1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 /***************************** MPEG Audio Encoder ***************************
85
86 Initial Authors: M. Multrus
87 Contents/Description: PS Wrapper, Downmix
88
89 ******************************************************************************/
90
91 #include "ps_main.h"
92
93
94 /* Includes ******************************************************************/
95
96 #include "ps_const.h"
97 #include "ps_bitenc.h"
98
99 #include "sbr_ram.h"
100
101 /*--------------- function declarations --------------------*/
102 static void psFindBestScaling(
103 HANDLE_PARAMETRIC_STEREO hParametricStereo,
104 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
105 UCHAR *dynBandScale,
106 FIXP_QMF *maxBandValue,
107 SCHAR *dmxScale
108 );
109
110 /*------------- function definitions ----------------*/
PSEnc_Create(HANDLE_PARAMETRIC_STEREO * phParametricStereo)111 FDK_PSENC_ERROR PSEnc_Create(
112 HANDLE_PARAMETRIC_STEREO *phParametricStereo
113 )
114 {
115 FDK_PSENC_ERROR error = PSENC_OK;
116
117 if (phParametricStereo==NULL) {
118 error = PSENC_INVALID_HANDLE;
119 }
120 else {
121 int i;
122 HANDLE_PARAMETRIC_STEREO hParametricStereo = NULL;
123
124 if (NULL==(hParametricStereo = GetRam_ParamStereo())) {
125 error = PSENC_MEMORY_ERROR;
126 goto bail;
127 }
128 FDKmemclear(hParametricStereo, sizeof(PARAMETRIC_STEREO));
129
130 if (PSENC_OK != (error = FDKsbrEnc_CreatePSEncode(&hParametricStereo->hPsEncode))) {
131 goto bail;
132 }
133
134 for (i=0; i<MAX_PS_CHANNELS; i++) {
135 if (FDKhybridAnalysisOpen(
136 &hParametricStereo->fdkHybAnaFilter[i],
137 hParametricStereo->__staticHybAnaStatesLF[i],
138 sizeof(hParametricStereo->__staticHybAnaStatesLF[i]),
139 hParametricStereo->__staticHybAnaStatesHF[i],
140 sizeof(hParametricStereo->__staticHybAnaStatesHF[i])
141 ) !=0 )
142 {
143 error = PSENC_MEMORY_ERROR;
144 goto bail;
145 }
146 }
147
148 *phParametricStereo = hParametricStereo; /* return allocated handle */
149 }
150 bail:
151 return error;
152 }
153
PSEnc_Init(HANDLE_PARAMETRIC_STEREO hParametricStereo,const HANDLE_PSENC_CONFIG hPsEncConfig,INT noQmfSlots,INT noQmfBands,UCHAR * dynamic_RAM)154 FDK_PSENC_ERROR PSEnc_Init(
155 HANDLE_PARAMETRIC_STEREO hParametricStereo,
156 const HANDLE_PSENC_CONFIG hPsEncConfig,
157 INT noQmfSlots,
158 INT noQmfBands
159 ,UCHAR *dynamic_RAM
160 )
161 {
162 FDK_PSENC_ERROR error = PSENC_OK;
163
164 if ( (NULL==hParametricStereo) || (NULL==hPsEncConfig) ) {
165 error = PSENC_INVALID_HANDLE;
166 }
167 else {
168 int ch, i;
169
170 hParametricStereo->initPS = 1;
171 hParametricStereo->noQmfSlots = noQmfSlots;
172 hParametricStereo->noQmfBands = noQmfBands;
173
174 /* clear delay lines */
175 FDKmemclear(hParametricStereo->qmfDelayLines, sizeof(hParametricStereo->qmfDelayLines));
176
177 hParametricStereo->qmfDelayScale = FRACT_BITS-1;
178
179 /* create configuration for hybrid filter bank */
180 for (ch=0; ch<MAX_PS_CHANNELS; ch++) {
181 FDKhybridAnalysisInit(
182 &hParametricStereo->fdkHybAnaFilter[ch],
183 THREE_TO_TEN,
184 QMF_CHANNELS,
185 QMF_CHANNELS,
186 1
187 );
188 } /* ch */
189
190 FDKhybridSynthesisInit(
191 &hParametricStereo->fdkHybSynFilter,
