.moveInto(Subobj);
3197     return true;
3198   }
foundString__anon4b2781fb0711::IncDecSubobjectHandler3199   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3200     llvm_unreachable("shouldn't encounter string elements here");
3201   }
3202 };
3203 } // end anonymous namespace
3204 
3205 /// Perform an increment or decrement on LVal.
handleIncDec(EvalInfo & Info,const Expr * E,const LValue & LVal,QualType LValType,bool IsIncrement,APValue * Old)3206 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3207                          QualType LValType, bool IsIncrement, APValue *Old) {
3208   if (LVal.Designator.Invalid)
3209     return false;
3210 
3211   if (!Info.getLangOpts().CPlusPlus14) {
3212     Info.FFDiag(E);
3213     return false;
3214   }
3215 
3216   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3217   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3218   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3219   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3220 }
3221 
3222 /// Build an lvalue for the object argument of a member function call.
EvaluateObjectArgument(EvalInfo & Info,const Expr * Object,LValue & This)3223 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3224                                    LValue &This) {
3225   if (Object->getType()->isPointerType())
3226     return EvaluatePointer(Object, This, Info);
3227 
3228   if (Object->isGLValue())
3229     return EvaluateLValue(Object, This, Info);
3230 
3231   if (Object->getType()->isLiteralType(Info.Ctx))
3232     return EvaluateTemporary(Object, This, Info);
3233 
3234   Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3235   return false;
3236 }
3237 
3238 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3239 /// lvalue referring to the result.
3240 ///
3241 /// \param Info - Information about the ongoing evaluation.
3242 /// \param LV - An lvalue referring to the base of the member pointer.
3243 /// \param RHS - The member pointer expression.
3244 /// \param IncludeMember - Specifies whether the member itself is included in
3245 ///        the resulting LValue subobject designator. This is not possible when
3246 ///        creating a bound member function.
3247 /// \return The field or method declaration to which the member pointer refers,
3248 ///         or 0 if evaluation fails.
HandleMemberPointerAccess(EvalInfo & Info,QualType LVType,LValue & LV,const Expr * RHS,bool IncludeMember=true)3249 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3250                                                   QualType LVType,
3251                                                   LValue &LV,
3252                                                   const Expr *RHS,
3253                                                   bool IncludeMember = true) {
3254   MemberPtr MemPtr;
3255   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3256     return nullptr;
3257 
3258   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3259   // member value, the behavior is undefined.
3260   if (!MemPtr.getDecl()) {
3261     // FIXME: Specific diagnostic.
3262     Info.FFDiag(RHS);
3263     return nullptr;
3264   }
3265 
3266   if (MemPtr.isDerivedMember()) {
3267     // This is a member of some derived class. Truncate LV appropriately.
3268     // The end of the derived-to-base path for the base object must match the
3269     // derived-to-base path for the member pointer.
3270     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3271         LV.Designator.Entries.size()) {
3272       Info.FFDiag(RHS);
3273       return nullptr;
3274     }
3275     unsigned PathLengthToMember =
3276         LV.Designator.Entries.size() - MemPtr.Path.size();
3277     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3278       const CXXRecordDecl *LVDecl = getAsBaseClass(
3279           LV.Designator.Entries[PathLengthToMember + I]);
3280       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3281       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3282         Info.FFDiag(RHS);
3283         return nullptr;
3284       }
3285     }
3286 
3287     // Truncate the lvalue to the appropriate derived class.
3288     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3289                             PathLengthToMember))
3290       return nullptr;
3291   } else if (!MemPtr.Path.empty()) {
3292     // Extend the LValue path with the member pointer's path.
3293     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3294                                   MemPtr.Path.size() + IncludeMember);
3295 
3296     // Walk down to the appropriate base class.
3297     if (const PointerType *PT = LVType->getAs<PointerType>())
3298       LVType = PT->getPointeeType();
3299     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3300     assert(RD && "member pointer access on non-class-type expression");
3301     // The first class in the path is that of the lvalue.
3302     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3303       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3304       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3305         return nullptr;
3306       RD = Base;
3307     }
3308     // Finally cast to the class containing the member.
3309     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3310                                 MemPtr.getContainingRecord()))
3311       return nullptr;
3312   }
3313 
3314   // Add the member. Note that we cannot build bound member functions here.
3315   if (IncludeMember) {
3316     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3317       if (!HandleLValueMember(Info, RHS, LV, FD))
3318         return nullptr;
3319     } else if (const IndirectFieldDecl *IFD =
3320                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3321       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3322         return nullptr;
3323     } else {
3324       llvm_unreachable("can't construct reference to bound member function");
3325     }
3326   }
3327 
3328   return MemPtr.getDecl();
3329 }
3330 
HandleMemberPointerAccess(EvalInfo & Info,const BinaryOperator * BO,LValue & LV,bool IncludeMember=true)3331 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3332                                                   const BinaryOperator *BO,
3333                                                   LValue &LV,
3334                                                   bool IncludeMember = true) {
3335   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3336 
3337   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3338     if (Info.noteFailure()) {
3339       MemberPtr MemPtr;
3340       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3341     }
3342     return nullptr;
3343   }
3344 
3345   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3346                                    BO->getRHS(), IncludeMember);
3347 }
3348 
3349 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3350 /// the provided lvalue, which currently refers to the base object.
HandleBaseToDerivedCast(EvalInfo & Info,const CastExpr * E,LValue & Result)3351 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3352                                     LValue &Result) {
3353   SubobjectDesignator &D = Result.Designator;
3354   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3355     return false;
3356 
3357   QualType TargetQT = E->getType();
3358   if (const PointerType *PT = TargetQT->getAs<PointerType>())
3359     TargetQT = PT->getPointeeType();
3360 
3361   // Check this cast lands within the final derived-to-base subobject path.
3362   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3363     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3364       << D.MostDerivedType << TargetQT;
3365     return false;
3366   }
3367 
3368   // Check the type of the final cast. We don't need to check the path,
3369   // since a cast can only be formed if the path is unique.
3370   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3371   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3372   const CXXRecordDecl *FinalType;
3373   if (NewEntriesSize == D.MostDerivedPathLength)
3374     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3375   else
3376     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3377   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3378     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3379       << D.MostDerivedType << TargetQT;
3380     return false;
3381   }
3382 
3383   // Truncate the lvalue to the appropriate derived class.
3384   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3385 }
3386 
3387 namespace {
3388 enum EvalStmtResult {
3389   /// Evaluation failed.
3390   ESR_Failed,
3391   /// Hit a 'return' statement.
3392   ESR_Returned,
3393   /// Evaluation succeeded.
3394   ESR_Succeeded,
3395   /// Hit a 'continue' statement.
3396   ESR_Continue,
3397   /// Hit a 'break' statement.
3398   ESR_Break,
3399   /// Still scanning for 'case' or 'default' statement.
3400   ESR_CaseNotFound
3401 };
3402 }
3403 
EvaluateDecl(EvalInfo & Info,const Decl * D)3404 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3405   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3406     // We don't need to evaluate the initializer for a static local.
3407     if (!VD->hasLocalStorage())
3408       return true;
3409 
3410     LValue Result;
3411     Result.set(VD, Info.CurrentCall->Index);
3412     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3413 
3414     const Expr *InitE = VD->getInit();
3415     if (!InitE) {
3416       Info.FFDiag(D->getLocStart(), diag::note_constexpr_uninitialized)
3417         << false << VD->getType();
3418       Val = APValue();
3419       return false;
3420     }
3421 
3422     if (InitE->isValueDependent())
3423       return false;
3424 
3425     if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3426       // Wipe out any partially-computed value, to allow tracking that this
3427       // evaluation failed.
3428       Val = APValue();
3429       return false;
3430     }
3431   }
3432 
3433   return true;
3434 }
3435 
3436 /// Evaluate a condition (either a variable declaration or an expression).
EvaluateCond(EvalInfo & Info,const VarDecl * CondDecl,const Expr * Cond,bool & Result)3437 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3438                          const Expr *Cond, bool &Result) {
3439   FullExpressionRAII Scope(Info);
3440   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3441     return false;
3442   return EvaluateAsBooleanCondition(Cond, Result, Info);
3443 }
3444 
3445 namespace {
3446 /// \brief A location where the result (returned value) of evaluating a
3447 /// statement should be stored.
3448 struct StmtResult {
3449   /// The APValue that should be filled in with the returned value.
3450   APValue &Value;
3451   /// The location containing the result, if any (used to support RVO).
3452   const LValue *Slot;
3453 };
3454 }
3455 
3456 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3457                                    const Stmt *S,
3458                                    const SwitchCase *SC = nullptr);
3459 
3460 /// Evaluate the body of a loop, and translate the result as appropriate.
EvaluateLoopBody(StmtResult & Result,EvalInfo & Info,const Stmt * Body,const SwitchCase * Case=nullptr)3461 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3462                                        const Stmt *Body,
3463                                        const SwitchCase *Case = nullptr) {
3464   BlockScopeRAII Scope(Info);
3465   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3466   case ESR_Break:
3467     return ESR_Succeeded;
3468   case ESR_Succeeded:
3469   case ESR_Continue:
3470     return ESR_Continue;
3471   case ESR_Failed:
3472   case ESR_Returned:
3473   case ESR_CaseNotFound:
3474     return ESR;
3475   }
3476   llvm_unreachable("Invalid EvalStmtResult!");
3477 }
3478 
3479 /// Evaluate a switch statement.
EvaluateSwitch(StmtResult & Result,EvalInfo & Info,const SwitchStmt * SS)3480 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3481                                      const SwitchStmt *SS) {
3482   BlockScopeRAII Scope(Info);
3483 
3484   // Evaluate the switch condition.
3485   APSInt Value;
3486   {
3487     FullExpressionRAII Scope(Info);
3488     if (const Stmt *Init = SS->getInit()) {
3489       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3490       if (ESR != ESR_Succeeded)
3491         return ESR;
3492     }
3493     if (SS->getConditionVariable() &&
3494         !EvaluateDecl(Info, SS->getConditionVariable()))
3495       return ESR_Failed;
3496     if (!EvaluateInteger(SS->getCond(), Value, Info))
3497       return ESR_Failed;
3498   }
3499 
3500   // Find the switch case corresponding to the value of the condition.
3501   // FIXME: Cache this lookup.
3502   const SwitchCase *Found = nullptr;
3503   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3504        SC = SC->getNextSwitchCase()) {
3505     if (isa<DefaultStmt>(SC)) {
3506       Found = SC;
3507       continue;
3508     }
3509 
3510     const CaseStmt *CS = cast<CaseStmt>(SC);
3511     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3512     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3513                               : LHS;
3514     if (LHS <= Value && Value <= RHS) {
3515       Found = SC;
3516       break;
3517     }
3518   }
3519 
3520   if (!Found)
3521     return ESR_Succeeded;
3522 
3523   // Search the switch body for the switch case and evaluate it from there.
3524   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3525   case ESR_Break:
3526     return ESR_Succeeded;
3527   case ESR_Succeeded:
3528   case ESR_Continue:
3529   case ESR_Failed:
3530   case ESR_Returned:
3531     return ESR;
3532   case ESR_CaseNotFound:
3533     // This can only happen if the switch case is nested within a statement
3534     // expression. We have no intention of supporting that.
3535     Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3536     return ESR_Failed;
3537   }
3538   llvm_unreachable("Invalid EvalStmtResult!");
3539 }
3540 
3541 // Evaluate a statement.
EvaluateStmt(StmtResult & Result,EvalInfo & Info,const Stmt * S,const SwitchCase * Case)3542 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3543                                    const Stmt *S, const SwitchCase *Case) {
3544   if (!Info.nextStep(S))
3545     return ESR_Failed;
3546 
3547   // If we're hunting down a 'case' or 'default' label, recurse through
3548   // substatements until we hit the label.
3549   if (Case) {
3550     // FIXME: We don't start the lifetime of objects whose initialization we
3551     // jump over. However, such objects must be of class type with a trivial
3552     // default constructor that initialize all subobjects, so must be empty,
3553     // so this almost never matters.
3554     switch (S->getStmtClass()) {
3555     case Stmt::CompoundStmtClass:
3556       // FIXME: Precompute which substatement of a compound statement we
3557       // would jump to, and go straight there rather than performing a
3558       // linear scan each time.
3559     case Stmt::LabelStmtClass:
3560     case Stmt::AttributedStmtClass:
3561     case Stmt::DoStmtClass:
3562       break;
3563 
3564     case Stmt::CaseStmtClass:
3565     case Stmt::DefaultStmtClass:
3566       if (Case == S)
3567         Case = nullptr;
3568       break;
3569 
3570     case Stmt::IfStmtClass: {
3571       // FIXME: Precompute which side of an 'if' we would jump to, and go
3572       // straight there rather than scanning both sides.
3573       const IfStmt *IS = cast<IfStmt>(S);
3574 
3575       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3576       // preceded by our switch label.
3577       BlockScopeRAII Scope(Info);
3578 
3579       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3580       if (ESR != ESR_CaseNotFound || !IS->getElse())
3581         return ESR;
3582       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3583     }
3584 
3585     case Stmt::WhileStmtClass: {
3586       EvalStmtResult ESR =
3587           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3588       if (ESR != ESR_Continue)
3589         return ESR;
3590       break;
3591     }
3592 
3593     case Stmt::ForStmtClass: {
3594       const ForStmt *FS = cast<ForStmt>(S);
3595       EvalStmtResult ESR =
3596           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3597       if (ESR != ESR_Continue)
3598         return ESR;
3599       if (FS->getInc()) {
3600         FullExpressionRAII IncScope(Info);
3601         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3602           return ESR_Failed;
3603       }
3604       break;
3605     }
3606 
3607     case Stmt::DeclStmtClass:
3608       // FIXME: If the variable has initialization that can't be jumped over,
3609       // bail out of any immediately-surrounding compound-statement too.
3610     default:
3611       return ESR_CaseNotFound;
3612     }
3613   }
3614 
3615   switch (S->getStmtClass()) {
3616   default:
3617     if (const Expr *E = dyn_cast<Expr>(S)) {
3618       // Don't bother evaluating beyond an expression-statement which couldn't
3619       // be evaluated.
3620       FullExpressionRAII Scope(Info);
3621       if (!EvaluateIgnoredValue(Info, E))
3622         return ESR_Failed;
3623       return ESR_Succeeded;
3624     }
3625 
3626     Info.FFDiag(S->getLocStart());
3627     return ESR_Failed;
3628 
3629   case Stmt::NullStmtClass:
3630     return ESR_Succeeded;
3631 
3632   case Stmt::DeclStmtClass: {
3633     const DeclStmt *DS = cast<DeclStmt>(S);
3634     for (const auto *DclIt : DS->decls()) {
3635       // Each declaration initialization is its own full-expression.
3636       // FIXME: This isn't quite right; if we're performing aggregate
3637       // initialization, each braced subexpression is its own full-expression.
3638       FullExpressionRAII Scope(Info);
3639       if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
3640         return ESR_Failed;
3641     }
3642     return ESR_Succeeded;
3643   }
3644 
3645   case Stmt::ReturnStmtClass: {
3646     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3647     FullExpressionRAII Scope(Info);
3648     if (RetExpr &&
3649         !(Result.Slot
3650               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3651               : Evaluate(Result.Value, Info, RetExpr)))
3652       return ESR_Failed;
3653     return ESR_Returned;
3654   }
3655 
3656   case Stmt::CompoundStmtClass: {
3657     BlockScopeRAII Scope(Info);
3658 
3659     const CompoundStmt *CS = cast<CompoundStmt>(S);
3660     for (const auto *BI : CS->body()) {
3661       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3662       if (ESR == ESR_Succeeded)
3663         Case = nullptr;
3664       else if (ESR != ESR_CaseNotFound)
3665         return ESR;
3666     }
3667     return Case ? ESR_CaseNotFound : ESR_Succeeded;
3668   }
3669 
3670   case Stmt::IfStmtClass: {
3671     const IfStmt *IS = cast<IfStmt>(S);
3672 
3673     // Evaluate the condition, as either a var decl or as an expression.
3674     BlockScopeRAII Scope(Info);
3675     if (const Stmt *Init = IS->getInit()) {
3676       EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
3677       if (ESR != ESR_Succeeded)
3678         return ESR;
3679     }
3680     bool Cond;
3681     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3682       return ESR_Failed;
3683 
3684     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3685       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3686       if (ESR != ESR_Succeeded)
3687         return ESR;
3688     }
3689     return ESR_Succeeded;
3690   }
3691 
3692   case Stmt::WhileStmtClass: {
3693     const WhileStmt *WS = cast<WhileStmt>(S);
3694     while (true) {
3695       BlockScopeRAII Scope(Info);
3696       bool Continue;
3697       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3698                         Continue))
3699         return ESR_Failed;
3700       if (!Continue)
3701         break;
3702 
3703       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3704       if (ESR != ESR_Continue)
3705         return ESR;
3706     }
3707     return ESR_Succeeded;
3708   }
3709 
3710   case Stmt::DoStmtClass: {
3711     const DoStmt *DS = cast<DoStmt>(S);
3712     bool Continue;
3713     do {
3714       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3715       if (ESR != ESR_Continue)
3716         return ESR;
3717       Case = nullptr;
3718 
3719       FullExpressionRAII CondScope(Info);
3720       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3721         return ESR_Failed;
3722     } while (Continue);
3723     return ESR_Succeeded;
3724   }
3725 
3726   case Stmt::ForStmtClass: {
3727     const ForStmt *FS = cast<ForStmt>(S);
3728     BlockScopeRAII Scope(Info);
3729     if (FS->getInit()) {
3730       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3731       if (ESR != ESR_Succeeded)
3732         return ESR;
3733     }
3734     while (true) {
3735       BlockScopeRAII Scope(Info);
3736       bool Continue = true;
3737       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3738                                          FS->getCond(), Continue))
3739         return ESR_Failed;
3740       if (!Continue)
3741         break;
3742 
3743       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3744       if (ESR != ESR_Continue)
3745         return ESR;
3746 
3747       if (FS->getInc()) {
3748         FullExpressionRAII IncScope(Info);
3749         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3750           return ESR_Failed;
3751       }
3752     }
3753     return ESR_Succeeded;
3754   }
3755 
3756   case Stmt::CXXForRangeStmtClass: {
3757     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3758     BlockScopeRAII Scope(Info);
3759 
3760     // Initialize the __range variable.
3761     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3762     if (ESR != ESR_Succeeded)
3763       return ESR;
3764 
3765     // Create the __begin and __end iterators.
3766     ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
3767     if (ESR != ESR_Succeeded)
3768       return ESR;
3769     ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
3770     if (ESR != ESR_Succeeded)
3771       return ESR;
3772 
3773     while (true) {
3774       // Condition: __begin != __end.
3775       {
3776         bool Continue = true;
3777         FullExpressionRAII CondExpr(Info);
3778         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3779           return ESR_Failed;
3780         if (!Continue)
3781           break;
3782       }
3783 
3784       // User's variable declaration, initialized by *__begin.
3785       BlockScopeRAII InnerScope(Info);
3786       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3787       if (ESR != ESR_Succeeded)
3788         return ESR;
3789 
3790       // Loop body.
3791       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3792       if (ESR != ESR_Continue)
3793         return ESR;
3794 
3795       // Increment: ++__begin
3796       if (!EvaluateIgnoredValue(Info, FS->getInc()))
3797         return ESR_Failed;
3798     }
3799 
3800     return ESR_Succeeded;
3801   }
3802 
3803   case Stmt::SwitchStmtClass:
3804     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3805 
3806   case Stmt::ContinueStmtClass:
3807     return ESR_Continue;
3808 
3809   case Stmt::BreakStmtClass:
3810     return ESR_Break;
3811 
3812   case Stmt::LabelStmtClass:
3813     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3814 
3815   case Stmt::AttributedStmtClass:
3816     // As a general principle, C++11 attributes can be ignored without
3817     // any semantic impact.
3818     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3819                         Case);
3820 
3821   case Stmt::CaseStmtClass:
3822   case Stmt::DefaultStmtClass:
3823     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3824   }
3825 }
3826 
3827 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3828 /// default constructor. If so, we'll fold it whether or not it's marked as
3829 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3830 /// so we need special handling.
CheckTrivialDefaultConstructor(EvalInfo & Info,SourceLocation Loc,const CXXConstructorDecl * CD,bool IsValueInitialization)3831 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3832                                            const CXXConstructorDecl *CD,
3833                                            bool IsValueInitialization) {
3834   if (!CD->isTrivial() || !CD->isDefaultConstructor())
3835     return false;
3836 
3837   // Value-initialization does not call a trivial default constructor, so such a
3838   // call is a core constant expression whether or not the constructor is
3839   // constexpr.
3840   if (!CD->isConstexpr() && !IsValueInitialization) {
3841     if (Info.getLangOpts().CPlusPlus11) {
3842       // FIXME: If DiagDecl is an implicitly-declared special member function,
3843       // we should be much more explicit about why it's not constexpr.
3844       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3845         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3846       Info.Note(CD->getLocation(), diag::note_declared_at);
3847     } else {
3848       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3849     }
3850   }
3851   return true;
3852 }
3853 
3854 /// CheckConstexprFunction - Check that a function can be called in a constant
3855 /// expression.
CheckConstexprFunction(EvalInfo & Info,SourceLocation CallLoc,const FunctionDecl * Declaration,const FunctionDecl * Definition,const Stmt * Body)3856 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3857                                    const FunctionDecl *Declaration,
3858                                    const FunctionDecl *Definition,
3859                                    const Stmt *Body) {
3860   // Potential constant expressions can contain calls to declared, but not yet
3861   // defined, constexpr functions.
3862   if (Info.checkingPotentialConstantExpression() && !Definition &&
3863       Declaration->isConstexpr())
3864     return false;
3865 
3866   // Bail out with no diagnostic if the function declaration itself is invalid.
3867   // We will have produced a relevant diagnostic while parsing it.
3868   if (Declaration->isInvalidDecl())
3869     return false;
3870 
3871   // Can we evaluate this function call?
3872   if (Definition && Definition->isConstexpr() &&
3873       !Definition->isInvalidDecl() && Body)
3874     return true;
3875 
3876   if (Info.getLangOpts().CPlusPlus11) {
3877     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3878 
3879     // If this function is not constexpr because it is an inherited
3880     // non-constexpr constructor, diagnose that directly.
3881     auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
3882     if (CD && CD->isInheritingConstructor()) {
3883       auto *Inherited = CD->getInheritedConstructor().getConstructor();
3884       if (!Inherited->isConstexpr())
3885         DiagDecl = CD = Inherited;
3886     }
3887 
3888     // FIXME: If DiagDecl is an implicitly-declared special member function
3889     // or an inheriting constructor, we should be much more explicit about why
3890     // it's not constexpr.
3891     if (CD && CD->isInheritingConstructor())
3892       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
3893         << CD->getInheritedConstructor().getConstructor()->getParent();
3894     else
3895       Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
3896         << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
3897     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3898   } else {
3899     Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3900   }
3901   return false;
3902 }
3903 
3904 /// Determine if a class has any fields that might need to be copied by a
3905 /// trivial copy or move operation.
hasFields(const CXXRecordDecl * RD)3906 static bool hasFields(const CXXRecordDecl *RD) {
3907   if (!RD || RD->isEmpty())
3908     return false;
3909   for (auto *FD : RD->fields()) {
3910     if (FD->isUnnamedBitfield())
3911       continue;
3912     return true;
3913   }
3914   for (auto &Base : RD->bases())
3915     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3916       return true;
3917   return false;
3918 }
3919 
3920 namespace {
3921 typedef SmallVector<APValue, 8> ArgVector;
3922 }
3923 
3924 /// EvaluateArgs - Evaluate the arguments to a function call.
EvaluateArgs(ArrayRef<const Expr * > Args,ArgVector & ArgValues,EvalInfo & Info)3925 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3926                          EvalInfo &Info) {
3927   bool Success = true;
3928   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3929        I != E; ++I) {
3930     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3931       // If we're checking for a potential constant expression, evaluate all
3932       // initializers even if some of them fail.
3933       if (!Info.noteFailure())
3934         return false;
3935       Success = false;
3936     }
3937   }
3938   return Success;
3939 }
3940 
3941 /// Evaluate a function call.
HandleFunctionCall(SourceLocation CallLoc,const FunctionDecl * Callee,const LValue * This,ArrayRef<const Expr * > Args,const Stmt * Body,EvalInfo & Info,APValue & Result,const LValue * ResultSlot)3942 static bool HandleFunctionCall(SourceLocation CallLoc,
3943                                const FunctionDecl *Callee, const LValue *This,
3944                                ArrayRef<const Expr*> Args, const Stmt *Body,
3945                                EvalInfo &Info, APValue &Result,
3946                                const LValue *ResultSlot) {
3947   ArgVector ArgValues(Args.size());
3948   if (!EvaluateArgs(Args, ArgValues, Info))
3949     return false;
3950 
3951   if (!Info.CheckCallLimit(CallLoc))
3952     return false;
3953 
3954   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3955 
3956   // For a trivial copy or move assignment, perform an APValue copy. This is
3957   // essential for unions, where the operations performed by the assignment
3958   // operator cannot be represented as statements.
3959   //
3960   // Skip this for non-union classes with no fields; in that case, the defaulted
3961   // copy/move does not actually read the object.
3962   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3963   if (MD && MD->isDefaulted() &&
3964       (MD->getParent()->isUnion() ||
3965        (MD->isTrivial() && hasFields(MD->getParent())))) {
3966     assert(This &&
3967            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3968     LValue RHS;
3969     RHS.setFrom(Info.Ctx, ArgValues[0]);
3970     APValue RHSValue;
3971     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3972                                         RHS, RHSValue))
3973       return false;
3974     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3975                           RHSValue))
3976       return false;
3977     This->moveInto(Result);
3978     return true;
3979   }
3980 
3981   StmtResult Ret = {Result, ResultSlot};
3982   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
3983   if (ESR == ESR_Succeeded) {
3984     if (Callee->getReturnType()->isVoidType())
3985       return true;
3986     Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3987   }
3988   return ESR == ESR_Returned;
3989 }
3990 
3991 /// Evaluate a constructor call.
HandleConstructorCall(const Expr * E,const LValue & This,APValue * ArgValues,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)3992 static bool HandleConstructorCall(const Expr *E, const LValue &This,
3993                                   APValue *ArgValues,
3994                                   const CXXConstructorDecl *Definition,
3995                                   EvalInfo &Info, APValue &Result) {
3996   SourceLocation CallLoc = E->getExprLoc();
3997   if (!Info.CheckCallLimit(CallLoc))
3998     return false;
3999 
4000   const CXXRecordDecl *RD = Definition->getParent();
4001   if (RD->getNumVBases()) {
4002     Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
4003     return false;
4004   }
4005 
4006   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
4007 
4008   // FIXME: Creating an APValue just to hold a nonexistent return value is
4009   // wasteful.
4010   APValue RetVal;
4011   StmtResult Ret = {RetVal, nullptr};
4012 
4013   // If it's a delegating constructor, delegate.
4014   if (Definition->isDelegatingConstructor()) {
4015     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
4016     {
4017       FullExpressionRAII InitScope(Info);
4018       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
4019         return false;
4020     }
4021     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4022   }
4023 
4024   // For a trivial copy or move constructor, perform an APValue copy. This is
4025   // essential for unions (or classes with anonymous union members), where the
4026   // operations performed by the constructor cannot be represented by
4027   // ctor-initializers.
4028   //
4029   // Skip this for empty non-union classes; we should not perform an
4030   // lvalue-to-rvalue conversion on them because their copy constructor does not
4031   // actually read them.
4032   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
4033       (Definition->getParent()->isUnion() ||
4034        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
4035     LValue RHS;
4036     RHS.setFrom(Info.Ctx, ArgValues[0]);
4037     return handleLValueToRValueConversion(
4038         Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
4039         RHS, Result);
4040   }
4041 
4042   // Reserve space for the struct members.
4043   if (!RD->isUnion() && Result.isUninit())
4044     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
4045                      std::distance(RD->field_begin(), RD->field_end()));
4046 
4047   if (RD->isInvalidDecl()) return false;
4048   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
4049 
4050   // A scope for temporaries lifetime-extended by reference members.
4051   BlockScopeRAII LifetimeExtendedScope(Info);
4052 
4053   bool Success = true;
4054   unsigned BasesSeen = 0;
4055 #ifndef NDEBUG
4056   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
4057 #endif
4058   for (const auto *I : Definition->inits()) {
4059     LValue Subobject = This;
4060     APValue *Value = &Result;
4061 
4062     // Determine the subobject to initialize.
4063     FieldDecl *FD = nullptr;
4064     if (I->isBaseInitializer()) {
4065       QualType BaseType(I->getBaseClass(), 0);
4066 #ifndef NDEBUG
4067       // Non-virtual base classes are initialized in the order in the class
4068       // definition. We have already checked for virtual base classes.
