1 #ifndef FIO_STAT_H
2 #define FIO_STAT_H
3
4 #include "iolog.h"
5 #include "lib/output_buffer.h"
6
7 struct group_run_stats {
8 uint64_t max_run[DDIR_RWDIR_CNT], min_run[DDIR_RWDIR_CNT];
9 uint64_t max_bw[DDIR_RWDIR_CNT], min_bw[DDIR_RWDIR_CNT];
10 uint64_t iobytes[DDIR_RWDIR_CNT];
11 uint64_t agg[DDIR_RWDIR_CNT];
12 uint32_t kb_base;
13 uint32_t unit_base;
14 uint32_t groupid;
15 uint32_t unified_rw_rep;
16 } __attribute__((packed));
17
18 /*
19 * How many depth levels to log
20 */
21 #define FIO_IO_U_MAP_NR 7
22 #define FIO_IO_U_LAT_U_NR 10
23 #define FIO_IO_U_LAT_M_NR 12
24
25 /*
26 * Aggregate clat samples to report percentile(s) of them.
27 *
28 * EXECUTIVE SUMMARY
29 *
30 * FIO_IO_U_PLAT_BITS determines the maximum statistical error on the
31 * value of resulting percentiles. The error will be approximately
32 * 1/2^(FIO_IO_U_PLAT_BITS+1) of the value.
33 *
34 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the maximum
35 * range being tracked for latency samples. The maximum value tracked
36 * accurately will be 2^(GROUP_NR + PLAT_BITS -1) microseconds.
37 *
38 * FIO_IO_U_PLAT_GROUP_NR and FIO_IO_U_PLAT_BITS determine the memory
39 * requirement of storing those aggregate counts. The memory used will
40 * be (FIO_IO_U_PLAT_GROUP_NR * 2^FIO_IO_U_PLAT_BITS) * sizeof(int)
41 * bytes.
42 *
43 * FIO_IO_U_PLAT_NR is the total number of buckets.
44 *
45 * DETAILS
46 *
47 * Suppose the clat varies from 0 to 999 (usec), the straightforward
48 * method is to keep an array of (999 + 1) buckets, in which a counter
49 * keeps the count of samples which fall in the bucket, e.g.,
50 * {[0],[1],...,[999]}. However this consumes a huge amount of space,
51 * and can be avoided if an approximation is acceptable.
52 *
53 * One such method is to let the range of the bucket to be greater
54 * than one. This method has low accuracy when the value is small. For
55 * example, let the buckets be {[0,99],[100,199],...,[900,999]}, and
56 * the represented value of each bucket be the mean of the range. Then
57 * a value 0 has an round-off error of 49.5. To improve on this, we
58 * use buckets with non-uniform ranges, while bounding the error of
59 * each bucket within a ratio of the sample value. A simple example
60 * would be when error_bound = 0.005, buckets are {
61 * {[0],[1],...,[99]}, {[100,101],[102,103],...,[198,199]},..,
62 * {[900,909],[910,919]...} }. The total range is partitioned into
63 * groups with different ranges, then buckets with uniform ranges. An
64 * upper bound of the error is (range_of_bucket/2)/value_of_bucket
65 *
66 * For better efficiency, we implement this using base two. We group
67 * samples by their Most Significant Bit (MSB), extract the next M bit
68 * of them as an index within the group, and discard the rest of the
69 * bits.
70 *
71 * E.g., assume a sample 'x' whose MSB is bit n (starting from bit 0),
72 * and use M bit for indexing
73 *
74 * | n | M bits | bit (n-M-1) ... bit 0 |
75 *
76 * Because x is at least 2^n, and bit 0 to bit (n-M-1) is at most
77 * (2^(n-M) - 1), discarding bit 0 to (n-M-1) makes the round-off
78 * error
79 *
80 * 2^(n-M)-1 2^(n-M) 1
81 * e <= --------- <= ------- = ---
82 * 2^n 2^n 2^M
83 *
84 * Furthermore, we use "mean" of the range to represent the bucket,
85 * the error e can be lowered by half to 1 / 2^(M+1). By using M bits
86 * as the index, each group must contains 2^M buckets.
87 *
88 * E.g. Let M (FIO_IO_U_PLAT_BITS) be 6
89 * Error bound is 1/2^(6+1) = 0.0078125 (< 1%)
90 *
91 * Group MSB #discarded range of #buckets
92 * error_bits value
93 * ----------------------------------------------------------------
94 * 0* 0~5 0 [0,63] 64
95 * 1* 6 0 [64,127] 64
96 * 2 7 1 [128,255] 64
97 * 3 8 2 [256,511] 64
98 * 4 9 3 [512,1023] 64
99 * ... ... ... [...,...] ...
100 * 18 23 17 [8838608,+inf]** 64
101 *
102 * * Special cases: when n < (M-1) or when n == (M-1), in both cases,
103 * the value cannot be rounded off. Use all bits of the sample as
104 * index.