192 THREE_TO_TEN,
193 QMF_CHANNELS,
194 QMF_CHANNELS
195 );
196
197 /* determine average delay */
198 hParametricStereo->psDelay = (HYBRID_FILTER_DELAY*hParametricStereo->noQmfBands);
199
200 if ( (hPsEncConfig->maxEnvelopes < PSENC_NENV_1) || (hPsEncConfig->maxEnvelopes > PSENC_NENV_MAX) ) {
201 hPsEncConfig->maxEnvelopes = PSENC_NENV_DEFAULT;
202 }
203 hParametricStereo->maxEnvelopes = hPsEncConfig->maxEnvelopes;
204
205 if (PSENC_OK != (error = FDKsbrEnc_InitPSEncode(hParametricStereo->hPsEncode, (PS_BANDS) hPsEncConfig->nStereoBands, hPsEncConfig->iidQuantErrorThreshold))){
206 goto bail;
207 }
208
209 for (ch = 0; ch<MAX_PS_CHANNELS; ch ++) {
210 FIXP_DBL *pDynReal = GetRam_Sbr_envRBuffer (ch, dynamic_RAM);
211 FIXP_DBL *pDynImag = GetRam_Sbr_envIBuffer (ch, dynamic_RAM);
212
213 for (i=0; i<HYBRID_FRAMESIZE; i++) {
214 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][0] = &pDynReal[i*MAX_HYBRID_BANDS];
215 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][ch][1] = &pDynImag[i*MAX_HYBRID_BANDS];;
216 }
217
218 for (i=0; i<HYBRID_READ_OFFSET; i++) {
219 hParametricStereo->pHybridData[i][ch][0] = hParametricStereo->__staticHybridData[i][ch][0];
220 hParametricStereo->pHybridData[i][ch][1] = hParametricStereo->__staticHybridData[i][ch][1];
221 }
222 } /* ch */
223
224 /* clear static hybrid buffer */
225 FDKmemclear(hParametricStereo->__staticHybridData, sizeof(hParametricStereo->__staticHybridData));
226
227 /* clear bs buffer */
228 FDKmemclear(hParametricStereo->psOut, sizeof(hParametricStereo->psOut));
229
230 hParametricStereo->psOut[0].enablePSHeader = 1; /* write ps header in first frame */
231
232 /* clear scaling buffer */
233 FDKmemclear(hParametricStereo->dynBandScale, sizeof(UCHAR)*PS_MAX_BANDS);
234 FDKmemclear(hParametricStereo->maxBandValue, sizeof(FIXP_QMF)*PS_MAX_BANDS);
235
236 } /* valid handle */
237 bail:
238 return error;
239 }
240
241
PSEnc_Destroy(HANDLE_PARAMETRIC_STEREO * phParametricStereo)242 FDK_PSENC_ERROR PSEnc_Destroy(
243 HANDLE_PARAMETRIC_STEREO *phParametricStereo
244 )
245 {
246 FDK_PSENC_ERROR error = PSENC_OK;
247
248 if (NULL!=phParametricStereo) {
249 HANDLE_PARAMETRIC_STEREO hParametricStereo = *phParametricStereo;
250 if(hParametricStereo != NULL){
251 FDKsbrEnc_DestroyPSEncode(&hParametricStereo->hPsEncode);
252 FreeRam_ParamStereo(phParametricStereo);
253 }
254 }
255
256 return error;
257 }
258
ExtractPSParameters(HANDLE_PARAMETRIC_STEREO hParametricStereo,const int sendHeader,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2])259 static FDK_PSENC_ERROR ExtractPSParameters(
260 HANDLE_PARAMETRIC_STEREO hParametricStereo,
261 const int sendHeader,
262 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2]
263 )
264 {
265 FDK_PSENC_ERROR error = PSENC_OK;
266
267 if (hParametricStereo == NULL) {
268 error = PSENC_INVALID_HANDLE;
269 }
270 else {
271 /* call ps encode function */
272 if (hParametricStereo->initPS){
273 hParametricStereo->psOut[1] = hParametricStereo->psOut[0];
274 }
275 hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
276
277 if (PSENC_OK != (error = FDKsbrEnc_PSEncode(
278 hParametricStereo->hPsEncode,
279 &hParametricStereo->psOut[1],