4069       assert(!BaseIt->isVirtual() && "virtual base for literal type");
4070       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
4071              "base class initializers not in expected order");
4072       ++BaseIt;
4073 #endif
4074       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
4075                                   BaseType->getAsCXXRecordDecl(), &Layout))
4076         return false;
4077       Value = &Result.getStructBase(BasesSeen++);
4078     } else if ((FD = I->getMember())) {
4079       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
4080         return false;
4081       if (RD->isUnion()) {
4082         Result = APValue(FD);
4083         Value = &Result.getUnionValue();
4084       } else {
4085         Value = &Result.getStructField(FD->getFieldIndex());
4086       }
4087     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
4088       // Walk the indirect field decl's chain to find the object to initialize,
4089       // and make sure we've initialized every step along it.
4090       for (auto *C : IFD->chain()) {
4091         FD = cast<FieldDecl>(C);
4092         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
4093         // Switch the union field if it differs. This happens if we had
4094         // preceding zero-initialization, and we're now initializing a union
4095         // subobject other than the first.
4096         // FIXME: In this case, the values of the other subobjects are
4097         // specified, since zero-initialization sets all padding bits to zero.
4098         if (Value->isUninit() ||
4099             (Value->isUnion() && Value->getUnionField() != FD)) {
4100           if (CD->isUnion())
4101             *Value = APValue(FD);
4102           else
4103             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
4104                              std::distance(CD->field_begin(), CD->field_end()));
4105         }
4106         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
4107           return false;
4108         if (CD->isUnion())
4109           Value = &Value->getUnionValue();
4110         else
4111           Value = &Value->getStructField(FD->getFieldIndex());
4112       }
4113     } else {
4114       llvm_unreachable("unknown base initializer kind");
4115     }
4116 
4117     FullExpressionRAII InitScope(Info);
4118     if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
4119         (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
4120                                                           *Value, FD))) {
4121       // If we're checking for a potential constant expression, evaluate all
4122       // initializers even if some of them fail.
4123       if (!Info.noteFailure())
4124         return false;
4125       Success = false;
4126     }
4127   }
4128 
4129   return Success &&
4130          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
4131 }
4132 
HandleConstructorCall(const Expr * E,const LValue & This,ArrayRef<const Expr * > Args,const CXXConstructorDecl * Definition,EvalInfo & Info,APValue & Result)4133 static bool HandleConstructorCall(const Expr *E, const LValue &This,
4134                                   ArrayRef<const Expr*> Args,
4135                                   const CXXConstructorDecl *Definition,
4136                                   EvalInfo &Info, APValue &Result) {
4137   ArgVector ArgValues(Args.size());
4138   if (!EvaluateArgs(Args, ArgValues, Info))
4139     return false;
4140 
4141   return HandleConstructorCall(E, This, ArgValues.data(), Definition,
4142                                Info, Result);
4143 }
4144 
4145 //===----------------------------------------------------------------------===//
4146 // Generic Evaluation
4147 //===----------------------------------------------------------------------===//
4148 namespace {
4149 
4150 template <class Derived>
4151 class ExprEvaluatorBase
4152   : public ConstStmtVisitor<Derived, bool> {
4153 private:
getDerived()4154   Derived &getDerived() { return static_cast<Derived&>(*this); }
DerivedSuccess(const APValue & V,const Expr * E)4155   bool DerivedSuccess(const APValue &V, const Expr *E) {
4156     return getDerived().Success(V, E);
4157   }
DerivedZeroInitialization(const Expr * E)4158   bool DerivedZeroInitialization(const Expr *E) {
4159     return getDerived().ZeroInitialization(E);
4160   }
4161 
4162   // Check whether a conditional operator with a non-constant condition is a
4163   // potential constant expression. If neither arm is a potential constant
4164   // expression, then the conditional operator is not either.
4165   template<typename ConditionalOperator>
CheckPotentialConstantConditional(const ConditionalOperator * E)4166   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4167     assert(Info.checkingPotentialConstantExpression());
4168 
4169     // Speculatively evaluate both arms.
4170     SmallVector<PartialDiagnosticAt, 8> Diag;
4171     {
4172       SpeculativeEvaluationRAII Speculate(Info, &Diag);
4173       StmtVisitorTy::Visit(E->getFalseExpr());
4174       if (Diag.empty())
4175         return;
4176     }
4177 
4178     {
4179       SpeculativeEvaluationRAII Speculate(Info, &Diag);
4180       Diag.clear();
4181       StmtVisitorTy::Visit(E->getTrueExpr());
4182       if (Diag.empty())
4183         return;
4184     }
4185 
4186     Error(E, diag::note_constexpr_conditional_never_const);
4187   }
4188 
4189 
4190   template<typename ConditionalOperator>
HandleConditionalOperator(const ConditionalOperator * E)4191   bool HandleConditionalOperator(const ConditionalOperator *E) {
4192     bool BoolResult;
4193     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4194       if (Info.checkingPotentialConstantExpression() && Info.noteFailure())
4195         CheckPotentialConstantConditional(E);
4196       return false;
4197     }
4198 
4199     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4200     return StmtVisitorTy::Visit(EvalExpr);
4201   }
4202 
4203 protected:
4204   EvalInfo &Info;
4205   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4206   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4207 
CCEDiag(const Expr * E,diag::kind D)4208   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4209     return Info.CCEDiag(E, D);
4210   }
4211 
ZeroInitialization(const Expr * E)4212   bool ZeroInitialization(const Expr *E) { return Error(E); }
4213 
4214 public:
ExprEvaluatorBase(EvalInfo & Info)4215   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4216 
getEvalInfo()4217   EvalInfo &getEvalInfo() { return Info; }
4218 
4219   /// Report an evaluation error. This should only be called when an error is
4220   /// first discovered. When propagating an error, just return false.
Error(const Expr * E,diag::kind D)4221   bool Error(const Expr *E, diag::kind D) {
4222     Info.FFDiag(E, D);
4223     return false;
4224   }
Error(const Expr * E)4225   bool Error(const Expr *E) {
4226     return Error(E, diag::note_invalid_subexpr_in_const_expr);
4227   }
4228 
VisitStmt(const Stmt *)4229   bool VisitStmt(const Stmt *) {
4230     llvm_unreachable("Expression evaluator should not be called on stmts");
4231   }
VisitExpr(const Expr * E)4232   bool VisitExpr(const Expr *E) {
4233     return Error(E);
4234   }
4235 
VisitParenExpr(const ParenExpr * E)4236   bool VisitParenExpr(const ParenExpr *E)
4237     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryExtension(const UnaryOperator * E)4238   bool VisitUnaryExtension(const UnaryOperator *E)
4239     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitUnaryPlus(const UnaryOperator * E)4240   bool VisitUnaryPlus(const UnaryOperator *E)
4241     { return StmtVisitorTy::Visit(E->getSubExpr()); }
VisitChooseExpr(const ChooseExpr * E)4242   bool VisitChooseExpr(const ChooseExpr *E)
4243     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
VisitGenericSelectionExpr(const GenericSelectionExpr * E)4244   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4245     { return StmtVisitorTy::Visit(E->getResultExpr()); }
VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr * E)4246   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4247     { return StmtVisitorTy::Visit(E->getReplacement()); }
VisitCXXDefaultArgExpr(const CXXDefaultArgExpr * E)4248   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4249     { return StmtVisitorTy::Visit(E->getExpr()); }
VisitCXXDefaultInitExpr(const CXXDefaultInitExpr * E)4250   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4251     // The initializer may not have been parsed yet, or might be erroneous.
4252     if (!E->getExpr())
4253       return Error(E);
4254     return StmtVisitorTy::Visit(E->getExpr());
4255   }
4256   // We cannot create any objects for which cleanups are required, so there is
4257   // nothing to do here; all cleanups must come from unevaluated subexpressions.
VisitExprWithCleanups(const ExprWithCleanups * E)4258   bool VisitExprWithCleanups(const ExprWithCleanups *E)
4259     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4260 
VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr * E)4261   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4262     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4263     return static_cast<Derived*>(this)->VisitCastExpr(E);
4264   }
VisitCXXDynamicCastExpr(const CXXDynamicCastExpr * E)4265   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4266     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4267     return static_cast<Derived*>(this)->VisitCastExpr(E);
4268   }
4269 
VisitBinaryOperator(const BinaryOperator * E)4270   bool VisitBinaryOperator(const BinaryOperator *E) {
4271     switch (E->getOpcode()) {
4272     default:
4273       return Error(E);
4274 
4275     case BO_Comma:
4276       VisitIgnoredValue(E->getLHS());
4277       return StmtVisitorTy::Visit(E->getRHS());
4278 
4279     case BO_PtrMemD:
4280     case BO_PtrMemI: {
4281       LValue Obj;
4282       if (!HandleMemberPointerAccess(Info, E, Obj))
4283         return false;
4284       APValue Result;
4285       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4286         return false;
4287       return DerivedSuccess(Result, E);
4288     }
4289     }
4290   }
4291 
VisitBinaryConditionalOperator(const BinaryConditionalOperator * E)4292   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4293     // Evaluate and cache the common expression. We treat it as a temporary,
4294     // even though it's not quite the same thing.
4295     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4296                   Info, E->getCommon()))
4297       return false;
4298 
4299     return HandleConditionalOperator(E);
4300   }
4301 
VisitConditionalOperator(const ConditionalOperator * E)4302   bool VisitConditionalOperator(const ConditionalOperator *E) {
4303     bool IsBcpCall = false;
4304     // If the condition (ignoring parens) is a __builtin_constant_p call,
4305     // the result is a constant expression if it can be folded without
4306     // side-effects. This is an important GNU extension. See GCC PR38377
4307     // for discussion.
4308     if (const CallExpr *CallCE =
4309           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4310       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4311         IsBcpCall = true;
4312 
4313     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4314     // constant expression; we can't check whether it's potentially foldable.
4315     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4316       return false;
4317 
4318     FoldConstant Fold(Info, IsBcpCall);
4319     if (!HandleConditionalOperator(E)) {
4320       Fold.keepDiagnostics();
4321       return false;
4322     }
4323 
4324     return true;
4325   }
4326 
VisitOpaqueValueExpr(const OpaqueValueExpr * E)4327   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4328     if (APValue *Value = Info.CurrentCall->getTemporary(E))
4329       return DerivedSuccess(*Value, E);
4330 
4331     const Expr *Source = E->getSourceExpr();
4332     if (!Source)
4333       return Error(E);
4334     if (Source == E) { // sanity checking.
4335       assert(0 && "OpaqueValueExpr recursively refers to itself");
4336       return Error(E);
4337     }
4338     return StmtVisitorTy::Visit(Source);
4339   }
4340 
VisitCallExpr(const CallExpr * E)4341   bool VisitCallExpr(const CallExpr *E) {
4342     APValue Result;
4343     if (!handleCallExpr(E, Result, nullptr))
4344       return false;
4345     return DerivedSuccess(Result, E);
4346   }
4347 
handleCallExpr(const CallExpr * E,APValue & Result,const LValue * ResultSlot)4348   bool handleCallExpr(const CallExpr *E, APValue &Result,
4349                      const LValue *ResultSlot) {
4350     const Expr *Callee = E->getCallee()->IgnoreParens();
4351     QualType CalleeType = Callee->getType();
4352 
4353     const FunctionDecl *FD = nullptr;
4354     LValue *This = nullptr, ThisVal;
4355     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4356     bool HasQualifier = false;
4357 
4358     // Extract function decl and 'this' pointer from the callee.
4359     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4360       const ValueDecl *Member = nullptr;
4361       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4362         // Explicit bound member calls, such as x.f() or p->g();
4363         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4364           return false;
4365         Member = ME->getMemberDecl();
4366         This = &ThisVal;
4367         HasQualifier = ME->hasQualifier();
4368       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4369         // Indirect bound member calls ('.*' or '->*').
4370         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4371         if (!Member) return false;
4372         This = &ThisVal;
4373       } else
4374         return Error(Callee);
4375 
4376       FD = dyn_cast<FunctionDecl>(Member);
4377       if (!FD)
4378         return Error(Callee);
4379     } else if (CalleeType->isFunctionPointerType()) {
4380       LValue Call;
4381       if (!EvaluatePointer(Callee, Call, Info))
4382         return false;
4383 
4384       if (!Call.getLValueOffset().isZero())
4385         return Error(Callee);
4386       FD = dyn_cast_or_null<FunctionDecl>(
4387                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
4388       if (!FD)
4389         return Error(Callee);
4390 
4391       // Overloaded operator calls to member functions are represented as normal
4392       // calls with '*this' as the first argument.
4393       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4394       if (MD && !MD->isStatic()) {
4395         // FIXME: When selecting an implicit conversion for an overloaded
4396         // operator delete, we sometimes try to evaluate calls to conversion
4397         // operators without a 'this' parameter!
4398         if (Args.empty())
4399           return Error(E);
4400 
4401         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4402           return false;
4403         This = &ThisVal;
4404         Args = Args.slice(1);
4405       }
4406 
4407       // Don't call function pointers which have been cast to some other type.
4408       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4409         return Error(E);
4410     } else
4411       return Error(E);
4412 
4413     if (This && !This->checkSubobject(Info, E, CSK_This))
4414       return false;
4415 
4416     // DR1358 allows virtual constexpr functions in some cases. Don't allow
4417     // calls to such functions in constant expressions.
4418     if (This && !HasQualifier &&
4419         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4420       return Error(E, diag::note_constexpr_virtual_call);
4421 
4422     const FunctionDecl *Definition = nullptr;
4423     Stmt *Body = FD->getBody(Definition);
4424 
4425     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
4426         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4427                             Result, ResultSlot))
4428       return false;
4429 
4430     return true;
4431   }
4432 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4433   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4434     return StmtVisitorTy::Visit(E->getInitializer());
4435   }
VisitInitListExpr(const InitListExpr * E)4436   bool VisitInitListExpr(const InitListExpr *E) {
4437     if (E->getNumInits() == 0)
4438       return DerivedZeroInitialization(E);
4439     if (E->getNumInits() == 1)
4440       return StmtVisitorTy::Visit(E->getInit(0));
4441     return Error(E);
4442   }
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)4443   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4444     return DerivedZeroInitialization(E);
4445   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)4446   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4447     return DerivedZeroInitialization(E);
4448   }
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)4449   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4450     return DerivedZeroInitialization(E);
4451   }
4452 
4453   /// A member expression where the object is a prvalue is itself a prvalue.
VisitMemberExpr(const MemberExpr * E)4454   bool VisitMemberExpr(const MemberExpr *E) {
4455     assert(!E->isArrow() && "missing call to bound member function?");
4456 
4457     APValue Val;
4458     if (!Evaluate(Val, Info, E->getBase()))
4459       return false;
4460 
4461     QualType BaseTy = E->getBase()->getType();
4462 
4463     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4464     if (!FD) return Error(E);
4465     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4466     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4467            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4468 
4469     CompleteObject Obj(&Val, BaseTy);
4470     SubobjectDesignator Designator(BaseTy);
4471     Designator.addDeclUnchecked(FD);
4472 
4473     APValue Result;
4474     return extractSubobject(Info, E, Obj, Designator, Result) &&
4475            DerivedSuccess(Result, E);
4476   }
4477 
VisitCastExpr(const CastExpr * E)4478   bool VisitCastExpr(const CastExpr *E) {
4479     switch (E->getCastKind()) {
4480     default:
4481       break;
4482 
4483     case CK_AtomicToNonAtomic: {
4484       APValue AtomicVal;
4485       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4486         return false;
4487       return DerivedSuccess(AtomicVal, E);
4488     }
4489 
4490     case CK_NoOp:
4491     case CK_UserDefinedConversion:
4492       return StmtVisitorTy::Visit(E->getSubExpr());
4493 
4494     case CK_LValueToRValue: {
4495       LValue LVal;
4496       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4497         return false;
4498       APValue RVal;
4499       // Note, we use the subexpression's type in order to retain cv-qualifiers.
4500       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4501                                           LVal, RVal))
4502         return false;
4503       return DerivedSuccess(RVal, E);
4504     }
4505     }
4506 
4507     return Error(E);
4508   }
4509 
VisitUnaryPostInc(const UnaryOperator * UO)4510   bool VisitUnaryPostInc(const UnaryOperator *UO) {
4511     return VisitUnaryPostIncDec(UO);
4512   }
VisitUnaryPostDec(const UnaryOperator * UO)4513   bool VisitUnaryPostDec(const UnaryOperator *UO) {
4514     return VisitUnaryPostIncDec(UO);
4515   }
VisitUnaryPostIncDec(const UnaryOperator * UO)4516   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4517     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4518       return Error(UO);
4519 
4520     LValue LVal;
4521     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4522       return false;
4523     APValue RVal;
4524     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4525                       UO->isIncrementOp(), &RVal))
4526       return false;
4527     return DerivedSuccess(RVal, UO);
4528   }
4529 
VisitStmtExpr(const StmtExpr * E)4530   bool VisitStmtExpr(const StmtExpr *E) {
4531     // We will have checked the full-expressions inside the statement expression
4532     // when they were completed, and don't need to check them again now.
4533     if (Info.checkingForOverflow())
4534       return Error(E);
4535 
4536     BlockScopeRAII Scope(Info);
4537     const CompoundStmt *CS = E->getSubStmt();
4538     if (CS->body_empty())
4539       return true;
4540 
4541     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4542                                            BE = CS->body_end();
4543          /**/; ++BI) {
4544       if (BI + 1 == BE) {
4545         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4546         if (!FinalExpr) {
4547           Info.FFDiag((*BI)->getLocStart(),
4548                     diag::note_constexpr_stmt_expr_unsupported);
4549           return false;
4550         }
4551         return this->Visit(FinalExpr);
4552       }
4553 
4554       APValue ReturnValue;
4555       StmtResult Result = { ReturnValue, nullptr };
4556       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4557       if (ESR != ESR_Succeeded) {
4558         // FIXME: If the statement-expression terminated due to 'return',
4559         // 'break', or 'continue', it would be nice to propagate that to
4560         // the outer statement evaluation rather than bailing out.
4561         if (ESR != ESR_Failed)
4562           Info.FFDiag((*BI)->getLocStart(),
4563                     diag::note_constexpr_stmt_expr_unsupported);
4564         return false;
4565       }
4566     }
4567 
4568     llvm_unreachable("Return from function from the loop above.");
4569   }
4570 
4571   /// Visit a value which is evaluated, but whose value is ignored.
VisitIgnoredValue(const Expr * E)4572   void VisitIgnoredValue(const Expr *E) {
4573     EvaluateIgnoredValue(Info, E);
4574   }
4575 
4576   /// Potentially visit a MemberExpr's base expression.
VisitIgnoredBaseExpression(const Expr * E)4577   void VisitIgnoredBaseExpression(const Expr *E) {
4578     // While MSVC doesn't evaluate the base expression, it does diagnose the
4579     // presence of side-effecting behavior.
4580     if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
4581       return;
4582     VisitIgnoredValue(E);
4583   }
4584 };
4585 
4586 }
4587 
4588 //===----------------------------------------------------------------------===//
4589 // Common base class for lvalue and temporary evaluation.
4590 //===----------------------------------------------------------------------===//
4591 namespace {
4592 template<class Derived>
4593 class LValueExprEvaluatorBase
4594   : public ExprEvaluatorBase<Derived> {
4595 protected:
4596   LValue &Result;
4597   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4598   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4599 
Success(APValue::LValueBase B)4600   bool Success(APValue::LValueBase B) {
4601     Result.set(B);
4602     return true;
4603   }
4604 
4605 public:
LValueExprEvaluatorBase(EvalInfo & Info,LValue & Result)4606   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4607     ExprEvaluatorBaseTy(Info), Result(Result) {}
4608 
Success(const APValue & V,const Expr * E)4609   bool Success(const APValue &V, const Expr *E) {
4610     Result.setFrom(this->Info.Ctx, V);
4611     return true;
4612   }
4613 
VisitMemberExpr(const MemberExpr * E)4614   bool VisitMemberExpr(const MemberExpr *E) {
4615     // Handle non-static data members.
4616     QualType BaseTy;
4617     bool EvalOK;
4618     if (E->isArrow()) {
4619       EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
4620       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4621     } else if (E->getBase()->isRValue()) {
4622       assert(E->getBase()->getType()->isRecordType());
4623       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
4624       BaseTy = E->getBase()->getType();
4625     } else {
4626       EvalOK = this->Visit(E->getBase());
4627       BaseTy = E->getBase()->getType();
4628     }
4629     if (!EvalOK) {
4630       if (!this->Info.allowInvalidBaseExpr())
4631         return false;
4632       Result.setInvalid(E);
4633       return true;
4634     }
4635 
4636     const ValueDecl *MD = E->getMemberDecl();
4637     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4638       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4639              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4640       (void)BaseTy;
4641       if (!HandleLValueMember(this->Info, E, Result, FD))
4642         return false;
4643     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4644       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4645         return false;
4646     } else
4647       return this->Error(E);
4648 
4649     if (MD->getType()->isReferenceType()) {
4650       APValue RefValue;
4651       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4652                                           RefValue))
4653         return false;
4654       return Success(RefValue, E);
4655     }
4656     return true;
4657   }
4658 
VisitBinaryOperator(const BinaryOperator * E)4659   bool VisitBinaryOperator(const BinaryOperator *E) {
4660     switch (E->getOpcode()) {
4661     default:
4662       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4663 
4664     case BO_PtrMemD:
4665     case BO_PtrMemI:
4666       return HandleMemberPointerAccess(this->Info, E, Result);
4667     }
4668   }
4669 
VisitCastExpr(const CastExpr * E)4670   bool VisitCastExpr(const CastExpr *E) {
4671     switch (E->getCastKind()) {
4672     default:
4673       return ExprEvaluatorBaseTy::VisitCastExpr(E);
4674 
4675     case CK_DerivedToBase:
4676     case CK_UncheckedDerivedToBase:
4677       if (!this->Visit(E->getSubExpr()))
4678         return false;
4679 
4680       // Now figure out the necessary offset to add to the base LV to get from
4681       // the derived class to the base class.
4682       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4683                                   Result);
4684     }
4685   }
4686 };
4687 }
4688 
4689 //===----------------------------------------------------------------------===//
4690 // LValue Evaluation
4691 //
4692 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4693 // function designators (in C), decl references to void objects (in C), and
4694 // temporaries (if building with -Wno-address-of-temporary).
4695 //
4696 // LValue evaluation produces values comprising a base expression of one of the
4697 // following types:
4698 // - Declarations
4699 //  * VarDecl
4700 //  * FunctionDecl
4701 // - Literals
4702 //  * CompoundLiteralExpr in C
4703 //  * StringLiteral
4704 //  * CXXTypeidExpr
4705 //  * PredefinedExpr
4706 //  * ObjCStringLiteralExpr
4707 //  * ObjCEncodeExpr
4708 //  * AddrLabelExpr
4709 //  * BlockExpr
4710 //  * CallExpr for a MakeStringConstant builtin
4711 // - Locals and temporaries
4712 //  * MaterializeTemporaryExpr
4713 //  * Any Expr, with a CallIndex indicating the function in which the temporary
4714 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4715 //    from the AST (FIXME).
4716 //  * A MaterializeTemporaryExpr that has static storage duration, with no
4717 //    CallIndex, for a lifetime-extended temporary.
4718 // plus an offset in bytes.
4719 //===----------------------------------------------------------------------===//
4720 namespace {
4721 class LValueExprEvaluator
4722   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4723 public:
LValueExprEvaluator(EvalInfo & Info,LValue & Result)4724   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4725     LValueExprEvaluatorBaseTy(Info, Result) {}
4726 
4727   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4728   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4729 
4730   bool VisitDeclRefExpr(const DeclRefExpr *E);
VisitPredefinedExpr(const PredefinedExpr * E)4731   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4732   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4733   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4734   bool VisitMemberExpr(const MemberExpr *E);
VisitStringLiteral(const StringLiteral * E)4735   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
VisitObjCEncodeExpr(const ObjCEncodeExpr * E)4736   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4737   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4738   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4739   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4740   bool VisitUnaryDeref(const UnaryOperator *E);
4741   bool VisitUnaryReal(const UnaryOperator *E);
4742   bool VisitUnaryImag(const UnaryOperator *E);
VisitUnaryPreInc(const UnaryOperator * UO)4743   bool VisitUnaryPreInc(const UnaryOperator *UO) {
4744     return VisitUnaryPreIncDec(UO);
4745   }
VisitUnaryPreDec(const UnaryOperator * UO)4746   bool VisitUnaryPreDec(const UnaryOperator *UO) {
4747     return VisitUnaryPreIncDec(UO);
4748   }
4749   bool VisitBinAssign(const BinaryOperator *BO);
4750   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4751 
VisitCastExpr(const CastExpr * E)4752   bool VisitCastExpr(const CastExpr *E) {
4753     switch (E->getCastKind()) {
4754     default:
4755       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4756 
4757     case CK_LValueBitCast:
4758       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4759       if (!Visit(E->getSubExpr()))
4760         return false;
4761       Result.Designator.setInvalid();
4762       return true;
4763 
4764     case CK_BaseToDerived:
4765       if (!Visit(E->getSubExpr()))
4766         return false;
4767       return HandleBaseToDerivedCast(Info, E, Result);
4768     }
4769   }
4770 };
4771 } // end anonymous namespace
4772 
4773 /// Evaluate an expression as an lvalue. This can be legitimately called on
4774 /// expressions which are not glvalues, in three cases:
4775 ///  * function designators in C, and
4776 ///  * "extern void" objects
4777 ///  * @selector() expressions in Objective-C
EvaluateLValue(const Expr * E,LValue & Result,EvalInfo & Info)4778 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4779   assert(E->isGLValue() || E->getType()->isFunctionType() ||
4780          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
4781   return LValueExprEvaluator(Info, Result).Visit(E);
4782 }
4783 
VisitDeclRefExpr(const DeclRefExpr * E)4784 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4785   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4786     return Success(FD);
4787   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4788     return VisitVarDecl(E, VD);
4789   return Error(E);
4790 }
4791 
VisitVarDecl(const Expr * E,const VarDecl * VD)4792 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4793   CallStackFrame *Frame = nullptr;
4794   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4795     Frame = Info.CurrentCall;
4796 
4797   if (!VD->getType()->isReferenceType()) {
4798     if (Frame) {
4799       Result.set(VD, Frame->Index);
4800       return true;
4801     }
4802     return Success(VD);
4803   }
4804 
4805   APValue *V;
4806   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4807     return false;
4808   if (V->isUninit()) {
4809     if (!Info.checkingPotentialConstantExpression())
4810       Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
4811     return false;
4812   }
4813   return Success(*V, E);
4814 }
4815 
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)4816 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4817     const MaterializeTemporaryExpr *E) {
4818   // Walk through the expression to find the materialized temporary itself.
4819   SmallVector<const Expr *, 2> CommaLHSs;
4820   SmallVector<SubobjectAdjustment, 2> Adjustments;
4821   const Expr *Inner = E->GetTemporaryExpr()->
4822       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4823 
4824   // If we passed any comma operators, evaluate their LHSs.
4825   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4826     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4827       return false;
4828 
4829   // A materialized temporary with static storage duration can appear within the
4830   // result of a constant expression evaluation, so we need to preserve its
4831   // value for use outside this evaluation.
4832   APValue *Value;
4833   if (E->getStorageDuration() == SD_Static) {
4834     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4835     *Value = APValue();
4836     Result.set(E);
4837   } else {
4838     Value = &Info.CurrentCall->
4839         createTemporary(E, E->getStorageDuration() == SD_Automatic);
4840     Result.set(E, Info.CurrentCall->Index);
4841   }
4842 
4843   QualType Type = Inner->getType();
4844 
4845   // Materialize the temporary itself.
4846   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4847       (E->getStorageDuration() == SD_Static &&
4848        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4849     *Value = APValue();
4850     return false;
4851   }
4852 
4853   // Adjust our lvalue to refer to the desired subobject.
4854   for (unsigned I = Adjustments.size(); I != 0; /**/) {
4855     --I;
4856     switch (Adjustments[I].Kind) {
4857     case SubobjectAdjustment::DerivedToBaseAdjustment:
4858       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4859                                 Type, Result))
4860         return false;
4861       Type = Adjustments[I].DerivedToBase.BasePath->getType();
4862       break;
4863 
4864     case SubobjectAdjustment::FieldAdjustment:
4865       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4866         return false;
4867       Type = Adjustments[I].Field->getType();
4868       break;
4869 
4870     case SubobjectAdjustment::MemberPointerAdjustment:
4871       if (!HandleMemberPointerAccess(this->Info, Type, Result,
4872                                      Adjustments[I].Ptr.RHS))
4873         return false;
4874       Type = Adjustments[I].Ptr.MPT->getPointeeType();
4875       break;
4876     }
4877   }
4878 
4879   return true;
4880 }
4881 
4882 bool
VisitCompoundLiteralExpr(const CompoundLiteralExpr * E)4883 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4884   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4885   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4886   // only see this when folding in C, so there's no standard to follow here.
