• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the target machine instruction set to the code generator.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
15 #define LLVM_TARGET_TARGETINSTRINFO_H
16 
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/CodeGen/MachineCombinerPattern.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/Support/BranchProbability.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 
27 namespace llvm {
28 
29 class InstrItineraryData;
30 class LiveVariables;
31 class MCAsmInfo;
32 class MachineMemOperand;
33 class MachineRegisterInfo;
34 class MDNode;
35 class MCInst;
36 struct MCSchedModel;
37 class MCSymbolRefExpr;
38 class SDNode;
39 class ScheduleHazardRecognizer;
40 class SelectionDAG;
41 class ScheduleDAG;
42 class TargetRegisterClass;
43 class TargetRegisterInfo;
44 class TargetSubtargetInfo;
45 class TargetSchedModel;
46 class DFAPacketizer;
47 
48 template<class T> class SmallVectorImpl;
49 
50 //---------------------------------------------------------------------------
51 ///
52 /// TargetInstrInfo - Interface to description of machine instruction set
53 ///
54 class TargetInstrInfo : public MCInstrInfo {
55   TargetInstrInfo(const TargetInstrInfo &) = delete;
56   void operator=(const TargetInstrInfo &) = delete;
57 public:
58   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
59                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
CallFrameSetupOpcode(CFSetupOpcode)60       : CallFrameSetupOpcode(CFSetupOpcode),
61         CallFrameDestroyOpcode(CFDestroyOpcode),
62         CatchRetOpcode(CatchRetOpcode),
63         ReturnOpcode(ReturnOpcode) {}
64 
65   virtual ~TargetInstrInfo();
66 
isGenericOpcode(unsigned Opc)67   static bool isGenericOpcode(unsigned Opc) {
68     return Opc <= TargetOpcode::GENERIC_OP_END;
69   }
70 
71   /// Given a machine instruction descriptor, returns the register
72   /// class constraint for OpNum, or NULL.
73   const TargetRegisterClass *getRegClass(const MCInstrDesc &TID,
74                                          unsigned OpNum,
75                                          const TargetRegisterInfo *TRI,
76                                          const MachineFunction &MF) const;
77 
78   /// Return true if the instruction is trivially rematerializable, meaning it
79   /// has no side effects and requires no operands that aren't always available.
80   /// This means the only allowed uses are constants and unallocatable physical
81   /// registers so that the instructions result is independent of the place
82   /// in the function.
83   bool isTriviallyReMaterializable(const MachineInstr &MI,
84                                    AliasAnalysis *AA = nullptr) const {
85     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
86            (MI.getDesc().isRematerializable() &&
87             (isReallyTriviallyReMaterializable(MI, AA) ||
88              isReallyTriviallyReMaterializableGeneric(MI, AA)));
89   }
90 
91 protected:
92   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
93   /// set, this hook lets the target specify whether the instruction is actually
94   /// trivially rematerializable, taking into consideration its operands. This
95   /// predicate must return false if the instruction has any side effects other
96   /// than producing a value, or if it requres any address registers that are
97   /// not always available.
98   /// Requirements must be check as stated in isTriviallyReMaterializable() .
isReallyTriviallyReMaterializable(const MachineInstr & MI,AliasAnalysis * AA)99   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
100                                                  AliasAnalysis *AA) const {
101     return false;
102   }
103 
104   /// This method commutes the operands of the given machine instruction MI.
105   /// The operands to be commuted are specified by their indices OpIdx1 and
106   /// OpIdx2.
107   ///
108   /// If a target has any instructions that are commutable but require
109   /// converting to different instructions or making non-trivial changes
110   /// to commute them, this method can be overloaded to do that.
111   /// The default implementation simply swaps the commutable operands.
112   ///
113   /// If NewMI is false, MI is modified in place and returned; otherwise, a
114   /// new machine instruction is created and returned.
115   ///
116   /// Do not call this method for a non-commutable instruction.
117   /// Even though the instruction is commutable, the method may still
118   /// fail to commute the operands, null pointer is returned in such cases.
119   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
120                                                unsigned OpIdx1,
121                                                unsigned OpIdx2) const;
122 
123   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
124   /// operand indices to (ResultIdx1, ResultIdx2).
125   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
126   /// predefined to some indices or be undefined (designated by the special
127   /// value 'CommuteAnyOperandIndex').
128   /// The predefined result indices cannot be re-defined.
129   /// The function returns true iff after the result pair redefinition
130   /// the fixed result pair is equal to or equivalent to the source pair of
131   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
132   /// the pairs (x,y) and (y,x) are equivalent.
133   static bool fixCommutedOpIndices(unsigned &ResultIdx1,
134                                    unsigned &ResultIdx2,
135                                    unsigned CommutableOpIdx1,
136                                    unsigned CommutableOpIdx2);
137 
138 private:
139   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
140   /// set and the target hook isReallyTriviallyReMaterializable returns false,
141   /// this function does target-independent tests to determine if the
142   /// instruction is really trivially rematerializable.
143   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
144                                                 AliasAnalysis *AA) const;
145 
146 public:
147   /// These methods return the opcode of the frame setup/destroy instructions
148   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
149   /// order to abstract away the difference between operating with a frame
150   /// pointer and operating without, through the use of these two instructions.
151   ///
getCallFrameSetupOpcode()152   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
getCallFrameDestroyOpcode()153   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
154 
getCatchReturnOpcode()155   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
getReturnOpcode()156   unsigned getReturnOpcode() const { return ReturnOpcode; }
157 
158   /// Returns the actual stack pointer adjustment made by an instruction
159   /// as part of a call sequence. By default, only call frame setup/destroy
160   /// instructions adjust the stack, but targets may want to override this
161   /// to enable more fine-grained adjustment, or adjust by a different value.
162   virtual int getSPAdjust(const MachineInstr &MI) const;
163 
164   /// Return true if the instruction is a "coalescable" extension instruction.
165   /// That is, it's like a copy where it's legal for the source to overlap the
166   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
167   /// expected the pre-extension value is available as a subreg of the result
168   /// register. This also returns the sub-register index in SubIdx.
isCoalescableExtInstr(const MachineInstr & MI,unsigned & SrcReg,unsigned & DstReg,unsigned & SubIdx)169   virtual bool isCoalescableExtInstr(const MachineInstr &MI,
170                                      unsigned &SrcReg, unsigned &DstReg,
171                                      unsigned &SubIdx) const {
172     return false;
173   }
174 
175   /// If the specified machine instruction is a direct
176   /// load from a stack slot, return the virtual or physical register number of
177   /// the destination along with the FrameIndex of the loaded stack slot.  If
178   /// not, return 0.  This predicate must return 0 if the instruction has
179   /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex)180   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
181                                        int &FrameIndex) const {
182     return 0;
183   }
184 
185   /// Check for post-frame ptr elimination stack locations as well.
186   /// This uses a heuristic so it isn't reliable for correctness.
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)187   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
188                                              int &FrameIndex) const {
189     return 0;
190   }
191 
192   /// If the specified machine instruction has a load from a stack slot,
193   /// return true along with the FrameIndex of the loaded stack slot and the
194   /// machine mem operand containing the reference.
195   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
196   /// any instructions that loads from the stack.  This is just a hint, as some
197   /// cases may be missed.
198   virtual bool hasLoadFromStackSlot(const MachineInstr &MI,
199                                     const MachineMemOperand *&MMO,
200                                     int &FrameIndex) const;
201 
202   /// If the specified machine instruction is a direct
203   /// store to a stack slot, return the virtual or physical register number of
204   /// the source reg along with the FrameIndex of the loaded stack slot.  If
205   /// not, return 0.  This predicate must return 0 if the instruction has
206   /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex)207   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
208                                       int &FrameIndex) const {
209     return 0;
210   }
211 
212   /// Check for post-frame ptr elimination stack locations as well.
