• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_writer.h"
18 
19 #include <sys/stat.h>
20 #include <lz4.h>
21 #include <lz4hc.h>
22 
23 #include <memory>
24 #include <numeric>
25 #include <unordered_set>
26 #include <vector>
27 
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/callee_save_type.h"
31 #include "base/enums.h"
32 #include "base/logging.h"
33 #include "base/unix_file/fd_file.h"
34 #include "class_linker-inl.h"
35 #include "compiled_method.h"
36 #include "dex_file-inl.h"
37 #include "dex_file_types.h"
38 #include "driver/compiler_driver.h"
39 #include "elf_file.h"
40 #include "elf_utils.h"
41 #include "elf_writer.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/accounting/heap_bitmap.h"
44 #include "gc/accounting/space_bitmap-inl.h"
45 #include "gc/collector/concurrent_copying.h"
46 #include "gc/heap.h"
47 #include "gc/heap-visit-objects-inl.h"
48 #include "gc/space/large_object_space.h"
49 #include "gc/space/space-inl.h"
50 #include "gc/verification.h"
51 #include "globals.h"
52 #include "handle_scope-inl.h"
53 #include "image.h"
54 #include "imt_conflict_table.h"
55 #include "jni_internal.h"
56 #include "linear_alloc.h"
57 #include "lock_word.h"
58 #include "mirror/array-inl.h"
59 #include "mirror/class-inl.h"
60 #include "mirror/class_ext.h"
61 #include "mirror/class_loader.h"
62 #include "mirror/dex_cache.h"
63 #include "mirror/dex_cache-inl.h"
64 #include "mirror/executable.h"
65 #include "mirror/method.h"
66 #include "mirror/object-inl.h"
67 #include "mirror/object-refvisitor-inl.h"
68 #include "mirror/object_array-inl.h"
69 #include "mirror/string-inl.h"
70 #include "oat.h"
71 #include "oat_file.h"
72 #include "oat_file_manager.h"
73 #include "runtime.h"
74 #include "scoped_thread_state_change-inl.h"
75 #include "utils/dex_cache_arrays_layout-inl.h"
76 
77 using ::art::mirror::Class;
78 using ::art::mirror::DexCache;
79 using ::art::mirror::Object;
80 using ::art::mirror::ObjectArray;
81 using ::art::mirror::String;
82 
83 namespace art {
84 
85 // Separate objects into multiple bins to optimize dirty memory use.
86 static constexpr bool kBinObjects = true;
87 
88 // Return true if an object is already in an image space.
IsInBootImage(const void * obj) const89 bool ImageWriter::IsInBootImage(const void* obj) const {
90   gc::Heap* const heap = Runtime::Current()->GetHeap();
91   if (!compile_app_image_) {
92     DCHECK(heap->GetBootImageSpaces().empty());
93     return false;
94   }
95   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
96     const uint8_t* image_begin = boot_image_space->Begin();
97     // Real image end including ArtMethods and ArtField sections.
98     const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
99     if (image_begin <= obj && obj < image_end) {
100       return true;
101     }
102   }
103   return false;
104 }
105 
IsInBootOatFile(const void * ptr) const106 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
107   gc::Heap* const heap = Runtime::Current()->GetHeap();
108   if (!compile_app_image_) {
109     DCHECK(heap->GetBootImageSpaces().empty());
110     return false;
111   }
112   for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
113     const ImageHeader& image_header = boot_image_space->GetImageHeader();
114     if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
115       return true;
116     }
117   }
118   return false;
119 }
120 
ClearDexFileCookies()121 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
122   auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
123     DCHECK(obj != nullptr);
124     Class* klass = obj->GetClass();
125     if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
126       ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
127       // Null out the cookie to enable determinism. b/34090128
128       field->SetObject</*kTransactionActive*/false>(obj, nullptr);
129     }
130   };
131   Runtime::Current()->GetHeap()->VisitObjects(visitor);
132 }
133 
PrepareImageAddressSpace()134 bool ImageWriter::PrepareImageAddressSpace() {
135   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
136   gc::Heap* const heap = Runtime::Current()->GetHeap();
137   {
138     ScopedObjectAccess soa(Thread::Current());
139     PruneNonImageClasses();  // Remove junk
140     if (compile_app_image_) {
141       // Clear dex file cookies for app images to enable app image determinism. This is required
142       // since the cookie field contains long pointers to DexFiles which are not deterministic.
143       // b/34090128
144       ClearDexFileCookies();
145     } else {
146       // Avoid for app image since this may increase RAM and image size.
147       ComputeLazyFieldsForImageClasses();  // Add useful information
148     }
149   }
150   heap->CollectGarbage(false);  // Remove garbage.
151 
152   if (kIsDebugBuild) {
153     ScopedObjectAccess soa(Thread::Current());
154     CheckNonImageClassesRemoved();
155   }
156 
157   {
158     ScopedObjectAccess soa(Thread::Current());
159     CalculateNewObjectOffsets();
160   }
161 
162   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
163   // bin size sums being calculated.