4887   return Success(E);
4888 }
4889 
VisitCXXTypeidExpr(const CXXTypeidExpr * E)4890 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4891   if (!E->isPotentiallyEvaluated())
4892     return Success(E);
4893 
4894   Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
4895     << E->getExprOperand()->getType()
4896     << E->getExprOperand()->getSourceRange();
4897   return false;
4898 }
4899 
VisitCXXUuidofExpr(const CXXUuidofExpr * E)4900 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4901   return Success(E);
4902 }
4903 
VisitMemberExpr(const MemberExpr * E)4904 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4905   // Handle static data members.
4906   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4907     VisitIgnoredBaseExpression(E->getBase());
4908     return VisitVarDecl(E, VD);
4909   }
4910 
4911   // Handle static member functions.
4912   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4913     if (MD->isStatic()) {
4914       VisitIgnoredBaseExpression(E->getBase());
4915       return Success(MD);
4916     }
4917   }
4918 
4919   // Handle non-static data members.
4920   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4921 }
4922 
VisitArraySubscriptExpr(const ArraySubscriptExpr * E)4923 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4924   // FIXME: Deal with vectors as array subscript bases.
4925   if (E->getBase()->getType()->isVectorType())
4926     return Error(E);
4927 
4928   if (!EvaluatePointer(E->getBase(), Result, Info))
4929     return false;
4930 
4931   APSInt Index;
4932   if (!EvaluateInteger(E->getIdx(), Index, Info))
4933     return false;
4934 
4935   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4936                                      getExtValue(Index));
4937 }
4938 
VisitUnaryDeref(const UnaryOperator * E)4939 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4940   return EvaluatePointer(E->getSubExpr(), Result, Info);
4941 }
4942 
VisitUnaryReal(const UnaryOperator * E)4943 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4944   if (!Visit(E->getSubExpr()))
4945     return false;
4946   // __real is a no-op on scalar lvalues.
4947   if (E->getSubExpr()->getType()->isAnyComplexType())
4948     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4949   return true;
4950 }
4951 
VisitUnaryImag(const UnaryOperator * E)4952 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4953   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4954          "lvalue __imag__ on scalar?");
4955   if (!Visit(E->getSubExpr()))
4956     return false;
4957   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4958   return true;
4959 }
4960 
VisitUnaryPreIncDec(const UnaryOperator * UO)4961 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4962   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4963     return Error(UO);
4964 
4965   if (!this->Visit(UO->getSubExpr()))
4966     return false;
4967 
4968   return handleIncDec(
4969       this->Info, UO, Result, UO->getSubExpr()->getType(),
4970       UO->isIncrementOp(), nullptr);
4971 }
4972 
VisitCompoundAssignOperator(const CompoundAssignOperator * CAO)4973 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4974     const CompoundAssignOperator *CAO) {
4975   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4976     return Error(CAO);
4977 
4978   APValue RHS;
4979 
4980   // The overall lvalue result is the result of evaluating the LHS.
4981   if (!this->Visit(CAO->getLHS())) {
4982     if (Info.noteFailure())
4983       Evaluate(RHS, this->Info, CAO->getRHS());
4984     return false;
4985   }
4986 
4987   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4988     return false;
4989 
4990   return handleCompoundAssignment(
4991       this->Info, CAO,
4992       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4993       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4994 }
4995 
VisitBinAssign(const BinaryOperator * E)4996 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4997   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4998     return Error(E);
4999 
5000   APValue NewVal;
5001 
5002   if (!this->Visit(E->getLHS())) {
5003     if (Info.noteFailure())
5004       Evaluate(NewVal, this->Info, E->getRHS());
5005     return false;
5006   }
5007 
5008   if (!Evaluate(NewVal, this->Info, E->getRHS()))
5009     return false;
5010 
5011   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
5012                           NewVal);
5013 }
5014 
5015 //===----------------------------------------------------------------------===//
5016 // Pointer Evaluation
5017 //===----------------------------------------------------------------------===//
5018 
5019 namespace {
5020 class PointerExprEvaluator
5021   : public ExprEvaluatorBase<PointerExprEvaluator> {
5022   LValue &Result;
5023 
Success(const Expr * E)5024   bool Success(const Expr *E) {
5025     Result.set(E);
5026     return true;
5027   }
5028 public:
5029 
PointerExprEvaluator(EvalInfo & info,LValue & Result)5030   PointerExprEvaluator(EvalInfo &info, LValue &Result)
5031     : ExprEvaluatorBaseTy(info), Result(Result) {}
5032 
Success(const APValue & V,const Expr * E)5033   bool Success(const APValue &V, const Expr *E) {
5034     Result.setFrom(Info.Ctx, V);
5035     return true;
5036   }
ZeroInitialization(const Expr * E)5037   bool ZeroInitialization(const Expr *E) {
5038     return Success((Expr*)nullptr);
5039   }
5040 
5041   bool VisitBinaryOperator(const BinaryOperator *E);
5042   bool VisitCastExpr(const CastExpr* E);
5043   bool VisitUnaryAddrOf(const UnaryOperator *E);
VisitObjCStringLiteral(const ObjCStringLiteral * E)5044   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
5045       { return Success(E); }
VisitObjCBoxedExpr(const ObjCBoxedExpr * E)5046   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
5047       { return Success(E); }
VisitAddrLabelExpr(const AddrLabelExpr * E)5048   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
5049       { return Success(E); }
5050   bool VisitCallExpr(const CallExpr *E);
VisitBlockExpr(const BlockExpr * E)5051   bool VisitBlockExpr(const BlockExpr *E) {
5052     if (!E->getBlockDecl()->hasCaptures())
5053       return Success(E);
5054     return Error(E);
5055   }
VisitCXXThisExpr(const CXXThisExpr * E)5056   bool VisitCXXThisExpr(const CXXThisExpr *E) {
5057     // Can't look at 'this' when checking a potential constant expression.
5058     if (Info.checkingPotentialConstantExpression())
5059       return false;
5060     if (!Info.CurrentCall->This) {
5061       if (Info.getLangOpts().CPlusPlus11)
5062         Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
5063       else
5064         Info.FFDiag(E);
5065       return false;
5066     }
5067     Result = *Info.CurrentCall->This;
5068     return true;
5069   }
5070 
5071   // FIXME: Missing: @protocol, @selector
5072 };
5073 } // end anonymous namespace
5074 
EvaluatePointer(const Expr * E,LValue & Result,EvalInfo & Info)5075 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
5076   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
5077   return PointerExprEvaluator(Info, Result).Visit(E);
5078 }
5079 
VisitBinaryOperator(const BinaryOperator * E)5080 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
5081   if (E->getOpcode() != BO_Add &&
5082       E->getOpcode() != BO_Sub)
5083     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
5084 
5085   const Expr *PExp = E->getLHS();
5086   const Expr *IExp = E->getRHS();
5087   if (IExp->getType()->isPointerType())
5088     std::swap(PExp, IExp);
5089 
5090   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
5091   if (!EvalPtrOK && !Info.noteFailure())
5092     return false;
5093 
5094   llvm::APSInt Offset;
5095   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
5096     return false;
5097 
5098   int64_t AdditionalOffset = getExtValue(Offset);
5099   if (E->getOpcode() == BO_Sub)
5100     AdditionalOffset = -AdditionalOffset;
5101 
5102   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
5103   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
5104                                      AdditionalOffset);
5105 }
5106 
VisitUnaryAddrOf(const UnaryOperator * E)5107 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5108   return EvaluateLValue(E->getSubExpr(), Result, Info);
5109 }
5110 
VisitCastExpr(const CastExpr * E)5111 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
5112   const Expr* SubExpr = E->getSubExpr();
5113 
5114   switch (E->getCastKind()) {
5115   default:
5116     break;
5117 
5118   case CK_BitCast:
5119   case CK_CPointerToObjCPointerCast:
5120   case CK_BlockPointerToObjCPointerCast:
5121   case CK_AnyPointerToBlockPointerCast:
5122   case CK_AddressSpaceConversion:
5123     if (!Visit(SubExpr))
5124       return false;
5125     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
5126     // permitted in constant expressions in C++11. Bitcasts from cv void* are
5127     // also static_casts, but we disallow them as a resolution to DR1312.
5128     if (!E->getType()->isVoidPointerType()) {
5129       Result.Designator.setInvalid();
5130       if (SubExpr->getType()->isVoidPointerType())
5131         CCEDiag(E, diag::note_constexpr_invalid_cast)
5132           << 3 << SubExpr->getType();
5133       else
5134         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5135     }
5136     return true;
5137 
5138   case CK_DerivedToBase:
5139   case CK_UncheckedDerivedToBase:
5140     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
5141       return false;
5142     if (!Result.Base && Result.Offset.isZero())
5143       return true;
5144 
5145     // Now figure out the necessary offset to add to the base LV to get from
5146     // the derived class to the base class.
5147     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
5148                                   castAs<PointerType>()->getPointeeType(),
5149                                 Result);
5150 
5151   case CK_BaseToDerived:
5152     if (!Visit(E->getSubExpr()))
5153       return false;
5154     if (!Result.Base && Result.Offset.isZero())
5155       return true;
5156     return HandleBaseToDerivedCast(Info, E, Result);
5157 
5158   case CK_NullToPointer:
5159     VisitIgnoredValue(E->getSubExpr());
5160     return ZeroInitialization(E);
5161 
5162   case CK_IntegralToPointer: {
5163     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5164 
5165     APValue Value;
5166     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5167       break;
5168 
5169     if (Value.isInt()) {
5170       unsigned Size = Info.Ctx.getTypeSize(E->getType());
5171       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5172       Result.Base = (Expr*)nullptr;
5173       Result.InvalidBase = false;
5174       Result.Offset = CharUnits::fromQuantity(N);
5175       Result.CallIndex = 0;
5176       Result.Designator.setInvalid();
5177       return true;
5178     } else {
5179       // Cast is of an lvalue, no need to change value.
5180       Result.setFrom(Info.Ctx, Value);
5181       return true;
5182     }
5183   }
5184   case CK_ArrayToPointerDecay:
5185     if (SubExpr->isGLValue()) {
5186       if (!EvaluateLValue(SubExpr, Result, Info))
5187         return false;
5188     } else {
5189       Result.set(SubExpr, Info.CurrentCall->Index);
5190       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5191                            Info, Result, SubExpr))
5192         return false;
5193     }
5194     // The result is a pointer to the first element of the array.
5195     if (const ConstantArrayType *CAT
5196           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
5197       Result.addArray(Info, E, CAT);
5198     else
5199       Result.Designator.setInvalid();
5200     return true;
5201 
5202   case CK_FunctionToPointerDecay:
5203     return EvaluateLValue(SubExpr, Result, Info);
5204   }
5205 
5206   return ExprEvaluatorBaseTy::VisitCastExpr(E);
5207 }
5208 
GetAlignOfType(EvalInfo & Info,QualType T)5209 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5210   // C++ [expr.alignof]p3:
5211   //     When alignof is applied to a reference type, the result is the
5212   //     alignment of the referenced type.
5213   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5214     T = Ref->getPointeeType();
5215 
5216   // __alignof is defined to return the preferred alignment.
5217   return Info.Ctx.toCharUnitsFromBits(
5218     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5219 }
5220 
GetAlignOfExpr(EvalInfo & Info,const Expr * E)5221 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5222   E = E->IgnoreParens();
5223 
5224   // The kinds of expressions that we have special-case logic here for
5225   // should be kept up to date with the special checks for those
5226   // expressions in Sema.
5227 
5228   // alignof decl is always accepted, even if it doesn't make sense: we default
5229   // to 1 in those cases.
5230   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5231     return Info.Ctx.getDeclAlign(DRE->getDecl(),
5232                                  /*RefAsPointee*/true);
5233 
5234   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5235     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5236                                  /*RefAsPointee*/true);
5237 
5238   return GetAlignOfType(Info, E->getType());
5239 }
5240 
VisitCallExpr(const CallExpr * E)5241 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5242   if (IsStringLiteralCall(E))
5243     return Success(E);
5244 
5245   switch (E->getBuiltinCallee()) {
5246   case Builtin::BI__builtin_addressof:
5247     return EvaluateLValue(E->getArg(0), Result, Info);
5248   case Builtin::BI__builtin_assume_aligned: {
5249     // We need to be very careful here because: if the pointer does not have the
5250     // asserted alignment, then the behavior is undefined, and undefined
5251     // behavior is non-constant.
5252     if (!EvaluatePointer(E->getArg(0), Result, Info))
5253       return false;
5254 
5255     LValue OffsetResult(Result);
5256     APSInt Alignment;
5257     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5258       return false;
5259     CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
5260 
5261     if (E->getNumArgs() > 2) {
5262       APSInt Offset;
5263       if (!EvaluateInteger(E->getArg(2), Offset, Info))
5264         return false;
5265 
5266       int64_t AdditionalOffset = -getExtValue(Offset);
5267       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5268     }
5269 
5270     // If there is a base object, then it must have the correct alignment.
5271     if (OffsetResult.Base) {
5272       CharUnits BaseAlignment;
5273       if (const ValueDecl *VD =
5274           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5275         BaseAlignment = Info.Ctx.getDeclAlign(VD);
5276       } else {
5277         BaseAlignment =
5278           GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5279       }
5280 
5281       if (BaseAlignment < Align) {
5282         Result.Designator.setInvalid();
5283 	// FIXME: Quantities here cast to integers because the plural modifier
5284 	// does not work on APSInts yet.
5285         CCEDiag(E->getArg(0),
5286                 diag::note_constexpr_baa_insufficient_alignment) << 0
5287           << (int) BaseAlignment.getQuantity()
5288           << (unsigned) getExtValue(Alignment);
5289         return false;
5290       }
5291     }
5292 
5293     // The offset must also have the correct alignment.
5294     if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
5295       Result.Designator.setInvalid();
5296       APSInt Offset(64, false);
5297       Offset = OffsetResult.Offset.getQuantity();
5298 
5299       if (OffsetResult.Base)
5300         CCEDiag(E->getArg(0),
5301                 diag::note_constexpr_baa_insufficient_alignment) << 1
5302           << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5303       else
5304         CCEDiag(E->getArg(0),
5305                 diag::note_constexpr_baa_value_insufficient_alignment)
5306           << Offset << (unsigned) getExtValue(Alignment);
5307 
5308       return false;
5309     }
5310 
5311     return true;
5312   }
5313   default:
5314     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5315   }
5316 }
5317 
5318 //===----------------------------------------------------------------------===//
5319 // Member Pointer Evaluation
5320 //===----------------------------------------------------------------------===//
5321 
5322 namespace {
5323 class MemberPointerExprEvaluator
5324   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5325   MemberPtr &Result;
5326 
Success(const ValueDecl * D)5327   bool Success(const ValueDecl *D) {
5328     Result = MemberPtr(D);
5329     return true;
5330   }
5331 public:
5332 
MemberPointerExprEvaluator(EvalInfo & Info,MemberPtr & Result)5333   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5334     : ExprEvaluatorBaseTy(Info), Result(Result) {}
5335 
Success(const APValue & V,const Expr * E)5336   bool Success(const APValue &V, const Expr *E) {
5337     Result.setFrom(V);
5338     return true;
5339   }
ZeroInitialization(const Expr * E)5340   bool ZeroInitialization(const Expr *E) {
5341     return Success((const ValueDecl*)nullptr);
5342   }
5343 
5344   bool VisitCastExpr(const CastExpr *E);
5345   bool VisitUnaryAddrOf(const UnaryOperator *E);
5346 };
5347 } // end anonymous namespace
5348 
EvaluateMemberPointer(const Expr * E,MemberPtr & Result,EvalInfo & Info)5349 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5350                                   EvalInfo &Info) {
5351   assert(E->isRValue() && E->getType()->isMemberPointerType());
5352   return MemberPointerExprEvaluator(Info, Result).Visit(E);
5353 }
5354 
VisitCastExpr(const CastExpr * E)5355 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5356   switch (E->getCastKind()) {
5357   default:
5358     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5359 
5360   case CK_NullToMemberPointer:
5361     VisitIgnoredValue(E->getSubExpr());
5362     return ZeroInitialization(E);
5363 
5364   case CK_BaseToDerivedMemberPointer: {
5365     if (!Visit(E->getSubExpr()))
5366       return false;
5367     if (E->path_empty())
5368       return true;
5369     // Base-to-derived member pointer casts store the path in derived-to-base
5370     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5371     // the wrong end of the derived->base arc, so stagger the path by one class.
5372     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5373     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5374          PathI != PathE; ++PathI) {
5375       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5376       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5377       if (!Result.castToDerived(Derived))
5378         return Error(E);
5379     }
5380     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5381     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5382       return Error(E);
5383     return true;
5384   }
5385 
5386   case CK_DerivedToBaseMemberPointer:
5387     if (!Visit(E->getSubExpr()))
5388       return false;
5389     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5390          PathE = E->path_end(); PathI != PathE; ++PathI) {
5391       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5392       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5393       if (!Result.castToBase(Base))
5394         return Error(E);
5395     }
5396     return true;
5397   }
5398 }
5399 
VisitUnaryAddrOf(const UnaryOperator * E)5400 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5401   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5402   // member can be formed.
5403   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5404 }
5405 
5406 //===----------------------------------------------------------------------===//
5407 // Record Evaluation
5408 //===----------------------------------------------------------------------===//
5409 
5410 namespace {
5411   class RecordExprEvaluator
5412   : public ExprEvaluatorBase<RecordExprEvaluator> {
5413     const LValue &This;
5414     APValue &Result;
5415   public:
5416 
RecordExprEvaluator(EvalInfo & info,const LValue & This,APValue & Result)5417     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5418       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5419 
Success(const APValue & V,const Expr * E)5420     bool Success(const APValue &V, const Expr *E) {
5421       Result = V;
5422       return true;
5423     }
ZeroInitialization(const Expr * E)5424     bool ZeroInitialization(const Expr *E) {
5425       return ZeroInitialization(E, E->getType());
5426     }
5427     bool ZeroInitialization(const Expr *E, QualType T);
5428 
VisitCallExpr(const CallExpr * E)5429     bool VisitCallExpr(const CallExpr *E) {
5430       return handleCallExpr(E, Result, &This);
5431     }
5432     bool VisitCastExpr(const CastExpr *E);
5433     bool VisitInitListExpr(const InitListExpr *E);
VisitCXXConstructExpr(const CXXConstructExpr * E)5434     bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5435       return VisitCXXConstructExpr(E, E->getType());
5436     }
5437     bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
5438     bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
5439     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5440   };
5441 }
5442 
5443 /// Perform zero-initialization on an object of non-union class type.
5444 /// C++11 [dcl.init]p5:
5445 ///  To zero-initialize an object or reference of type T means:
5446 ///    [...]
5447 ///    -- if T is a (possibly cv-qualified) non-union class type,
5448 ///       each non-static data member and each base-class subobject is
5449 ///       zero-initialized
HandleClassZeroInitialization(EvalInfo & Info,const Expr * E,const RecordDecl * RD,const LValue & This,APValue & Result)5450 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5451                                           const RecordDecl *RD,
5452                                           const LValue &This, APValue &Result) {
5453   assert(!RD->isUnion() && "Expected non-union class type");
5454   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5455   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5456                    std::distance(RD->field_begin(), RD->field_end()));
5457 
5458   if (RD->isInvalidDecl()) return false;
5459   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5460 
5461   if (CD) {
5462     unsigned Index = 0;
5463     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5464            End = CD->bases_end(); I != End; ++I, ++Index) {
5465       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5466       LValue Subobject = This;
5467       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5468         return false;
5469       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5470                                          Result.getStructBase(Index)))
5471         return false;
5472     }
5473   }
5474 
5475   for (const auto *I : RD->fields()) {
5476     // -- if T is a reference type, no initialization is performed.
5477     if (I->getType()->isReferenceType())
5478       continue;
5479 
5480     LValue Subobject = This;
5481     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5482       return false;
5483 
5484     ImplicitValueInitExpr VIE(I->getType());
5485     if (!EvaluateInPlace(
5486           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5487       return false;
5488   }
5489 
5490   return true;
5491 }
5492 
ZeroInitialization(const Expr * E,QualType T)5493 bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
5494   const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
5495   if (RD->isInvalidDecl()) return false;
5496   if (RD->isUnion()) {
5497     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5498     // object's first non-static named data member is zero-initialized
5499     RecordDecl::field_iterator I = RD->field_begin();
5500     if (I == RD->field_end()) {
5501       Result = APValue((const FieldDecl*)nullptr);
5502       return true;
5503     }
5504 
5505     LValue Subobject = This;
5506     if (!HandleLValueMember(Info, E, Subobject, *I))
5507       return false;
5508     Result = APValue(*I);
5509     ImplicitValueInitExpr VIE(I->getType());
5510     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5511   }
5512 
5513   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5514     Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
5515     return false;
5516   }
5517 
5518   return HandleClassZeroInitialization(Info, E, RD, This, Result);
5519 }
5520 
VisitCastExpr(const CastExpr * E)5521 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5522   switch (E->getCastKind()) {
5523   default:
5524     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5525 
5526   case CK_ConstructorConversion:
5527     return Visit(E->getSubExpr());
5528 
5529   case CK_DerivedToBase:
5530   case CK_UncheckedDerivedToBase: {
5531     APValue DerivedObject;
5532     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5533       return false;
5534     if (!DerivedObject.isStruct())
5535       return Error(E->getSubExpr());
5536 
5537     // Derived-to-base rvalue conversion: just slice off the derived part.
5538     APValue *Value = &DerivedObject;
5539     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5540     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5541          PathE = E->path_end(); PathI != PathE; ++PathI) {
5542       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5543       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5544       Value = &Value->getStructBase(getBaseIndex(RD, Base));
5545       RD = Base;
5546     }
5547     Result = *Value;
5548     return true;
5549   }
5550   }
5551 }
5552 
VisitInitListExpr(const InitListExpr * E)5553 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5554   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5555   if (RD->isInvalidDecl()) return false;
5556   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5557 
5558   if (RD->isUnion()) {
5559     const FieldDecl *Field = E->getInitializedFieldInUnion();
5560     Result = APValue(Field);
5561     if (!Field)
5562       return true;
5563 
5564     // If the initializer list for a union does not contain any elements, the
5565     // first element of the union is value-initialized.
5566     // FIXME: The element should be initialized from an initializer list.
5567     //        Is this difference ever observable for initializer lists which
5568     //        we don't build?
5569     ImplicitValueInitExpr VIE(Field->getType());
5570     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5571 
5572     LValue Subobject = This;
5573     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5574       return false;
5575 
5576     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5577     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5578                                   isa<CXXDefaultInitExpr>(InitExpr));
5579 
5580     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5581   }
5582 
5583   auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
5584   if (Result.isUninit())
5585     Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
5586                      std::distance(RD->field_begin(), RD->field_end()));
5587   unsigned ElementNo = 0;
5588   bool Success = true;
5589 
5590   // Initialize base classes.
5591   if (CXXRD) {
5592     for (const auto &Base : CXXRD->bases()) {
5593       assert(ElementNo < E->getNumInits() && "missing init for base class");
5594       const Expr *Init = E->getInit(ElementNo);
5595 
5596       LValue Subobject = This;
5597       if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
5598         return false;
5599 
5600       APValue &FieldVal = Result.getStructBase(ElementNo);
5601       if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
5602         if (!Info.noteFailure())
5603           return false;
5604         Success = false;
5605       }
5606       ++ElementNo;
5607     }
5608   }
5609 
5610   // Initialize members.
5611   for (const auto *Field : RD->fields()) {
5612     // Anonymous bit-fields are not considered members of the class for
5613     // purposes of aggregate initialization.
5614     if (Field->isUnnamedBitfield())
5615       continue;
5616 
5617     LValue Subobject = This;
5618 
5619     bool HaveInit = ElementNo < E->getNumInits();
5620 
5621     // FIXME: Diagnostics here should point to the end of the initializer
5622     // list, not the start.
5623     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5624                             Subobject, Field, &Layout))
5625       return false;
5626 
5627     // Perform an implicit value-initialization for members beyond the end of
5628     // the initializer list.
5629     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5630     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5631 
5632     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5633     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5634                                   isa<CXXDefaultInitExpr>(Init));
5635 
5636     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5637     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5638         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5639                                                        FieldVal, Field))) {
5640       if (!Info.noteFailure())
5641         return false;
5642       Success = false;
5643     }
5644   }
5645 
5646   return Success;
5647 }
5648 
VisitCXXConstructExpr(const CXXConstructExpr * E,QualType T)5649 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5650                                                 QualType T) {
5651   // Note that E's type is not necessarily the type of our class here; we might
5652   // be initializing an array element instead.
5653   const CXXConstructorDecl *FD = E->getConstructor();
5654   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5655 
5656   bool ZeroInit = E->requiresZeroInitialization();
5657   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5658     // If we've already performed zero-initialization, we're already done.
5659     if (!Result.isUninit())
5660       return true;
5661 
5662     // We can get here in two different ways:
5663     //  1) We're performing value-initialization, and should zero-initialize
5664     //     the object, or
5665     //  2) We're performing default-initialization of an object with a trivial
5666     //     constexpr default constructor, in which case we should start the
5667     //     lifetimes of all the base subobjects (there can be no data member
5668     //     subobjects in this case) per [basic.life]p1.
5669     // Either way, ZeroInitialization is appropriate.
5670     return ZeroInitialization(E, T);
5671   }
5672 
5673   const FunctionDecl *Definition = nullptr;
5674   auto Body = FD->getBody(Definition);
5675 
5676   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5677     return false;
5678 
5679   // Avoid materializing a temporary for an elidable copy/move constructor.
5680   if (E->isElidable() && !ZeroInit)
5681     if (const MaterializeTemporaryExpr *ME
5682           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5683       return Visit(ME->GetTemporaryExpr());
5684 
5685   if (ZeroInit && !ZeroInitialization(E, T))
5686     return false;
5687 
5688   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5689   return HandleConstructorCall(E, This, Args,
5690                                cast<CXXConstructorDecl>(Definition), Info,
5691                                Result);
5692 }
5693 
VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr * E)5694 bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
5695     const CXXInheritedCtorInitExpr *E) {
5696   if (!Info.CurrentCall) {
5697     assert(Info.checkingPotentialConstantExpression());
5698     return false;
5699   }
5700 
5701   const CXXConstructorDecl *FD = E->getConstructor();
5702   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
5703     return false;
5704 
5705   const FunctionDecl *Definition = nullptr;
5706   auto Body = FD->getBody(Definition);
5707 
5708   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
5709     return false;
5710 
5711   return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
5712                                cast<CXXConstructorDecl>(Definition), Info,
5713                                Result);
5714 }
5715 
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5716 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5717     const CXXStdInitializerListExpr *E) {
5718   const ConstantArrayType *ArrayType =
5719       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5720 
5721   LValue Array;
5722   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5723     return false;
5724 
5725   // Get a pointer to the first element of the array.
5726   Array.addArray(Info, E, ArrayType);
5727 
5728   // FIXME: Perform the checks on the field types in SemaInit.
5729   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5730   RecordDecl::field_iterator Field = Record->field_begin();
5731   if (Field == Record->field_end())
5732     return Error(E);
5733 
5734   // Start pointer.
5735   if (!Field->getType()->isPointerType() ||
5736       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5737                             ArrayType->getElementType()))
5738     return Error(E);
5739 
5740   // FIXME: What if the initializer_list type has base classes, etc?
5741   Result = APValue(APValue::UninitStruct(), 0, 2);
5742   Array.moveInto(Result.getStructField(0));
5743 
5744   if (++Field == Record->field_end())
5745     return Error(E);
5746 
5747   if (Field->getType()->isPointerType() &&
5748       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5749                            ArrayType->getElementType())) {
5750     // End pointer.
5751     if (!HandleLValueArrayAdjustment(Info, E, Array,
5752                                      ArrayType->getElementType(),
5753                                      ArrayType->getSize().getZExtValue()))
5754       return false;
5755     Array.moveInto(Result.getStructField(1));
5756   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5757     // Length.
5758     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5759   else
5760     return Error(E);
5761 
5762   if (++Field != Record->field_end())
5763     return Error(E);
5764 
5765   return true;
5766 }
5767 
EvaluateRecord(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)5768 static bool EvaluateRecord(const Expr *E, const LValue &This,
5769                            APValue &Result, EvalInfo &Info) {
5770   assert(E->isRValue() && E->getType()->isRecordType() &&
5771          "can't evaluate expression as a record rvalue");
5772   return RecordExprEvaluator(Info, This, Result).Visit(E);
5773 }
5774 
5775 //===----------------------------------------------------------------------===//
5776 // Temporary Evaluation
5777 //
5778 // Temporaries are represented in the AST as rvalues, but generally behave like
5779 // lvalues. The full-object of which the temporary is a subobject is implicitly
5780 // materialized so that a reference can bind to it.