280 hParametricStereo->dynBandScale,
281 hParametricStereo->maxEnvelopes,
282 hybridData,
283 hParametricStereo->noQmfSlots,
284 sendHeader)))
285 {
286 goto bail;
287 }
288
289 if (hParametricStereo->initPS) {
290 hParametricStereo->psOut[0] = hParametricStereo->psOut[1];
291 hParametricStereo->initPS = 0;
292 }
293 }
294 bail:
295 return error;
296 }
297
298
DownmixPSQmfData(HANDLE_PARAMETRIC_STEREO hParametricStereo,HANDLE_QMF_FILTER_BANK sbrSynthQmf,FIXP_QMF ** RESTRICT mixRealQmfData,FIXP_QMF ** RESTRICT mixImagQmfData,INT_PCM * downsampledOutSignal,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],const INT noQmfSlots,const INT psQmfScale[MAX_PS_CHANNELS],SCHAR * qmfScale)299 static FDK_PSENC_ERROR DownmixPSQmfData(
300 HANDLE_PARAMETRIC_STEREO hParametricStereo,
301 HANDLE_QMF_FILTER_BANK sbrSynthQmf,
302 FIXP_QMF **RESTRICT mixRealQmfData,
303 FIXP_QMF **RESTRICT mixImagQmfData,
304 INT_PCM *downsampledOutSignal,
305 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
306 const INT noQmfSlots,
307 const INT psQmfScale[MAX_PS_CHANNELS],
308 SCHAR *qmfScale
309 )
310 {
311 FDK_PSENC_ERROR error = PSENC_OK;
312
313 if(hParametricStereo == NULL){
314 error = PSENC_INVALID_HANDLE;
315 }
316 else {
317 int n, k;
318 C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_QMF, 2*QMF_CHANNELS)
319
320 /* define scalings */
321 int dynQmfScale = fixMax(0, hParametricStereo->dmxScale-1); /* scale one bit more for addition of left and right */
322 int downmixScale = psQmfScale[0] - dynQmfScale;
323 const FIXP_DBL maxStereoScaleFactor = MAXVAL_DBL; /* 2.f/2.f */
324
325 for (n = 0; n<noQmfSlots; n++) {
326
327 FIXP_DBL tmpHybrid[2][MAX_HYBRID_BANDS];
328
329 for(k = 0; k<71; k++){
330 int dynScale, sc; /* scaling */
331 FIXP_QMF tmpLeftReal, tmpRightReal, tmpLeftImag, tmpRightImag;
332 FIXP_DBL tmpScaleFactor, stereoScaleFactor;
333
334 tmpLeftReal = hybridData[n][0][0][k];
335 tmpLeftImag = hybridData[n][0][1][k];
336 tmpRightReal = hybridData[n][1][0][k];
337 tmpRightImag = hybridData[n][1][1][k];
338
339 sc = fixMax(0,CntLeadingZeros( fixMax(fixMax(fixp_abs(tmpLeftReal),fixp_abs(tmpLeftImag)),fixMax(fixp_abs(tmpRightReal),fixp_abs(tmpRightImag))) )-2);
340
341 tmpLeftReal <<= sc; tmpLeftImag <<= sc;
342 tmpRightReal <<= sc; tmpRightImag <<= sc;
343 dynScale = fixMin(sc-dynQmfScale,DFRACT_BITS-1);
344
345 /* calc stereo scale factor to avoid loss of energy in bands */
346 /* stereo scale factor = min(2.0f, sqrt( (abs(l(k, n)^2 + abs(r(k, n)^2 )))/(0.5f*abs(l(k, n) + r(k, n))) )) */
347 stereoScaleFactor = fPow2Div2(tmpLeftReal) + fPow2Div2(tmpLeftImag)
348 + fPow2Div2(tmpRightReal) + fPow2Div2(tmpRightImag) ;
349
350 /* might be that tmpScaleFactor becomes negative, so fabs(.) */
351 tmpScaleFactor = fixp_abs(stereoScaleFactor + fMult(tmpLeftReal,tmpRightReal) + fMult(tmpLeftImag,tmpRightImag));
352
353 /* min(2.0f, sqrt(stereoScaleFactor/(0.5f*tmpScaleFactor))) */
354 if ( (stereoScaleFactor>>1) < fMult(maxStereoScaleFactor,tmpScaleFactor) ) {
355
356 int sc_num = CountLeadingBits(stereoScaleFactor) ;
357 int sc_denum = CountLeadingBits(tmpScaleFactor) ;
358 sc = -(sc_num-sc_denum);
359
360 tmpScaleFactor = schur_div((stereoScaleFactor<<(sc_num))>>1,