164   if (!AllocMemory()) {
165     return false;
166   }
167 
168   return true;
169 }
170 
Write(int image_fd,const std::vector<const char * > & image_filenames,const std::vector<const char * > & oat_filenames)171 bool ImageWriter::Write(int image_fd,
172                         const std::vector<const char*>& image_filenames,
173                         const std::vector<const char*>& oat_filenames) {
174   // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
175   // oat_filenames.
176   CHECK(!image_filenames.empty());
177   if (image_fd != kInvalidFd) {
178     CHECK_EQ(image_filenames.size(), 1u);
179   }
180   CHECK(!oat_filenames.empty());
181   CHECK_EQ(image_filenames.size(), oat_filenames.size());
182 
183   {
184     ScopedObjectAccess soa(Thread::Current());
185     for (size_t i = 0; i < oat_filenames.size(); ++i) {
186       CreateHeader(i);
187       CopyAndFixupNativeData(i);
188     }
189   }
190 
191   {
192     // TODO: heap validation can't handle these fix up passes.
193     ScopedObjectAccess soa(Thread::Current());
194     Runtime::Current()->GetHeap()->DisableObjectValidation();
195     CopyAndFixupObjects();
196   }
197 
198   for (size_t i = 0; i < image_filenames.size(); ++i) {
199     const char* image_filename = image_filenames[i];
200     ImageInfo& image_info = GetImageInfo(i);
201     std::unique_ptr<File> image_file;
202     if (image_fd != kInvalidFd) {
203       if (strlen(image_filename) == 0u) {
204         image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
205         // Empty the file in case it already exists.
206         if (image_file != nullptr) {
207           TEMP_FAILURE_RETRY(image_file->SetLength(0));
208           TEMP_FAILURE_RETRY(image_file->Flush());
209         }
210       } else {
211         LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
212       }
213     } else {
214       image_file.reset(OS::CreateEmptyFile(image_filename));
215     }
216 
217     if (image_file == nullptr) {
218       LOG(ERROR) << "Failed to open image file " << image_filename;
219       return false;
220     }
221 
222     if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
223       PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
224       image_file->Erase();
225       return EXIT_FAILURE;
226     }
227 
228     std::unique_ptr<char[]> compressed_data;
229     // Image data size excludes the bitmap and the header.
230     ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
231     const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
232     char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
233     size_t data_size;
234     const char* image_data_to_write;
235     const uint64_t compress_start_time = NanoTime();
236 
237     CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
238     switch (image_storage_mode_) {
239       case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
240       case ImageHeader::kStorageModeLZ4: {
241         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
242         compressed_data.reset(new char[compressed_max_size]);
243         data_size = LZ4_compress_default(
244             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
245             &compressed_data[0],
246             image_data_size,
247             compressed_max_size);
248 
249         break;
250       }
251       /*
252        * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
253       case ImageHeader::kStorageModeLZ4HC: {
254         // Bound is same as non HC.
255         const size_t compressed_max_size = LZ4_compressBound(image_data_size);
256         compressed_data.reset(new char[compressed_max_size]);
257         data_size = LZ4_compressHC(
258             reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
259             &compressed_data[0],
260             image_data_size);
261         break;
262       }
263       */
264       case ImageHeader::kStorageModeUncompressed: {
265         data_size = image_data_size;
266         image_data_to_write = image_data;
267         break;
268       }
269       default: {
270         LOG(FATAL) << "Unsupported";
271         UNREACHABLE();
272       }
273     }
274 
275     if (compressed_data != nullptr) {
276       image_data_to_write = &compressed_data[0];
277       VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
278                      << PrettyDuration(NanoTime() - compress_start_time);
279       if (kIsDebugBuild) {
280         std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
281         const size_t decompressed_size = LZ4_decompress_safe(
282             reinterpret_cast<char*>(&compressed_data[0]),
283             reinterpret_cast<char*>(&temp[0]),
284             data_size,
285             image_data_size);
286         CHECK_EQ(decompressed_size, image_data_size);
287         CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
288       }
289     }
290 
291     // Write out the image + fields + methods.
292     const bool is_compressed = compressed_data != nullptr;
293     if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
294       PLOG(ERROR) << "Failed to write image file data " << image_filename;
295       image_file->Erase();
296       return false;
297     }
298 
299     // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
300     // convenience.
301     const ImageSection& bitmap_section = image_header->GetImageSection(
302         ImageHeader::kSectionImageBitmap);
303     // Align up since data size may be unaligned if the image is compressed.
304     size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
305     if (!is_compressed) {
306       CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
307     }
308     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
309                                  bitmap_section.Size(),
310                                  bitmap_position_in_file)) {
311       PLOG(ERROR) << "Failed to write image file " << image_filename;
312       image_file->Erase();
313       return false;
314     }
315 
316     int err = image_file->Flush();
317     if (err < 0) {
318       PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
319       image_file->Erase();
320       return false;
321     }
322 
323     // Write header last in case the compiler gets killed in the middle of image writing.