213   /// This uses a heuristic, so it isn't reliable for correctness.
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex)214   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
215                                             int &FrameIndex) const {
216     return 0;
217   }
218 
219   /// If the specified machine instruction has a store to a stack slot,
220   /// return true along with the FrameIndex of the loaded stack slot and the
221   /// machine mem operand containing the reference.
222   /// If not, return false.  Unlike isStoreToStackSlot,
223   /// this returns true for any instructions that stores to the
224   /// stack.  This is just a hint, as some cases may be missed.
225   virtual bool hasStoreToStackSlot(const MachineInstr &MI,
226                                    const MachineMemOperand *&MMO,
227                                    int &FrameIndex) const;
228 
229   /// Return true if the specified machine instruction
230   /// is a copy of one stack slot to another and has no other effect.
231   /// Provide the identity of the two frame indices.
isStackSlotCopy(const MachineInstr & MI,int & DestFrameIndex,int & SrcFrameIndex)232   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
233                                int &SrcFrameIndex) const {
234     return false;
235   }
236 
237   /// Compute the size in bytes and offset within a stack slot of a spilled
238   /// register or subregister.
239   ///
240   /// \param [out] Size in bytes of the spilled value.
241   /// \param [out] Offset in bytes within the stack slot.
242   /// \returns true if both Size and Offset are successfully computed.
243   ///
244   /// Not all subregisters have computable spill slots. For example,
245   /// subregisters registers may not be byte-sized, and a pair of discontiguous
246   /// subregisters has no single offset.
247   ///
248   /// Targets with nontrivial bigendian implementations may need to override
249   /// this, particularly to support spilled vector registers.
250   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
251                                  unsigned &Size, unsigned &Offset,
252                                  const MachineFunction &MF) const;
253 
254   /// Return true if the instruction is as cheap as a move instruction.
255   ///
256   /// Targets for different archs need to override this, and different
257   /// micro-architectures can also be finely tuned inside.
isAsCheapAsAMove(const MachineInstr & MI)258   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
259     return MI.isAsCheapAsAMove();
260   }
261 
262   /// Return true if the instruction should be sunk by MachineSink.
263   ///
264   /// MachineSink determines on its own whether the instruction is safe to sink;
265   /// this gives the target a hook to override the default behavior with regards
266   /// to which instructions should be sunk.
267   /// The default behavior is to not sink insert_subreg, subreg_to_reg, and
268   /// reg_sequence. These are meant to be close to the source to make it easier
269   /// to coalesce.
shouldSink(const MachineInstr & MI)270   virtual bool shouldSink(const MachineInstr &MI) const {
271     return !MI.isInsertSubreg() && !MI.isSubregToReg() && !MI.isRegSequence();
272   }
273 
274   /// Re-issue the specified 'original' instruction at the
275   /// specific location targeting a new destination register.
276   /// The register in Orig->getOperand(0).getReg() will be substituted by
277   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
278   /// SubIdx.
279   virtual void reMaterialize(MachineBasicBlock &MBB,
280                              MachineBasicBlock::iterator MI, unsigned DestReg,
281                              unsigned SubIdx, const MachineInstr &Orig,
282                              const TargetRegisterInfo &TRI) const;
283 
284   /// Create a duplicate of the Orig instruction in MF. This is like
285   /// MachineFunction::CloneMachineInstr(), but the target may update operands
286   /// that are required to be unique.
287   ///
288   /// The instruction must be duplicable as indicated by isNotDuplicable().
289   virtual MachineInstr *duplicate(MachineInstr &Orig,
290                                   MachineFunction &MF) const;
291 
292   /// This method must be implemented by targets that
293   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
294   /// may be able to convert a two-address instruction into one or more true
295   /// three-address instructions on demand.  This allows the X86 target (for
296   /// example) to convert ADD and SHL instructions into LEA instructions if they
297   /// would require register copies due to two-addressness.
298   ///
299   /// This method returns a null pointer if the transformation cannot be
300   /// performed, otherwise it returns the last new instruction.
301   ///
convertToThreeAddress(MachineFunction::iterator & MFI,MachineInstr & MI,LiveVariables * LV)302   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
303                                               MachineInstr &MI,
304                                               LiveVariables *LV) const {
305     return nullptr;
306   }
307 
308   // This constant can be used as an input value of operand index passed to
309   // the method findCommutedOpIndices() to tell the method that the
310   // corresponding operand index is not pre-defined and that the method
311   // can pick any commutable operand.
312   static const unsigned CommuteAnyOperandIndex = ~0U;
313 
314   /// This method commutes the operands of the given machine instruction MI.
315   ///
316   /// The operands to be commuted are specified by their indices OpIdx1 and
317   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
318   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
319   /// any arbitrarily chosen commutable operand. If both arguments are set to
320   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
321   /// operands; then commutes them if such operands could be found.
322   ///
323   /// If NewMI is false, MI is modified in place and returned; otherwise, a
324   /// new machine instruction is created and returned.
325   ///
326   /// Do not call this method for a non-commutable instruction or
327   /// for non-commuable operands.
328   /// Even though the instruction is commutable, the method may still
329   /// fail to commute the operands, null pointer is returned in such cases.
330   MachineInstr *
331   commuteInstruction(MachineInstr &MI, bool NewMI = false,
332                      unsigned OpIdx1 = CommuteAnyOperandIndex,
333                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
334 
335   /// Returns true iff the routine could find two commutable operands in the
336   /// given machine instruction.
337   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
338   /// If any of the INPUT values is set to the special value
339   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
340   /// operand, then returns its index in the corresponding argument.
341   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
342   /// looks for 2 commutable operands.
343   /// If INPUT values refer to some operands of MI, then the method simply
344   /// returns true if the corresponding operands are commutable and returns
345   /// false otherwise.
346   ///
347   /// For example, calling this method this way:
348   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
349   ///     findCommutedOpIndices(MI, Op1, Op2);
350   /// can be interpreted as a query asking to find an operand that would be
351   /// commutable with the operand#1.
352   virtual bool findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1,
353                                      unsigned &SrcOpIdx2) const;
354 
355   /// A pair composed of a register and a sub-register index.
356   /// Used to give some type checking when modeling Reg:SubReg.
357   struct RegSubRegPair {
358     unsigned Reg;
359     unsigned SubReg;
360     RegSubRegPair(unsigned Reg = 0, unsigned SubReg = 0)
RegRegSubRegPair361         : Reg(Reg), SubReg(SubReg) {}
362   };
363   /// A pair composed of a pair of a register and a sub-register index,
364   /// and another sub-register index.
365   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
366   struct RegSubRegPairAndIdx : RegSubRegPair {
367     unsigned SubIdx;
368     RegSubRegPairAndIdx(unsigned Reg = 0, unsigned SubReg = 0,
369                         unsigned SubIdx = 0)
RegSubRegPairRegSubRegPairAndIdx370         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
371   };
372 
373   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
374   /// and \p DefIdx.
375   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
376   /// the list is modeled as <Reg:SubReg, SubIdx>.
377   /// E.g., REG_SEQUENCE vreg1:sub1, sub0, vreg2, sub1 would produce
378   /// two elements:
379   /// - vreg1:sub1, sub0
380   /// - vreg2<:0>, sub1
381   ///
382   /// \returns true if it is possible to build such an input sequence
383   /// with the pair \p MI, \p DefIdx. False otherwise.
384   ///
385   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
386   ///
387   /// \note The generic implementation does not provide any support for
388   /// MI.isRegSequenceLike(). In other words, one has to override
389   /// getRegSequenceLikeInputs for target specific instructions.
390   bool
391   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
392                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
393 
394   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
395   /// and \p DefIdx.