5781 //===----------------------------------------------------------------------===//
5782 namespace {
5783 class TemporaryExprEvaluator
5784   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5785 public:
TemporaryExprEvaluator(EvalInfo & Info,LValue & Result)5786   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5787     LValueExprEvaluatorBaseTy(Info, Result) {}
5788 
5789   /// Visit an expression which constructs the value of this temporary.
VisitConstructExpr(const Expr * E)5790   bool VisitConstructExpr(const Expr *E) {
5791     Result.set(E, Info.CurrentCall->Index);
5792     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5793                            Info, Result, E);
5794   }
5795 
VisitCastExpr(const CastExpr * E)5796   bool VisitCastExpr(const CastExpr *E) {
5797     switch (E->getCastKind()) {
5798     default:
5799       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5800 
5801     case CK_ConstructorConversion:
5802       return VisitConstructExpr(E->getSubExpr());
5803     }
5804   }
VisitInitListExpr(const InitListExpr * E)5805   bool VisitInitListExpr(const InitListExpr *E) {
5806     return VisitConstructExpr(E);
5807   }
VisitCXXConstructExpr(const CXXConstructExpr * E)5808   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5809     return VisitConstructExpr(E);
5810   }
VisitCallExpr(const CallExpr * E)5811   bool VisitCallExpr(const CallExpr *E) {
5812     return VisitConstructExpr(E);
5813   }
VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr * E)5814   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5815     return VisitConstructExpr(E);
5816   }
5817 };
5818 } // end anonymous namespace
5819 
5820 /// Evaluate an expression of record type as a temporary.
EvaluateTemporary(const Expr * E,LValue & Result,EvalInfo & Info)5821 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5822   assert(E->isRValue() && E->getType()->isRecordType());
5823   return TemporaryExprEvaluator(Info, Result).Visit(E);
5824 }
5825 
5826 //===----------------------------------------------------------------------===//
5827 // Vector Evaluation
5828 //===----------------------------------------------------------------------===//
5829 
5830 namespace {
5831   class VectorExprEvaluator
5832   : public ExprEvaluatorBase<VectorExprEvaluator> {
5833     APValue &Result;
5834   public:
5835 
VectorExprEvaluator(EvalInfo & info,APValue & Result)5836     VectorExprEvaluator(EvalInfo &info, APValue &Result)
5837       : ExprEvaluatorBaseTy(info), Result(Result) {}
5838 
Success(ArrayRef<APValue> V,const Expr * E)5839     bool Success(ArrayRef<APValue> V, const Expr *E) {
5840       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5841       // FIXME: remove this APValue copy.
5842       Result = APValue(V.data(), V.size());
5843       return true;
5844     }
Success(const APValue & V,const Expr * E)5845     bool Success(const APValue &V, const Expr *E) {
5846       assert(V.isVector());
5847       Result = V;
5848       return true;
5849     }
5850     bool ZeroInitialization(const Expr *E);
5851 
VisitUnaryReal(const UnaryOperator * E)5852     bool VisitUnaryReal(const UnaryOperator *E)
5853       { return Visit(E->getSubExpr()); }
5854     bool VisitCastExpr(const CastExpr* E);
5855     bool VisitInitListExpr(const InitListExpr *E);
5856     bool VisitUnaryImag(const UnaryOperator *E);
5857     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5858     //                 binary comparisons, binary and/or/xor,
5859     //                 shufflevector, ExtVectorElementExpr
5860   };
5861 } // end anonymous namespace
5862 
EvaluateVector(const Expr * E,APValue & Result,EvalInfo & Info)5863 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5864   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5865   return VectorExprEvaluator(Info, Result).Visit(E);
5866 }
5867 
VisitCastExpr(const CastExpr * E)5868 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
5869   const VectorType *VTy = E->getType()->castAs<VectorType>();
5870   unsigned NElts = VTy->getNumElements();
5871 
5872   const Expr *SE = E->getSubExpr();
5873   QualType SETy = SE->getType();
5874 
5875   switch (E->getCastKind()) {
5876   case CK_VectorSplat: {
5877     APValue Val = APValue();
5878     if (SETy->isIntegerType()) {
5879       APSInt IntResult;
5880       if (!EvaluateInteger(SE, IntResult, Info))
5881         return false;
5882       Val = APValue(std::move(IntResult));
5883     } else if (SETy->isRealFloatingType()) {
5884       APFloat FloatResult(0.0);
5885       if (!EvaluateFloat(SE, FloatResult, Info))
5886         return false;
5887       Val = APValue(std::move(FloatResult));
5888     } else {
5889       return Error(E);
5890     }
5891 
5892     // Splat and create vector APValue.
5893     SmallVector<APValue, 4> Elts(NElts, Val);
5894     return Success(Elts, E);
5895   }
5896   case CK_BitCast: {
5897     // Evaluate the operand into an APInt we can extract from.
5898     llvm::APInt SValInt;
5899     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5900       return false;
5901     // Extract the elements
5902     QualType EltTy = VTy->getElementType();
5903     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5904     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5905     SmallVector<APValue, 4> Elts;
5906     if (EltTy->isRealFloatingType()) {
5907       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5908       unsigned FloatEltSize = EltSize;
5909       if (&Sem == &APFloat::x87DoubleExtended)
5910         FloatEltSize = 80;
5911       for (unsigned i = 0; i < NElts; i++) {
5912         llvm::APInt Elt;
5913         if (BigEndian)
5914           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5915         else
5916           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5917         Elts.push_back(APValue(APFloat(Sem, Elt)));
5918       }
5919     } else if (EltTy->isIntegerType()) {
5920       for (unsigned i = 0; i < NElts; i++) {
5921         llvm::APInt Elt;
5922         if (BigEndian)
5923           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5924         else
5925           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5926         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5927       }
5928     } else {
5929       return Error(E);
5930     }
5931     return Success(Elts, E);
5932   }
5933   default:
5934     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5935   }
5936 }
5937 
5938 bool
VisitInitListExpr(const InitListExpr * E)5939 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5940   const VectorType *VT = E->getType()->castAs<VectorType>();
5941   unsigned NumInits = E->getNumInits();
5942   unsigned NumElements = VT->getNumElements();
5943 
5944   QualType EltTy = VT->getElementType();
5945   SmallVector<APValue, 4> Elements;
5946 
5947   // The number of initializers can be less than the number of
5948   // vector elements. For OpenCL, this can be due to nested vector
5949   // initialization. For GCC compatibility, missing trailing elements
5950   // should be initialized with zeroes.
5951   unsigned CountInits = 0, CountElts = 0;
5952   while (CountElts < NumElements) {
5953     // Handle nested vector initialization.
5954     if (CountInits < NumInits
5955         && E->getInit(CountInits)->getType()->isVectorType()) {
5956       APValue v;
5957       if (!EvaluateVector(E->getInit(CountInits), v, Info))
5958         return Error(E);
5959       unsigned vlen = v.getVectorLength();
5960       for (unsigned j = 0; j < vlen; j++)
5961         Elements.push_back(v.getVectorElt(j));
5962       CountElts += vlen;
5963     } else if (EltTy->isIntegerType()) {
5964       llvm::APSInt sInt(32);
5965       if (CountInits < NumInits) {
5966         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5967           return false;
5968       } else // trailing integer zero.
5969         sInt = Info.Ctx.MakeIntValue(0, EltTy);
5970       Elements.push_back(APValue(sInt));
5971       CountElts++;
5972     } else {
5973       llvm::APFloat f(0.0);
5974       if (CountInits < NumInits) {
5975         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5976           return false;
5977       } else // trailing float zero.
5978         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5979       Elements.push_back(APValue(f));
5980       CountElts++;
5981     }
5982     CountInits++;
5983   }
5984   return Success(Elements, E);
5985 }
5986 
5987 bool
ZeroInitialization(const Expr * E)5988 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5989   const VectorType *VT = E->getType()->getAs<VectorType>();
5990   QualType EltTy = VT->getElementType();
5991   APValue ZeroElement;
5992   if (EltTy->isIntegerType())
5993     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5994   else
5995     ZeroElement =
5996         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5997 
5998   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5999   return Success(Elements, E);
6000 }
6001 
VisitUnaryImag(const UnaryOperator * E)6002 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
6003   VisitIgnoredValue(E->getSubExpr());
6004   return ZeroInitialization(E);
6005 }
6006 
6007 //===----------------------------------------------------------------------===//
6008 // Array Evaluation
6009 //===----------------------------------------------------------------------===//
6010 
6011 namespace {
6012   class ArrayExprEvaluator
6013   : public ExprEvaluatorBase<ArrayExprEvaluator> {
6014     const LValue &This;
6015     APValue &Result;
6016   public:
6017 
ArrayExprEvaluator(EvalInfo & Info,const LValue & This,APValue & Result)6018     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
6019       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
6020 
Success(const APValue & V,const Expr * E)6021     bool Success(const APValue &V, const Expr *E) {
6022       assert((V.isArray() || V.isLValue()) &&
6023              "expected array or string literal");
6024       Result = V;
6025       return true;
6026     }
6027 
ZeroInitialization(const Expr * E)6028     bool ZeroInitialization(const Expr *E) {
6029       const ConstantArrayType *CAT =
6030           Info.Ctx.getAsConstantArrayType(E->getType());
6031       if (!CAT)
6032         return Error(E);
6033 
6034       Result = APValue(APValue::UninitArray(), 0,
6035                        CAT->getSize().getZExtValue());
6036       if (!Result.hasArrayFiller()) return true;
6037 
6038       // Zero-initialize all elements.
6039       LValue Subobject = This;
6040       Subobject.addArray(Info, E, CAT);
6041       ImplicitValueInitExpr VIE(CAT->getElementType());
6042       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
6043     }
6044 
VisitCallExpr(const CallExpr * E)6045     bool VisitCallExpr(const CallExpr *E) {
6046       return handleCallExpr(E, Result, &This);
6047     }
6048     bool VisitInitListExpr(const InitListExpr *E);
6049     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
6050     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
6051                                const LValue &Subobject,
6052                                APValue *Value, QualType Type);
6053   };
6054 } // end anonymous namespace
6055 
EvaluateArray(const Expr * E,const LValue & This,APValue & Result,EvalInfo & Info)6056 static bool EvaluateArray(const Expr *E, const LValue &This,
6057                           APValue &Result, EvalInfo &Info) {
6058   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
6059   return ArrayExprEvaluator(Info, This, Result).Visit(E);
6060 }
6061 
VisitInitListExpr(const InitListExpr * E)6062 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
6063   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
6064   if (!CAT)
6065     return Error(E);
6066 
6067   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
6068   // an appropriately-typed string literal enclosed in braces.
6069   if (E->isStringLiteralInit()) {
6070     LValue LV;
6071     if (!EvaluateLValue(E->getInit(0), LV, Info))
6072       return false;
6073     APValue Val;
6074     LV.moveInto(Val);
6075     return Success(Val, E);
6076   }
6077 
6078   bool Success = true;
6079 
6080   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
6081          "zero-initialized array shouldn't have any initialized elts");
6082   APValue Filler;
6083   if (Result.isArray() && Result.hasArrayFiller())
6084     Filler = Result.getArrayFiller();
6085 
6086   unsigned NumEltsToInit = E->getNumInits();
6087   unsigned NumElts = CAT->getSize().getZExtValue();
6088   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
6089 
6090   // If the initializer might depend on the array index, run it for each
6091   // array element. For now, just whitelist non-class value-initialization.
6092   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
6093     NumEltsToInit = NumElts;
6094 
6095   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
6096 
6097   // If the array was previously zero-initialized, preserve the
6098   // zero-initialized values.
6099   if (!Filler.isUninit()) {
6100     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
6101       Result.getArrayInitializedElt(I) = Filler;
6102     if (Result.hasArrayFiller())
6103       Result.getArrayFiller() = Filler;
6104   }
6105 
6106   LValue Subobject = This;
6107   Subobject.addArray(Info, E, CAT);
6108   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
6109     const Expr *Init =
6110         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
6111     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
6112                          Info, Subobject, Init) ||
6113         !HandleLValueArrayAdjustment(Info, Init, Subobject,
6114                                      CAT->getElementType(), 1)) {
6115       if (!Info.noteFailure())
6116         return false;
6117       Success = false;
6118     }
6119   }
6120 
6121   if (!Result.hasArrayFiller())
6122     return Success;
6123 
6124   // If we get here, we have a trivial filler, which we can just evaluate
6125   // once and splat over the rest of the array elements.
6126   assert(FillerExpr && "no array filler for incomplete init list");
6127   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
6128                          FillerExpr) && Success;
6129 }
6130 
VisitCXXConstructExpr(const CXXConstructExpr * E)6131 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
6132   return VisitCXXConstructExpr(E, This, &Result, E->getType());
6133 }
6134 
VisitCXXConstructExpr(const CXXConstructExpr * E,const LValue & Subobject,APValue * Value,QualType Type)6135 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
6136                                                const LValue &Subobject,
6137                                                APValue *Value,
6138                                                QualType Type) {
6139   bool HadZeroInit = !Value->isUninit();
6140 
6141   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
6142     unsigned N = CAT->getSize().getZExtValue();
6143 
6144     // Preserve the array filler if we had prior zero-initialization.
6145     APValue Filler =
6146       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
6147                                              : APValue();
6148 
6149     *Value = APValue(APValue::UninitArray(), N, N);
6150 
6151     if (HadZeroInit)
6152       for (unsigned I = 0; I != N; ++I)
6153         Value->getArrayInitializedElt(I) = Filler;
6154 
6155     // Initialize the elements.
6156     LValue ArrayElt = Subobject;
6157     ArrayElt.addArray(Info, E, CAT);
6158     for (unsigned I = 0; I != N; ++I)
6159       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
6160                                  CAT->getElementType()) ||
6161           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
6162                                        CAT->getElementType(), 1))
6163         return false;
6164 
6165     return true;
6166   }
6167 
6168   if (!Type->isRecordType())
6169     return Error(E);
6170 
6171   return RecordExprEvaluator(Info, Subobject, *Value)
6172              .VisitCXXConstructExpr(E, Type);
6173 }
6174 
6175 //===----------------------------------------------------------------------===//
6176 // Integer Evaluation
6177 //
6178 // As a GNU extension, we support casting pointers to sufficiently-wide integer
6179 // types and back in constant folding. Integer values are thus represented
6180 // either as an integer-valued APValue, or as an lvalue-valued APValue.
6181 //===----------------------------------------------------------------------===//
6182 
6183 namespace {
6184 class IntExprEvaluator
6185   : public ExprEvaluatorBase<IntExprEvaluator> {
6186   APValue &Result;
6187 public:
IntExprEvaluator(EvalInfo & info,APValue & result)6188   IntExprEvaluator(EvalInfo &info, APValue &result)
6189     : ExprEvaluatorBaseTy(info), Result(result) {}
6190 
Success(const llvm::APSInt & SI,const Expr * E,APValue & Result)6191   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6192     assert(E->getType()->isIntegralOrEnumerationType() &&
6193            "Invalid evaluation result.");
6194     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
6195            "Invalid evaluation result.");
6196     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6197            "Invalid evaluation result.");
6198     Result = APValue(SI);
6199     return true;
6200   }
Success(const llvm::APSInt & SI,const Expr * E)6201   bool Success(const llvm::APSInt &SI, const Expr *E) {
6202     return Success(SI, E, Result);
6203   }
6204 
Success(const llvm::APInt & I,const Expr * E,APValue & Result)6205   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
6206     assert(E->getType()->isIntegralOrEnumerationType() &&
6207            "Invalid evaluation result.");
6208     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6209            "Invalid evaluation result.");
6210     Result = APValue(APSInt(I));
6211     Result.getInt().setIsUnsigned(
6212                             E->getType()->isUnsignedIntegerOrEnumerationType());
6213     return true;
6214   }
Success(const llvm::APInt & I,const Expr * E)6215   bool Success(const llvm::APInt &I, const Expr *E) {
6216     return Success(I, E, Result);
6217   }
6218 
Success(uint64_t Value,const Expr * E,APValue & Result)6219   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6220     assert(E->getType()->isIntegralOrEnumerationType() &&
6221            "Invalid evaluation result.");
6222     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
6223     return true;
6224   }
Success(uint64_t Value,const Expr * E)6225   bool Success(uint64_t Value, const Expr *E) {
6226     return Success(Value, E, Result);
6227   }
6228 
Success(CharUnits Size,const Expr * E)6229   bool Success(CharUnits Size, const Expr *E) {
6230     return Success(Size.getQuantity(), E);
6231   }
6232 
Success(const APValue & V,const Expr * E)6233   bool Success(const APValue &V, const Expr *E) {
6234     if (V.isLValue() || V.isAddrLabelDiff()) {
6235       Result = V;
6236       return true;
6237     }
6238     return Success(V.getInt(), E);
6239   }
6240 
ZeroInitialization(const Expr * E)6241   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
6242 
6243   //===--------------------------------------------------------------------===//
6244   //                            Visitor Methods
6245   //===--------------------------------------------------------------------===//
6246 
VisitIntegerLiteral(const IntegerLiteral * E)6247   bool VisitIntegerLiteral(const IntegerLiteral *E) {
6248     return Success(E->getValue(), E);
6249   }
VisitCharacterLiteral(const CharacterLiteral * E)6250   bool VisitCharacterLiteral(const CharacterLiteral *E) {
6251     return Success(E->getValue(), E);
6252   }
6253 
6254   bool CheckReferencedDecl(const Expr *E, const Decl *D);
VisitDeclRefExpr(const DeclRefExpr * E)6255   bool VisitDeclRefExpr(const DeclRefExpr *E) {
6256     if (CheckReferencedDecl(E, E->getDecl()))
6257       return true;
6258 
6259     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
6260   }
VisitMemberExpr(const MemberExpr * E)6261   bool VisitMemberExpr(const MemberExpr *E) {
6262     if (CheckReferencedDecl(E, E->getMemberDecl())) {
6263       VisitIgnoredBaseExpression(E->getBase());
6264       return true;
6265     }
6266 
6267     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
6268   }
6269 
6270   bool VisitCallExpr(const CallExpr *E);
6271   bool VisitBinaryOperator(const BinaryOperator *E);
6272   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
6273   bool VisitUnaryOperator(const UnaryOperator *E);
6274 
6275   bool VisitCastExpr(const CastExpr* E);
6276   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
6277 
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)6278   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
6279     return Success(E->getValue(), E);
6280   }
6281 
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)6282   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
6283     return Success(E->getValue(), E);
6284   }
6285 
6286   // Note, GNU defines __null as an integer, not a pointer.
VisitGNUNullExpr(const GNUNullExpr * E)6287   bool VisitGNUNullExpr(const GNUNullExpr *E) {
6288     return ZeroInitialization(E);
6289   }
6290 
VisitTypeTraitExpr(const TypeTraitExpr * E)6291   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
6292     return Success(E->getValue(), E);
6293   }
6294 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)6295   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
6296     return Success(E->getValue(), E);
6297   }
6298 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)6299   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
6300     return Success(E->getValue(), E);
6301   }
6302 
6303   bool VisitUnaryReal(const UnaryOperator *E);
6304   bool VisitUnaryImag(const UnaryOperator *E);
6305 
6306   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
6307   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
6308 
6309 private:
6310   bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
6311   // FIXME: Missing: array subscript of vector, member of vector
6312 };
6313 } // end anonymous namespace
6314 
6315 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6316 /// produce either the integer value or a pointer.
6317 ///
6318 /// GCC has a heinous extension which folds casts between pointer types and
6319 /// pointer-sized integral types. We support this by allowing the evaluation of
6320 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6321 /// Some simple arithmetic on such values is supported (they are treated much
6322 /// like char*).
EvaluateIntegerOrLValue(const Expr * E,APValue & Result,EvalInfo & Info)6323 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6324                                     EvalInfo &Info) {
6325   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6326   return IntExprEvaluator(Info, Result).Visit(E);
6327 }
6328 
EvaluateInteger(const Expr * E,APSInt & Result,EvalInfo & Info)6329 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6330   APValue Val;
6331   if (!EvaluateIntegerOrLValue(E, Val, Info))
6332     return false;
6333   if (!Val.isInt()) {
6334     // FIXME: It would be better to produce the diagnostic for casting
6335     //        a pointer to an integer.
6336     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
6337     return false;
6338   }
6339   Result = Val.getInt();
6340   return true;
6341 }
6342 
6343 /// Check whether the given declaration can be directly converted to an integral
6344 /// rvalue. If not, no diagnostic is produced; there are other things we can
6345 /// try.
CheckReferencedDecl(const Expr * E,const Decl * D)6346 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6347   // Enums are integer constant exprs.
6348   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6349     // Check for signedness/width mismatches between E type and ECD value.
6350     bool SameSign = (ECD->getInitVal().isSigned()
6351                      == E->getType()->isSignedIntegerOrEnumerationType());
6352     bool SameWidth = (ECD->getInitVal().getBitWidth()
6353                       == Info.Ctx.getIntWidth(E->getType()));
6354     if (SameSign && SameWidth)
6355       return Success(ECD->getInitVal(), E);
6356     else {
6357       // Get rid of mismatch (otherwise Success assertions will fail)
6358       // by computing a new value matching the type of E.
6359       llvm::APSInt Val = ECD->getInitVal();
6360       if (!SameSign)
6361         Val.setIsSigned(!ECD->getInitVal().isSigned());
6362       if (!SameWidth)
6363         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6364       return Success(Val, E);
6365     }
6366   }
6367   return false;
6368 }
6369 
6370 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6371 /// as GCC.
EvaluateBuiltinClassifyType(const CallExpr * E,const LangOptions & LangOpts)6372 static int EvaluateBuiltinClassifyType(const CallExpr *E,
6373                                        const LangOptions &LangOpts) {
6374   // The following enum mimics the values returned by GCC.
6375   // FIXME: Does GCC differ between lvalue and rvalue references here?
6376   enum gcc_type_class {
6377     no_type_class = -1,
6378     void_type_class, integer_type_class, char_type_class,
6379     enumeral_type_class, boolean_type_class,
6380     pointer_type_class, reference_type_class, offset_type_class,
6381     real_type_class, complex_type_class,
6382     function_type_class, method_type_class,
6383     record_type_class, union_type_class,
6384     array_type_class, string_type_class,
6385     lang_type_class
6386   };
6387 
6388   // If no argument was supplied, default to "no_type_class". This isn't
6389   // ideal, however it is what gcc does.
6390   if (E->getNumArgs() == 0)
6391     return no_type_class;
6392 
6393   QualType CanTy = E->getArg(0)->getType().getCanonicalType();
6394   const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
6395 
6396   switch (CanTy->getTypeClass()) {
6397 #define TYPE(ID, BASE)
6398 #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
6399 #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
6400 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
6401 #include "clang/AST/TypeNodes.def"
6402       llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6403 
6404   case Type::Builtin:
6405     switch (BT->getKind()) {
6406 #define BUILTIN_TYPE(ID, SINGLETON_ID)
6407 #define SIGNED_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return integer_type_class;
6408 #define FLOATING_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return real_type_class;
6409 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: break;
6410 #include "clang/AST/BuiltinTypes.def"
6411     case BuiltinType::Void:
6412       return void_type_class;
6413 
6414     case BuiltinType::Bool:
6415       return boolean_type_class;
6416 
6417     case BuiltinType::Char_U: // gcc doesn't appear to use char_type_class
6418     case BuiltinType::UChar:
6419     case BuiltinType::UShort:
6420     case BuiltinType::UInt:
6421     case BuiltinType::ULong:
6422     case BuiltinType::ULongLong:
6423     case BuiltinType::UInt128:
6424       return integer_type_class;
6425 
6426     case BuiltinType::NullPtr:
6427       return pointer_type_class;
6428 
6429     case BuiltinType::WChar_U:
6430     case BuiltinType::Char16:
6431     case BuiltinType::Char32:
6432     case BuiltinType::ObjCId:
6433     case BuiltinType::ObjCClass:
6434     case BuiltinType::ObjCSel:
6435 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6436     case BuiltinType::Id:
6437 #include "clang/Basic/OpenCLImageTypes.def"
6438     case BuiltinType::OCLSampler:
6439     case BuiltinType::OCLEvent:
6440     case BuiltinType::OCLClkEvent:
6441     case BuiltinType::OCLQueue:
6442     case BuiltinType::OCLNDRange:
6443     case BuiltinType::OCLReserveID:
6444     case BuiltinType::Dependent:
6445       llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6446     };
6447 
6448   case Type::Enum:
6449     return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6450     break;
6451 
6452   case Type::Pointer:
6453     return pointer_type_class;
6454     break;
6455 
6456   case Type::MemberPointer:
6457     if (CanTy->isMemberDataPointerType())
6458       return offset_type_class;
6459     else {
6460       // We expect member pointers to be either data or function pointers,
6461       // nothing else.
6462       assert(CanTy->isMemberFunctionPointerType());
6463       return method_type_class;
6464     }
6465 
6466   case Type::Complex:
6467     return complex_type_class;
6468 
6469   case Type::FunctionNoProto:
6470   case Type::FunctionProto:
6471     return LangOpts.CPlusPlus ? function_type_class : pointer_type_class;
6472 
6473   case Type::Record:
6474     if (const RecordType *RT = CanTy->getAs<RecordType>()) {
6475       switch (RT->getDecl()->getTagKind()) {
6476       case TagTypeKind::TTK_Struct:
6477       case TagTypeKind::TTK_Class:
6478       case TagTypeKind::TTK_Interface:
6479         return record_type_class;
6480 
6481       case TagTypeKind::TTK_Enum:
6482         return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
6483 
6484       case TagTypeKind::TTK_Union:
6485         return union_type_class;
6486       }
6487     }
6488     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6489 
6490   case Type::ConstantArray:
6491   case Type::VariableArray:
6492   case Type::IncompleteArray:
6493     return LangOpts.CPlusPlus ? array_type_class : pointer_type_class;
6494 
6495   case Type::BlockPointer:
6496   case Type::LValueReference:
6497   case Type::RValueReference:
6498   case Type::Vector:
6499   case Type::ExtVector:
6500   case Type::Auto:
6501   case Type::ObjCObject:
6502   case Type::ObjCInterface:
6503   case Type::ObjCObjectPointer:
6504   case Type::Pipe:
6505   case Type::Atomic:
6506     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6507   }
6508 
6509   llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6510 }
6511 
6512 /// EvaluateBuiltinConstantPForLValue - Determine the result of
6513 /// __builtin_constant_p when applied to the given lvalue.
6514 ///
6515 /// An lvalue is only "constant" if it is a pointer or reference to the first
6516 /// character of a string literal.
6517 template<typename LValue>
EvaluateBuiltinConstantPForLValue(const LValue & LV)6518 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6519   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6520   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6521 }
6522 
6523 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6524 /// GCC as we can manage.
EvaluateBuiltinConstantP(ASTContext & Ctx,const Expr * Arg)6525 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6526   QualType ArgType = Arg->getType();
6527 
6528   // __builtin_constant_p always has one operand. The rules which gcc follows
6529   // are not precisely documented, but are as follows:
6530   //
6531   //  - If the operand is of integral, floating, complex or enumeration type,
6532   //    and can be folded to a known value of that type, it returns 1.
6533   //  - If the operand and can be folded to a pointer to the first character
6534   //    of a string literal (or such a pointer cast to an integral type), it
6535   //    returns 1.
6536   //
6537   // Otherwise, it returns 0.
6538   //
6539   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6540   // its support for this does not currently work.
6541   if (ArgType->isIntegralOrEnumerationType()) {
6542     Expr::EvalResult Result;
6543     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6544       return false;
6545 
6546     APValue &V = Result.Val;
6547     if (V.getKind() == APValue::Int)
6548       return true;
6549     if (V.getKind() == APValue::LValue)
6550       return EvaluateBuiltinConstantPForLValue(V);
6551   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6552     return Arg->isEvaluatable(Ctx);
6553   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6554     LValue LV;
6555     Expr::EvalStatus Status;
6556     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6557     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6558                           : EvaluatePointer(Arg, LV, Info)) &&
6559         !Status.HasSideEffects)
6560       return EvaluateBuiltinConstantPForLValue(LV);
6561   }
6562 
6563   // Anything else isn't considered to be sufficiently constant.
6564   return false;
6565 }
6566 
6567 /// Retrieves the "underlying object type" of the given expression,
6568 /// as used by __builtin_object_size.
getObjectType(APValue::LValueBase B)6569 static QualType getObjectType(APValue::LValueBase B) {
6570   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6571     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6572       return VD->getType();
6573   } else if (const Expr *E = B.get<const Expr*>()) {
6574     if (isa<CompoundLiteralExpr>(E))
6575       return E->getType();
6576   }
6577 
6578   return QualType();
6579 }
6580 
6581 /// A more selective version of E->IgnoreParenCasts for
6582 /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
6583 /// to change the type of E.