361 tmpScaleFactor<<sc_denum,
362 16) ;
363
364 /* prevent odd scaling for next sqrt calculation */
365 if (sc&0x1) {
366 sc++;
367 tmpScaleFactor>>=1;
368 }
369 stereoScaleFactor = sqrtFixp(tmpScaleFactor);
370 stereoScaleFactor <<= (sc>>1);
371 }
372 else {
373 stereoScaleFactor = maxStereoScaleFactor;
374 }
375
376 /* write data to hybrid output */
377 tmpHybrid[0][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftReal + tmpRightReal))>>dynScale;
378 tmpHybrid[1][k] = fMultDiv2(stereoScaleFactor, (FIXP_QMF)(tmpLeftImag + tmpRightImag))>>dynScale;
379
380 } /* hybrid bands - k */
381
382 FDKhybridSynthesisApply(
383 &hParametricStereo->fdkHybSynFilter,
384 tmpHybrid[0],
385 tmpHybrid[1],
386 mixRealQmfData[n],
387 mixImagQmfData[n]);
388
389 qmfSynthesisFilteringSlot(
390 sbrSynthQmf,
391 mixRealQmfData[n],
392 mixImagQmfData[n],
393 downmixScale-7,
394 downmixScale-7,
395 downsampledOutSignal+(n*sbrSynthQmf->no_channels),
396 1,
397 pWorkBuffer);
398
399 } /* slots */
400
401 *qmfScale = -downmixScale + 7;
402
403 C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_QMF, 2*QMF_CHANNELS)
404
405 {
406 const INT noQmfSlots2 = hParametricStereo->noQmfSlots>>1;
407 const int noQmfBands = hParametricStereo->noQmfBands;
408
409 INT scale, i, j, slotOffset;
410
411 FIXP_QMF tmp[2][QMF_CHANNELS];
412
413 for (i=0; i<noQmfSlots2; i++) {
414 FDKmemcpy(tmp[0], hParametricStereo->qmfDelayLines[0][i], noQmfBands*sizeof(FIXP_QMF));
415 FDKmemcpy(tmp[1], hParametricStereo->qmfDelayLines[1][i], noQmfBands*sizeof(FIXP_QMF));
416
417 FDKmemcpy(hParametricStereo->qmfDelayLines[0][i], mixRealQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF));
418 FDKmemcpy(hParametricStereo->qmfDelayLines[1][i], mixImagQmfData[i+noQmfSlots2], noQmfBands*sizeof(FIXP_QMF));
419
420 FDKmemcpy(mixRealQmfData[i+noQmfSlots2], mixRealQmfData[i], noQmfBands*sizeof(FIXP_QMF));
421 FDKmemcpy(mixImagQmfData[i+noQmfSlots2], mixImagQmfData[i], noQmfBands*sizeof(FIXP_QMF));
422
423 FDKmemcpy(mixRealQmfData[i], tmp[0], noQmfBands*sizeof(FIXP_QMF));
424 FDKmemcpy(mixImagQmfData[i], tmp[1], noQmfBands*sizeof(FIXP_QMF));
425 }
426
427 if (hParametricStereo->qmfDelayScale > *qmfScale) {
428 scale = hParametricStereo->qmfDelayScale - *qmfScale;
429 slotOffset = 0;
430 }
431 else {
432 scale = *qmfScale - hParametricStereo->qmfDelayScale;
433 slotOffset = noQmfSlots2;
434 }
435
436 for (i=0; i<noQmfSlots2; i++) {
437 for (j=0; j<noQmfBands; j++) {
438 mixRealQmfData[i+slotOffset][j] >>= scale;
439 mixImagQmfData[i+slotOffset][j] >>= scale;
440 }
441 }
442
443 scale = *qmfScale;
444 *qmfScale = FDKmin(*qmfScale, hParametricStereo->qmfDelayScale);
445 hParametricStereo->qmfDelayScale = scale;
446 }
447
448 } /* valid handle */
449
450 return error;
451 }
452
453
FDKsbrEnc_PSEnc_WritePSData(HANDLE_PARAMETRIC_STEREO hParametricStereo,HANDLE_FDK_BITSTREAM hBitstream)454 INT FDKsbrEnc_PSEnc_WritePSData(
455 HANDLE_PARAMETRIC_STEREO hParametricStereo,
456 HANDLE_FDK_BITSTREAM hBitstream
457 )
458 {
459 return ( (hParametricStereo!=NULL) ? FDKsbrEnc_WritePSBitstream(&hParametricStereo->psOut[0], hBitstream) : 0 );
460 }
461
462