396   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
397   /// E.g., EXTRACT_SUBREG vreg1:sub1, sub0, sub1 would produce:
398   /// - vreg1:sub1, sub0
399   ///
400   /// \returns true if it is possible to build such an input sequence
401   /// with the pair \p MI, \p DefIdx. False otherwise.
402   ///
403   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
404   ///
405   /// \note The generic implementation does not provide any support for
406   /// MI.isExtractSubregLike(). In other words, one has to override
407   /// getExtractSubregLikeInputs for target specific instructions.
408   bool
409   getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
410                          RegSubRegPairAndIdx &InputReg) const;
411 
412   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
413   /// and \p DefIdx.
414   /// \p [out] BaseReg and \p [out] InsertedReg contain
415   /// the equivalent inputs of INSERT_SUBREG.
416   /// E.g., INSERT_SUBREG vreg0:sub0, vreg1:sub1, sub3 would produce:
417   /// - BaseReg: vreg0:sub0
418   /// - InsertedReg: vreg1:sub1, sub3
419   ///
420   /// \returns true if it is possible to build such an input sequence
421   /// with the pair \p MI, \p DefIdx. False otherwise.
422   ///
423   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
424   ///
425   /// \note The generic implementation does not provide any support for
426   /// MI.isInsertSubregLike(). In other words, one has to override
427   /// getInsertSubregLikeInputs for target specific instructions.
428   bool
429   getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
430                         RegSubRegPair &BaseReg,
431                         RegSubRegPairAndIdx &InsertedReg) const;
432 
433 
434   /// Return true if two machine instructions would produce identical values.
435   /// By default, this is only true when the two instructions
436   /// are deemed identical except for defs. If this function is called when the
437   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
438   /// aggressive checks.
439   virtual bool produceSameValue(const MachineInstr &MI0,
440                                 const MachineInstr &MI1,
441                                 const MachineRegisterInfo *MRI = nullptr) const;
442 
443   /// Analyze the branching code at the end of MBB, returning
444   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
445   /// implemented for a target).  Upon success, this returns false and returns
446   /// with the following information in various cases:
447   ///
448   /// 1. If this block ends with no branches (it just falls through to its succ)
449   ///    just return false, leaving TBB/FBB null.
450   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
451   ///    the destination block.
452   /// 3. If this block ends with a conditional branch and it falls through to a
453   ///    successor block, it sets TBB to be the branch destination block and a
454   ///    list of operands that evaluate the condition. These operands can be
455   ///    passed to other TargetInstrInfo methods to create new branches.
456   /// 4. If this block ends with a conditional branch followed by an
457   ///    unconditional branch, it returns the 'true' destination in TBB, the
458   ///    'false' destination in FBB, and a list of operands that evaluate the
459   ///    condition.  These operands can be passed to other TargetInstrInfo
460   ///    methods to create new branches.
461   ///
462   /// Note that RemoveBranch and InsertBranch must be implemented to support
463   /// cases where this method returns success.
464   ///
465   /// If AllowModify is true, then this routine is allowed to modify the basic
466   /// block (e.g. delete instructions after the unconditional branch).
467   ///
468   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
469   /// before calling this function.
470   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
471                              MachineBasicBlock *&FBB,
472                              SmallVectorImpl<MachineOperand> &Cond,
473                              bool AllowModify = false) const {
474     return true;
475   }
476 
477   /// Represents a predicate at the MachineFunction level.  The control flow a
478   /// MachineBranchPredicate represents is:
479   ///
480   ///  Reg <def>= LHS `Predicate` RHS         == ConditionDef
481   ///  if Reg then goto TrueDest else goto FalseDest
482   ///
483   struct MachineBranchPredicate {
484     enum ComparePredicate {
485       PRED_EQ,     // True if two values are equal
486       PRED_NE,     // True if two values are not equal
487       PRED_INVALID // Sentinel value
488     };
489 
490     ComparePredicate Predicate;
491     MachineOperand LHS;
492     MachineOperand RHS;
493     MachineBasicBlock *TrueDest;
494     MachineBasicBlock *FalseDest;
495     MachineInstr *ConditionDef;
496 
497     /// SingleUseCondition is true if ConditionDef is dead except for the
498     /// branch(es) at the end of the basic block.
499     ///
500     bool SingleUseCondition;
501 
MachineBranchPredicateMachineBranchPredicate502     explicit MachineBranchPredicate()
503         : Predicate(PRED_INVALID), LHS(MachineOperand::CreateImm(0)),
504           RHS(MachineOperand::CreateImm(0)), TrueDest(nullptr),
505           FalseDest(nullptr), ConditionDef(nullptr), SingleUseCondition(false) {
506     }
507   };
508 
509   /// Analyze the branching code at the end of MBB and parse it into the
510   /// MachineBranchPredicate structure if possible.  Returns false on success
511   /// and true on failure.
512   ///
513   /// If AllowModify is true, then this routine is allowed to modify the basic
514   /// block (e.g. delete instructions after the unconditional branch).
515   ///
516   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
517                                       MachineBranchPredicate &MBP,
518                                       bool AllowModify = false) const {
519     return true;
520   }
521 
522   /// Remove the branching code at the end of the specific MBB.
523   /// This is only invoked in cases where AnalyzeBranch returns success. It
524   /// returns the number of instructions that were removed.
RemoveBranch(MachineBasicBlock & MBB)525   virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const {
526     llvm_unreachable("Target didn't implement TargetInstrInfo::RemoveBranch!");
527   }
528 
529   /// Insert branch code into the end of the specified MachineBasicBlock.
530   /// The operands to this method are the same as those
531   /// returned by AnalyzeBranch.  This is only invoked in cases where
532   /// AnalyzeBranch returns success. It returns the number of instructions
533   /// inserted.
534   ///
535   /// It is also invoked by tail merging to add unconditional branches in
536   /// cases where AnalyzeBranch doesn't apply because there was no original
537   /// branch to analyze.  At least this much must be implemented, else tail
538   /// merging needs to be disabled.
539   ///
540   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
541   /// before calling this function.
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL)542   virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
543                                 MachineBasicBlock *FBB,
544                                 ArrayRef<MachineOperand> Cond,
545                                 const DebugLoc &DL) const {
546     llvm_unreachable("Target didn't implement TargetInstrInfo::InsertBranch!");
547   }
548 
549   /// Analyze the loop code, return true if it cannot be understoo. Upon
550   /// success, this function returns false and returns information about the
551   /// induction variable and compare instruction used at the end.
analyzeLoop(MachineLoop & L,MachineInstr * & IndVarInst,MachineInstr * & CmpInst)552   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
553                            MachineInstr *&CmpInst) const {
554     return true;
555   }
556 
557   /// Generate code to reduce the loop iteration by one and check if the loop is
558   /// finished.  Return the value/register of the the new loop count.  We need
559   /// this function when peeling off one or more iterations of a loop. This
560   /// function assumes the nth iteration is peeled first.
reduceLoopCount(MachineBasicBlock & MBB,MachineInstr * IndVar,MachineInstr * Cmp,SmallVectorImpl<MachineOperand> & Cond,SmallVectorImpl<MachineInstr * > & PrevInsts,unsigned Iter,unsigned MaxIter)561   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
562                                    MachineInstr *IndVar, MachineInstr *Cmp,
563                                    SmallVectorImpl<MachineOperand> &Cond,
564                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
565                                    unsigned Iter, unsigned MaxIter) const {
566     llvm_unreachable("Target didn't implement ReduceLoopCount");
567   }
568 
569   /// Delete the instruction OldInst and everything after it, replacing it with
570   /// an unconditional branch to NewDest. This is used by the tail merging pass.
571   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
572                                        MachineBasicBlock *NewDest) const;
573 
574   /// Get an instruction that performs an unconditional branch to the given
575   /// symbol.