6584 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
6585 ///
6586 /// Always returns an RValue with a pointer representation.
ignorePointerCastsAndParens(const Expr * E)6587 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
6588   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
6589 
6590   auto *NoParens = E->IgnoreParens();
6591   auto *Cast = dyn_cast<CastExpr>(NoParens);
6592   if (Cast == nullptr)
6593     return NoParens;
6594 
6595   // We only conservatively allow a few kinds of casts, because this code is
6596   // inherently a simple solution that seeks to support the common case.
6597   auto CastKind = Cast->getCastKind();
6598   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
6599       CastKind != CK_AddressSpaceConversion)
6600     return NoParens;
6601 
6602   auto *SubExpr = Cast->getSubExpr();
6603   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
6604     return NoParens;
6605   return ignorePointerCastsAndParens(SubExpr);
6606 }
6607 
6608 /// Checks to see if the given LValue's Designator is at the end of the LValue's
6609 /// record layout. e.g.
6610 ///   struct { struct { int a, b; } fst, snd; } obj;
6611 ///   obj.fst   // no
6612 ///   obj.snd   // yes
6613 ///   obj.fst.a // no
6614 ///   obj.fst.b // no
6615 ///   obj.snd.a // no
6616 ///   obj.snd.b // yes
6617 ///
6618 /// Please note: this function is specialized for how __builtin_object_size
6619 /// views "objects".
6620 ///
6621 /// If this encounters an invalid RecordDecl, it will always return true.
isDesignatorAtObjectEnd(const ASTContext & Ctx,const LValue & LVal)6622 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
6623   assert(!LVal.Designator.Invalid);
6624 
6625   auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
6626     const RecordDecl *Parent = FD->getParent();
6627     Invalid = Parent->isInvalidDecl();
6628     if (Invalid || Parent->isUnion())
6629       return true;
6630     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
6631     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
6632   };
6633 
6634   auto &Base = LVal.getLValueBase();
6635   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
6636     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
6637       bool Invalid;
6638       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6639         return Invalid;
6640     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
6641       for (auto *FD : IFD->chain()) {
6642         bool Invalid;
6643         if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
6644           return Invalid;
6645       }
6646     }
6647   }
6648 
6649   QualType BaseType = getType(Base);
6650   for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
6651     if (BaseType->isArrayType()) {
6652       // Because __builtin_object_size treats arrays as objects, we can ignore
6653       // the index iff this is the last array in the Designator.
6654       if (I + 1 == E)
6655         return true;
6656       auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
6657       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6658       if (Index + 1 != CAT->getSize())
6659         return false;
6660       BaseType = CAT->getElementType();
6661     } else if (BaseType->isAnyComplexType()) {
6662       auto *CT = BaseType->castAs<ComplexType>();
6663       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6664       if (Index != 1)
6665         return false;
6666       BaseType = CT->getElementType();
6667     } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
6668       bool Invalid;
6669       if (!IsLastOrInvalidFieldDecl(FD, Invalid))
6670         return Invalid;
6671       BaseType = FD->getType();
6672     } else {
6673       assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
6674              "Expecting cast to a base class");
6675       return false;
6676     }
6677   }
6678   return true;
6679 }
6680 
6681 /// Tests to see if the LValue has a designator (that isn't necessarily valid).
refersToCompleteObject(const LValue & LVal)6682 static bool refersToCompleteObject(const LValue &LVal) {
6683   if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
6684     return false;
6685 
6686   if (!LVal.InvalidBase)
6687     return true;
6688 
6689   auto *E = LVal.Base.dyn_cast<const Expr *>();
6690   (void)E;
6691   assert(E != nullptr && isa<MemberExpr>(E));
6692   return false;
6693 }
6694 
6695 /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
6696 /// true and stores the result in @p Size.
6697 ///
6698 /// If @p WasError is non-null, this will report whether the failure to evaluate
6699 /// is to be treated as an Error in IntExprEvaluator.
tryEvaluateBuiltinObjectSize(const Expr * E,unsigned Type,EvalInfo & Info,uint64_t & Size,bool * WasError=nullptr)6700 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
6701                                          EvalInfo &Info, uint64_t &Size,
6702                                          bool *WasError = nullptr) {
6703   if (WasError != nullptr)
6704     *WasError = false;
6705 
6706   auto Error = [&](const Expr *E) {
6707     if (WasError != nullptr)
6708       *WasError = true;
6709     return false;
6710   };
6711 
6712   auto Success = [&](uint64_t S, const Expr *E) {
6713     Size = S;
6714     return true;
6715   };
6716 
6717   // Determine the denoted object.
6718   LValue Base;
6719   {
6720     // The operand of __builtin_object_size is never evaluated for side-effects.
6721     // If there are any, but we can determine the pointed-to object anyway, then
6722     // ignore the side-effects.
6723     SpeculativeEvaluationRAII SpeculativeEval(Info);
6724     FoldOffsetRAII Fold(Info, Type & 1);
6725 
6726     if (E->isGLValue()) {
6727       // It's possible for us to be given GLValues if we're called via
6728       // Expr::tryEvaluateObjectSize.
6729       APValue RVal;
6730       if (!EvaluateAsRValue(Info, E, RVal))
6731         return false;
6732       Base.setFrom(Info.Ctx, RVal);
6733     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
6734       return false;
6735   }
6736 
6737   CharUnits BaseOffset = Base.getLValueOffset();
6738   // If we point to before the start of the object, there are no accessible
6739   // bytes.
6740   if (BaseOffset.isNegative())
6741     return Success(0, E);
6742 
6743   // In the case where we're not dealing with a subobject, we discard the
6744   // subobject bit.
6745   bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
6746 
6747   // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
6748   // exist. If we can't verify the base, then we can't do that.
6749   //
6750   // As a special case, we produce a valid object size for an unknown object
6751   // with a known designator if Type & 1 is 1. For instance:
6752   //
6753   //   extern struct X { char buff[32]; int a, b, c; } *p;
6754   //   int a = __builtin_object_size(p->buff + 4, 3); // returns 28
6755   //   int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
6756   //
6757   // This matches GCC's behavior.
6758   if (Base.InvalidBase && !SubobjectOnly)
6759     return Error(E);
6760 
6761   // If we're not examining only the subobject, then we reset to a complete
6762   // object designator
6763   //
6764   // If Type is 1 and we've lost track of the subobject, just find the complete
6765   // object instead. (If Type is 3, that's not correct behavior and we should
6766   // return 0 instead.)
6767   LValue End = Base;
6768   if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
6769     QualType T = getObjectType(End.getLValueBase());
6770     if (T.isNull())
6771       End.Designator.setInvalid();
6772     else {
6773       End.Designator = SubobjectDesignator(T);
6774       End.Offset = CharUnits::Zero();
6775     }
6776   }
6777 
6778   // If it is not possible to determine which objects ptr points to at compile
6779   // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
6780   // and (size_t) 0 for type 2 or 3.
6781   if (End.Designator.Invalid)
6782     return false;
6783 
6784   // According to the GCC documentation, we want the size of the subobject
6785   // denoted by the pointer. But that's not quite right -- what we actually
6786   // want is the size of the immediately-enclosing array, if there is one.
6787   int64_t AmountToAdd = 1;
6788   if (End.Designator.MostDerivedIsArrayElement &&
6789       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
6790     // We got a pointer to an array. Step to its end.
6791     AmountToAdd = End.Designator.MostDerivedArraySize -
6792                   End.Designator.Entries.back().ArrayIndex;
6793   } else if (End.Designator.isOnePastTheEnd()) {
6794     // We're already pointing at the end of the object.
6795     AmountToAdd = 0;
6796   }
6797 
6798   QualType PointeeType = End.Designator.MostDerivedType;
6799   assert(!PointeeType.isNull());
6800   if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
6801     return Error(E);
6802 
6803   if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
6804                                    AmountToAdd))
6805     return false;
6806 
6807   auto EndOffset = End.getLValueOffset();
6808 
6809   // The following is a moderately common idiom in C:
6810   //
6811   // struct Foo { int a; char c[1]; };
6812   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
6813   // strcpy(&F->c[0], Bar);
6814   //
6815   // So, if we see that we're examining a 1-length (or 0-length) array at the
6816   // end of a struct with an unknown base, we give up instead of breaking code
6817   // that behaves this way. Note that we only do this when Type=1, because
6818   // Type=3 is a lower bound, so answering conservatively is fine.
6819   if (End.InvalidBase && SubobjectOnly && Type == 1 &&
6820       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
6821       End.Designator.MostDerivedIsArrayElement &&
6822       End.Designator.MostDerivedArraySize < 2 &&
6823       isDesignatorAtObjectEnd(Info.Ctx, End))
6824     return false;
6825 
6826   if (BaseOffset > EndOffset)
6827     return Success(0, E);
6828 
6829   return Success((EndOffset - BaseOffset).getQuantity(), E);
6830 }
6831 
TryEvaluateBuiltinObjectSize(const CallExpr * E,unsigned Type)6832 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
6833                                                     unsigned Type) {
6834   uint64_t Size;
6835   bool WasError;
6836   if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
6837     return Success(Size, E);
6838   if (WasError)
6839     return Error(E);
6840   return false;
6841 }
6842 
VisitCallExpr(const CallExpr * E)6843 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6844   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6845   default:
6846     return ExprEvaluatorBaseTy::VisitCallExpr(E);
6847 
6848   case Builtin::BI__builtin_object_size: {
6849     // The type was checked when we built the expression.
6850     unsigned Type =
6851         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6852     assert(Type <= 3 && "unexpected type");
6853 
6854     if (TryEvaluateBuiltinObjectSize(E, Type))
6855       return true;
6856 
6857     if (E->getArg(0)->HasSideEffects(Info.Ctx))
6858       return Success((Type & 2) ? 0 : -1, E);
6859 
6860     // Expression had no side effects, but we couldn't statically determine the
6861     // size of the referenced object.
6862     switch (Info.EvalMode) {
6863     case EvalInfo::EM_ConstantExpression:
6864     case EvalInfo::EM_PotentialConstantExpression:
6865     case EvalInfo::EM_ConstantFold:
6866     case EvalInfo::EM_EvaluateForOverflow:
6867     case EvalInfo::EM_IgnoreSideEffects:
6868     case EvalInfo::EM_DesignatorFold:
6869       // Leave it to IR generation.
6870       return Error(E);
6871     case EvalInfo::EM_ConstantExpressionUnevaluated:
6872     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6873       // Reduce it to a constant now.
6874       return Success((Type & 2) ? 0 : -1, E);
6875     }
6876   }
6877 
6878   case Builtin::BI__builtin_bswap16:
6879   case Builtin::BI__builtin_bswap32:
6880   case Builtin::BI__builtin_bswap64: {
6881     APSInt Val;
6882     if (!EvaluateInteger(E->getArg(0), Val, Info))
6883       return false;
6884 
6885     return Success(Val.byteSwap(), E);
6886   }
6887 
6888   case Builtin::BI__builtin_classify_type:
6889     return Success(EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
6890 
6891   // FIXME: BI__builtin_clrsb
6892   // FIXME: BI__builtin_clrsbl
6893   // FIXME: BI__builtin_clrsbll
6894 
6895   case Builtin::BI__builtin_clz:
6896   case Builtin::BI__builtin_clzl:
6897   case Builtin::BI__builtin_clzll:
6898   case Builtin::BI__builtin_clzs: {
6899     APSInt Val;
6900     if (!EvaluateInteger(E->getArg(0), Val, Info))
6901       return false;
6902     if (!Val)
6903       return Error(E);
6904 
6905     return Success(Val.countLeadingZeros(), E);
6906   }
6907 
6908   case Builtin::BI__builtin_constant_p:
6909     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6910 
6911   case Builtin::BI__builtin_ctz:
6912   case Builtin::BI__builtin_ctzl:
6913   case Builtin::BI__builtin_ctzll:
6914   case Builtin::BI__builtin_ctzs: {
6915     APSInt Val;
6916     if (!EvaluateInteger(E->getArg(0), Val, Info))
6917       return false;
6918     if (!Val)
6919       return Error(E);
6920 
6921     return Success(Val.countTrailingZeros(), E);
6922   }
6923 
6924   case Builtin::BI__builtin_eh_return_data_regno: {
6925     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6926     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6927     return Success(Operand, E);
6928   }
6929 
6930   case Builtin::BI__builtin_expect:
6931     return Visit(E->getArg(0));
6932 
6933   case Builtin::BI__builtin_ffs:
6934   case Builtin::BI__builtin_ffsl:
6935   case Builtin::BI__builtin_ffsll: {
6936     APSInt Val;
6937     if (!EvaluateInteger(E->getArg(0), Val, Info))
6938       return false;
6939 
6940     unsigned N = Val.countTrailingZeros();
6941     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6942   }
6943 
6944   case Builtin::BI__builtin_fpclassify: {
6945     APFloat Val(0.0);
6946     if (!EvaluateFloat(E->getArg(5), Val, Info))
6947       return false;
6948     unsigned Arg;
6949     switch (Val.getCategory()) {
6950     case APFloat::fcNaN: Arg = 0; break;
6951     case APFloat::fcInfinity: Arg = 1; break;
6952     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6953     case APFloat::fcZero: Arg = 4; break;
6954     }
6955     return Visit(E->getArg(Arg));
6956   }
6957 
6958   case Builtin::BI__builtin_isinf_sign: {
6959     APFloat Val(0.0);
6960     return EvaluateFloat(E->getArg(0), Val, Info) &&
6961            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6962   }
6963 
6964   case Builtin::BI__builtin_isinf: {
6965     APFloat Val(0.0);
6966     return EvaluateFloat(E->getArg(0), Val, Info) &&
6967            Success(Val.isInfinity() ? 1 : 0, E);
6968   }
6969 
6970   case Builtin::BI__builtin_isfinite: {
6971     APFloat Val(0.0);
6972     return EvaluateFloat(E->getArg(0), Val, Info) &&
6973            Success(Val.isFinite() ? 1 : 0, E);
6974   }
6975 
6976   case Builtin::BI__builtin_isnan: {
6977     APFloat Val(0.0);
6978     return EvaluateFloat(E->getArg(0), Val, Info) &&
6979            Success(Val.isNaN() ? 1 : 0, E);
6980   }
6981 
6982   case Builtin::BI__builtin_isnormal: {
6983     APFloat Val(0.0);
6984     return EvaluateFloat(E->getArg(0), Val, Info) &&
6985            Success(Val.isNormal() ? 1 : 0, E);
6986   }
6987 
6988   case Builtin::BI__builtin_parity:
6989   case Builtin::BI__builtin_parityl:
6990   case Builtin::BI__builtin_parityll: {
6991     APSInt Val;
6992     if (!EvaluateInteger(E->getArg(0), Val, Info))
6993       return false;
6994 
6995     return Success(Val.countPopulation() % 2, E);
6996   }
6997 
6998   case Builtin::BI__builtin_popcount:
6999   case Builtin::BI__builtin_popcountl:
7000   case Builtin::BI__builtin_popcountll: {
7001     APSInt Val;
7002     if (!EvaluateInteger(E->getArg(0), Val, Info))
7003       return false;
7004 
7005     return Success(Val.countPopulation(), E);
7006   }
7007 
7008   case Builtin::BIstrlen:
7009     // A call to strlen is not a constant expression.
7010     if (Info.getLangOpts().CPlusPlus11)
7011       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
7012         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
7013     else
7014       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
7015     // Fall through.
7016   case Builtin::BI__builtin_strlen: {
7017     // As an extension, we support __builtin_strlen() as a constant expression,
7018     // and support folding strlen() to a constant.
7019     LValue String;
7020     if (!EvaluatePointer(E->getArg(0), String, Info))
7021       return false;
7022 
7023     // Fast path: if it's a string literal, search the string value.
7024     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
7025             String.getLValueBase().dyn_cast<const Expr *>())) {
7026       // The string literal may have embedded null characters. Find the first
7027       // one and truncate there.
7028       StringRef Str = S->getBytes();
7029       int64_t Off = String.Offset.getQuantity();
7030       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
7031           S->getCharByteWidth() == 1) {
7032         Str = Str.substr(Off);
7033 
7034         StringRef::size_type Pos = Str.find(0);
7035         if (Pos != StringRef::npos)
7036           Str = Str.substr(0, Pos);
7037 
7038         return Success(Str.size(), E);
7039       }
7040 
7041       // Fall through to slow path to issue appropriate diagnostic.
7042     }
7043 
7044     // Slow path: scan the bytes of the string looking for the terminating 0.
7045     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
7046     for (uint64_t Strlen = 0; /**/; ++Strlen) {
7047       APValue Char;
7048       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
7049           !Char.isInt())
7050         return false;
7051       if (!Char.getInt())
7052         return Success(Strlen, E);
7053       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
7054         return false;
7055     }
7056   }
7057 
7058   case Builtin::BI__atomic_always_lock_free:
7059   case Builtin::BI__atomic_is_lock_free:
7060   case Builtin::BI__c11_atomic_is_lock_free: {
7061     APSInt SizeVal;
7062     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
7063       return false;
7064 
7065     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
7066     // of two less than the maximum inline atomic width, we know it is
7067     // lock-free.  If the size isn't a power of two, or greater than the
7068     // maximum alignment where we promote atomics, we know it is not lock-free
7069     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
7070     // the answer can only be determined at runtime; for example, 16-byte
7071     // atomics have lock-free implementations on some, but not all,
7072     // x86-64 processors.
7073 
7074     // Check power-of-two.
7075     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
7076     if (Size.isPowerOfTwo()) {
7077       // Check against inlining width.
7078       unsigned InlineWidthBits =
7079           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
7080       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
7081         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
7082             Size == CharUnits::One() ||
7083             E->getArg(1)->isNullPointerConstant(Info.Ctx,
7084                                                 Expr::NPC_NeverValueDependent))
7085           // OK, we will inline appropriately-aligned operations of this size,
7086           // and _Atomic(T) is appropriately-aligned.
7087           return Success(1, E);
7088 
7089         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
7090           castAs<PointerType>()->getPointeeType();
7091         if (!PointeeType->isIncompleteType() &&
7092             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
7093           // OK, we will inline operations on this object.
7094           return Success(1, E);
7095         }
7096       }
7097     }
7098 
7099     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
7100         Success(0, E) : Error(E);
7101   }
7102   }
7103 }
7104 
HasSameBase(const LValue & A,const LValue & B)7105 static bool HasSameBase(const LValue &A, const LValue &B) {
7106   if (!A.getLValueBase())
7107     return !B.getLValueBase();
7108   if (!B.getLValueBase())
7109     return false;
7110 
7111   if (A.getLValueBase().getOpaqueValue() !=
7112       B.getLValueBase().getOpaqueValue()) {
7113     const Decl *ADecl = GetLValueBaseDecl(A);
7114     if (!ADecl)
7115       return false;
7116     const Decl *BDecl = GetLValueBaseDecl(B);
7117     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
7118       return false;
7119   }
7120 
7121   return IsGlobalLValue(A.getLValueBase()) ||
7122          A.getLValueCallIndex() == B.getLValueCallIndex();
7123 }
7124 
7125 /// \brief Determine whether this is a pointer past the end of the complete
7126 /// object referred to by the lvalue.
isOnePastTheEndOfCompleteObject(const ASTContext & Ctx,const LValue & LV)7127 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
7128                                             const LValue &LV) {
7129   // A null pointer can be viewed as being "past the end" but we don't
7130   // choose to look at it that way here.
7131   if (!LV.getLValueBase())
7132     return false;
7133 
7134   // If the designator is valid and refers to a subobject, we're not pointing
7135   // past the end.
7136   if (!LV.getLValueDesignator().Invalid &&
7137       !LV.getLValueDesignator().isOnePastTheEnd())
7138     return false;
7139 
7140   // A pointer to an incomplete type might be past-the-end if the type's size is
7141   // zero.  We cannot tell because the type is incomplete.
7142   QualType Ty = getType(LV.getLValueBase());
7143   if (Ty->isIncompleteType())
7144     return true;
7145 
7146   // We're a past-the-end pointer if we point to the byte after the object,
7147   // no matter what our type or path is.
7148   auto Size = Ctx.getTypeSizeInChars(Ty);
7149   return LV.getLValueOffset() == Size;
7150 }
7151 
7152 namespace {
7153 
7154 /// \brief Data recursive integer evaluator of certain binary operators.
7155 ///
7156 /// We use a data recursive algorithm for binary operators so that we are able
7157 /// to handle extreme cases of chained binary operators without causing stack
7158 /// overflow.
7159 class DataRecursiveIntBinOpEvaluator {
7160   struct EvalResult {
7161     APValue Val;
7162     bool Failed;
7163 
EvalResult__anon4b2781fb1811::DataRecursiveIntBinOpEvaluator::EvalResult7164     EvalResult() : Failed(false) { }
7165 
swap__anon4b2781fb1811::DataRecursiveIntBinOpEvaluator::EvalResult7166     void swap(EvalResult &RHS) {
7167       Val.swap(RHS.Val);
7168       Failed = RHS.Failed;
7169       RHS.Failed = false;
7170     }
7171   };
7172 
7173   struct Job {
7174     const Expr *E;
7175     EvalResult LHSResult; // meaningful only for binary operator expression.
7176     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
7177 
7178     Job() = default;
Job__anon4b2781fb1811::DataRecursiveIntBinOpEvaluator::Job7179     Job(Job &&J)
7180         : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
7181           SpecEvalRAII(std::move(J.SpecEvalRAII)) {}
7182 
startSpeculativeEval__anon4b2781fb1811::DataRecursiveIntBinOpEvaluator::Job7183     void startSpeculativeEval(EvalInfo &Info) {
7184       SpecEvalRAII = SpeculativeEvaluationRAII(Info);
7185     }
7186 
7187   private:
7188     SpeculativeEvaluationRAII SpecEvalRAII;
7189   };
7190 
7191   SmallVector<Job, 16> Queue;
7192 
7193   IntExprEvaluator &IntEval;
7194   EvalInfo &Info;
7195   APValue &FinalResult;
7196 
7197 public:
DataRecursiveIntBinOpEvaluator(IntExprEvaluator & IntEval,APValue & Result)7198   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
7199     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
7200 
7201   /// \brief True if \param E is a binary operator that we are going to handle
7202   /// data recursively.
7203   /// We handle binary operators that are comma, logical, or that have operands
7204   /// with integral or enumeration type.
shouldEnqueue(const BinaryOperator * E)7205   static bool shouldEnqueue(const BinaryOperator *E) {
7206     return E->getOpcode() == BO_Comma ||
7207            E->isLogicalOp() ||
7208            (E->isRValue() &&
7209             E->getType()->isIntegralOrEnumerationType() &&
7210             E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7211             E->getRHS()->getType()->isIntegralOrEnumerationType());
7212   }
7213 
Traverse(const BinaryOperator * E)7214   bool Traverse(const BinaryOperator *E) {
7215     enqueue(E);
7216     EvalResult PrevResult;
7217     while (!Queue.empty())
7218       process(PrevResult);
7219 
7220     if (PrevResult.Failed) return false;
7221 
7222     FinalResult.swap(PrevResult.Val);
7223     return true;
7224   }
7225 
7226 private:
Success(uint64_t Value,const Expr * E,APValue & Result)7227   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
7228     return IntEval.Success(Value, E, Result);
7229   }
Success(const APSInt & Value,const Expr * E,APValue & Result)7230   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
7231     return IntEval.Success(Value, E, Result);
7232   }
Error(const Expr * E)7233   bool Error(const Expr *E) {
7234     return IntEval.Error(E);
7235   }
Error(const Expr * E,diag::kind D)7236   bool Error(const Expr *E, diag::kind D) {
7237     return IntEval.Error(E, D);
7238   }
7239 
CCEDiag(const Expr * E,diag::kind D)7240   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
7241     return Info.CCEDiag(E, D);
7242   }
7243 
7244   // \brief Returns true if visiting the RHS is necessary, false otherwise.
7245   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7246                          bool &SuppressRHSDiags);
7247 
7248   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7249                   const BinaryOperator *E, APValue &Result);
7250 
EvaluateExpr(const Expr * E,EvalResult & Result)7251   void EvaluateExpr(const Expr *E, EvalResult &Result) {
7252     Result.Failed = !Evaluate(Result.Val, Info, E);
7253     if (Result.Failed)
7254       Result.Val = APValue();
7255   }
7256 
7257   void process(EvalResult &Result);
7258 
enqueue(const Expr * E)7259   void enqueue(const Expr *E) {
7260     E = E->IgnoreParens();
7261     Queue.resize(Queue.size()+1);
7262     Queue.back().E = E;
7263     Queue.back().Kind = Job::AnyExprKind;
7264   }
7265 };
7266 
7267 }
7268 
7269 bool DataRecursiveIntBinOpEvaluator::
VisitBinOpLHSOnly(EvalResult & LHSResult,const BinaryOperator * E,bool & SuppressRHSDiags)7270        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
7271                          bool &SuppressRHSDiags) {
7272   if (E->getOpcode() == BO_Comma) {
7273     // Ignore LHS but note if we could not evaluate it.
7274     if (LHSResult.Failed)
7275       return Info.noteSideEffect();
7276     return true;
7277   }
7278 
7279   if (E->isLogicalOp()) {
7280     bool LHSAsBool;
7281     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
7282       // We were able to evaluate the LHS, see if we can get away with not
7283       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
7284       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
7285         Success(LHSAsBool, E, LHSResult.Val);
7286         return false; // Ignore RHS
7287       }
7288     } else {
7289       LHSResult.Failed = true;
7290 
7291       // Since we weren't able to evaluate the left hand side, it
7292       // might have had side effects.
7293       if (!Info.noteSideEffect())
7294         return false;
7295 
7296       // We can't evaluate the LHS; however, sometimes the result
7297       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7298       // Don't ignore RHS and suppress diagnostics from this arm.
7299       SuppressRHSDiags = true;
7300     }
7301 
7302     return true;
7303   }
7304 
7305   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7306          E->getRHS()->getType()->isIntegralOrEnumerationType());
7307 
7308   if (LHSResult.Failed && !Info.noteFailure())
7309     return false; // Ignore RHS;
7310 
7311   return true;
7312 }
7313 
7314 bool DataRecursiveIntBinOpEvaluator::
VisitBinOp(const EvalResult & LHSResult,const EvalResult & RHSResult,const BinaryOperator * E,APValue & Result)7315        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7316                   const BinaryOperator *E, APValue &Result) {
7317   if (E->getOpcode() == BO_Comma) {
7318     if (RHSResult.Failed)
7319       return false;
7320     Result = RHSResult.Val;
7321     return true;
7322   }
7323 
7324   if (E->isLogicalOp()) {
7325     bool lhsResult, rhsResult;
7326     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
7327     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
7328 
7329     if (LHSIsOK) {
7330       if (RHSIsOK) {
7331         if (E->getOpcode() == BO_LOr)
7332           return Success(lhsResult || rhsResult, E, Result);
7333         else
7334           return Success(lhsResult && rhsResult, E, Result);
7335       }
7336     } else {
7337       if (RHSIsOK) {
7338         // We can't evaluate the LHS; however, sometimes the result
7339         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7340         if (rhsResult == (E->getOpcode() == BO_LOr))
7341           return Success(rhsResult, E, Result);
7342       }
7343     }
7344 
7345     return false;
7346   }
7347 
7348   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7349          E->getRHS()->getType()->isIntegralOrEnumerationType());
7350 
7351   if (LHSResult.Failed || RHSResult.Failed)
7352     return false;
7353 
7354   const APValue &LHSVal = LHSResult.Val;
7355   const APValue &RHSVal = RHSResult.Val;
7356 
7357   // Handle cases like (unsigned long)&a + 4.
7358   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
7359     Result = LHSVal;
7360     CharUnits AdditionalOffset =
7361         CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
7362     if (E->getOpcode() == BO_Add)
7363       Result.getLValueOffset() += AdditionalOffset;
7364     else
7365       Result.getLValueOffset() -= AdditionalOffset;
7366     return true;
7367   }
7368 
7369   // Handle cases like 4 + (unsigned long)&a
7370   if (E->getOpcode() == BO_Add &&
7371       RHSVal.isLValue() && LHSVal.isInt()) {
7372     Result = RHSVal;
7373     Result.getLValueOffset() +=
7374         CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
7375     return true;
7376   }
7377 
7378   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
7379     // Handle (intptr_t)&&A - (intptr_t)&&B.