324     // We do not want to have a corrupted image with a valid header.
325     // The header is uncompressed since it contains whether the image is compressed or not.
326     image_header->data_size_ = data_size;
327     if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
328                                  sizeof(ImageHeader),
329                                  0)) {
330       PLOG(ERROR) << "Failed to write image file header " << image_filename;
331       image_file->Erase();
332       return false;
333     }
334 
335     CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
336              static_cast<size_t>(image_file->GetLength()));
337     if (image_file->FlushCloseOrErase() != 0) {
338       PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
339       return false;
340     }
341   }
342   return true;
343 }
344 
SetImageOffset(mirror::Object * object,size_t offset)345 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
346   DCHECK(object != nullptr);
347   DCHECK_NE(offset, 0U);
348 
349   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
350   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
351   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
352   DCHECK(IsImageOffsetAssigned(object));
353 }
354 
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)355 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
356   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
357   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
358   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
359 }
360 
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)361 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
362   DCHECK(object != nullptr);
363   DCHECK_NE(image_objects_offset_begin_, 0u);
364 
365   size_t oat_index = GetOatIndex(object);
366   ImageInfo& image_info = GetImageInfo(oat_index);
367   size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
368   size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
369   DCHECK_ALIGNED(new_offset, kObjectAlignment);
370 
371   SetImageOffset(object, new_offset);
372   DCHECK_LT(new_offset, image_info.image_end_);
373 }
374 
IsImageOffsetAssigned(mirror::Object * object) const375 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
376   // Will also return true if the bin slot was assigned since we are reusing the lock word.
377   DCHECK(object != nullptr);
378   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
379 }
380 
GetImageOffset(mirror::Object * object) const381 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
382   DCHECK(object != nullptr);
383   DCHECK(IsImageOffsetAssigned(object));
384   LockWord lock_word = object->GetLockWord(false);
385   size_t offset = lock_word.ForwardingAddress();
386   size_t oat_index = GetOatIndex(object);
387   const ImageInfo& image_info = GetImageInfo(oat_index);
388   DCHECK_LT(offset, image_info.image_end_);
389   return offset;
390 }
391 
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)392 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
393   DCHECK(object != nullptr);
394   DCHECK(!IsImageOffsetAssigned(object));
395   DCHECK(!IsImageBinSlotAssigned(object));
396 
397   // Before we stomp over the lock word, save the hash code for later.
398   LockWord lw(object->GetLockWord(false));
399   switch (lw.GetState()) {
400     case LockWord::kFatLocked:
401       FALLTHROUGH_INTENDED;
402     case LockWord::kThinLocked: {
403       std::ostringstream oss;
404       bool thin = (lw.GetState() == LockWord::kThinLocked);
405       oss << (thin ? "Thin" : "Fat")
406           << " locked object " << object << "(" << object->PrettyTypeOf()
407           << ") found during object copy";
408       if (thin) {
409         oss << ". Lock owner:" << lw.ThinLockOwner();
410       }
411       LOG(FATAL) << oss.str();
412       break;
413     }
414     case LockWord::kUnlocked:
415       // No hash, don't need to save it.
416       break;
417     case LockWord::kHashCode:
418       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
419       saved_hashcode_map_.emplace(object, lw.GetHashCode());
420       break;
421     default:
422       LOG(FATAL) << "Unreachable.";
423       UNREACHABLE();
424   }
425   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
426   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
427   DCHECK(IsImageBinSlotAssigned(object));
428 }
429 
PrepareDexCacheArraySlots()430 void ImageWriter::PrepareDexCacheArraySlots() {
431   // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
432   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
433   // when AssignImageBinSlot() assigns their indexes out or order.
434   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
435     auto it = dex_file_oat_index_map_.find(dex_file);
436     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
437     ImageInfo& image_info = GetImageInfo(it->second);
438     image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
439     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
440     image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
441   }
442 
443   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
444   Thread* const self = Thread::Current();
445   ReaderMutexLock mu(self, *Locks::dex_lock_);
446   for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
447     ObjPtr<mirror::DexCache> dex_cache =
448         ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
449     if (dex_cache == nullptr || IsInBootImage(dex_cache.Ptr())) {
450       continue;
451     }
452     const DexFile* dex_file = dex_cache->GetDexFile();
453     CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
454         << "Dex cache should have been pruned " << dex_file->GetLocation()
455         << "; possibly in class path";
456     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
457     DCHECK(layout.Valid());
458     size_t oat_index = GetOatIndexForDexCache(dex_cache);
459     ImageInfo& image_info = GetImageInfo(oat_index);
460     uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
461     DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
462     AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
463                                start + layout.TypesOffset(),
464                                dex_cache);
465     DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
466     AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
467                                start + layout.MethodsOffset(),
468                                dex_cache);
469     DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
470     AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
471                                start + layout.FieldsOffset(),
472                                dex_cache);
473     DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
474     AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
475 
476     if (dex_cache->GetResolvedMethodTypes() != nullptr) {
477       AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
478                                  start + layout.MethodTypesOffset(),
479                                  dex_cache);
480     }
481     if (dex_cache->GetResolvedCallSites() != nullptr) {
482       AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
483                                  start + layout.CallSitesOffset(),
484                                  dex_cache);
485     }
486   }
487 }
488 
AddDexCacheArrayRelocation(void * array,size_t offset,ObjPtr<mirror::DexCache> dex_cache)489 void ImageWriter::AddDexCacheArrayRelocation(void* array,
490                                              size_t offset,
491                                              ObjPtr<mirror::DexCache> dex_cache) {
492   if (array != nullptr) {
493     DCHECK(!IsInBootImage(array));
494     size_t oat_index = GetOatIndexForDexCache(dex_cache);
495     native_object_relocations_.emplace(array,
496         NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
497   }
498 }
499 
AddMethodPointerArray(mirror::PointerArray * arr)500 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
501   DCHECK(arr != nullptr);
502   if (kIsDebugBuild) {
503     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
504       ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
505       if (method != nullptr && !method->IsRuntimeMethod()) {
506         mirror::Class* klass = method->GetDeclaringClass();
507         CHECK(klass == nullptr || KeepClass(klass))
508             << Class::PrettyClass(klass) << " should be a kept class";
509       }
510     }
511   }
512   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
513   // ArtMethods.