105 *
106 * ** If a sample's MSB is greater than 23, it will be counted as 23.
107 */
108
109 #define FIO_IO_U_PLAT_BITS 6
110 #define FIO_IO_U_PLAT_VAL (1 << FIO_IO_U_PLAT_BITS)
111 #define FIO_IO_U_PLAT_GROUP_NR 19
112 #define FIO_IO_U_PLAT_NR (FIO_IO_U_PLAT_GROUP_NR * FIO_IO_U_PLAT_VAL)
113 #define FIO_IO_U_LIST_MAX_LEN 20 /* The size of the default and user-specified
114 list of percentiles */
115
116 /*
117 * Trim cycle count measurements
118 */
119 #define MAX_NR_BLOCK_INFOS 8192
120 #define BLOCK_INFO_STATE_SHIFT 29
121 #define BLOCK_INFO_TRIMS(block_info) \
122 ((block_info) & ((1 << BLOCK_INFO_STATE_SHIFT) - 1))
123 #define BLOCK_INFO_STATE(block_info) \
124 ((block_info) >> BLOCK_INFO_STATE_SHIFT)
125 #define BLOCK_INFO(state, trim_cycles) \
126 ((trim_cycles) | ((unsigned int) (state) << BLOCK_INFO_STATE_SHIFT))
127 #define BLOCK_INFO_SET_STATE(block_info, state) \
128 BLOCK_INFO(state, BLOCK_INFO_TRIMS(block_info))
129 enum block_info_state {
130 BLOCK_STATE_UNINIT,
131 BLOCK_STATE_TRIMMED,
132 BLOCK_STATE_WRITTEN,
133 BLOCK_STATE_TRIM_FAILURE,
134 BLOCK_STATE_WRITE_FAILURE,
135 BLOCK_STATE_COUNT,
136 };
137
138 #define MAX_PATTERN_SIZE 512
139 #define FIO_JOBNAME_SIZE 128
140 #define FIO_JOBDESC_SIZE 256
141 #define FIO_VERROR_SIZE 128
142
143 struct thread_stat {
144 char name[FIO_JOBNAME_SIZE];
145 char verror[FIO_VERROR_SIZE];
146 uint32_t error;
147 uint32_t thread_number;
148 uint32_t groupid;
149 uint32_t pid;
150 char description[FIO_JOBDESC_SIZE];
151 uint32_t members;
152 uint32_t unified_rw_rep;
153
154 /*
155 * bandwidth and latency stats
156 */
157 struct io_stat clat_stat[DDIR_RWDIR_CNT]; /* completion latency */
158 struct io_stat slat_stat[DDIR_RWDIR_CNT]; /* submission latency */
159 struct io_stat lat_stat[DDIR_RWDIR_CNT]; /* total latency */
160 struct io_stat bw_stat[DDIR_RWDIR_CNT]; /* bandwidth stats */
161 struct io_stat iops_stat[DDIR_RWDIR_CNT]; /* IOPS stats */
162
163 /*
164 * fio system usage accounting
165 */
166 uint64_t usr_time;
167 uint64_t sys_time;
168 uint64_t ctx;
169 uint64_t minf, majf;
170
171 /*
172 * IO depth and latency stats
173 */
174 uint64_t clat_percentiles;
175 uint64_t percentile_precision;
176 fio_fp64_t percentile_list[FIO_IO_U_LIST_MAX_LEN];
177
178 uint32_t io_u_map[FIO_IO_U_MAP_NR];
179 uint32_t io_u_submit[FIO_IO_U_MAP_NR];
180 uint32_t io_u_complete[FIO_IO_U_MAP_NR];
181 uint32_t io_u_lat_u[FIO_IO_U_LAT_U_NR];
182 uint32_t io_u_lat_m[FIO_IO_U_LAT_M_NR];
183 uint32_t io_u_plat[DDIR_RWDIR_CNT][FIO_IO_U_PLAT_NR];
184 uint32_t pad;
185
186 uint64_t total_io_u[DDIR_RWDIR_CNT];
187 uint64_t short_io_u[DDIR_RWDIR_CNT];
188 uint64_t drop_io_u[DDIR_RWDIR_CNT];
189 uint64_t total_submit;
190 uint64_t total_complete;
191
192 uint64_t io_bytes[DDIR_RWDIR_CNT];
193 uint64_t runtime[DDIR_RWDIR_CNT];
194 uint64_t total_run_time;
195
196 /*
197 * IO Error related stats
198 */
199 union {
200 uint16_t continue_on_error;
201 uint32_t pad2;
202 };
203 uint32_t first_error;
204 uint64_t total_err_count;
205
206 uint64_t nr_block_infos;
207 uint32_t block_infos[MAX_NR_BLOCK_INFOS];
208
209 uint32_t kb_base;
210 uint32_t unit_base;
211
212 uint32_t latency_depth;
213 uint32_t pad3;
214 uint64_t latency_target;
215 fio_fp64_t latency_percentile;
216 uint64_t latency_window;
217
218 uint64_t ss_dur;
219 uint32_t ss_state;
220 uint32_t ss_head;
221
222 fio_fp64_t ss_limit;
223 fio_fp64_t ss_slope;
224 fio_fp64_t ss_deviation;
225 fio_fp64_t ss_criterion;
226
227 union {
228 uint64_t *ss_iops_data;
229 uint64_t pad4;
230 };
231
232 union {
233 uint64_t *ss_bw_data;
234 uint64_t pad5;
235 };
236 } __attribute__((packed));
237
238 struct jobs_eta {
239 uint32_t nr_running;
240 uint32_t nr_ramp;
241
242 uint32_t nr_pending;
243 uint32_t nr_setting_up;