576   virtual void
getUnconditionalBranch(MCInst & MI,const MCSymbolRefExpr * BranchTarget)577   getUnconditionalBranch(MCInst &MI,
578                          const MCSymbolRefExpr *BranchTarget) const {
579     llvm_unreachable("Target didn't implement "
580                      "TargetInstrInfo::getUnconditionalBranch!");
581   }
582 
583   /// Get a machine trap instruction.
getTrap(MCInst & MI)584   virtual void getTrap(MCInst &MI) const {
585     llvm_unreachable("Target didn't implement TargetInstrInfo::getTrap!");
586   }
587 
588   /// Get a number of bytes that suffices to hold
589   /// either the instruction returned by getUnconditionalBranch or the
590   /// instruction returned by getTrap. This only makes sense because
591   /// getUnconditionalBranch returns a single, specific instruction. This
592   /// information is needed by the jumptable construction code, since it must
593   /// decide how many bytes to use for a jumptable entry so it can generate the
594   /// right mask.
595   ///
596   /// Note that if the jumptable instruction requires alignment, then that
597   /// alignment should be factored into this required bound so that the
598   /// resulting bound gives the right alignment for the instruction.
getJumpInstrTableEntryBound()599   virtual unsigned getJumpInstrTableEntryBound() const {
600     // This method gets called by LLVMTargetMachine always, so it can't fail
601     // just because there happens to be no implementation for this target.
602     // Any code that tries to use a jumptable annotation without defining
603     // getUnconditionalBranch on the appropriate Target will fail anyway, and
604     // the value returned here won't matter in that case.
605     return 0;
606   }
607 
608   /// Return true if it's legal to split the given basic
609   /// block at the specified instruction (i.e. instruction would be the start
610   /// of a new basic block).
isLegalToSplitMBBAt(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)611   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
612                                    MachineBasicBlock::iterator MBBI) const {
613     return true;
614   }
615 
616   /// Return true if it's profitable to predicate
617   /// instructions with accumulated instruction latency of "NumCycles"
618   /// of the specified basic block, where the probability of the instructions
619   /// being executed is given by Probability, and Confidence is a measure
620   /// of our confidence that it will be properly predicted.
621   virtual
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability)622   bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
623                            unsigned ExtraPredCycles,
624                            BranchProbability Probability) const {
625     return false;
626   }
627 
628   /// Second variant of isProfitableToIfCvt. This one
629   /// checks for the case where two basic blocks from true and false path
630   /// of a if-then-else (diamond) are predicated on mutally exclusive
631   /// predicates, where the probability of the true path being taken is given
632   /// by Probability, and Confidence is a measure of our confidence that it
633   /// will be properly predicted.
634   virtual bool
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned NumTCycles,unsigned ExtraTCycles,MachineBasicBlock & FMBB,unsigned NumFCycles,unsigned ExtraFCycles,BranchProbability Probability)635   isProfitableToIfCvt(MachineBasicBlock &TMBB,
636                       unsigned NumTCycles, unsigned ExtraTCycles,
637                       MachineBasicBlock &FMBB,
638                       unsigned NumFCycles, unsigned ExtraFCycles,
639                       BranchProbability Probability) const {
640     return false;
641   }
642 
643   /// Return true if it's profitable for if-converter to duplicate instructions
644   /// of specified accumulated instruction latencies in the specified MBB to
645   /// enable if-conversion.
646   /// The probability of the instructions being executed is given by
647   /// Probability, and Confidence is a measure of our confidence that it
648   /// will be properly predicted.
649   virtual bool
isProfitableToDupForIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,BranchProbability Probability)650   isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
651                             BranchProbability Probability) const {
652     return false;
653   }
654 
655   /// Return true if it's profitable to unpredicate
656   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
657   /// exclusive predicates.
658   /// e.g.
659   ///   subeq  r0, r1, #1
660   ///   addne  r0, r1, #1
661   /// =>
662   ///   sub    r0, r1, #1
663   ///   addne  r0, r1, #1
664   ///
665   /// This may be profitable is conditional instructions are always executed.
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB)666   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
667                                          MachineBasicBlock &FMBB) const {
668     return false;
669   }
670 
671   /// Return true if it is possible to insert a select
672   /// instruction that chooses between TrueReg and FalseReg based on the
673   /// condition code in Cond.
674   ///
675   /// When successful, also return the latency in cycles from TrueReg,
676   /// FalseReg, and Cond to the destination register. In most cases, a select
677   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
678   ///
679   /// Some x86 implementations have 2-cycle cmov instructions.
680   ///
681   /// @param MBB         Block where select instruction would be inserted.
682   /// @param Cond        Condition returned by AnalyzeBranch.
683   /// @param TrueReg     Virtual register to select when Cond is true.
684   /// @param FalseReg    Virtual register to select when Cond is false.
685   /// @param CondCycles  Latency from Cond+Branch to select output.
686   /// @param TrueCycles  Latency from TrueReg to select output.
687   /// @param FalseCycles Latency from FalseReg to select output.
canInsertSelect(const MachineBasicBlock & MBB,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg,int & CondCycles,int & TrueCycles,int & FalseCycles)688   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
689                                ArrayRef<MachineOperand> Cond,
690                                unsigned TrueReg, unsigned FalseReg,
691                                int &CondCycles,
692                                int &TrueCycles, int &FalseCycles) const {
693     return false;
694   }
695 
696   /// Insert a select instruction into MBB before I that will copy TrueReg to
697   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
698   ///
699   /// This function can only be called after canInsertSelect() returned true.
700   /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
701   /// that the same flags or registers required by Cond are available at the
702   /// insertion point.
703   ///
704   /// @param MBB      Block where select instruction should be inserted.
705   /// @param I        Insertion point.
706   /// @param DL       Source location for debugging.
707   /// @param DstReg   Virtual register to be defined by select instruction.
708   /// @param Cond     Condition as computed by AnalyzeBranch.
709   /// @param TrueReg  Virtual register to copy when Cond is true.
710   /// @param FalseReg Virtual register to copy when Cons is false.
insertSelect(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,unsigned DstReg,ArrayRef<MachineOperand> Cond,unsigned TrueReg,unsigned FalseReg)711   virtual void insertSelect(MachineBasicBlock &MBB,
712                             MachineBasicBlock::iterator I, const DebugLoc &DL,
713                             unsigned DstReg, ArrayRef<MachineOperand> Cond,
714                             unsigned TrueReg, unsigned FalseReg) const {
715     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
716   }
717 
718   /// Analyze the given select instruction, returning true if
719   /// it cannot be understood. It is assumed that MI->isSelect() is true.
720   ///
721   /// When successful, return the controlling condition and the operands that
722   /// determine the true and false result values.
723   ///
724   ///   Result = SELECT Cond, TrueOp, FalseOp
725   ///
726   /// Some targets can optimize select instructions, for example by predicating
727   /// the instruction defining one of the operands. Such targets should set
728   /// Optimizable.
729   ///
730   /// @param         MI Select instruction to analyze.
731   /// @param Cond    Condition controlling the select.
732   /// @param TrueOp  Operand number of the value selected when Cond is true.
733   /// @param FalseOp Operand number of the value selected when Cond is false.
734   /// @param Optimizable Returned as true if MI is optimizable.
735   /// @returns False on success.
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable)736   virtual bool analyzeSelect(const MachineInstr &MI,
737                              SmallVectorImpl<MachineOperand> &Cond,
738                              unsigned &TrueOp, unsigned &FalseOp,
739                              bool &Optimizable) const {
740     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
741     return true;
742   }
743 
744   /// Given a select instruction that was understood by
745   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
746   /// merging it with one of its operands. Returns NULL on failure.
747   ///
748   /// When successful, returns the new select instruction. The client is
749   /// responsible for deleting MI.
750   ///
751   /// If both sides of the select can be optimized, PreferFalse is used to pick
752   /// a side.
753   ///
754   /// @param MI          Optimizable select instruction.