514   pointer_arrays_.emplace(arr, kBinArtMethodClean);
515 }
516 
AssignImageBinSlot(mirror::Object * object,size_t oat_index)517 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
518   DCHECK(object != nullptr);
519   size_t object_size = object->SizeOf();
520 
521   // The magic happens here. We segregate objects into different bins based
522   // on how likely they are to get dirty at runtime.
523   //
524   // Likely-to-dirty objects get packed together into the same bin so that
525   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
526   // maximized.
527   //
528   // This means more pages will stay either clean or shared dirty (with zygote) and
529   // the app will use less of its own (private) memory.
530   Bin bin = kBinRegular;
531   size_t current_offset = 0u;
532 
533   if (kBinObjects) {
534     //
535     // Changing the bin of an object is purely a memory-use tuning.
536     // It has no change on runtime correctness.
537     //
538     // Memory analysis has determined that the following types of objects get dirtied
539     // the most:
540     //
541     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
542     //   a fixed layout which helps improve generated code (using PC-relative addressing),
543     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
544     //   Since these arrays are huge, most pages do not overlap other objects and it's not
545     //   really important where they are for the clean/dirty separation. Due to their
546     //   special PC-relative addressing, we arbitrarily keep them at the end.
547     // * Class'es which are verified [their clinit runs only at runtime]
548     //   - classes in general [because their static fields get overwritten]
549     //   - initialized classes with all-final statics are unlikely to be ever dirty,
550     //     so bin them separately
551     // * Art Methods that are:
552     //   - native [their native entry point is not looked up until runtime]
553     //   - have declaring classes that aren't initialized
554     //            [their interpreter/quick entry points are trampolines until the class
555     //             becomes initialized]
556     //
557     // We also assume the following objects get dirtied either never or extremely rarely:
558     //  * Strings (they are immutable)
559     //  * Art methods that aren't native and have initialized declared classes
560     //
561     // We assume that "regular" bin objects are highly unlikely to become dirtied,
562     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
563     //
564     if (object->IsClass()) {
565       bin = kBinClassVerified;
566       mirror::Class* klass = object->AsClass();
567 
568       // Add non-embedded vtable to the pointer array table if there is one.
569       auto* vtable = klass->GetVTable();
570       if (vtable != nullptr) {
571         AddMethodPointerArray(vtable);
572       }
573       auto* iftable = klass->GetIfTable();
574       if (iftable != nullptr) {
575         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
576           if (iftable->GetMethodArrayCount(i) > 0) {
577             AddMethodPointerArray(iftable->GetMethodArray(i));
578           }
579         }
580       }
581 
582       // Move known dirty objects into their own sections. This includes:
583       //   - classes with dirty static fields.
584       if (dirty_image_objects_ != nullptr &&
585           dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
586         bin = kBinKnownDirty;
587       } else if (klass->GetStatus() == Class::kStatusInitialized) {
588         bin = kBinClassInitialized;
589 
590         // If the class's static fields are all final, put it into a separate bin
591         // since it's very likely it will stay clean.
592         uint32_t num_static_fields = klass->NumStaticFields();
593         if (num_static_fields == 0) {
594           bin = kBinClassInitializedFinalStatics;
595         } else {
596           // Maybe all the statics are final?
597           bool all_final = true;
598           for (uint32_t i = 0; i < num_static_fields; ++i) {
599             ArtField* field = klass->GetStaticField(i);
600             if (!field->IsFinal()) {
601               all_final = false;
602               break;
603             }
604           }
605 
606           if (all_final) {
607             bin = kBinClassInitializedFinalStatics;
608           }
609         }
610       }
611     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
612       bin = kBinString;  // Strings are almost always immutable (except for object header).