FDKsbrEnc_PSEnc_ParametricStereoProcessing(HANDLE_PARAMETRIC_STEREO hParametricStereo,INT_PCM * samples[2],UINT timeInStride,QMF_FILTER_BANK ** hQmfAnalysis,FIXP_QMF ** RESTRICT downmixedRealQmfData,FIXP_QMF ** RESTRICT downmixedImagQmfData,INT_PCM * downsampledOutSignal,HANDLE_QMF_FILTER_BANK sbrSynthQmf,SCHAR * qmfScale,const int sendHeader)463 FDK_PSENC_ERROR FDKsbrEnc_PSEnc_ParametricStereoProcessing(
464 HANDLE_PARAMETRIC_STEREO hParametricStereo,
465 INT_PCM *samples[2],
466 UINT timeInStride,
467 QMF_FILTER_BANK **hQmfAnalysis,
468 FIXP_QMF **RESTRICT downmixedRealQmfData,
469 FIXP_QMF **RESTRICT downmixedImagQmfData,
470 INT_PCM *downsampledOutSignal,
471 HANDLE_QMF_FILTER_BANK sbrSynthQmf,
472 SCHAR *qmfScale,
473 const int sendHeader
474 )
475 {
476 FDK_PSENC_ERROR error = PSENC_OK;
477 INT psQmfScale[MAX_PS_CHANNELS] = {0};
478 int psCh, i;
479 C_AALLOC_SCRATCH_START(pWorkBuffer, FIXP_QMF, 4*QMF_CHANNELS)
480
481 for (psCh = 0; psCh<MAX_PS_CHANNELS; psCh ++) {
482
483 for (i = 0; i < hQmfAnalysis[psCh]->no_col; i++) {
484
485 qmfAnalysisFilteringSlot(
486 hQmfAnalysis[psCh],
487 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */
488 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */
489 samples[psCh]+i*(hQmfAnalysis[psCh]->no_channels*timeInStride),
490 timeInStride,
491 &pWorkBuffer[0*QMF_CHANNELS] /* qmf workbuffer 2*QMF_CHANNELS */
492 );
493
494 FDKhybridAnalysisApply(
495 &hParametricStereo->fdkHybAnaFilter[psCh],
496 &pWorkBuffer[2*QMF_CHANNELS], /* qmfReal[QMF_CHANNELS] */
497 &pWorkBuffer[3*QMF_CHANNELS], /* qmfImag[QMF_CHANNELS] */
498 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][0],
499 hParametricStereo->pHybridData[i+HYBRID_READ_OFFSET][psCh][1]
500 );
501
502 } /* no_col loop i */
503
504 psQmfScale[psCh] = hQmfAnalysis[psCh]->outScalefactor;
505
506 } /* for psCh */
507
508 C_AALLOC_SCRATCH_END(pWorkBuffer, FIXP_QMF, 4*QMF_CHANNELS)
509
510 /* find best scaling in new QMF and Hybrid data */
511 psFindBestScaling( hParametricStereo,
512 &hParametricStereo->pHybridData[HYBRID_READ_OFFSET],
513 hParametricStereo->dynBandScale,
514 hParametricStereo->maxBandValue,
515 &hParametricStereo->dmxScale ) ;
516
517
518 /* extract the ps parameters */
519 if(PSENC_OK != (error = ExtractPSParameters(hParametricStereo, sendHeader, &hParametricStereo->pHybridData[0]))){
520 goto bail;
521 }
522
523 /* save hybrid date for next frame */
524 for (i=0; i<HYBRID_READ_OFFSET; i++) {
525 FDKmemcpy(hParametricStereo->pHybridData[i][0][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, real */
526 FDKmemcpy(hParametricStereo->pHybridData[i][0][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][0][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* left, imag */
527 FDKmemcpy(hParametricStereo->pHybridData[i][1][0], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][0], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, real */
528 FDKmemcpy(hParametricStereo->pHybridData[i][1][1], hParametricStereo->pHybridData[HYBRID_FRAMESIZE+i][1][1], MAX_HYBRID_BANDS*sizeof(FIXP_DBL)); /* right, imag */
529 }
530
531 /* downmix and hybrid synthesis */