755   /// @param NewMIs     Set that record all MIs in the basic block up to \p
756   /// MI. Has to be updated with any newly created MI or deleted ones.
757   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
758   /// @returns Optimized instruction or NULL.
759   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
760                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
761                                        bool PreferFalse = false) const {
762     // This function must be implemented if Optimizable is ever set.
763     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
764   }
765 
766   /// Emit instructions to copy a pair of physical registers.
767   ///
768   /// This function should support copies within any legal register class as
769   /// well as any cross-class copies created during instruction selection.
770   ///
771   /// The source and destination registers may overlap, which may require a
772   /// careful implementation when multiple copy instructions are required for
773   /// large registers. See for example the ARM target.
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const DebugLoc & DL,unsigned DestReg,unsigned SrcReg,bool KillSrc)774   virtual void copyPhysReg(MachineBasicBlock &MBB,
775                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
776                            unsigned DestReg, unsigned SrcReg,
777                            bool KillSrc) const {
778     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
779   }
780 
781   /// Store the specified register of the given register class to the specified
782   /// stack frame index. The store instruction is to be added to the given
783   /// machine basic block before the specified machine instruction. If isKill
784   /// is true, the register operand is the last use and must be marked kill.
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned SrcReg,bool isKill,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)785   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
786                                    MachineBasicBlock::iterator MI,
787                                    unsigned SrcReg, bool isKill, int FrameIndex,
788                                    const TargetRegisterClass *RC,
789                                    const TargetRegisterInfo *TRI) const {
790     llvm_unreachable("Target didn't implement "
791                      "TargetInstrInfo::storeRegToStackSlot!");
792   }
793 
794   /// Load the specified register of the given register class from the specified
795   /// stack frame index. The load instruction is to be added to the given
796   /// machine basic block before the specified machine instruction.
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,unsigned DestReg,int FrameIndex,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI)797   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
798                                     MachineBasicBlock::iterator MI,
799                                     unsigned DestReg, int FrameIndex,
800                                     const TargetRegisterClass *RC,
801                                     const TargetRegisterInfo *TRI) const {
802     llvm_unreachable("Target didn't implement "
803                      "TargetInstrInfo::loadRegFromStackSlot!");
804   }
805 
806   /// This function is called for all pseudo instructions
807   /// that remain after register allocation. Many pseudo instructions are
808   /// created to help register allocation. This is the place to convert them
809   /// into real instructions. The target can edit MI in place, or it can insert
810   /// new instructions and erase MI. The function should return true if
811   /// anything was changed.
expandPostRAPseudo(MachineInstr & MI)812   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
813 
814   /// Attempt to fold a load or store of the specified stack
815   /// slot into the specified machine instruction for the specified operand(s).
816   /// If this is possible, a new instruction is returned with the specified
817   /// operand folded, otherwise NULL is returned.
818   /// The new instruction is inserted before MI, and the client is responsible
819   /// for removing the old instruction.
820   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
821                                   int FrameIndex,
822                                   LiveIntervals *LIS = nullptr) const;
823 
824   /// Same as the previous version except it allows folding of any load and
825   /// store from / to any address, not just from a specific stack slot.
826   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
827                                   MachineInstr &LoadMI,
828                                   LiveIntervals *LIS = nullptr) const;
829 
830   /// Return true when there is potentially a faster code sequence
831   /// for an instruction chain ending in \p Root. All potential patterns are
832   /// returned in the \p Pattern vector. Pattern should be sorted in priority
833   /// order since the pattern evaluator stops checking as soon as it finds a
834   /// faster sequence.
835   /// \param Root - Instruction that could be combined with one of its operands
836   /// \param Patterns - Vector of possible combination patterns
837   virtual bool getMachineCombinerPatterns(
838       MachineInstr &Root,
839       SmallVectorImpl<MachineCombinerPattern> &Patterns) const;
840 
841   /// Return true when a code sequence can improve throughput. It
842   /// should be called only for instructions in loops.
843   /// \param Pattern - combiner pattern
844   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
845 
846   /// Return true if the input \P Inst is part of a chain of dependent ops
847   /// that are suitable for reassociation, otherwise return false.
848   /// If the instruction's operands must be commuted to have a previous
849   /// instruction of the same type define the first source operand, \P Commuted
850   /// will be set to true.
851   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
852 
853   /// Return true when \P Inst is both associative and commutative.
isAssociativeAndCommutative(const MachineInstr & Inst)854   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
855     return false;
856   }
857 
858   /// Return true when \P Inst has reassociable operands in the same \P MBB.
859   virtual bool hasReassociableOperands(const MachineInstr &Inst,
860                                        const MachineBasicBlock *MBB) const;
861 
862   /// Return true when \P Inst has reassociable sibling.
863   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
864 
865   /// When getMachineCombinerPatterns() finds patterns, this function generates
866   /// the instructions that could replace the original code sequence. The client
867   /// has to decide whether the actual replacement is beneficial or not.
868   /// \param Root - Instruction that could be combined with one of its operands
869   /// \param Pattern - Combination pattern for Root
870   /// \param InsInstrs - Vector of new instructions that implement P
871   /// \param DelInstrs - Old instructions, including Root, that could be
872   /// replaced by InsInstr
873   /// \param InstrIdxForVirtReg - map of virtual register to instruction in
874   /// InsInstr that defines it
875   virtual void genAlternativeCodeSequence(
876       MachineInstr &Root, MachineCombinerPattern Pattern,
877       SmallVectorImpl<MachineInstr *> &InsInstrs,
878       SmallVectorImpl<MachineInstr *> &DelInstrs,
879       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
880 
881   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
882   /// reduce critical path length.
883   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
884                       MachineCombinerPattern Pattern,
885                       SmallVectorImpl<MachineInstr *> &InsInstrs,
886                       SmallVectorImpl<MachineInstr *> &DelInstrs,
887                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
888 
889   /// This is an architecture-specific helper function of reassociateOps.
890   /// Set special operand attributes for new instructions after reassociation.
setSpecialOperandAttr(MachineInstr & OldMI1,MachineInstr & OldMI2,MachineInstr & NewMI1,MachineInstr & NewMI2)891   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
892                                      MachineInstr &NewMI1,
893                                      MachineInstr &NewMI2) const {
894   }
895 
896   /// Return true when a target supports MachineCombiner.
useMachineCombiner()897   virtual bool useMachineCombiner() const { return false; }
898 
899 protected:
900   /// Target-dependent implementation for foldMemoryOperand.
901   /// Target-independent code in foldMemoryOperand will
902   /// take care of adding a MachineMemOperand to the newly created instruction.
903   /// The instruction and any auxiliary instructions necessary will be inserted
904   /// at InsertPt.
905   virtual MachineInstr *
906   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
907                         ArrayRef<unsigned> Ops,
908                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
909                         LiveIntervals *LIS = nullptr) const {
910     return nullptr;
911   }
912 
913   /// Target-dependent implementation for foldMemoryOperand.
914   /// Target-independent code in foldMemoryOperand will
915   /// take care of adding a MachineMemOperand to the newly created instruction.
916   /// The instruction and any auxiliary instructions necessary will be inserted
917   /// at InsertPt.
918   virtual MachineInstr *foldMemoryOperandImpl(
919       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
920       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
921       LiveIntervals *LIS = nullptr) const {
922     return nullptr;
923   }
924 
925   /// \brief Target-dependent implementation of getRegSequenceInputs.
926   ///
927   /// \returns true if it is possible to build the equivalent
928   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
929   ///
930   /// \pre MI.isRegSequenceLike().
931   ///
932   /// \see TargetInstrInfo::getRegSequenceInputs.
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs)933   virtual bool getRegSequenceLikeInputs(
934       const MachineInstr &MI, unsigned DefIdx,
935       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
936     return false;
937   }
938 
939   /// \brief Target-dependent implementation of getExtractSubregInputs.