613     } else if (object->GetClass<kVerifyNone>() ==
614         Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
615       // Instance of java lang object, probably a lock object. This means it will be dirty when we
616       // synchronize on it.
617       bin = kBinMiscDirty;
618     } else if (object->IsDexCache()) {
619       // Dex file field becomes dirty when the image is loaded.
620       bin = kBinMiscDirty;
621     }
622     // else bin = kBinRegular
623   }
624 
625   // Assign the oat index too.
626   DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
627   oat_index_map_.emplace(object, oat_index);
628 
629   ImageInfo& image_info = GetImageInfo(oat_index);
630 
631   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
632   current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
633   // Move the current bin size up to accommodate the object we just assigned a bin slot.
634   image_info.bin_slot_sizes_[bin] += offset_delta;
635 
636   BinSlot new_bin_slot(bin, current_offset);
637   SetImageBinSlot(object, new_bin_slot);
638 
639   ++image_info.bin_slot_count_[bin];
640 
641   // Grow the image closer to the end by the object we just assigned.
642   image_info.image_end_ += offset_delta;
643 }
644 
WillMethodBeDirty(ArtMethod * m) const645 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
646   if (m->IsNative()) {
647     return true;
648   }
649   mirror::Class* declaring_class = m->GetDeclaringClass();
650   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
651   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
652 }
653 
IsImageBinSlotAssigned(mirror::Object * object) const654 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
655   DCHECK(object != nullptr);
656 
657   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
658   // If it's in some other state, then we haven't yet assigned an image bin slot.
659   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
660     return false;
661   } else if (kIsDebugBuild) {
662     LockWord lock_word = object->GetLockWord(false);
663     size_t offset = lock_word.ForwardingAddress();
664     BinSlot bin_slot(offset);
665     size_t oat_index = GetOatIndex(object);
666     const ImageInfo& image_info = GetImageInfo(oat_index);
667     DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
668         << "bin slot offset should not exceed the size of that bin";
669   }
670   return true;
671 }
672 
GetImageBinSlot(mirror::Object * object) const673 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
674   DCHECK(object != nullptr);
675   DCHECK(IsImageBinSlotAssigned(object));
676 
677   LockWord lock_word = object->GetLockWord(false);
678   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
679   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
680 
681   BinSlot bin_slot(static_cast<uint32_t>(offset));
682   size_t oat_index = GetOatIndex(object);
683   const ImageInfo& image_info = GetImageInfo(oat_index);
684   DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
685 
686   return bin_slot;
687 }
688 
AllocMemory()689 bool ImageWriter::AllocMemory() {
690   for (ImageInfo& image_info : image_infos_) {
691     ImageSection unused_sections[ImageHeader::kSectionCount];
692     const size_t length = RoundUp(
693         image_info.CreateImageSections(unused_sections), kPageSize);
694 
695     std::string error_msg;
696     image_info.image_.reset(MemMap::MapAnonymous("image writer image",
697                                                  nullptr,
698                                                  length,
699                                                  PROT_READ | PROT_WRITE,
700                                                  false,
701                                                  false,
702                                                  &error_msg));
703     if (UNLIKELY(image_info.image_.get() == nullptr)) {
704       LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
705       return false;
706     }
707 
708     // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
709     CHECK_LE(image_info.image_end_, length);
710     image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
711         "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
712     if (image_info.image_bitmap_.get() == nullptr) {
713       LOG(ERROR) << "Failed to allocate memory for image bitmap";
714       return false;
715     }
716   }
717   return true;
718 }
719 
720 class ImageWriter::ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
721  public:
operator ()(ObjPtr<Class> c)722   bool operator()(ObjPtr<Class> c) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
723     StackHandleScope<1> hs(Thread::Current());
724     mirror::Class::ComputeName(hs.NewHandle(c));
725     return true;
726   }
727 };
728 
ComputeLazyFieldsForImageClasses()729 void ImageWriter::ComputeLazyFieldsForImageClasses() {
730   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
731   ComputeLazyFieldsForClassesVisitor visitor;
732   class_linker->VisitClassesWithoutClassesLock(&visitor);
733 }
734 
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)735 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
736     REQUIRES_SHARED(Locks::mutator_lock_) {
737   return klass->GetClassLoader() == nullptr;
738 }
739 
IsBootClassLoaderNonImageClass(mirror::Class * klass)740 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
741   return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
742 }
743 
744 // This visitor follows the references of an instance, recursively then prune this class
745 // if a type of any field is pruned.
746 class ImageWriter::PruneObjectReferenceVisitor {
747  public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,std::unordered_set<mirror::Object * > * visited,bool * result)748   PruneObjectReferenceVisitor(ImageWriter* image_writer,
749                         bool* early_exit,
750                         std::unordered_set<mirror::Object*>* visited,
751                         bool* result)
752       : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
753 
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const754   ALWAYS_INLINE void VisitRootIfNonNull(
755       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
756       REQUIRES_SHARED(Locks::mutator_lock_) { }
757 
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const758   ALWAYS_INLINE void VisitRoot(
759       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
760       REQUIRES_SHARED(Locks::mutator_lock_) { }
761 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const762   ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
763                                  MemberOffset offset,
764                                  bool is_static ATTRIBUTE_UNUSED) const
765       REQUIRES_SHARED(Locks::mutator_lock_) {
766     mirror::Object* ref =
767         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
768     if (ref == nullptr || visited_->find(ref) != visited_->end()) {
769       return;
770     }
771 
772     ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
773     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
774       // Prune all classes using reflection because the content they held will not be fixup.