7380     if (!LHSVal.getLValueOffset().isZero() ||
7381         !RHSVal.getLValueOffset().isZero())
7382       return false;
7383     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
7384     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
7385     if (!LHSExpr || !RHSExpr)
7386       return false;
7387     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7388     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7389     if (!LHSAddrExpr || !RHSAddrExpr)
7390       return false;
7391     // Make sure both labels come from the same function.
7392     if (LHSAddrExpr->getLabel()->getDeclContext() !=
7393         RHSAddrExpr->getLabel()->getDeclContext())
7394       return false;
7395     Result = APValue(LHSAddrExpr, RHSAddrExpr);
7396     return true;
7397   }
7398 
7399   // All the remaining cases expect both operands to be an integer
7400   if (!LHSVal.isInt() || !RHSVal.isInt())
7401     return Error(E);
7402 
7403   // Set up the width and signedness manually, in case it can't be deduced
7404   // from the operation we're performing.
7405   // FIXME: Don't do this in the cases where we can deduce it.
7406   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
7407                E->getType()->isUnsignedIntegerOrEnumerationType());
7408   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
7409                          RHSVal.getInt(), Value))
7410     return false;
7411   return Success(Value, E, Result);
7412 }
7413 
process(EvalResult & Result)7414 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
7415   Job &job = Queue.back();
7416 
7417   switch (job.Kind) {
7418     case Job::AnyExprKind: {
7419       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
7420         if (shouldEnqueue(Bop)) {
7421           job.Kind = Job::BinOpKind;
7422           enqueue(Bop->getLHS());
7423           return;
7424         }
7425       }
7426 
7427       EvaluateExpr(job.E, Result);
7428       Queue.pop_back();
7429       return;
7430     }
7431 
7432     case Job::BinOpKind: {
7433       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7434       bool SuppressRHSDiags = false;
7435       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
7436         Queue.pop_back();
7437         return;
7438       }
7439       if (SuppressRHSDiags)
7440         job.startSpeculativeEval(Info);
7441       job.LHSResult.swap(Result);
7442       job.Kind = Job::BinOpVisitedLHSKind;
7443       enqueue(Bop->getRHS());
7444       return;
7445     }
7446 
7447     case Job::BinOpVisitedLHSKind: {
7448       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7449       EvalResult RHS;
7450       RHS.swap(Result);
7451       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
7452       Queue.pop_back();
7453       return;
7454     }
7455   }
7456 
7457   llvm_unreachable("Invalid Job::Kind!");
7458 }
7459 
7460 namespace {
7461 /// Used when we determine that we should fail, but can keep evaluating prior to
7462 /// noting that we had a failure.
7463 class DelayedNoteFailureRAII {
7464   EvalInfo &Info;
7465   bool NoteFailure;
7466 
7467 public:
DelayedNoteFailureRAII(EvalInfo & Info,bool NoteFailure=true)7468   DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
7469       : Info(Info), NoteFailure(NoteFailure) {}
~DelayedNoteFailureRAII()7470   ~DelayedNoteFailureRAII() {
7471     if (NoteFailure) {
7472       bool ContinueAfterFailure = Info.noteFailure();
7473       (void)ContinueAfterFailure;
7474       assert(ContinueAfterFailure &&
7475              "Shouldn't have kept evaluating on failure.");
7476     }
7477   }
7478 };
7479 }
7480 
VisitBinaryOperator(const BinaryOperator * E)7481 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7482   // We don't call noteFailure immediately because the assignment happens after
7483   // we evaluate LHS and RHS.
7484   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
7485     return Error(E);
7486 
7487   DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
7488   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
7489     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
7490 
7491   QualType LHSTy = E->getLHS()->getType();
7492   QualType RHSTy = E->getRHS()->getType();
7493 
7494   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
7495     ComplexValue LHS, RHS;
7496     bool LHSOK;
7497     if (E->isAssignmentOp()) {
7498       LValue LV;
7499       EvaluateLValue(E->getLHS(), LV, Info);
7500       LHSOK = false;
7501     } else if (LHSTy->isRealFloatingType()) {
7502       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
7503       if (LHSOK) {
7504         LHS.makeComplexFloat();
7505         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
7506       }
7507     } else {
7508       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
7509     }
7510     if (!LHSOK && !Info.noteFailure())
7511       return false;
7512 
7513     if (E->getRHS()->getType()->isRealFloatingType()) {
7514       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
7515         return false;
7516       RHS.makeComplexFloat();
7517       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
7518     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7519       return false;
7520 
7521     if (LHS.isComplexFloat()) {
7522       APFloat::cmpResult CR_r =
7523         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
7524       APFloat::cmpResult CR_i =
7525         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
7526 
7527       if (E->getOpcode() == BO_EQ)
7528         return Success((CR_r == APFloat::cmpEqual &&
7529                         CR_i == APFloat::cmpEqual), E);
7530       else {
7531         assert(E->getOpcode() == BO_NE &&
7532                "Invalid complex comparison.");
7533         return Success(((CR_r == APFloat::cmpGreaterThan ||
7534                          CR_r == APFloat::cmpLessThan ||
7535                          CR_r == APFloat::cmpUnordered) ||
7536                         (CR_i == APFloat::cmpGreaterThan ||
7537                          CR_i == APFloat::cmpLessThan ||
7538                          CR_i == APFloat::cmpUnordered)), E);
7539       }
7540     } else {
7541       if (E->getOpcode() == BO_EQ)
7542         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
7543                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
7544       else {
7545         assert(E->getOpcode() == BO_NE &&
7546                "Invalid compex comparison.");
7547         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
7548                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
7549       }
7550     }
7551   }
7552 
7553   if (LHSTy->isRealFloatingType() &&
7554       RHSTy->isRealFloatingType()) {
7555     APFloat RHS(0.0), LHS(0.0);
7556 
7557     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
7558     if (!LHSOK && !Info.noteFailure())
7559       return false;
7560 
7561     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
7562       return false;
7563 
7564     APFloat::cmpResult CR = LHS.compare(RHS);
7565 
7566     switch (E->getOpcode()) {
7567     default:
7568       llvm_unreachable("Invalid binary operator!");
7569     case BO_LT:
7570       return Success(CR == APFloat::cmpLessThan, E);
7571     case BO_GT:
7572       return Success(CR == APFloat::cmpGreaterThan, E);
7573     case BO_LE:
7574       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
7575     case BO_GE:
7576       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
7577                      E);
7578     case BO_EQ:
7579       return Success(CR == APFloat::cmpEqual, E);
7580     case BO_NE:
7581       return Success(CR == APFloat::cmpGreaterThan
7582                      || CR == APFloat::cmpLessThan
7583                      || CR == APFloat::cmpUnordered, E);
7584     }
7585   }
7586 
7587   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
7588     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
7589       LValue LHSValue, RHSValue;
7590 
7591       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
7592       if (!LHSOK && !Info.noteFailure())
7593         return false;
7594 
7595       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7596         return false;
7597 
7598       // Reject differing bases from the normal codepath; we special-case
7599       // comparisons to null.
7600       if (!HasSameBase(LHSValue, RHSValue)) {
7601         if (E->getOpcode() == BO_Sub) {
7602           // Handle &&A - &&B.
7603           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
7604             return Error(E);
7605           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
7606           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
7607           if (!LHSExpr || !RHSExpr)
7608             return Error(E);
7609           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7610           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7611           if (!LHSAddrExpr || !RHSAddrExpr)
7612             return Error(E);
7613           // Make sure both labels come from the same function.
7614           if (LHSAddrExpr->getLabel()->getDeclContext() !=
7615               RHSAddrExpr->getLabel()->getDeclContext())
7616             return Error(E);
7617           return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
7618         }
7619         // Inequalities and subtractions between unrelated pointers have
7620         // unspecified or undefined behavior.
7621         if (!E->isEqualityOp())
7622           return Error(E);
7623         // A constant address may compare equal to the address of a symbol.
7624         // The one exception is that address of an object cannot compare equal
7625         // to a null pointer constant.
7626         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
7627             (!RHSValue.Base && !RHSValue.Offset.isZero()))
7628           return Error(E);
7629         // It's implementation-defined whether distinct literals will have
7630         // distinct addresses. In clang, the result of such a comparison is
7631         // unspecified, so it is not a constant expression. However, we do know
7632         // that the address of a literal will be non-null.
7633         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
7634             LHSValue.Base && RHSValue.Base)
7635           return Error(E);
7636         // We can't tell whether weak symbols will end up pointing to the same
7637         // object.
7638         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
7639           return Error(E);
7640         // We can't compare the address of the start of one object with the
7641         // past-the-end address of another object, per C++ DR1652.
7642         if ((LHSValue.Base && LHSValue.Offset.isZero() &&
7643              isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
7644             (RHSValue.Base && RHSValue.Offset.isZero() &&
7645              isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7646           return Error(E);
7647         // We can't tell whether an object is at the same address as another
7648         // zero sized object.
7649         if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7650             (LHSValue.Base && isZeroSized(RHSValue)))
7651           return Error(E);
7652         // Pointers with different bases cannot represent the same object.
7653         // (Note that clang defaults to -fmerge-all-constants, which can
7654         // lead to inconsistent results for comparisons involving the address
7655         // of a constant; this generally doesn't matter in practice.)
7656         return Success(E->getOpcode() == BO_NE, E);
7657       }
7658 
7659       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7660       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7661 
7662       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7663       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7664 
7665       if (E->getOpcode() == BO_Sub) {
7666         // C++11 [expr.add]p6:
7667         //   Unless both pointers point to elements of the same array object, or
7668         //   one past the last element of the array object, the behavior is
7669         //   undefined.
7670         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7671             !AreElementsOfSameArray(getType(LHSValue.Base),
7672                                     LHSDesignator, RHSDesignator))
7673           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7674 
7675         QualType Type = E->getLHS()->getType();
7676         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7677 
7678         CharUnits ElementSize;
7679         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7680           return false;
7681 
7682         // As an extension, a type may have zero size (empty struct or union in
7683         // C, array of zero length). Pointer subtraction in such cases has
7684         // undefined behavior, so is not constant.
7685         if (ElementSize.isZero()) {
7686           Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7687             << ElementType;
7688           return false;
7689         }
7690 
7691         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7692         // and produce incorrect results when it overflows. Such behavior
7693         // appears to be non-conforming, but is common, so perhaps we should
7694         // assume the standard intended for such cases to be undefined behavior
7695         // and check for them.
7696 
7697         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7698         // overflow in the final conversion to ptrdiff_t.
7699         APSInt LHS(
7700           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7701         APSInt RHS(
7702           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7703         APSInt ElemSize(
7704           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7705         APSInt TrueResult = (LHS - RHS) / ElemSize;
7706         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7707 
7708         if (Result.extend(65) != TrueResult &&
7709             !HandleOverflow(Info, E, TrueResult, E->getType()))
7710           return false;
7711         return Success(Result, E);
7712       }
7713 
7714       // C++11 [expr.rel]p3:
7715       //   Pointers to void (after pointer conversions) can be compared, with a
7716       //   result defined as follows: If both pointers represent the same
7717       //   address or are both the null pointer value, the result is true if the
7718       //   operator is <= or >= and false otherwise; otherwise the result is
7719       //   unspecified.
7720       // We interpret this as applying to pointers to *cv* void.
7721       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7722           E->isRelationalOp())
7723         CCEDiag(E, diag::note_constexpr_void_comparison);
7724 
7725       // C++11 [expr.rel]p2:
7726       // - If two pointers point to non-static data members of the same object,
7727       //   or to subobjects or array elements fo such members, recursively, the
7728       //   pointer to the later declared member compares greater provided the
7729       //   two members have the same access control and provided their class is
7730       //   not a union.
7731       //   [...]
7732       // - Otherwise pointer comparisons are unspecified.
7733       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7734           E->isRelationalOp()) {
7735         bool WasArrayIndex;
7736         unsigned Mismatch =
7737           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7738                                  RHSDesignator, WasArrayIndex);
7739         // At the point where the designators diverge, the comparison has a
7740         // specified value if:
7741         //  - we are comparing array indices
7742         //  - we are comparing fields of a union, or fields with the same access
7743         // Otherwise, the result is unspecified and thus the comparison is not a
7744         // constant expression.
7745         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7746             Mismatch < RHSDesignator.Entries.size()) {
7747           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7748           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7749           if (!LF && !RF)
7750             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7751           else if (!LF)
7752             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7753               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7754               << RF->getParent() << RF;
7755           else if (!RF)
7756             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7757               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7758               << LF->getParent() << LF;
7759           else if (!LF->getParent()->isUnion() &&
7760                    LF->getAccess() != RF->getAccess())
7761             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7762               << LF << LF->getAccess() << RF << RF->getAccess()
7763               << LF->getParent();
7764         }
7765       }
7766 
7767       // The comparison here must be unsigned, and performed with the same
7768       // width as the pointer.
7769       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7770       uint64_t CompareLHS = LHSOffset.getQuantity();
7771       uint64_t CompareRHS = RHSOffset.getQuantity();
7772       assert(PtrSize <= 64 && "Unexpected pointer width");
7773       uint64_t Mask = ~0ULL >> (64 - PtrSize);
7774       CompareLHS &= Mask;
7775       CompareRHS &= Mask;
7776 
7777       // If there is a base and this is a relational operator, we can only
7778       // compare pointers within the object in question; otherwise, the result
7779       // depends on where the object is located in memory.
7780       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7781         QualType BaseTy = getType(LHSValue.Base);
7782         if (BaseTy->isIncompleteType())
7783           return Error(E);
7784         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7785         uint64_t OffsetLimit = Size.getQuantity();
7786         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7787           return Error(E);
7788       }
7789 
7790       switch (E->getOpcode()) {
7791       default: llvm_unreachable("missing comparison operator");
7792       case BO_LT: return Success(CompareLHS < CompareRHS, E);
7793       case BO_GT: return Success(CompareLHS > CompareRHS, E);
7794       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7795       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7796       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7797       case BO_NE: return Success(CompareLHS != CompareRHS, E);
7798       }
7799     }
7800   }
7801 
7802   if (LHSTy->isMemberPointerType()) {
7803     assert(E->isEqualityOp() && "unexpected member pointer operation");
7804     assert(RHSTy->isMemberPointerType() && "invalid comparison");
7805 
7806     MemberPtr LHSValue, RHSValue;
7807 
7808     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7809     if (!LHSOK && !Info.noteFailure())
7810       return false;
7811 
7812     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7813       return false;
7814 
7815     // C++11 [expr.eq]p2:
7816     //   If both operands are null, they compare equal. Otherwise if only one is
7817     //   null, they compare unequal.
7818     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7819       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7820       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7821     }
7822 
7823     //   Otherwise if either is a pointer to a virtual member function, the
7824     //   result is unspecified.
7825     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7826       if (MD->isVirtual())
7827         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7828     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7829       if (MD->isVirtual())
7830         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7831 
7832     //   Otherwise they compare equal if and only if they would refer to the
7833     //   same member of the same most derived object or the same subobject if
7834     //   they were dereferenced with a hypothetical object of the associated
7835     //   class type.
7836     bool Equal = LHSValue == RHSValue;
7837     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7838   }
7839 
7840   if (LHSTy->isNullPtrType()) {
7841     assert(E->isComparisonOp() && "unexpected nullptr operation");
7842     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7843     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7844     // are compared, the result is true of the operator is <=, >= or ==, and
7845     // false otherwise.
7846     BinaryOperator::Opcode Opcode = E->getOpcode();
7847     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7848   }
7849 
7850   assert((!LHSTy->isIntegralOrEnumerationType() ||
7851           !RHSTy->isIntegralOrEnumerationType()) &&
7852          "DataRecursiveIntBinOpEvaluator should have handled integral types");
7853   // We can't continue from here for non-integral types.
7854   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7855 }
7856 
7857 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7858 /// a result as the expression's type.
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)7859 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7860                                     const UnaryExprOrTypeTraitExpr *E) {
7861   switch(E->getKind()) {
7862   case UETT_AlignOf: {
7863     if (E->isArgumentType())
7864       return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7865     else
7866       return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7867   }
7868 
7869   case UETT_VecStep: {
7870     QualType Ty = E->getTypeOfArgument();
7871 
7872     if (Ty->isVectorType()) {
7873       unsigned n = Ty->castAs<VectorType>()->getNumElements();
7874 
7875       // The vec_step built-in functions that take a 3-component
7876       // vector return 4. (OpenCL 1.1 spec 6.11.12)
7877       if (n == 3)
7878         n = 4;
7879 
7880       return Success(n, E);
7881     } else
7882       return Success(1, E);
7883   }
7884 
7885   case UETT_SizeOf: {
7886     QualType SrcTy = E->getTypeOfArgument();
7887     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7888     //   the result is the size of the referenced type."
7889     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7890       SrcTy = Ref->getPointeeType();
7891 
7892     CharUnits Sizeof;
7893     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7894       return false;
7895     return Success(Sizeof, E);
7896   }
7897   case UETT_OpenMPRequiredSimdAlign:
7898     assert(E->isArgumentType());
7899     return Success(
7900         Info.Ctx.toCharUnitsFromBits(
7901                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
7902             .getQuantity(),
7903         E);
7904   }
7905 
7906   llvm_unreachable("unknown expr/type trait");
7907 }
7908 
VisitOffsetOfExpr(const OffsetOfExpr * OOE)7909 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7910   CharUnits Result;
7911   unsigned n = OOE->getNumComponents();
7912   if (n == 0)
7913     return Error(OOE);
7914   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7915   for (unsigned i = 0; i != n; ++i) {
7916     OffsetOfNode ON = OOE->getComponent(i);
7917     switch (ON.getKind()) {
7918     case OffsetOfNode::Array: {
7919       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7920       APSInt IdxResult;
7921       if (!EvaluateInteger(Idx, IdxResult, Info))
7922         return false;
7923       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7924       if (!AT)
7925         return Error(OOE);
7926       CurrentType = AT->getElementType();
7927       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7928       Result += IdxResult.getSExtValue() * ElementSize;
7929       break;
7930     }
7931 
7932     case OffsetOfNode::Field: {
7933       FieldDecl *MemberDecl = ON.getField();
7934       const RecordType *RT = CurrentType->getAs<RecordType>();
7935       if (!RT)
7936         return Error(OOE);
7937       RecordDecl *RD = RT->getDecl();
7938       if (RD->isInvalidDecl()) return false;
7939       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7940       unsigned i = MemberDecl->getFieldIndex();
7941       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7942       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7943       CurrentType = MemberDecl->getType().getNonReferenceType();
7944       break;
7945     }
7946 
7947     case OffsetOfNode::Identifier:
7948       llvm_unreachable("dependent __builtin_offsetof");
7949 
7950     case OffsetOfNode::Base: {
7951       CXXBaseSpecifier *BaseSpec = ON.getBase();
7952       if (BaseSpec->isVirtual())
7953         return Error(OOE);
7954 
7955       // Find the layout of the class whose base we are looking into.
7956       const RecordType *RT = CurrentType->getAs<RecordType>();
7957       if (!RT)
7958         return Error(OOE);
7959       RecordDecl *RD = RT->getDecl();
7960       if (RD->isInvalidDecl()) return false;
7961       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7962 
7963       // Find the base class itself.
7964       CurrentType = BaseSpec->getType();
7965       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7966       if (!BaseRT)
7967         return Error(OOE);
7968 
7969       // Add the offset to the base.
7970       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7971       break;
7972     }
7973     }
7974   }
7975   return Success(Result, OOE);
7976 }
7977 
VisitUnaryOperator(const UnaryOperator * E)7978 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7979   switch (E->getOpcode()) {
7980   default:
7981     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7982     // See C99 6.6p3.
7983     return Error(E);
7984   case UO_Extension:
7985     // FIXME: Should extension allow i-c-e extension expressions in its scope?
7986     // If so, we could clear the diagnostic ID.
7987     return Visit(E->getSubExpr());
7988   case UO_Plus:
7989     // The result is just the value.
7990     return Visit(E->getSubExpr());
7991   case UO_Minus: {
7992     if (!Visit(E->getSubExpr()))
7993       return false;
7994     if (!Result.isInt()) return Error(E);
7995     const APSInt &Value = Result.getInt();
7996     if (Value.isSigned() && Value.isMinSignedValue() &&
7997         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7998                         E->getType()))
7999       return false;
8000     return Success(-Value, E);
8001   }
8002   case UO_Not: {
8003     if (!Visit(E->getSubExpr()))
8004       return false;
8005     if (!Result.isInt()) return Error(E);
8006     return Success(~Result.getInt(), E);
8007   }
8008   case UO_LNot: {
8009     bool bres;
8010     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
8011       return false;
8012     return Success(!bres, E);
8013   }
8014   }
8015 }
8016 
8017 /// HandleCast - This is used to evaluate implicit or explicit casts where the
8018 /// result type is integer.
VisitCastExpr(const CastExpr * E)8019 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
8020   const Expr *SubExpr = E->getSubExpr();
8021   QualType DestType = E->getType();
8022   QualType SrcType = SubExpr->getType();
8023 
8024   switch (E->getCastKind()) {
8025   case CK_BaseToDerived:
8026   case CK_DerivedToBase:
8027   case CK_UncheckedDerivedToBase:
8028   case CK_Dynamic:
8029   case CK_ToUnion:
8030   case CK_ArrayToPointerDecay:
8031   case CK_FunctionToPointerDecay:
8032   case CK_NullToPointer:
8033   case CK_NullToMemberPointer:
8034   case CK_BaseToDerivedMemberPointer:
8035   case CK_DerivedToBaseMemberPointer:
8036   case CK_ReinterpretMemberPointer:
8037   case CK_ConstructorConversion:
8038   case CK_IntegralToPointer:
8039   case CK_ToVoid:
8040   case CK_VectorSplat:
8041   case CK_IntegralToFloating:
8042   case CK_FloatingCast:
8043   case CK_CPointerToObjCPointerCast:
8044   case CK_BlockPointerToObjCPointerCast:
8045   case CK_AnyPointerToBlockPointerCast:
8046   case CK_ObjCObjectLValueCast:
8047   case CK_FloatingRealToComplex:
8048   case CK_FloatingComplexToReal:
8049   case CK_FloatingComplexCast:
8050   case CK_FloatingComplexToIntegralComplex:
8051   case CK_IntegralRealToComplex:
8052   case CK_IntegralComplexCast:
8053   case CK_IntegralComplexToFloatingComplex:
8054   case CK_BuiltinFnToFnPtr:
8055   case CK_ZeroToOCLEvent:
8056   case CK_NonAtomicToAtomic:
8057   case CK_AddressSpaceConversion:
8058     llvm_unreachable("invalid cast kind for integral value");
8059 
8060   case CK_BitCast:
8061   case CK_Dependent:
8062   case CK_LValueBitCast:
8063   case CK_ARCProduceObject:
8064   case CK_ARCConsumeObject:
8065   case CK_ARCReclaimReturnedObject:
8066   case CK_ARCExtendBlockObject:
8067   case CK_CopyAndAutoreleaseBlockObject:
8068     return Error(E);
8069 
8070   case CK_UserDefinedConversion:
8071   case CK_LValueToRValue:
8072   case CK_AtomicToNonAtomic:
8073   case CK_NoOp:
8074     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8075 
8076   case CK_MemberPointerToBoolean:
8077   case CK_PointerToBoolean:
8078   case CK_IntegralToBoolean:
8079   case CK_FloatingToBoolean:
8080   case CK_BooleanToSignedIntegral:
8081   case CK_FloatingComplexToBoolean:
8082   case CK_IntegralComplexToBoolean: {
8083     bool BoolResult;
8084     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
8085       return false;
8086     uint64_t IntResult = BoolResult;
8087     if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
8088       IntResult = (uint64_t)-1;
8089     return Success(IntResult, E);
8090   }
8091 
8092   case CK_IntegralCast: {
8093     if (!Visit(SubExpr))
8094       return false;
8095 
8096     if (!Result.isInt()) {
8097       // Allow casts of address-of-label differences if they are no-ops
8098       // or narrowing.  (The narrowing case isn't actually guaranteed to
8099       // be constant-evaluatable except in some narrow cases which are hard
8100       // to detect here.  We let it through on the assumption the user knows
8101       // what they are doing.)
8102       if (Result.isAddrLabelDiff())
8103         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
8104       // Only allow casts of lvalues if they are lossless.
8105       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
8106     }
8107 
8108     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
8109                                       Result.getInt()), E);
8110   }
8111 
8112   case CK_PointerToIntegral: {
8113     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
8114 
8115     LValue LV;
8116     if (!EvaluatePointer(SubExpr, LV, Info))
8117       return false;
8118 
8119     if (LV.getLValueBase()) {
8120       // Only allow based lvalue casts if they are lossless.
8121       // FIXME: Allow a larger integer size than the pointer size, and allow
8122       // narrowing back down to pointer width in subsequent integral casts.
8123       // FIXME: Check integer type's active bits, not its type size.
8124       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
8125         return Error(E);
8126 
8127       LV.Designator.setInvalid();
8128       LV.moveInto(Result);
8129       return true;
8130     }
8131 
8132     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(),
8133                                          SrcType);
8134     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
8135   }
8136 
8137   case CK_IntegralComplexToReal: {
8138     ComplexValue C;
8139     if (!EvaluateComplex(SubExpr, C, Info))
8140       return false;
8141     return Success(C.getComplexIntReal(), E);
8142   }
8143 
8144   case CK_FloatingToIntegral: {
8145     APFloat F(0.0);
8146     if (!EvaluateFloat(SubExpr, F, Info))
8147       return false;
8148 
8149     APSInt Value;
8150     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
8151       return false;
8152     return Success(Value, E);
8153   }
8154   }
8155 
8156   llvm_unreachable("unknown cast resulting in integral value");
8157 }
8158 
VisitUnaryReal(const UnaryOperator * E)8159 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8160   if (E->getSubExpr()->getType()->isAnyComplexType()) {
8161     ComplexValue LV;
8162     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8163       return false;
8164     if (!LV.isComplexInt())
8165       return Error(E);
8166     return Success(LV.getComplexIntReal(), E);
8167   }
8168 
8169   return Visit(E->getSubExpr());
8170 }
8171 
VisitUnaryImag(const UnaryOperator * E)8172 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8173   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
8174     ComplexValue LV;
8175     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
8176       return false;
8177     if (!LV.isComplexInt())
8178       return Error(E);
8179     return Success(LV.getComplexIntImag(), E);
8180   }
8181 
8182   VisitIgnoredValue(E->getSubExpr());
8183   return Success(0, E);
8184 }
8185 
VisitSizeOfPackExpr(const SizeOfPackExpr * E)8186 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
8187   return Success(E->getPackLength(), E);
8188 }
8189 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)8190 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
8191   return Success(E->getValue(), E);
8192 }
8193 
8194 //===----------------------------------------------------------------------===//
8195 // Float Evaluation
8196 //===----------------------------------------------------------------------===//
8197 
8198 namespace {
8199 class FloatExprEvaluator
8200   : public ExprEvaluatorBase<FloatExprEvaluator> {
8201   APFloat &Result;
8202 public:
FloatExprEvaluator(EvalInfo & info,APFloat & result)8203   FloatExprEvaluator(EvalInfo &info, APFloat &result)
8204     : ExprEvaluatorBaseTy(info), Result(result) {}
8205 
Success(const APValue & V,const Expr * e)8206   bool Success(const APValue &V, const Expr *e) {
8207     Result = V.getFloat();
8208     return true;
8209   }
8210 
ZeroInitialization(const Expr * E)8211   bool ZeroInitialization(const Expr *E) {
8212     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
8213     return true;
8214   }
8215 
8216   bool VisitCallExpr(const CallExpr *E);
8217 
8218   bool VisitUnaryOperator(const UnaryOperator *E);
8219   bool VisitBinaryOperator(const BinaryOperator *E);
8220   bool VisitFloatingLiteral(const FloatingLiteral *E);
8221   bool VisitCastExpr(const CastExpr *E);
8222 
8223   bool VisitUnaryReal(const UnaryOperator *E);
8224   bool VisitUnaryImag(const UnaryOperator *E);
8225 
8226   // FIXME: Missing: array subscript of vector, member of vector
8227 };
8228 } // end anonymous namespace
8229 
EvaluateFloat(const Expr * E,APFloat & Result,EvalInfo & Info)8230 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
8231   assert(E->isRValue() && E->getType()->isRealFloatingType());
8232   return FloatExprEvaluator(Info, Result).Visit(E);
8233 }
8234 
TryEvaluateBuiltinNaN(const ASTContext & Context,QualType ResultTy,const Expr * Arg,bool SNaN,llvm::APFloat & Result)8235 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
8236                                   QualType ResultTy,
8237                                   const Expr *Arg,
8238                                   bool SNaN,
8239                                   llvm::APFloat &Result) {
8240   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
8241   if (!S) return false;
8242 
8243   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
8244 
8245   llvm::APInt fill;
8246 
8247   // Treat empty strings as if they were zero.