940   ///
941   /// \returns true if it is possible to build the equivalent
942   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
943   ///
944   /// \pre MI.isExtractSubregLike().
945   ///
946   /// \see TargetInstrInfo::getExtractSubregInputs.
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg)947   virtual bool getExtractSubregLikeInputs(
948       const MachineInstr &MI, unsigned DefIdx,
949       RegSubRegPairAndIdx &InputReg) const {
950     return false;
951   }
952 
953   /// \brief Target-dependent implementation of getInsertSubregInputs.
954   ///
955   /// \returns true if it is possible to build the equivalent
956   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
957   ///
958   /// \pre MI.isInsertSubregLike().
959   ///
960   /// \see TargetInstrInfo::getInsertSubregInputs.
961   virtual bool
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg)962   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
963                             RegSubRegPair &BaseReg,
964                             RegSubRegPairAndIdx &InsertedReg) const {
965     return false;
966   }
967 
968 public:
969   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
970   /// a store or a load and a store into two or more instruction. If this is
971   /// possible, returns true as well as the new instructions by reference.
972   virtual bool
unfoldMemoryOperand(MachineFunction & MF,MachineInstr & MI,unsigned Reg,bool UnfoldLoad,bool UnfoldStore,SmallVectorImpl<MachineInstr * > & NewMIs)973   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
974                       bool UnfoldLoad, bool UnfoldStore,
975                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
976     return false;
977   }
978 
unfoldMemoryOperand(SelectionDAG & DAG,SDNode * N,SmallVectorImpl<SDNode * > & NewNodes)979   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
980                                    SmallVectorImpl<SDNode*> &NewNodes) const {
981     return false;
982   }
983 
984   /// Returns the opcode of the would be new
985   /// instruction after load / store are unfolded from an instruction of the
986   /// specified opcode. It returns zero if the specified unfolding is not
987   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
988   /// index of the operand which will hold the register holding the loaded
989   /// value.
990   virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
991                                       bool UnfoldLoad, bool UnfoldStore,
992                                       unsigned *LoadRegIndex = nullptr) const {
993     return 0;
994   }
995 
996   /// This is used by the pre-regalloc scheduler to determine if two loads are
997   /// loading from the same base address. It should only return true if the base
998   /// pointers are the same and the only differences between the two addresses
999   /// are the offset. It also returns the offsets by reference.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2)1000   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1001                                     int64_t &Offset1, int64_t &Offset2) const {
1002     return false;
1003   }
1004 
1005   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1006   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1007   /// On some targets if two loads are loading from
1008   /// addresses in the same cache line, it's better if they are scheduled
1009   /// together. This function takes two integers that represent the load offsets
1010   /// from the common base address. It returns true if it decides it's desirable
1011   /// to schedule the two loads together. "NumLoads" is the number of loads that
1012   /// have already been scheduled after Load1.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads)1013   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1014                                        int64_t Offset1, int64_t Offset2,
1015                                        unsigned NumLoads) const {
1016     return false;
1017   }
1018 
1019   /// Get the base register and byte offset of an instruction that reads/writes
1020   /// memory.
getMemOpBaseRegImmOfs(MachineInstr & MemOp,unsigned & BaseReg,int64_t & Offset,const TargetRegisterInfo * TRI)1021   virtual bool getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg,
1022                                      int64_t &Offset,
1023                                      const TargetRegisterInfo *TRI) const {
1024     return false;
1025   }
1026 
1027   /// Return true if the instruction contains a base register and offset. If
1028   /// true, the function also sets the operand position in the instruction
1029   /// for the base register and offset.
getBaseAndOffsetPosition(const MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos)1030   virtual bool getBaseAndOffsetPosition(const MachineInstr *MI,
1031                                         unsigned &BasePos,
1032                                         unsigned &OffsetPos) const {
1033     return false;
1034   }
1035 
1036   /// If the instruction is an increment of a constant value, return the amount.
getIncrementValue(const MachineInstr * MI,int & Value)1037   virtual bool getIncrementValue(const MachineInstr *MI, int &Value) const {
1038     return false;
1039   }
1040 
enableClusterLoads()1041   virtual bool enableClusterLoads() const { return false; }
1042 
enableClusterStores()1043   virtual bool enableClusterStores() const { return false; }
1044 
shouldClusterMemOps(MachineInstr & FirstLdSt,MachineInstr & SecondLdSt,unsigned NumLoads)1045   virtual bool shouldClusterMemOps(MachineInstr &FirstLdSt,
1046                                    MachineInstr &SecondLdSt,
1047                                    unsigned NumLoads) const {
1048     return false;
1049   }
1050 
1051   /// Can this target fuse the given instructions if they are scheduled
1052   /// adjacent.
shouldScheduleAdjacent(MachineInstr & First,MachineInstr & Second)1053   virtual bool shouldScheduleAdjacent(MachineInstr &First,
1054                                       MachineInstr &Second) const {
1055     return false;
1056   }
1057 
1058   /// Reverses the branch condition of the specified condition list,
1059   /// returning false on success and true if it cannot be reversed.
1060   virtual
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond)1061   bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1062     return true;
1063   }
1064 
1065   /// Insert a noop into the instruction stream at the specified point.
1066   virtual void insertNoop(MachineBasicBlock &MBB,
1067                           MachineBasicBlock::iterator MI) const;
1068 
1069 
1070   /// Return the noop instruction to use for a noop.
1071   virtual void getNoopForMachoTarget(MCInst &NopInst) const;
1072 
1073   /// Return true for post-incremented instructions.
isPostIncrement(const MachineInstr * MI)1074   virtual bool isPostIncrement(const MachineInstr* MI) const {
1075     return false;
1076   }
1077 
1078   /// Returns true if the instruction is already predicated.
isPredicated(const MachineInstr & MI)1079   virtual bool isPredicated(const MachineInstr &MI) const {
1080     return false;
1081   }
1082 
1083   /// Returns true if the instruction is a
1084   /// terminator instruction that has not been predicated.
1085   virtual bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1086 
1087   /// Convert the instruction into a predicated instruction.
1088   /// It returns true if the operation was successful.
1089   virtual bool PredicateInstruction(MachineInstr &MI,
1090                                     ArrayRef<MachineOperand> Pred) const;
1091 
1092   /// Returns true if the first specified predicate
1093   /// subsumes the second, e.g. GE subsumes GT.
1094   virtual
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2)1095   bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1096                          ArrayRef<MachineOperand> Pred2) const {
1097     return false;
1098   }
1099 
1100   /// If the specified instruction defines any predicate
1101   /// or condition code register(s) used for predication, returns true as well
1102   /// as the definition predicate(s) by reference.
DefinesPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred)1103   virtual bool DefinesPredicate(MachineInstr &MI,
1104                                 std::vector<MachineOperand> &Pred) const {
1105     return false;
1106   }
1107 
1108   /// Return true if the specified instruction can be predicated.
1109   /// By default, this returns true for every instruction with a
1110   /// PredicateOperand.
isPredicable(MachineInstr & MI)1111   virtual bool isPredicable(MachineInstr &MI) const {
1112     return MI.getDesc().isPredicable();
1113   }
1114 
1115   /// Return true if it's safe to move a machine
1116   /// instruction that defines the specified register class.
isSafeToMoveRegClassDefs(const TargetRegisterClass * RC)1117   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1118     return true;
1119   }
1120 
1121   /// Test if the given instruction should be considered a scheduling boundary.
1122   /// This primarily includes labels and terminators.
1123   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1124                                     const MachineBasicBlock *MBB,
1125                                     const MachineFunction &MF) const;
1126 
1127   /// Measure the specified inline asm to determine an approximation of its
1128   /// length.