775       *result_ = true;
776     }
777 
778     // Record the object visited in case of circular reference.
779     visited_->emplace(ref);
780     if (ref->IsClass()) {
781       *result_ = *result_ ||
782           image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_);
783     } else {
784       *result_ = *result_ ||
785           image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_);
786       ref->VisitReferences(*this, *this);
787     }
788     // Clean up before exit for next call of this function.
789     visited_->erase(ref);
790   }
791 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const792   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
793                                  ObjPtr<mirror::Reference> ref) const
794       REQUIRES_SHARED(Locks::mutator_lock_) {
795     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
796   }
797 
GetResult() const798   ALWAYS_INLINE bool GetResult() const {
799     return result_;
800   }
801 
802  private:
803   ImageWriter* image_writer_;
804   bool* early_exit_;
805   std::unordered_set<mirror::Object*>* visited_;
806   bool* const result_;
807 };
808 
809 
PruneAppImageClass(ObjPtr<mirror::Class> klass)810 bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) {
811   bool early_exit = false;
812   std::unordered_set<mirror::Object*> visited;
813   return PruneAppImageClassInternal(klass, &early_exit, &visited);
814 }
815 
PruneAppImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,std::unordered_set<mirror::Object * > * visited)816 bool ImageWriter::PruneAppImageClassInternal(
817     ObjPtr<mirror::Class> klass,
818     bool* early_exit,
819     std::unordered_set<mirror::Object*>* visited) {
820   DCHECK(early_exit != nullptr);
821   DCHECK(visited != nullptr);
822   DCHECK(compile_app_image_);
823   if (klass == nullptr || IsInBootImage(klass.Ptr())) {
824     return false;
825   }
826   auto found = prune_class_memo_.find(klass.Ptr());
827   if (found != prune_class_memo_.end()) {
828     // Already computed, return the found value.
829     return found->second;
830   }
831   // Circular dependencies, return false but do not store the result in the memoization table.
832   if (visited->find(klass.Ptr()) != visited->end()) {
833     *early_exit = true;
834     return false;
835   }
836   visited->emplace(klass.Ptr());
837   bool result = IsBootClassLoaderClass(klass);
838   std::string temp;
839   // Prune if not an image class, this handles any broken sets of image classes such as having a
840   // class in the set but not it's superclass.
841   result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
842   bool my_early_exit = false;  // Only for ourselves, ignore caller.
843   // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
844   // app image.
845   if (klass->IsErroneous()) {
846     result = true;
847   } else {
848     ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
849     CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
850   }
851   if (!result) {
852     // Check interfaces since these wont be visited through VisitReferences.)
853     mirror::IfTable* if_table = klass->GetIfTable();
854     for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
855       result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
856                                                     &my_early_exit,
857                                                     visited);
858     }
859   }
860   if (klass->IsObjectArrayClass()) {
861     result = result || PruneAppImageClassInternal(klass->GetComponentType(),
862                                                   &my_early_exit,
863                                                   visited);
864   }
865   // Check static fields and their classes.
866   if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
867     size_t num_static_fields = klass->NumReferenceStaticFields();
868     // Presumably GC can happen when we are cross compiling, it should not cause performance
869     // problems to do pointer size logic.
870     MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
871         Runtime::Current()->GetClassLinker()->GetImagePointerSize());
872     for (size_t i = 0u; i < num_static_fields; ++i) {
873       mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
874       if (ref != nullptr) {
875         if (ref->IsClass()) {
876           result = result || PruneAppImageClassInternal(ref->AsClass(),
877                                                         &my_early_exit,
878                                                         visited);
879         } else {
880           mirror::Class* type = ref->GetClass();
881           result = result || PruneAppImageClassInternal(type,
882                                                         &my_early_exit,
883                                                         visited);
884           if (!result) {
885             // For non-class case, also go through all the types mentioned by it's fields'
886             // references recursively to decide whether to keep this class.
887             bool tmp = false;
888             PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
889             ref->VisitReferences(visitor, visitor);
890             result = result || tmp;
891           }
892         }
893       }
894       field_offset = MemberOffset(field_offset.Uint32Value() +
895                                   sizeof(mirror::HeapReference<mirror::Object>));
896     }
897   }
898   result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
899                                                 &my_early_exit,
900                                                 visited);
901   // Remove the class if the dex file is not in the set of dex files. This happens for classes that
902   // are from uses-library if there is no profile. b/30688277
903   mirror::DexCache* dex_cache = klass->GetDexCache();
904   if (dex_cache != nullptr) {
905     result = result ||
906         dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
907   }
908   // Erase the element we stored earlier since we are exiting the function.