8248   if (S->getString().empty())
8249     fill = llvm::APInt(32, 0);
8250   else if (S->getString().getAsInteger(0, fill))
8251     return false;
8252 
8253   if (Context.getTargetInfo().isNan2008()) {
8254     if (SNaN)
8255       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8256     else
8257       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8258   } else {
8259     // Prior to IEEE 754-2008, architectures were allowed to choose whether
8260     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
8261     // a different encoding to what became a standard in 2008, and for pre-
8262     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
8263     // sNaN. This is now known as "legacy NaN" encoding.
8264     if (SNaN)
8265       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
8266     else
8267       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
8268   }
8269 
8270   return true;
8271 }
8272 
VisitCallExpr(const CallExpr * E)8273 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
8274   switch (E->getBuiltinCallee()) {
8275   default:
8276     return ExprEvaluatorBaseTy::VisitCallExpr(E);
8277 
8278   case Builtin::BI__builtin_huge_val:
8279   case Builtin::BI__builtin_huge_valf:
8280   case Builtin::BI__builtin_huge_vall:
8281   case Builtin::BI__builtin_inf:
8282   case Builtin::BI__builtin_inff:
8283   case Builtin::BI__builtin_infl: {
8284     const llvm::fltSemantics &Sem =
8285       Info.Ctx.getFloatTypeSemantics(E->getType());
8286     Result = llvm::APFloat::getInf(Sem);
8287     return true;
8288   }
8289 
8290   case Builtin::BI__builtin_nans:
8291   case Builtin::BI__builtin_nansf:
8292   case Builtin::BI__builtin_nansl:
8293     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8294                                true, Result))
8295       return Error(E);
8296     return true;
8297 
8298   case Builtin::BI__builtin_nan:
8299   case Builtin::BI__builtin_nanf:
8300   case Builtin::BI__builtin_nanl:
8301     // If this is __builtin_nan() turn this into a nan, otherwise we
8302     // can't constant fold it.
8303     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8304                                false, Result))
8305       return Error(E);
8306     return true;
8307 
8308   case Builtin::BI__builtin_fabs:
8309   case Builtin::BI__builtin_fabsf:
8310   case Builtin::BI__builtin_fabsl:
8311     if (!EvaluateFloat(E->getArg(0), Result, Info))
8312       return false;
8313 
8314     if (Result.isNegative())
8315       Result.changeSign();
8316     return true;
8317 
8318   // FIXME: Builtin::BI__builtin_powi
8319   // FIXME: Builtin::BI__builtin_powif
8320   // FIXME: Builtin::BI__builtin_powil
8321 
8322   case Builtin::BI__builtin_copysign:
8323   case Builtin::BI__builtin_copysignf:
8324   case Builtin::BI__builtin_copysignl: {
8325     APFloat RHS(0.);
8326     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
8327         !EvaluateFloat(E->getArg(1), RHS, Info))
8328       return false;
8329     Result.copySign(RHS);
8330     return true;
8331   }
8332   }
8333 }
8334 
VisitUnaryReal(const UnaryOperator * E)8335 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8336   if (E->getSubExpr()->getType()->isAnyComplexType()) {
8337     ComplexValue CV;
8338     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8339       return false;
8340     Result = CV.FloatReal;
8341     return true;
8342   }
8343 
8344   return Visit(E->getSubExpr());
8345 }
8346 
VisitUnaryImag(const UnaryOperator * E)8347 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8348   if (E->getSubExpr()->getType()->isAnyComplexType()) {
8349     ComplexValue CV;
8350     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8351       return false;
8352     Result = CV.FloatImag;
8353     return true;
8354   }
8355 
8356   VisitIgnoredValue(E->getSubExpr());
8357   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
8358   Result = llvm::APFloat::getZero(Sem);
8359   return true;
8360 }
8361 
VisitUnaryOperator(const UnaryOperator * E)8362 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8363   switch (E->getOpcode()) {
8364   default: return Error(E);
8365   case UO_Plus:
8366     return EvaluateFloat(E->getSubExpr(), Result, Info);
8367   case UO_Minus:
8368     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
8369       return false;
8370     Result.changeSign();
8371     return true;
8372   }
8373 }
8374 
VisitBinaryOperator(const BinaryOperator * E)8375 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8376   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8377     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8378 
8379   APFloat RHS(0.0);
8380   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
8381   if (!LHSOK && !Info.noteFailure())
8382     return false;
8383   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
8384          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
8385 }
8386 
VisitFloatingLiteral(const FloatingLiteral * E)8387 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
8388   Result = E->getValue();
8389   return true;
8390 }
8391 
VisitCastExpr(const CastExpr * E)8392 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
8393   const Expr* SubExpr = E->getSubExpr();
8394 
8395   switch (E->getCastKind()) {
8396   default:
8397     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8398 
8399   case CK_IntegralToFloating: {
8400     APSInt IntResult;
8401     return EvaluateInteger(SubExpr, IntResult, Info) &&
8402            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
8403                                 E->getType(), Result);
8404   }
8405 
8406   case CK_FloatingCast: {
8407     if (!Visit(SubExpr))
8408       return false;
8409     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
8410                                   Result);
8411   }
8412 
8413   case CK_FloatingComplexToReal: {
8414     ComplexValue V;
8415     if (!EvaluateComplex(SubExpr, V, Info))
8416       return false;
8417     Result = V.getComplexFloatReal();
8418     return true;
8419   }
8420   }
8421 }
8422 
8423 //===----------------------------------------------------------------------===//
8424 // Complex Evaluation (for float and integer)
8425 //===----------------------------------------------------------------------===//
8426 
8427 namespace {
8428 class ComplexExprEvaluator
8429   : public ExprEvaluatorBase<ComplexExprEvaluator> {
8430   ComplexValue &Result;
8431 
8432 public:
ComplexExprEvaluator(EvalInfo & info,ComplexValue & Result)8433   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
8434     : ExprEvaluatorBaseTy(info), Result(Result) {}
8435 
Success(const APValue & V,const Expr * e)8436   bool Success(const APValue &V, const Expr *e) {
8437     Result.setFrom(V);
8438     return true;
8439   }
8440 
8441   bool ZeroInitialization(const Expr *E);
8442 
8443   //===--------------------------------------------------------------------===//
8444   //                            Visitor Methods
8445   //===--------------------------------------------------------------------===//
8446 
8447   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
8448   bool VisitCastExpr(const CastExpr *E);
8449   bool VisitBinaryOperator(const BinaryOperator *E);
8450   bool VisitUnaryOperator(const UnaryOperator *E);
8451   bool VisitInitListExpr(const InitListExpr *E);
8452 };
8453 } // end anonymous namespace
8454 
EvaluateComplex(const Expr * E,ComplexValue & Result,EvalInfo & Info)8455 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
8456                             EvalInfo &Info) {
8457   assert(E->isRValue() && E->getType()->isAnyComplexType());
8458   return ComplexExprEvaluator(Info, Result).Visit(E);
8459 }
8460 
ZeroInitialization(const Expr * E)8461 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
8462   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
8463   if (ElemTy->isRealFloatingType()) {
8464     Result.makeComplexFloat();
8465     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
8466     Result.FloatReal = Zero;
8467     Result.FloatImag = Zero;
8468   } else {
8469     Result.makeComplexInt();
8470     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
8471     Result.IntReal = Zero;
8472     Result.IntImag = Zero;
8473   }
8474   return true;
8475 }
8476 
VisitImaginaryLiteral(const ImaginaryLiteral * E)8477 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
8478   const Expr* SubExpr = E->getSubExpr();
8479 
8480   if (SubExpr->getType()->isRealFloatingType()) {
8481     Result.makeComplexFloat();
8482     APFloat &Imag = Result.FloatImag;
8483     if (!EvaluateFloat(SubExpr, Imag, Info))
8484       return false;
8485 
8486     Result.FloatReal = APFloat(Imag.getSemantics());
8487     return true;
8488   } else {
8489     assert(SubExpr->getType()->isIntegerType() &&
8490            "Unexpected imaginary literal.");
8491 
8492     Result.makeComplexInt();
8493     APSInt &Imag = Result.IntImag;
8494     if (!EvaluateInteger(SubExpr, Imag, Info))
8495       return false;
8496 
8497     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
8498     return true;
8499   }
8500 }
8501 
VisitCastExpr(const CastExpr * E)8502 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
8503 
8504   switch (E->getCastKind()) {
8505   case CK_BitCast:
8506   case CK_BaseToDerived:
8507   case CK_DerivedToBase:
8508   case CK_UncheckedDerivedToBase:
8509   case CK_Dynamic:
8510   case CK_ToUnion:
8511   case CK_ArrayToPointerDecay:
8512   case CK_FunctionToPointerDecay:
8513   case CK_NullToPointer:
8514   case CK_NullToMemberPointer:
8515   case CK_BaseToDerivedMemberPointer:
8516   case CK_DerivedToBaseMemberPointer:
8517   case CK_MemberPointerToBoolean:
8518   case CK_ReinterpretMemberPointer:
8519   case CK_ConstructorConversion:
8520   case CK_IntegralToPointer:
8521   case CK_PointerToIntegral:
8522   case CK_PointerToBoolean:
8523   case CK_ToVoid:
8524   case CK_VectorSplat:
8525   case CK_IntegralCast:
8526   case CK_BooleanToSignedIntegral:
8527   case CK_IntegralToBoolean:
8528   case CK_IntegralToFloating:
8529   case CK_FloatingToIntegral:
8530   case CK_FloatingToBoolean:
8531   case CK_FloatingCast:
8532   case CK_CPointerToObjCPointerCast:
8533   case CK_BlockPointerToObjCPointerCast:
8534   case CK_AnyPointerToBlockPointerCast:
8535   case CK_ObjCObjectLValueCast:
8536   case CK_FloatingComplexToReal:
8537   case CK_FloatingComplexToBoolean:
8538   case CK_IntegralComplexToReal:
8539   case CK_IntegralComplexToBoolean:
8540   case CK_ARCProduceObject:
8541   case CK_ARCConsumeObject:
8542   case CK_ARCReclaimReturnedObject:
8543   case CK_ARCExtendBlockObject:
8544   case CK_CopyAndAutoreleaseBlockObject:
8545   case CK_BuiltinFnToFnPtr:
8546   case CK_ZeroToOCLEvent:
8547   case CK_NonAtomicToAtomic:
8548   case CK_AddressSpaceConversion:
8549     llvm_unreachable("invalid cast kind for complex value");
8550 
8551   case CK_LValueToRValue:
8552   case CK_AtomicToNonAtomic:
8553   case CK_NoOp:
8554     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8555 
8556   case CK_Dependent:
8557   case CK_LValueBitCast:
8558   case CK_UserDefinedConversion:
8559     return Error(E);
8560 
8561   case CK_FloatingRealToComplex: {
8562     APFloat &Real = Result.FloatReal;
8563     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
8564       return false;
8565 
8566     Result.makeComplexFloat();
8567     Result.FloatImag = APFloat(Real.getSemantics());
8568     return true;
8569   }
8570 
8571   case CK_FloatingComplexCast: {
8572     if (!Visit(E->getSubExpr()))
8573       return false;
8574 
8575     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8576     QualType From
8577       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8578 
8579     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
8580            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
8581   }
8582 
8583   case CK_FloatingComplexToIntegralComplex: {
8584     if (!Visit(E->getSubExpr()))
8585       return false;
8586 
8587     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8588     QualType From
8589       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8590     Result.makeComplexInt();
8591     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
8592                                 To, Result.IntReal) &&
8593            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
8594                                 To, Result.IntImag);
8595   }
8596 
8597   case CK_IntegralRealToComplex: {
8598     APSInt &Real = Result.IntReal;
8599     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
8600       return false;
8601 
8602     Result.makeComplexInt();
8603     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
8604     return true;
8605   }
8606 
8607   case CK_IntegralComplexCast: {
8608     if (!Visit(E->getSubExpr()))
8609       return false;
8610 
8611     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8612     QualType From
8613       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8614 
8615     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
8616     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
8617     return true;
8618   }
8619 
8620   case CK_IntegralComplexToFloatingComplex: {
8621     if (!Visit(E->getSubExpr()))
8622       return false;
8623 
8624     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
8625     QualType From
8626       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
8627     Result.makeComplexFloat();
8628     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
8629                                 To, Result.FloatReal) &&
8630            HandleIntToFloatCast(Info, E, From, Result.IntImag,
8631                                 To, Result.FloatImag);
8632   }
8633   }
8634 
8635   llvm_unreachable("unknown cast resulting in complex value");
8636 }
8637 
VisitBinaryOperator(const BinaryOperator * E)8638 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8639   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8640     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8641 
8642   // Track whether the LHS or RHS is real at the type system level. When this is
8643   // the case we can simplify our evaluation strategy.
8644   bool LHSReal = false, RHSReal = false;
8645 
8646   bool LHSOK;
8647   if (E->getLHS()->getType()->isRealFloatingType()) {
8648     LHSReal = true;
8649     APFloat &Real = Result.FloatReal;
8650     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
8651     if (LHSOK) {
8652       Result.makeComplexFloat();
8653       Result.FloatImag = APFloat(Real.getSemantics());
8654     }
8655   } else {
8656     LHSOK = Visit(E->getLHS());
8657   }
8658   if (!LHSOK && !Info.noteFailure())
8659     return false;
8660 
8661   ComplexValue RHS;
8662   if (E->getRHS()->getType()->isRealFloatingType()) {
8663     RHSReal = true;
8664     APFloat &Real = RHS.FloatReal;
8665     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8666       return false;
8667     RHS.makeComplexFloat();
8668     RHS.FloatImag = APFloat(Real.getSemantics());
8669   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8670     return false;
8671 
8672   assert(!(LHSReal && RHSReal) &&
8673          "Cannot have both operands of a complex operation be real.");
8674   switch (E->getOpcode()) {
8675   default: return Error(E);
8676   case BO_Add:
8677     if (Result.isComplexFloat()) {
8678       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8679                                        APFloat::rmNearestTiesToEven);
8680       if (LHSReal)
8681         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8682       else if (!RHSReal)
8683         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8684                                          APFloat::rmNearestTiesToEven);
8685     } else {
8686       Result.getComplexIntReal() += RHS.getComplexIntReal();
8687       Result.getComplexIntImag() += RHS.getComplexIntImag();
8688     }
8689     break;
8690   case BO_Sub:
8691     if (Result.isComplexFloat()) {
8692       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8693                                             APFloat::rmNearestTiesToEven);
8694       if (LHSReal) {
8695         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8696         Result.getComplexFloatImag().changeSign();
8697       } else if (!RHSReal) {
8698         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8699                                               APFloat::rmNearestTiesToEven);
8700       }
8701     } else {
8702       Result.getComplexIntReal() -= RHS.getComplexIntReal();
8703       Result.getComplexIntImag() -= RHS.getComplexIntImag();
8704     }
8705     break;
8706   case BO_Mul:
8707     if (Result.isComplexFloat()) {
8708       // This is an implementation of complex multiplication according to the
8709       // constraints laid out in C11 Annex G. The implemantion uses the
8710       // following naming scheme:
8711       //   (a + ib) * (c + id)
8712       ComplexValue LHS = Result;
8713       APFloat &A = LHS.getComplexFloatReal();
8714       APFloat &B = LHS.getComplexFloatImag();
8715       APFloat &C = RHS.getComplexFloatReal();
8716       APFloat &D = RHS.getComplexFloatImag();
8717       APFloat &ResR = Result.getComplexFloatReal();
8718       APFloat &ResI = Result.getComplexFloatImag();
8719       if (LHSReal) {
8720         assert(!RHSReal && "Cannot have two real operands for a complex op!");
8721         ResR = A * C;
8722         ResI = A * D;
8723       } else if (RHSReal) {
8724         ResR = C * A;
8725         ResI = C * B;
8726       } else {
8727         // In the fully general case, we need to handle NaNs and infinities
8728         // robustly.
8729         APFloat AC = A * C;
8730         APFloat BD = B * D;
8731         APFloat AD = A * D;
8732         APFloat BC = B * C;
8733         ResR = AC - BD;
8734         ResI = AD + BC;
8735         if (ResR.isNaN() && ResI.isNaN()) {
8736           bool Recalc = false;
8737           if (A.isInfinity() || B.isInfinity()) {
8738             A = APFloat::copySign(
8739                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8740             B = APFloat::copySign(
8741                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8742             if (C.isNaN())
8743               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8744             if (D.isNaN())
8745               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8746             Recalc = true;
8747           }
8748           if (C.isInfinity() || D.isInfinity()) {
8749             C = APFloat::copySign(
8750                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8751             D = APFloat::copySign(
8752                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8753             if (A.isNaN())
8754               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8755             if (B.isNaN())
8756               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8757             Recalc = true;
8758           }
8759           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8760                           AD.isInfinity() || BC.isInfinity())) {
8761             if (A.isNaN())
8762               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8763             if (B.isNaN())
8764               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8765             if (C.isNaN())
8766               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8767             if (D.isNaN())
8768               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8769             Recalc = true;
8770           }
8771           if (Recalc) {
8772             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8773             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8774           }
8775         }
8776       }
8777     } else {
8778       ComplexValue LHS = Result;
8779       Result.getComplexIntReal() =
8780         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8781          LHS.getComplexIntImag() * RHS.getComplexIntImag());
8782       Result.getComplexIntImag() =
8783         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8784          LHS.getComplexIntImag() * RHS.getComplexIntReal());
8785     }
8786     break;
8787   case BO_Div:
8788     if (Result.isComplexFloat()) {
8789       // This is an implementation of complex division according to the
8790       // constraints laid out in C11 Annex G. The implemantion uses the
8791       // following naming scheme:
8792       //   (a + ib) / (c + id)
8793       ComplexValue LHS = Result;
8794       APFloat &A = LHS.getComplexFloatReal();
8795       APFloat &B = LHS.getComplexFloatImag();
8796       APFloat &C = RHS.getComplexFloatReal();
8797       APFloat &D = RHS.getComplexFloatImag();
8798       APFloat &ResR = Result.getComplexFloatReal();
8799       APFloat &ResI = Result.getComplexFloatImag();
8800       if (RHSReal) {
8801         ResR = A / C;
8802         ResI = B / C;
8803       } else {
8804         if (LHSReal) {
8805           // No real optimizations we can do here, stub out with zero.
8806           B = APFloat::getZero(A.getSemantics());
8807         }
8808         int DenomLogB = 0;
8809         APFloat MaxCD = maxnum(abs(C), abs(D));
8810         if (MaxCD.isFinite()) {
8811           DenomLogB = ilogb(MaxCD);
8812           C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
8813           D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
8814         }
8815         APFloat Denom = C * C + D * D;
8816         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
8817                       APFloat::rmNearestTiesToEven);
8818         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
8819                       APFloat::rmNearestTiesToEven);
8820         if (ResR.isNaN() && ResI.isNaN()) {
8821           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8822             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8823             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8824           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8825                      D.isFinite()) {
8826             A = APFloat::copySign(
8827                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8828             B = APFloat::copySign(
8829                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8830             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8831             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8832           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8833             C = APFloat::copySign(
8834                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8835             D = APFloat::copySign(
8836                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8837             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8838             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8839           }
8840         }
8841       }
8842     } else {
8843       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8844         return Error(E, diag::note_expr_divide_by_zero);
8845 
8846       ComplexValue LHS = Result;
8847       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8848         RHS.getComplexIntImag() * RHS.getComplexIntImag();
8849       Result.getComplexIntReal() =
8850         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8851          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8852       Result.getComplexIntImag() =
8853         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8854          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8855     }
8856     break;
8857   }
8858 
8859   return true;
8860 }
8861 
VisitUnaryOperator(const UnaryOperator * E)8862 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8863   // Get the operand value into 'Result'.
8864   if (!Visit(E->getSubExpr()))
8865     return false;
8866 
8867   switch (E->getOpcode()) {
8868   default:
8869     return Error(E);
8870   case UO_Extension:
8871     return true;
8872   case UO_Plus:
8873     // The result is always just the subexpr.
8874     return true;
8875   case UO_Minus:
8876     if (Result.isComplexFloat()) {
8877       Result.getComplexFloatReal().changeSign();
8878       Result.getComplexFloatImag().changeSign();
8879     }
8880     else {
8881       Result.getComplexIntReal() = -Result.getComplexIntReal();
8882       Result.getComplexIntImag() = -Result.getComplexIntImag();
8883     }
8884     return true;
8885   case UO_Not:
8886     if (Result.isComplexFloat())
8887       Result.getComplexFloatImag().changeSign();
8888     else
8889       Result.getComplexIntImag() = -Result.getComplexIntImag();
8890     return true;
8891   }
8892 }
8893 
VisitInitListExpr(const InitListExpr * E)8894 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8895   if (E->getNumInits() == 2) {
8896     if (E->getType()->isComplexType()) {
8897       Result.makeComplexFloat();
8898       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8899         return false;
8900       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8901         return false;
8902     } else {
8903       Result.makeComplexInt();
8904       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8905         return false;
8906       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8907         return false;
8908     }
8909     return true;
8910   }
8911   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8912 }
8913 
8914 //===----------------------------------------------------------------------===//
8915 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8916 // implicit conversion.
8917 //===----------------------------------------------------------------------===//
8918 
8919 namespace {
8920 class AtomicExprEvaluator :
8921     public ExprEvaluatorBase<AtomicExprEvaluator> {
8922   APValue &Result;
8923 public:
AtomicExprEvaluator(EvalInfo & Info,APValue & Result)8924   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8925       : ExprEvaluatorBaseTy(Info), Result(Result) {}
8926 
Success(const APValue & V,const Expr * E)8927   bool Success(const APValue &V, const Expr *E) {
8928     Result = V;
8929     return true;
8930   }
8931 
ZeroInitialization(const Expr * E)8932   bool ZeroInitialization(const Expr *E) {
8933     ImplicitValueInitExpr VIE(
8934         E->getType()->castAs<AtomicType>()->getValueType());
8935     return Evaluate(Result, Info, &VIE);
8936   }
8937 
VisitCastExpr(const CastExpr * E)8938   bool VisitCastExpr(const CastExpr *E) {
8939     switch (E->getCastKind()) {
8940     default:
8941       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8942     case CK_NonAtomicToAtomic:
8943       return Evaluate(Result, Info, E->getSubExpr());
8944     }
8945   }
8946 };
8947 } // end anonymous namespace
8948 
EvaluateAtomic(const Expr * E,APValue & Result,EvalInfo & Info)8949 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8950   assert(E->isRValue() && E->getType()->isAtomicType());
8951   return AtomicExprEvaluator(Info, Result).Visit(E);
8952 }
8953 
8954 //===----------------------------------------------------------------------===//
8955 // Void expression evaluation, primarily for a cast to void on the LHS of a
8956 // comma operator
8957 //===----------------------------------------------------------------------===//
8958 
8959 namespace {
8960 class VoidExprEvaluator
8961   : public ExprEvaluatorBase<VoidExprEvaluator> {
8962 public:
VoidExprEvaluator(EvalInfo & Info)8963   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8964 
Success(const APValue & V,const Expr * e)8965   bool Success(const APValue &V, const Expr *e) { return true; }
8966 
VisitCastExpr(const CastExpr * E)8967   bool VisitCastExpr(const CastExpr *E) {
8968     switch (E->getCastKind()) {
8969     default:
8970       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8971     case CK_ToVoid:
8972       VisitIgnoredValue(E->getSubExpr());
8973       return true;
8974     }
8975   }
8976 
VisitCallExpr(const CallExpr * E)8977   bool VisitCallExpr(const CallExpr *E) {
8978     switch (E->getBuiltinCallee()) {
8979     default:
8980       return ExprEvaluatorBaseTy::VisitCallExpr(E);
8981     case Builtin::BI__assume:
8982     case Builtin::BI__builtin_assume:
8983       // The argument is not evaluated!
8984       return true;
8985     }
8986   }
8987 };
8988 } // end anonymous namespace
8989 
EvaluateVoid(const Expr * E,EvalInfo & Info)8990 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8991   assert(E->isRValue() && E->getType()->isVoidType());
8992   return VoidExprEvaluator(Info).Visit(E);
8993 }
8994 
8995 //===----------------------------------------------------------------------===//
8996 // Top level Expr::EvaluateAsRValue method.
8997 //===----------------------------------------------------------------------===//
8998 
Evaluate(APValue & Result,EvalInfo & Info,const Expr * E)8999 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
9000   // In C, function designators are not lvalues, but we evaluate them as if they
9001   // are.
9002   QualType T = E->getType();
9003   if (E->isGLValue() || T->isFunctionType()) {
9004     LValue LV;
9005     if (!EvaluateLValue(E, LV, Info))
9006       return false;
9007     LV.moveInto(Result);
9008   } else if (T->isVectorType()) {
9009     if (!EvaluateVector(E, Result, Info))
9010       return false;
9011   } else if (T->isIntegralOrEnumerationType()) {
9012     if (!IntExprEvaluator(Info, Result).Visit(E))
9013       return false;
9014   } else if (T->hasPointerRepresentation()) {
9015     LValue LV;
9016     if (!EvaluatePointer(E, LV, Info))
9017       return false;
9018     LV.moveInto(Result);
9019   } else if (T->isRealFloatingType()) {
9020     llvm::APFloat F(0.0);
9021     if (!EvaluateFloat(E, F, Info))
9022       return false;
9023     Result = APValue(F);
9024   } else if (T->isAnyComplexType()) {
9025     ComplexValue C;
9026     if (!EvaluateComplex(E, C, Info))
9027       return false;
9028     C.moveInto(Result);
9029   } else if (T->isMemberPointerType()) {
9030     MemberPtr P;
9031     if (!EvaluateMemberPointer(E, P, Info))
9032       return false;
9033     P.moveInto(Result);
9034     return true;
9035   } else if (T->isArrayType()) {
9036     LValue LV;
9037     LV.set(E, Info.CurrentCall->Index);
9038     APValue &Value = Info.CurrentCall->createTemporary(E, false);
9039     if (!EvaluateArray(E, LV, Value, Info))
9040       return false;
9041     Result = Value;
9042   } else if (T->isRecordType()) {
9043     LValue LV;
9044     LV.set(E, Info.CurrentCall->Index);
9045     APValue &Value = Info.CurrentCall->createTemporary(E, false);
9046     if (!EvaluateRecord(E, LV, Value, Info))
9047       return false;
9048     Result = Value;
9049   } else if (T->isVoidType()) {
9050     if (!Info.getLangOpts().CPlusPlus11)
9051       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
9052         << E->getType();
9053     if (!EvaluateVoid(E, Info))
9054       return false;
9055   } else if (T->isAtomicType()) {
9056     if (!EvaluateAtomic(E, Result, Info))
9057       return false;
9058   } else if (Info.getLangOpts().CPlusPlus11) {
9059     Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
9060     return false;
9061   } else {
9062     Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
9063     return false;
9064   }
9065 
9066   return true;
9067 }
9068 
9069 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
9070 /// cases, the in-place evaluation is essential, since later initializers for
9071 /// an object can indirectly refer to subobjects which were initialized earlier.
EvaluateInPlace(APValue & Result,EvalInfo & Info,const LValue & This,const Expr * E,bool AllowNonLiteralTypes)9072 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
9073                             const Expr *E, bool AllowNonLiteralTypes) {
9074   assert(!E->isValueDependent());
9075 
9076   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
9077     return false;
9078 
9079   if (E->isRValue()) {
9080     // Evaluate arrays and record types in-place, so that later initializers can
9081     // refer to earlier-initialized members of the object.
9082     if (E->getType()->isArrayType())
9083       return EvaluateArray(E, This, Result, Info);
9084     else if (E->getType()->isRecordType())
9085       return EvaluateRecord(E, This, Result, Info);
9086   }
9087 
9088   // For any other type, in-place evaluation is unimportant.
9089   return Evaluate(Result, Info, E);
9090 }
9091 
9092 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
9093 /// lvalue-to-rvalue cast if it is an lvalue.
EvaluateAsRValue(EvalInfo & Info,const Expr * E,APValue & Result)9094 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
9095   if (E->getType().isNull())
9096     return false;
9097 
9098   if (!CheckLiteralType(Info, E))
9099     return false;
9100 
9101   if (!::Evaluate(Result, Info, E))
9102     return false;
9103 
9104   if (E->isGLValue()) {
9105     LValue LV;
9106     LV.setFrom(Info.Ctx, Result);
9107     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
9108       return false;
9109   }
9110 
9111   // Check this core constant expression is a constant expression.
9112   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
9113 }
9114 
FastEvaluateAsRValue(const Expr * Exp,Expr::EvalResult & Result,const ASTContext & Ctx,bool & IsConst)9115 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
9116                                  const ASTContext &Ctx, bool &IsConst) {
9117   // Fast-path evaluations of integer literals, since we sometimes see files
9118   // containing vast quantities of these.