1129   virtual unsigned getInlineAsmLength(const char *Str,
1130                                       const MCAsmInfo &MAI) const;
1131 
1132   /// Allocate and return a hazard recognizer to use for this target when
1133   /// scheduling the machine instructions before register allocation.
1134   virtual ScheduleHazardRecognizer*
1135   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1136                                const ScheduleDAG *DAG) const;
1137 
1138   /// Allocate and return a hazard recognizer to use for this target when
1139   /// scheduling the machine instructions before register allocation.
1140   virtual ScheduleHazardRecognizer*
1141   CreateTargetMIHazardRecognizer(const InstrItineraryData*,
1142                                  const ScheduleDAG *DAG) const;
1143 
1144   /// Allocate and return a hazard recognizer to use for this target when
1145   /// scheduling the machine instructions after register allocation.
1146   virtual ScheduleHazardRecognizer*
1147   CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
1148                                      const ScheduleDAG *DAG) const;
1149 
1150   /// Allocate and return a hazard recognizer to use for by non-scheduling
1151   /// passes.
1152   virtual ScheduleHazardRecognizer*
CreateTargetPostRAHazardRecognizer(const MachineFunction & MF)1153   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1154     return nullptr;
1155   }
1156 
1157   /// Provide a global flag for disabling the PreRA hazard recognizer that
1158   /// targets may choose to honor.
1159   bool usePreRAHazardRecognizer() const;
1160 
1161   /// For a comparison instruction, return the source registers
1162   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1163   /// compares against in CmpValue. Return true if the comparison instruction
1164   /// can be analyzed.
analyzeCompare(const MachineInstr & MI,unsigned & SrcReg,unsigned & SrcReg2,int & Mask,int & Value)1165   virtual bool analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
1166                               unsigned &SrcReg2, int &Mask, int &Value) const {
1167     return false;
1168   }
1169 
1170   /// See if the comparison instruction can be converted
1171   /// into something more efficient. E.g., on ARM most instructions can set the
1172   /// flags register, obviating the need for a separate CMP.
optimizeCompareInstr(MachineInstr & CmpInstr,unsigned SrcReg,unsigned SrcReg2,int Mask,int Value,const MachineRegisterInfo * MRI)1173   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg,
1174                                     unsigned SrcReg2, int Mask, int Value,
1175                                     const MachineRegisterInfo *MRI) const {
1176     return false;
1177   }
optimizeCondBranch(MachineInstr & MI)1178   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1179 
1180   /// Try to remove the load by folding it to a register operand at the use.
1181   /// We fold the load instructions if and only if the
1182   /// def and use are in the same BB. We only look at one load and see
1183   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1184   /// defined by the load we are trying to fold. DefMI returns the machine
1185   /// instruction that defines FoldAsLoadDefReg, and the function returns
1186   /// the machine instruction generated due to folding.
optimizeLoadInstr(MachineInstr & MI,const MachineRegisterInfo * MRI,unsigned & FoldAsLoadDefReg,MachineInstr * & DefMI)1187   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1188                                           const MachineRegisterInfo *MRI,
1189                                           unsigned &FoldAsLoadDefReg,
1190                                           MachineInstr *&DefMI) const {
1191     return nullptr;
1192   }
1193 
1194   /// 'Reg' is known to be defined by a move immediate instruction,
1195   /// try to fold the immediate into the use instruction.
1196   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1197   /// then the caller may assume that DefMI has been erased from its parent
1198   /// block. The caller may assume that it will not be erased by this
1199   /// function otherwise.
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,unsigned Reg,MachineRegisterInfo * MRI)1200   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1201                              unsigned Reg, MachineRegisterInfo *MRI) const {
1202     return false;
1203   }
1204 
1205   /// Return the number of u-operations the given machine
1206   /// instruction will be decoded to on the target cpu. The itinerary's
1207   /// IssueWidth is the number of microops that can be dispatched each
1208   /// cycle. An instruction with zero microops takes no dispatch resources.
1209   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1210                                   const MachineInstr &MI) const;
1211 
1212   /// Return true for pseudo instructions that don't consume any
1213   /// machine resources in their current form. These are common cases that the
1214   /// scheduler should consider free, rather than conservatively handling them
1215   /// as instructions with no itinerary.
isZeroCost(unsigned Opcode)1216   bool isZeroCost(unsigned Opcode) const {
1217     return Opcode <= TargetOpcode::COPY;
1218   }
1219 
1220   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1221                                 SDNode *DefNode, unsigned DefIdx,
1222                                 SDNode *UseNode, unsigned UseIdx) const;
1223 
1224   /// Compute and return the use operand latency of a given pair of def and use.
1225   /// In most cases, the static scheduling itinerary was enough to determine the
1226   /// operand latency. But it may not be possible for instructions with variable
1227   /// number of defs / uses.
1228   ///
1229   /// This is a raw interface to the itinerary that may be directly overridden
1230   /// by a target. Use computeOperandLatency to get the best estimate of
1231   /// latency.
1232   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1233                                 const MachineInstr &DefMI, unsigned DefIdx,
1234                                 const MachineInstr &UseMI,
1235                                 unsigned UseIdx) const;
1236 
1237   /// Compute and return the latency of the given data dependent def and use
1238   /// when the operand indices are already known. UseMI may be \c nullptr for
1239   /// an unknown use.
1240   ///
1241   /// FindMin may be set to get the minimum vs. expected latency. Minimum
1242   /// latency is used for scheduling groups, while expected latency is for
1243   /// instruction cost and critical path.
1244   ///
1245   /// Depending on the subtarget's itinerary properties, this may or may not
1246   /// need to call getOperandLatency(). For most subtargets, we don't need
1247   /// DefIdx or UseIdx to compute min latency.
1248   unsigned computeOperandLatency(const InstrItineraryData *ItinData,
1249                                  const MachineInstr &DefMI, unsigned DefIdx,
1250                                  const MachineInstr *UseMI,
1251                                  unsigned UseIdx) const;
1252 
1253   /// Compute the instruction latency of a given instruction.
1254   /// If the instruction has higher cost when predicated, it's returned via
1255   /// PredCost.
1256   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1257                                    const MachineInstr &MI,
1258                                    unsigned *PredCost = nullptr) const;
1259 
1260   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1261 
1262   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1263                               SDNode *Node) const;
1264 
1265   /// Return the default expected latency for a def based on its opcode.
1266   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1267                              const MachineInstr &DefMI) const;
1268 
1269   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1270                                const MachineInstr &DefMI) const;
1271 
1272   /// Return true if this opcode has high latency to its result.
isHighLatencyDef(int opc)1273   virtual bool isHighLatencyDef(int opc) const { return false; }
1274 
1275   /// Compute operand latency between a def of 'Reg'
1276   /// and a use in the current loop. Return true if the target considered
1277   /// it 'high'. This is used by optimization passes such as machine LICM to
1278   /// determine whether it makes sense to hoist an instruction out even in a
1279   /// high register pressure situation.
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx)1280   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1281                                      const MachineRegisterInfo *MRI,
1282                                      const MachineInstr &DefMI, unsigned DefIdx,
1283                                      const MachineInstr &UseMI,
1284                                      unsigned UseIdx) const {
1285     return false;
1286   }
1287 
1288   /// Compute operand latency of a def of 'Reg'. Return true
1289   /// if the target considered it 'low'.
1290   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1291                                 const MachineInstr &DefMI,
1292                                 unsigned DefIdx) const;
1293 
1294   /// Perform target-specific instruction verification.
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo)1295   virtual bool verifyInstruction(const MachineInstr &MI,
1296                                  StringRef &ErrInfo) const {
1297     return true;
1298   }
1299 
1300   /// Return the current execution domain and bit mask of
1301   /// possible domains for instruction.