244
245 uint32_t files_open;
246
247 uint64_t m_rate[DDIR_RWDIR_CNT], t_rate[DDIR_RWDIR_CNT];
248 uint32_t m_iops[DDIR_RWDIR_CNT], t_iops[DDIR_RWDIR_CNT];
249 uint64_t rate[DDIR_RWDIR_CNT];
250 uint32_t iops[DDIR_RWDIR_CNT];
251 uint64_t elapsed_sec;
252 uint64_t eta_sec;
253 uint32_t is_pow2;
254 uint32_t unit_base;
255
256 /*
257 * Network 'copy' of run_str[]
258 */
259 uint32_t nr_threads;
260 uint8_t run_str[];
261 } __attribute__((packed));
262
263 struct io_u_plat_entry {
264 struct flist_head list;
265 unsigned int io_u_plat[FIO_IO_U_PLAT_NR];
266 };
267
268 extern struct fio_mutex *stat_mutex;
269
270 extern struct jobs_eta *get_jobs_eta(bool force, size_t *size);
271
272 extern void stat_init(void);
273 extern void stat_exit(void);
274
275 extern struct json_object * show_thread_status(struct thread_stat *ts, struct group_run_stats *rs, struct flist_head *, struct buf_output *);
276 extern void show_group_stats(struct group_run_stats *rs, struct buf_output *);
277 extern bool calc_thread_status(struct jobs_eta *je, int force);
278 extern void display_thread_status(struct jobs_eta *je);
279 extern void show_run_stats(void);
280 extern void __show_run_stats(void);
281 extern void __show_running_run_stats(void);
282 extern void show_running_run_stats(void);
283 extern void check_for_running_stats(void);
284 extern void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src, bool first);
285 extern void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src);
286 extern void init_thread_stat(struct thread_stat *ts);
287 extern void init_group_run_stat(struct group_run_stats *gs);
288 extern void eta_to_str(char *str, unsigned long eta_sec);
289 extern bool calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max, double *mean, double *dev);
290 extern unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr, fio_fp64_t *plist, unsigned int **output, unsigned int *maxv, unsigned int *minv);
291 extern void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat);
292 extern void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat);
293 extern void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist);
294 extern void reset_io_stats(struct thread_data *);
295 extern void update_rusage_stat(struct thread_data *);
296 extern void clear_rusage_stat(struct thread_data *);
297
298 extern void add_lat_sample(struct thread_data *, enum fio_ddir, unsigned long,
299 unsigned int, uint64_t);
300 extern void add_clat_sample(struct thread_data *, enum fio_ddir, unsigned long,
301 unsigned int, uint64_t);
302 extern void add_slat_sample(struct thread_data *, enum fio_ddir, unsigned long,
303 unsigned int, uint64_t);
304 extern void add_agg_sample(union io_sample_data, enum fio_ddir, unsigned int);
305 extern void add_iops_sample(struct thread_data *, struct io_u *,
306 unsigned int);
307 extern void add_bw_sample(struct thread_data *, struct io_u *,
308 unsigned int, unsigned long);
309 extern int calc_log_samples(void);
310
311 extern struct io_log *agg_io_log[DDIR_RWDIR_CNT];
312 extern int write_bw_log;
313
usec_to_msec(unsigned long * min,unsigned long * max,double * mean,double * dev)314 static inline bool usec_to_msec(unsigned long *min, unsigned long *max,
315 double *mean, double *dev)
316 {
317 if (*min > 1000 && *max > 1000 && *mean > 1000.0 && *dev > 1000.0) {
318 *min /= 1000;
319 *max /= 1000;
320 *mean /= 1000.0;
321 *dev /= 1000.0;
322 return true;
323 }
324
325 return false;
326 }
327 /*
328 * Worst level condensing would be 1:5, so allow enough room for that
329 */
330 #define __THREAD_RUNSTR_SZ(nr) ((nr) * 5)
331 #define THREAD_RUNSTR_SZ __THREAD_RUNSTR_SZ(thread_number)
332
333 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u);
334
335 #endif
336