9119   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
9120     Result.Val = APValue(APSInt(L->getValue(),
9121                                 L->getType()->isUnsignedIntegerType()));
9122     IsConst = true;
9123     return true;
9124   }
9125 
9126   // This case should be rare, but we need to check it before we check on
9127   // the type below.
9128   if (Exp->getType().isNull()) {
9129     IsConst = false;
9130     return true;
9131   }
9132 
9133   // FIXME: Evaluating values of large array and record types can cause
9134   // performance problems. Only do so in C++11 for now.
9135   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
9136                           Exp->getType()->isRecordType()) &&
9137       !Ctx.getLangOpts().CPlusPlus11) {
9138     IsConst = false;
9139     return true;
9140   }
9141   return false;
9142 }
9143 
9144 
9145 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
9146 /// any crazy technique (that has nothing to do with language standards) that
9147 /// we want to.  If this function returns true, it returns the folded constant
9148 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
9149 /// will be applied to the result.
EvaluateAsRValue(EvalResult & Result,const ASTContext & Ctx) const9150 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
9151   bool IsConst;
9152   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
9153     return IsConst;
9154 
9155   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
9156   return ::EvaluateAsRValue(Info, this, Result.Val);
9157 }
9158 
EvaluateAsBooleanCondition(bool & Result,const ASTContext & Ctx) const9159 bool Expr::EvaluateAsBooleanCondition(bool &Result,
9160                                       const ASTContext &Ctx) const {
9161   EvalResult Scratch;
9162   return EvaluateAsRValue(Scratch, Ctx) &&
9163          HandleConversionToBool(Scratch.Val, Result);
9164 }
9165 
hasUnacceptableSideEffect(Expr::EvalStatus & Result,Expr::SideEffectsKind SEK)9166 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
9167                                       Expr::SideEffectsKind SEK) {
9168   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
9169          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
9170 }
9171 
EvaluateAsInt(APSInt & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9172 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
9173                          SideEffectsKind AllowSideEffects) const {
9174   if (!getType()->isIntegralOrEnumerationType())
9175     return false;
9176 
9177   EvalResult ExprResult;
9178   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
9179       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9180     return false;
9181 
9182   Result = ExprResult.Val.getInt();
9183   return true;
9184 }
9185 
EvaluateAsFloat(APFloat & Result,const ASTContext & Ctx,SideEffectsKind AllowSideEffects) const9186 bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
9187                            SideEffectsKind AllowSideEffects) const {
9188   if (!getType()->isRealFloatingType())
9189     return false;
9190 
9191   EvalResult ExprResult;
9192   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
9193       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
9194     return false;
9195 
9196   Result = ExprResult.Val.getFloat();
9197   return true;
9198 }
9199 
EvaluateAsLValue(EvalResult & Result,const ASTContext & Ctx) const9200 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
9201   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
9202 
9203   LValue LV;
9204   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
9205       !CheckLValueConstantExpression(Info, getExprLoc(),
9206                                      Ctx.getLValueReferenceType(getType()), LV))
9207     return false;
9208 
9209   LV.moveInto(Result.Val);
9210   return true;
9211 }
9212 
EvaluateAsInitializer(APValue & Value,const ASTContext & Ctx,const VarDecl * VD,SmallVectorImpl<PartialDiagnosticAt> & Notes) const9213 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
9214                                  const VarDecl *VD,
9215                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
9216   // FIXME: Evaluating initializers for large array and record types can cause
9217   // performance problems. Only do so in C++11 for now.
9218   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
9219       !Ctx.getLangOpts().CPlusPlus11)
9220     return false;
9221 
9222   Expr::EvalStatus EStatus;
9223   EStatus.Diag = &Notes;
9224 
9225   EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
9226                                       ? EvalInfo::EM_ConstantExpression
9227                                       : EvalInfo::EM_ConstantFold);
9228   InitInfo.setEvaluatingDecl(VD, Value);
9229 
9230   LValue LVal;
9231   LVal.set(VD);
9232 
9233   // C++11 [basic.start.init]p2:
9234   //  Variables with static storage duration or thread storage duration shall be
9235   //  zero-initialized before any other initialization takes place.
9236   // This behavior is not present in C.
9237   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
9238       !VD->getType()->isReferenceType()) {
9239     ImplicitValueInitExpr VIE(VD->getType());
9240     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
9241                          /*AllowNonLiteralTypes=*/true))
9242       return false;
9243   }
9244 
9245   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
9246                        /*AllowNonLiteralTypes=*/true) ||
9247       EStatus.HasSideEffects)
9248     return false;
9249 
9250   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
9251                                  Value);
9252 }
9253 
9254 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
9255 /// constant folded, but discard the result.
isEvaluatable(const ASTContext & Ctx,SideEffectsKind SEK) const9256 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
9257   EvalResult Result;
9258   return EvaluateAsRValue(Result, Ctx) &&
9259          !hasUnacceptableSideEffect(Result, SEK);
9260 }
9261 
EvaluateKnownConstInt(const ASTContext & Ctx,SmallVectorImpl<PartialDiagnosticAt> * Diag) const9262 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
9263                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
9264   EvalResult EvalResult;
9265   EvalResult.Diag = Diag;
9266   bool Result = EvaluateAsRValue(EvalResult, Ctx);
9267   (void)Result;
9268   assert(Result && "Could not evaluate expression");
9269   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
9270 
9271   return EvalResult.Val.getInt();
9272 }
9273 
EvaluateForOverflow(const ASTContext & Ctx) const9274 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
9275   bool IsConst;
9276   EvalResult EvalResult;
9277   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
9278     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
9279     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
9280   }
9281 }
9282 
isGlobalLValue() const9283 bool Expr::EvalResult::isGlobalLValue() const {
9284   assert(Val.isLValue());
9285   return IsGlobalLValue(Val.getLValueBase());
9286 }
9287 
9288 
9289 /// isIntegerConstantExpr - this recursive routine will test if an expression is
9290 /// an integer constant expression.
9291 
9292 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
9293 /// comma, etc
9294 
9295 // CheckICE - This function does the fundamental ICE checking: the returned
9296 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
9297 // and a (possibly null) SourceLocation indicating the location of the problem.
9298 //
9299 // Note that to reduce code duplication, this helper does no evaluation
9300 // itself; the caller checks whether the expression is evaluatable, and
9301 // in the rare cases where CheckICE actually cares about the evaluated
9302 // value, it calls into Evalute.
9303 
9304 namespace {
9305 
9306 enum ICEKind {
9307   /// This expression is an ICE.
9308   IK_ICE,
9309   /// This expression is not an ICE, but if it isn't evaluated, it's
9310   /// a legal subexpression for an ICE. This return value is used to handle
9311   /// the comma operator in C99 mode, and non-constant subexpressions.
9312   IK_ICEIfUnevaluated,
9313   /// This expression is not an ICE, and is not a legal subexpression for one.
9314   IK_NotICE
9315 };
9316 
9317 struct ICEDiag {
9318   ICEKind Kind;
9319   SourceLocation Loc;
9320 
ICEDiag__anon4b2781fb1f11::ICEDiag9321   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
9322 };
9323 
9324 }
9325 
NoDiag()9326 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
9327 
Worst(ICEDiag A,ICEDiag B)9328 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
9329 
CheckEvalInICE(const Expr * E,const ASTContext & Ctx)9330 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
9331   Expr::EvalResult EVResult;
9332   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
9333       !EVResult.Val.isInt())
9334     return ICEDiag(IK_NotICE, E->getLocStart());
9335 
9336   return NoDiag();
9337 }
9338 
CheckICE(const Expr * E,const ASTContext & Ctx)9339 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
9340   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
9341   if (!E->getType()->isIntegralOrEnumerationType())
9342     return ICEDiag(IK_NotICE, E->getLocStart());
9343 
9344   switch (E->getStmtClass()) {
9345 #define ABSTRACT_STMT(Node)
9346 #define STMT(Node, Base) case Expr::Node##Class:
9347 #define EXPR(Node, Base)
9348 #include "clang/AST/StmtNodes.inc"
9349   case Expr::PredefinedExprClass:
9350   case Expr::FloatingLiteralClass:
9351   case Expr::ImaginaryLiteralClass:
9352   case Expr::StringLiteralClass:
9353   case Expr::ArraySubscriptExprClass:
9354   case Expr::OMPArraySectionExprClass:
9355   case Expr::MemberExprClass:
9356   case Expr::CompoundAssignOperatorClass:
9357   case Expr::CompoundLiteralExprClass:
9358   case Expr::ExtVectorElementExprClass:
9359   case Expr::DesignatedInitExprClass:
9360   case Expr::NoInitExprClass:
9361   case Expr::DesignatedInitUpdateExprClass:
9362   case Expr::ImplicitValueInitExprClass:
9363   case Expr::ParenListExprClass:
9364   case Expr::VAArgExprClass:
9365   case Expr::AddrLabelExprClass:
9366   case Expr::StmtExprClass:
9367   case Expr::CXXMemberCallExprClass:
9368   case Expr::CUDAKernelCallExprClass:
9369   case Expr::CXXDynamicCastExprClass:
9370   case Expr::CXXTypeidExprClass:
9371   case Expr::CXXUuidofExprClass:
9372   case Expr::MSPropertyRefExprClass:
9373   case Expr::MSPropertySubscriptExprClass:
9374   case Expr::CXXNullPtrLiteralExprClass:
9375   case Expr::UserDefinedLiteralClass:
9376   case Expr::CXXThisExprClass:
9377   case Expr::CXXThrowExprClass:
9378   case Expr::CXXNewExprClass:
9379   case Expr::CXXDeleteExprClass:
9380   case Expr::CXXPseudoDestructorExprClass:
9381   case Expr::UnresolvedLookupExprClass:
9382   case Expr::TypoExprClass:
9383   case Expr::DependentScopeDeclRefExprClass:
9384   case Expr::CXXConstructExprClass:
9385   case Expr::CXXInheritedCtorInitExprClass:
9386   case Expr::CXXStdInitializerListExprClass:
9387   case Expr::CXXBindTemporaryExprClass:
9388   case Expr::ExprWithCleanupsClass:
9389   case Expr::CXXTemporaryObjectExprClass:
9390   case Expr::CXXUnresolvedConstructExprClass:
9391   case Expr::CXXDependentScopeMemberExprClass:
9392   case Expr::UnresolvedMemberExprClass:
9393   case Expr::ObjCStringLiteralClass:
9394   case Expr::ObjCBoxedExprClass:
9395   case Expr::ObjCArrayLiteralClass:
9396   case Expr::ObjCDictionaryLiteralClass:
9397   case Expr::ObjCEncodeExprClass:
9398   case Expr::ObjCMessageExprClass:
9399   case Expr::ObjCSelectorExprClass:
9400   case Expr::ObjCProtocolExprClass:
9401   case Expr::ObjCIvarRefExprClass:
9402   case Expr::ObjCPropertyRefExprClass:
9403   case Expr::ObjCSubscriptRefExprClass:
9404   case Expr::ObjCIsaExprClass:
9405   case Expr::ShuffleVectorExprClass:
9406   case Expr::ConvertVectorExprClass:
9407   case Expr::BlockExprClass:
9408   case Expr::NoStmtClass:
9409   case Expr::OpaqueValueExprClass:
9410   case Expr::PackExpansionExprClass:
9411   case Expr::SubstNonTypeTemplateParmPackExprClass:
9412   case Expr::FunctionParmPackExprClass:
9413   case Expr::AsTypeExprClass:
9414   case Expr::ObjCIndirectCopyRestoreExprClass:
9415   case Expr::MaterializeTemporaryExprClass:
9416   case Expr::PseudoObjectExprClass:
9417   case Expr::AtomicExprClass:
9418   case Expr::LambdaExprClass:
9419   case Expr::CXXFoldExprClass:
9420   case Expr::CoawaitExprClass:
9421   case Expr::CoyieldExprClass:
9422     return ICEDiag(IK_NotICE, E->getLocStart());
9423 
9424   case Expr::InitListExprClass: {
9425     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
9426     // form "T x = { a };" is equivalent to "T x = a;".
9427     // Unless we're initializing a reference, T is a scalar as it is known to be
9428     // of integral or enumeration type.
9429     if (E->isRValue())
9430       if (cast<InitListExpr>(E)->getNumInits() == 1)
9431         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
9432     return ICEDiag(IK_NotICE, E->getLocStart());
9433   }
9434 
9435   case Expr::SizeOfPackExprClass:
9436   case Expr::GNUNullExprClass:
9437     // GCC considers the GNU __null value to be an integral constant expression.
9438     return NoDiag();
9439 
9440   case Expr::SubstNonTypeTemplateParmExprClass:
9441     return
9442       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
9443 
9444   case Expr::ParenExprClass:
9445     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
9446   case Expr::GenericSelectionExprClass:
9447     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
9448   case Expr::IntegerLiteralClass:
9449   case Expr::CharacterLiteralClass:
9450   case Expr::ObjCBoolLiteralExprClass:
9451   case Expr::CXXBoolLiteralExprClass:
9452   case Expr::CXXScalarValueInitExprClass:
9453   case Expr::TypeTraitExprClass:
9454   case Expr::ArrayTypeTraitExprClass:
9455   case Expr::ExpressionTraitExprClass:
9456   case Expr::CXXNoexceptExprClass:
9457     return NoDiag();
9458   case Expr::CallExprClass:
9459   case Expr::CXXOperatorCallExprClass: {
9460     // C99 6.6/3 allows function calls within unevaluated subexpressions of
9461     // constant expressions, but they can never be ICEs because an ICE cannot
9462     // contain an operand of (pointer to) function type.
9463     const CallExpr *CE = cast<CallExpr>(E);
9464     if (CE->getBuiltinCallee())
9465       return CheckEvalInICE(E, Ctx);
9466     return ICEDiag(IK_NotICE, E->getLocStart());
9467   }
9468   case Expr::DeclRefExprClass: {
9469     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
9470       return NoDiag();
9471     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
9472     if (Ctx.getLangOpts().CPlusPlus &&
9473         D && IsConstNonVolatile(D->getType())) {
9474       // Parameter variables are never constants.  Without this check,
9475       // getAnyInitializer() can find a default argument, which leads
9476       // to chaos.
9477       if (isa<ParmVarDecl>(D))
9478         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9479 
9480       // C++ 7.1.5.1p2
9481       //   A variable of non-volatile const-qualified integral or enumeration
9482       //   type initialized by an ICE can be used in ICEs.
9483       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
9484         if (!Dcl->getType()->isIntegralOrEnumerationType())
9485           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9486 
9487         const VarDecl *VD;
9488         // Look for a declaration of this variable that has an initializer, and
9489         // check whether it is an ICE.
9490         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
9491           return NoDiag();
9492         else
9493           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9494       }
9495     }
9496     return ICEDiag(IK_NotICE, E->getLocStart());
9497   }
9498   case Expr::UnaryOperatorClass: {
9499     const UnaryOperator *Exp = cast<UnaryOperator>(E);
9500     switch (Exp->getOpcode()) {
9501     case UO_PostInc:
9502     case UO_PostDec:
9503     case UO_PreInc:
9504     case UO_PreDec:
9505     case UO_AddrOf:
9506     case UO_Deref:
9507     case UO_Coawait:
9508       // C99 6.6/3 allows increment and decrement within unevaluated
9509       // subexpressions of constant expressions, but they can never be ICEs
9510       // because an ICE cannot contain an lvalue operand.
9511       return ICEDiag(IK_NotICE, E->getLocStart());
9512     case UO_Extension:
9513     case UO_LNot:
9514     case UO_Plus:
9515     case UO_Minus:
9516     case UO_Not:
9517     case UO_Real:
9518     case UO_Imag:
9519       return CheckICE(Exp->getSubExpr(), Ctx);
9520     }
9521 
9522     // OffsetOf falls through here.
9523   }
9524   case Expr::OffsetOfExprClass: {
9525     // Note that per C99, offsetof must be an ICE. And AFAIK, using
9526     // EvaluateAsRValue matches the proposed gcc behavior for cases like
9527     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
9528     // compliance: we should warn earlier for offsetof expressions with
9529     // array subscripts that aren't ICEs, and if the array subscripts
9530     // are ICEs, the value of the offsetof must be an integer constant.
9531     return CheckEvalInICE(E, Ctx);
9532   }
9533   case Expr::UnaryExprOrTypeTraitExprClass: {
9534     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
9535     if ((Exp->getKind() ==  UETT_SizeOf) &&
9536         Exp->getTypeOfArgument()->isVariableArrayType())
9537       return ICEDiag(IK_NotICE, E->getLocStart());
9538     return NoDiag();
9539   }
9540   case Expr::BinaryOperatorClass: {
9541     const BinaryOperator *Exp = cast<BinaryOperator>(E);
9542     switch (Exp->getOpcode()) {
9543     case BO_PtrMemD:
9544     case BO_PtrMemI:
9545     case BO_Assign:
9546     case BO_MulAssign:
9547     case BO_DivAssign:
9548     case BO_RemAssign:
9549     case BO_AddAssign:
9550     case BO_SubAssign:
9551     case BO_ShlAssign:
9552     case BO_ShrAssign:
9553     case BO_AndAssign:
9554     case BO_XorAssign:
9555     case BO_OrAssign:
9556       // C99 6.6/3 allows assignments within unevaluated subexpressions of
9557       // constant expressions, but they can never be ICEs because an ICE cannot
9558       // contain an lvalue operand.
9559       return ICEDiag(IK_NotICE, E->getLocStart());
9560 
9561     case BO_Mul:
9562     case BO_Div:
9563     case BO_Rem:
9564     case BO_Add:
9565     case BO_Sub:
9566     case BO_Shl:
9567     case BO_Shr:
9568     case BO_LT:
9569     case BO_GT:
9570     case BO_LE:
9571     case BO_GE:
9572     case BO_EQ:
9573     case BO_NE:
9574     case BO_And:
9575     case BO_Xor:
9576     case BO_Or:
9577     case BO_Comma: {
9578       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9579       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9580       if (Exp->getOpcode() == BO_Div ||
9581           Exp->getOpcode() == BO_Rem) {
9582         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
9583         // we don't evaluate one.
9584         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
9585           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
9586           if (REval == 0)
9587             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9588           if (REval.isSigned() && REval.isAllOnesValue()) {
9589             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
9590             if (LEval.isMinSignedValue())
9591               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9592           }
9593         }
9594       }
9595       if (Exp->getOpcode() == BO_Comma) {
9596         if (Ctx.getLangOpts().C99) {
9597           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
9598           // if it isn't evaluated.
9599           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
9600             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9601         } else {
9602           // In both C89 and C++, commas in ICEs are illegal.
9603           return ICEDiag(IK_NotICE, E->getLocStart());
9604         }
9605       }
9606       return Worst(LHSResult, RHSResult);
9607     }
9608     case BO_LAnd:
9609     case BO_LOr: {
9610       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9611       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9612       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
9613         // Rare case where the RHS has a comma "side-effect"; we need
9614         // to actually check the condition to see whether the side
9615         // with the comma is evaluated.
9616         if ((Exp->getOpcode() == BO_LAnd) !=
9617             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
9618           return RHSResult;
9619         return NoDiag();
9620       }
9621 
9622       return Worst(LHSResult, RHSResult);
9623     }
9624     }
9625   }
9626   case Expr::ImplicitCastExprClass:
9627   case Expr::CStyleCastExprClass:
9628   case Expr::CXXFunctionalCastExprClass:
9629   case Expr::CXXStaticCastExprClass:
9630   case Expr::CXXReinterpretCastExprClass:
9631   case Expr::CXXConstCastExprClass:
9632   case Expr::ObjCBridgedCastExprClass: {
9633     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
9634     if (isa<ExplicitCastExpr>(E)) {
9635       if (const FloatingLiteral *FL
9636             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
9637         unsigned DestWidth = Ctx.getIntWidth(E->getType());
9638         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
9639         APSInt IgnoredVal(DestWidth, !DestSigned);
9640         bool Ignored;
9641         // If the value does not fit in the destination type, the behavior is
9642         // undefined, so we are not required to treat it as a constant
9643         // expression.
9644         if (FL->getValue().convertToInteger(IgnoredVal,
9645                                             llvm::APFloat::rmTowardZero,
9646                                             &Ignored) & APFloat::opInvalidOp)
9647           return ICEDiag(IK_NotICE, E->getLocStart());
9648         return NoDiag();
9649       }
9650     }
9651     switch (cast<CastExpr>(E)->getCastKind()) {
9652     case CK_LValueToRValue:
9653     case CK_AtomicToNonAtomic:
9654     case CK_NonAtomicToAtomic:
9655     case CK_NoOp:
9656     case CK_IntegralToBoolean:
9657     case CK_IntegralCast:
9658       return CheckICE(SubExpr, Ctx);
9659     default:
9660       return ICEDiag(IK_NotICE, E->getLocStart());
9661     }
9662   }
9663   case Expr::BinaryConditionalOperatorClass: {
9664     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
9665     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
9666     if (CommonResult.Kind == IK_NotICE) return CommonResult;
9667     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9668     if (FalseResult.Kind == IK_NotICE) return FalseResult;
9669     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
9670     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
9671         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
9672     return FalseResult;
9673   }
9674   case Expr::ConditionalOperatorClass: {
9675     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
9676     // If the condition (ignoring parens) is a __builtin_constant_p call,
9677     // then only the true side is actually considered in an integer constant
9678     // expression, and it is fully evaluated.  This is an important GNU
9679     // extension.  See GCC PR38377 for discussion.
9680     if (const CallExpr *CallCE
9681         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
9682       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
9683         return CheckEvalInICE(E, Ctx);
9684     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
9685     if (CondResult.Kind == IK_NotICE)
9686       return CondResult;
9687 
9688     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
9689     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9690 
9691     if (TrueResult.Kind == IK_NotICE)
9692       return TrueResult;
9693     if (FalseResult.Kind == IK_NotICE)
9694       return FalseResult;
9695     if (CondResult.Kind == IK_ICEIfUnevaluated)
9696       return CondResult;
9697     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9698       return NoDiag();
9699     // Rare case where the diagnostics depend on which side is evaluated
9700     // Note that if we get here, CondResult is 0, and at least one of
9701     // TrueResult and FalseResult is non-zero.
9702     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9703       return FalseResult;
9704     return TrueResult;
9705   }
9706   case Expr::CXXDefaultArgExprClass:
9707     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9708   case Expr::CXXDefaultInitExprClass:
9709     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9710   case Expr::ChooseExprClass: {
9711     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9712   }
9713   }
9714 
9715   llvm_unreachable("Invalid StmtClass!");
9716 }
9717 
9718 /// Evaluate an expression as a C++11 integral constant expression.
EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext & Ctx,const Expr * E,llvm::APSInt * Value,SourceLocation * Loc)9719 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9720                                                     const Expr *E,
9721                                                     llvm::APSInt *Value,
9722                                                     SourceLocation *Loc) {
9723   if (!E->getType()->isIntegralOrEnumerationType()) {
9724     if (Loc) *Loc = E->getExprLoc();
9725     return false;
9726   }
9727 
9728   APValue Result;
9729   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9730     return false;
9731 
9732   if (!Result.isInt()) {
9733     if (Loc) *Loc = E->getExprLoc();
9734     return false;
9735   }
9736 
9737   if (Value) *Value = Result.getInt();
9738   return true;
9739 }
9740 
isIntegerConstantExpr(const ASTContext & Ctx,SourceLocation * Loc) const9741 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9742                                  SourceLocation *Loc) const {
9743   if (Ctx.getLangOpts().CPlusPlus11)
9744     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9745 
9746   ICEDiag D = CheckICE(this, Ctx);
9747   if (D.Kind != IK_ICE) {
9748     if (Loc) *Loc = D.Loc;
9749     return false;
9750   }
9751   return true;
9752 }
9753 
isIntegerConstantExpr(llvm::APSInt & Value,const ASTContext & Ctx,SourceLocation * Loc,bool isEvaluated) const9754 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9755                                  SourceLocation *Loc, bool isEvaluated) const {
9756   if (Ctx.getLangOpts().CPlusPlus11)
9757     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9758 
9759   if (!isIntegerConstantExpr(Ctx, Loc))
9760     return false;
9761   // The only possible side-effects here are due to UB discovered in the
9762   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
9763   // required to treat the expression as an ICE, so we produce the folded
9764   // value.
9765   if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
9766     llvm_unreachable("ICE cannot be evaluated!");
9767   return true;
9768 }
9769 
isCXX98IntegralConstantExpr(const ASTContext & Ctx) const9770 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9771   return CheckICE(this, Ctx).Kind == IK_ICE;
9772 }
9773 
isCXX11ConstantExpr(const ASTContext & Ctx,APValue * Result,SourceLocation * Loc) const9774 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9775                                SourceLocation *Loc) const {
9776   // We support this checking in C++98 mode in order to diagnose compatibility
9777   // issues.
9778   assert(Ctx.getLangOpts().CPlusPlus);
9779 
9780   // Build evaluation settings.
9781   Expr::EvalStatus Status;
9782   SmallVector<PartialDiagnosticAt, 8> Diags;
9783   Status.Diag = &Diags;
9784   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9785 
9786   APValue Scratch;
9787   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9788 
9789   if (!Diags.empty()) {
9790     IsConstExpr = false;
9791     if (Loc) *Loc = Diags[0].first;
9792   } else if (!IsConstExpr) {
9793     // FIXME: This shouldn't happen.
9794     if (Loc) *Loc = getExprLoc();
9795   }
9796 
9797   return IsConstExpr;
9798 }
9799 
EvaluateWithSubstitution(APValue & Value,ASTContext & Ctx,const FunctionDecl * Callee,ArrayRef<const Expr * > Args) const9800 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9801                                     const FunctionDecl *Callee,
9802                                     ArrayRef<const Expr*> Args) const {
9803   Expr::EvalStatus Status;
9804   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9805 
9806   ArgVector ArgValues(Args.size());
9807   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9808        I != E; ++I) {
9809     if ((*I)->isValueDependent() ||
9810         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9811       // If evaluation fails, throw away the argument entirely.
9812       ArgValues[I - Args.begin()] = APValue();
9813     if (Info.EvalStatus.HasSideEffects)
9814       return false;
9815   }
9816 
9817   // Build fake call to Callee.
9818   CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9819                        ArgValues.data());
9820   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9821 }
9822 
isPotentialConstantExpr(const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9823 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9824                                    SmallVectorImpl<
9825                                      PartialDiagnosticAt> &Diags) {
9826   // FIXME: It would be useful to check constexpr function templates, but at the
9827   // moment the constant expression evaluator cannot cope with the non-rigorous
9828   // ASTs which we build for dependent expressions.
9829   if (FD->isDependentContext())
9830     return true;
9831 
9832   Expr::EvalStatus Status;
9833   Status.Diag = &Diags;
9834 
9835   EvalInfo Info(FD->getASTContext(), Status,
9836                 EvalInfo::EM_PotentialConstantExpression);
9837 
9838   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9839   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9840 
9841   // Fabricate an arbitrary expression on the stack and pretend that it
9842   // is a temporary being used as the 'this' pointer.
9843   LValue This;
9844   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9845   This.set(&VIE, Info.CurrentCall->Index);
9846 
9847   ArrayRef<const Expr*> Args;
9848 
9849   APValue Scratch;
9850   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9851     // Evaluate the call as a constant initializer, to allow the construction
9852     // of objects of non-literal types.
9853     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9854     HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
9855   } else {
9856     SourceLocation Loc = FD->getLocation();
9857     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9858                        Args, FD->getBody(), Info, Scratch, nullptr);
9859   }
9860 
9861   return Diags.empty();
9862 }
9863 
isPotentialConstantExprUnevaluated(Expr * E,const FunctionDecl * FD,SmallVectorImpl<PartialDiagnosticAt> & Diags)9864 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9865                                               const FunctionDecl *FD,
9866                                               SmallVectorImpl<
9867                                                 PartialDiagnosticAt> &Diags) {
9868   Expr::EvalStatus Status;
9869   Status.Diag = &Diags;
9870 
9871   EvalInfo Info(FD->getASTContext(), Status,
9872                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9873 
9874   // Fabricate a call stack frame to give the arguments a plausible cover story.
9875   ArrayRef<const Expr*> Args;
9876   ArgVector ArgValues(0);
9877   bool Success = EvaluateArgs(Args, ArgValues, Info);
9878   (void)Success;
9879   assert(Success &&
9880          "Failed to set up arguments for potential constant evaluation");
9881   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9882 
9883   APValue ResultScratch;
9884   Evaluate(ResultScratch, Info, E);
9885   return Diags.empty();
9886 }
9887 
tryEvaluateObjectSize(uint64_t & Result,ASTContext & Ctx,unsigned Type) const9888 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
9889                                  unsigned Type) const {
9890   if (!getType()->isPointerType())
9891     return false;
9892 
9893   Expr::EvalStatus Status;
9894   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
9895   return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
9896 }
9897