909   auto it = visited->find(klass.Ptr());
910   DCHECK(it != visited->end());
911   visited->erase(it);
912   // Only store result if it is true or none of the calls early exited due to circular
913   // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
914   // a child call and we can remember the result.
915   if (result == true || !my_early_exit || visited->empty()) {
916     prune_class_memo_[klass.Ptr()] = result;
917   }
918   *early_exit |= my_early_exit;
919   return result;
920 }
921 
KeepClass(ObjPtr<mirror::Class> klass)922 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
923   if (klass == nullptr) {
924     return false;
925   }
926   if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
927     // Already in boot image, return true.
928     return true;
929   }
930   std::string temp;
931   if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
932     return false;
933   }
934   if (compile_app_image_) {
935     // For app images, we need to prune boot loader classes that are not in the boot image since
936     // these may have already been loaded when the app image is loaded.
937     // Keep classes in the boot image space since we don't want to re-resolve these.
938     return !PruneAppImageClass(klass);
939   }
940   return true;
941 }
942 
943 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
944  public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)945   PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
946       : image_writer_(image_writer),
947         class_loader_(class_loader),
948         classes_to_prune_(),
949         defined_class_count_(0u) { }
950 
operator ()(ObjPtr<mirror::Class> klass)951   bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
952     if (!image_writer_->KeepClass(klass.Ptr())) {
953       classes_to_prune_.insert(klass.Ptr());
954       if (klass->GetClassLoader() == class_loader_) {
955         ++defined_class_count_;
956       }
957     }
958     return true;
959   }
960 
Prune()961   size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
962     ClassTable* class_table =
963         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
964     for (mirror::Class* klass : classes_to_prune_) {
965       std::string storage;
966       const char* descriptor = klass->GetDescriptor(&storage);
967       bool result = class_table->Remove(descriptor);
968       DCHECK(result);
969       DCHECK(!class_table->Remove(descriptor)) << descriptor;
970     }
971     return defined_class_count_;
972   }
973 
974  private:
975   ImageWriter* const image_writer_;
976   const ObjPtr<mirror::ClassLoader> class_loader_;
977   std::unordered_set<mirror::Class*> classes_to_prune_;
978   size_t defined_class_count_;
979 };
980 
981 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
982  public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)983   explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
984       : image_writer_(image_writer), removed_class_count_(0) {}
985 
Visit(ObjPtr<mirror::ClassLoader> class_loader)986   virtual void Visit(ObjPtr<mirror::ClassLoader> class_loader) OVERRIDE
987       REQUIRES_SHARED(Locks::mutator_lock_) {
988     PruneClassesVisitor classes_visitor(image_writer_, class_loader);
989     ClassTable* class_table =
990         Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
991     class_table->Visit(classes_visitor);
992     removed_class_count_ += classes_visitor.Prune();
993 
994     // Record app image class loader. The fake boot class loader should not get registered
995     // and we should end up with only one class loader for an app and none for boot image.
996     if (class_loader != nullptr && class_table != nullptr) {
997       DCHECK(class_loader_ == nullptr);
998       class_loader_ = class_loader;
999     }
1000   }
1001 
GetRemovedClassCount() const1002   size_t GetRemovedClassCount() const {
1003     return removed_class_count_;
1004   }
1005 
GetClassLoader() const1006   ObjPtr<mirror::ClassLoader> GetClassLoader() const REQUIRES_SHARED(Locks::mutator_lock_) {
1007     return class_loader_;
1008   }
1009 
1010  private:
1011   ImageWriter* const image_writer_;
1012   size_t removed_class_count_;
1013   ObjPtr<mirror::ClassLoader> class_loader_;
1014 };
1015 
VisitClassLoaders(ClassLoaderVisitor * visitor)1016 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1017   WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1018   visitor->Visit(nullptr);  // Visit boot class loader.
1019   Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1020 }
1021 
PruneAndPreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1022 void ImageWriter::PruneAndPreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
1023                                           ObjPtr<mirror::ClassLoader> class_loader) {
1024   // To ensure deterministic contents of the hash-based arrays, each slot shall contain
1025   // the candidate with the lowest index. As we're processing entries in increasing index
1026   // order, this means trying to look up the entry for the current index if the slot is
1027   // empty or if it contains a higher index.
1028 
1029   Runtime* runtime = Runtime::Current();
1030   ClassLinker* class_linker = runtime->GetClassLinker();
1031   const DexFile& dex_file = *dex_cache->GetDexFile();
1032   // Prune methods.
1033   mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1034   dex::TypeIndex last_class_idx;  // Initialized to invalid index.
1035   ObjPtr<mirror::Class> last_class = nullptr;
1036   for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
1037     uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
1038     auto pair =
1039         mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1040     uint32_t stored_index = pair.index;
1041     ArtMethod* method = pair.object;
1042     if (method != nullptr && i > stored_index) {
1043       continue;  // Already checked.