532 if (PSENC_OK != (error = DownmixPSQmfData(hParametricStereo, sbrSynthQmf, downmixedRealQmfData, downmixedImagQmfData, downsampledOutSignal, &hParametricStereo->pHybridData[HYBRID_READ_OFFSET], hParametricStereo->noQmfSlots, psQmfScale, qmfScale))) {
533 goto bail;
534 }
535
536 bail:
537
538 return error;
539 }
540
psFindBestScaling(HANDLE_PARAMETRIC_STEREO hParametricStereo,FIXP_DBL * hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],UCHAR * dynBandScale,FIXP_QMF * maxBandValue,SCHAR * dmxScale)541 static void psFindBestScaling(
542 HANDLE_PARAMETRIC_STEREO hParametricStereo,
543 FIXP_DBL *hybridData[HYBRID_FRAMESIZE][MAX_PS_CHANNELS][2],
544 UCHAR *dynBandScale,
545 FIXP_QMF *maxBandValue,
546 SCHAR *dmxScale
547 )
548 {
549 HANDLE_PS_ENCODE hPsEncode = hParametricStereo->hPsEncode;
550
551 INT group, bin, col, band;
552 const INT frameSize = hParametricStereo->noQmfSlots;
553 const INT psBands = (INT) hPsEncode->psEncMode;
554 const INT nIidGroups = hPsEncode->nQmfIidGroups + hPsEncode->nSubQmfIidGroups;
555
556 /* group wise scaling */
557 FIXP_QMF maxVal [2][PS_MAX_BANDS];
558 FIXP_QMF maxValue = FL2FXCONST_DBL(0.f);
559
560 FDKmemclear(maxVal, sizeof(maxVal));
561
562 /* start with hybrid data */
563 for (group=0; group < nIidGroups; group++) {
564 /* Translate group to bin */
565 bin = hPsEncode->subband2parameterIndex[group];
566
567 /* Translate from 20 bins to 10 bins */
568 if (hPsEncode->psEncMode == PS_BANDS_COARSE) {
569 bin >>= 1;
570 }
571
572 /* QMF downmix scaling */
573 {
574 FIXP_QMF tmp = maxVal[0][bin];
575 int i;
576 for (col=0; col<frameSize-HYBRID_READ_OFFSET; col++) {
577 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) {
578 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i]));
579 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i]));
580 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i]));
581 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i]));
582 }
583 }
584 maxVal[0][bin] = tmp;
585
586 tmp = maxVal[1][bin];
587 for (col=frameSize-HYBRID_READ_OFFSET; col<frameSize; col++) {
588 for (i = hPsEncode->iidGroupBorders[group]; i < hPsEncode->iidGroupBorders[group+1]; i++) {
589 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][0][i]));
590 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][0][1][i]));
591 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][0][i]));
592 tmp = fixMax(tmp, (FIXP_QMF)fixp_abs(hybridData[col][1][1][i]));
593 }
594 }
595 maxVal[1][bin] = tmp;
596 }
597 } /* nIidGroups */
598
599 /* convert maxSpec to maxScaling, find scaling space */
600 for (band=0; band<psBands; band++) {
601 #ifndef MULT_16x16
602 dynBandScale[band] = CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band]));
603 #else
604 dynBandScale[band] = fixMax(0,CountLeadingBits(fixMax(maxVal[0][band],maxBandValue[band]))-FRACT_BITS);
605 #endif
606 maxValue = fixMax(maxValue,fixMax(maxVal[0][band],maxVal[1][band]));
607 maxBandValue[band] = fixMax(maxVal[0][band], maxVal[1][band]);
608 }
609
610 /* calculate maximal scaling for QMF downmix */
611 #ifndef MULT_16x16
612 *dmxScale = fixMin(DFRACT_BITS, CountLeadingBits(maxValue));
613 #else
614 *dmxScale = fixMax(0,fixMin(FRACT_BITS, CountLeadingBits(FX_QMF2FX_DBL(maxValue))));
615 #endif
616
617 }
618
619