1302   ///
1303   /// Some micro-architectures have multiple execution domains, and multiple
1304   /// opcodes that perform the same operation in different domains.  For
1305   /// example, the x86 architecture provides the por, orps, and orpd
1306   /// instructions that all do the same thing.  There is a latency penalty if a
1307   /// register is written in one domain and read in another.
1308   ///
1309   /// This function returns a pair (domain, mask) containing the execution
1310   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1311   /// function can be used to change the opcode to one of the domains in the
1312   /// bit mask.  Instructions whose execution domain can't be changed should
1313   /// return a 0 mask.
1314   ///
1315   /// The execution domain numbers don't have any special meaning except domain
1316   /// 0 is used for instructions that are not associated with any interesting
1317   /// execution domain.
1318   ///
1319   virtual std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI)1320   getExecutionDomain(const MachineInstr &MI) const {
1321     return std::make_pair(0, 0);
1322   }
1323 
1324   /// Change the opcode of MI to execute in Domain.
1325   ///
1326   /// The bit (1 << Domain) must be set in the mask returned from
1327   /// getExecutionDomain(MI).
setExecutionDomain(MachineInstr & MI,unsigned Domain)1328   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1329 
1330   /// Returns the preferred minimum clearance
1331   /// before an instruction with an unwanted partial register update.
1332   ///
1333   /// Some instructions only write part of a register, and implicitly need to
1334   /// read the other parts of the register.  This may cause unwanted stalls
1335   /// preventing otherwise unrelated instructions from executing in parallel in
1336   /// an out-of-order CPU.
1337   ///
1338   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1339   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1340   /// the instruction needs to wait for the old value of the register to become
1341   /// available:
1342   ///
1343   ///   addps %xmm1, %xmm0
1344   ///   movaps %xmm0, (%rax)
1345   ///   cvtsi2ss %rbx, %xmm0
1346   ///
1347   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1348   /// instruction before it can issue, even though the high bits of %xmm0
1349   /// probably aren't needed.
1350   ///
1351   /// This hook returns the preferred clearance before MI, measured in
1352   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1353   /// instructions before MI.  It should only return a positive value for
1354   /// unwanted dependencies.  If the old bits of the defined register have
1355   /// useful values, or if MI is determined to otherwise read the dependency,
1356   /// the hook should return 0.
1357   ///
1358   /// The unwanted dependency may be handled by:
1359   ///
1360   /// 1. Allocating the same register for an MI def and use.  That makes the
1361   ///    unwanted dependency identical to a required dependency.
1362   ///
1363   /// 2. Allocating a register for the def that has no defs in the previous N
1364   ///    instructions.
1365   ///
1366   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1367   ///    allows the target to insert a dependency breaking instruction.
1368   ///
1369   virtual unsigned
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1370   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1371                                const TargetRegisterInfo *TRI) const {
1372     // The default implementation returns 0 for no partial register dependency.
1373     return 0;
1374   }
1375 
1376   /// \brief Return the minimum clearance before an instruction that reads an
1377   /// unused register.
1378   ///
1379   /// For example, AVX instructions may copy part of a register operand into
1380   /// the unused high bits of the destination register.
1381   ///
1382   /// vcvtsi2sdq %rax, %xmm0<undef>, %xmm14
1383   ///
1384   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1385   /// false dependence on any previous write to %xmm0.
1386   ///
1387   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1388   /// does not take an operand index. Instead sets \p OpNum to the index of the
1389   /// unused register.
getUndefRegClearance(const MachineInstr & MI,unsigned & OpNum,const TargetRegisterInfo * TRI)1390   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum,
1391                                         const TargetRegisterInfo *TRI) const {
1392     // The default implementation returns 0 for no undef register dependency.
1393     return 0;
1394   }
1395 
1396   /// Insert a dependency-breaking instruction
1397   /// before MI to eliminate an unwanted dependency on OpNum.
1398   ///
1399   /// If it wasn't possible to avoid a def in the last N instructions before MI
1400   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1401   /// unwanted dependency.
1402   ///
1403   /// On x86, an xorps instruction can be used as a dependency breaker:
1404   ///
1405   ///   addps %xmm1, %xmm0
1406   ///   movaps %xmm0, (%rax)
1407   ///   xorps %xmm0, %xmm0
1408   ///   cvtsi2ss %rbx, %xmm0
1409   ///
1410   /// An <imp-kill> operand should be added to MI if an instruction was
1411   /// inserted.  This ties the instructions together in the post-ra scheduler.
1412   ///
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI)1413   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1414                                          const TargetRegisterInfo *TRI) const {}
1415 
1416   /// Create machine specific model for scheduling.
1417   virtual DFAPacketizer *
CreateTargetScheduleState(const TargetSubtargetInfo &)1418   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1419     return nullptr;
1420   }
1421 
1422   // Sometimes, it is possible for the target
1423   // to tell, even without aliasing information, that two MIs access different
1424   // memory addresses. This function returns true if two MIs access different
1425   // memory addresses and false otherwise.
1426   virtual bool
1427   areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1428                                   AliasAnalysis *AA = nullptr) const {
1429     assert((MIa.mayLoad() || MIa.mayStore()) &&
1430            "MIa must load from or modify a memory location");
1431     assert((MIb.mayLoad() || MIb.mayStore()) &&
1432            "MIb must load from or modify a memory location");
1433     return false;
1434   }
1435 
1436   /// \brief Return the value to use for the MachineCSE's LookAheadLimit,
1437   /// which is a heuristic used for CSE'ing phys reg defs.
getMachineCSELookAheadLimit()1438   virtual unsigned getMachineCSELookAheadLimit () const {
1439     // The default lookahead is small to prevent unprofitable quadratic
1440     // behavior.
1441     return 5;
1442   }
1443 
1444   /// Return an array that contains the ids of the target indices (used for the
1445   /// TargetIndex machine operand) and their names.
1446   ///
1447   /// MIR Serialization is able to serialize only the target indices that are
1448   /// defined by this method.
1449   virtual ArrayRef<std::pair<int, const char *>>
getSerializableTargetIndices()1450   getSerializableTargetIndices() const {
1451     return None;
1452   }
1453 
1454   /// Decompose the machine operand's target flags into two values - the direct
1455   /// target flag value and any of bit flags that are applied.
1456   virtual std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned)1457   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1458     return std::make_pair(0u, 0u);
1459   }
1460 
1461   /// Return an array that contains the direct target flag values and their
1462   /// names.
1463   ///
1464   /// MIR Serialization is able to serialize only the target flags that are
1465   /// defined by this method.
1466   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags()1467   getSerializableDirectMachineOperandTargetFlags() const {
1468     return None;
1469   }
1470 
1471   /// Return an array that contains the bitmask target flag values and their
1472   /// names.
1473   ///
1474   /// MIR Serialization is able to serialize only the target flags that are
1475   /// defined by this method.
1476   virtual ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags()1477   getSerializableBitmaskMachineOperandTargetFlags() const {
1478     return None;
1479   }
1480 
1481 private:
1482   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1483   unsigned CatchRetOpcode;
1484   unsigned ReturnOpcode;
1485 };
1486 
1487 /// \brief Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1488 template<>
1489 struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1490   typedef DenseMapInfo<unsigned> RegInfo;
1491 
1492   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1493     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1494                          RegInfo::getEmptyKey());
1495   }
1496   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1497     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1498                          RegInfo::getTombstoneKey());
1499   }
1500   /// \brief Reuse getHashValue implementation from
1501   /// std::pair<unsigned, unsigned>.
1502   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1503     std::pair<unsigned, unsigned> PairVal =
1504         std::make_pair(Val.Reg, Val.SubReg);
1505     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1506   }
1507   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1508                       const TargetInstrInfo::RegSubRegPair &RHS) {
1509     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1510            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1511   }
1512 };
1513 
1514 } // end namespace llvm
1515 
1516 #endif // LLVM_TARGET_TARGETINSTRINFO_H
1517