1044     }
1045     // Check if the referenced class is in the image. Note that we want to check the referenced
1046     // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1047     // results in resolving the referenced class and that can for example throw OOME.
1048     const DexFile::MethodId& method_id = dex_file.GetMethodId(i);
1049     if (method_id.class_idx_ != last_class_idx) {
1050       last_class_idx = method_id.class_idx_;
1051       last_class = class_linker->LookupResolvedType(
1052           dex_file, last_class_idx, dex_cache, class_loader);
1053       if (last_class != nullptr && !KeepClass(last_class)) {
1054         last_class = nullptr;
1055       }
1056     }
1057     if (method == nullptr || i < stored_index) {
1058       if (last_class != nullptr) {
1059         const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
1060         Signature signature = dex_file.GetMethodSignature(method_id);
1061         if (last_class->IsInterface()) {
1062           method = last_class->FindInterfaceMethod(name, signature, target_ptr_size_);
1063         } else {
1064           method = last_class->FindClassMethod(name, signature, target_ptr_size_);
1065         }
1066         if (method != nullptr) {
1067           // If the referenced class is in the image, the defining class must also be there.
1068           DCHECK(KeepClass(method->GetDeclaringClass()));
1069           dex_cache->SetResolvedMethod(i, method, target_ptr_size_);
1070         }
1071       }
1072     } else {
1073       DCHECK_EQ(i, stored_index);
1074       if (last_class == nullptr) {
1075         dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_);
1076       }
1077     }
1078   }
1079   // Prune fields and make the contents of the field array deterministic.
1080   mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1081   last_class_idx = dex::TypeIndex();  // Initialized to invalid index.
1082   last_class = nullptr;
1083   for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
1084     uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
1085     auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1086     uint32_t stored_index = pair.index;
1087     ArtField* field = pair.object;
1088     if (field != nullptr && i > stored_index) {
1089       continue;  // Already checked.
1090     }
1091     // Check if the referenced class is in the image. Note that we want to check the referenced
1092     // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1093     // results in resolving the referenced class and that can for example throw OOME.
1094     const DexFile::FieldId& field_id = dex_file.GetFieldId(i);
1095     if (field_id.class_idx_ != last_class_idx) {
1096       last_class_idx = field_id.class_idx_;
1097       last_class = class_linker->LookupResolvedType(
1098           dex_file, last_class_idx, dex_cache, class_loader);
1099       if (last_class != nullptr && !KeepClass(last_class)) {
1100         last_class = nullptr;
1101       }
1102     }
1103     if (field == nullptr || i < stored_index) {
1104       if (last_class != nullptr) {
1105         const char* name = dex_file.StringDataByIdx(field_id.name_idx_);
1106         const char* type = dex_file.StringByTypeIdx(field_id.type_idx_);
1107         field = mirror::Class::FindField(Thread::Current(), last_class, name, type);
1108         if (field != nullptr) {
1109           // If the referenced class is in the image, the defining class must also be there.
1110           DCHECK(KeepClass(field->GetDeclaringClass()));
1111           dex_cache->SetResolvedField(i, field, target_ptr_size_);
1112         }
1113       }
1114     } else {
1115       DCHECK_EQ(i, stored_index);
1116       if (last_class == nullptr) {
1117         dex_cache->ClearResolvedField(stored_index, target_ptr_size_);
1118       }
1119     }
1120   }
1121   // Prune types and make the contents of the type array deterministic.
1122   // This is done after fields and methods as their lookup can touch the types array.
1123   for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
1124     dex::TypeIndex type_idx(i);
1125     uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
1126     mirror::TypeDexCachePair pair =
1127         dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1128     uint32_t stored_index = pair.index;
1129     ObjPtr<mirror::Class> klass = pair.object.Read();
1130     if (klass == nullptr || i < stored_index) {
1131       klass = class_linker->LookupResolvedType(dex_file, type_idx, dex_cache, class_loader);
1132       if (klass != nullptr) {
1133         DCHECK_EQ(dex_cache->GetResolvedType(type_idx), klass);
1134         stored_index = i;  // For correct clearing below if not keeping the `klass`.
1135       }
1136     } else if (i == stored_index && !KeepClass(klass)) {
1137       dex_cache->ClearResolvedType(dex::TypeIndex(stored_index));
1138     }
1139   }
1140   // Strings do not need pruning, but the contents of the string array must be deterministic.
1141   for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
1142     dex::StringIndex string_idx(i);
1143     uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
1144     mirror::StringDexCachePair pair =
1145         dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1146     uint32_t stored_index = pair.index;
1147     ObjPtr<mirror::String> string = pair.object.Read();
1148     if (string == nullptr || i < stored_index) {
1149       string = class_linker->LookupString(dex_file, string_idx, dex_cache);
1150       DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
1151     }
1152   }
1153 }
1154 
PruneNonImageClasses()1155 void ImageWriter::PruneNonImageClasses() {
1156   Runtime* runtime = Runtime::Current();
1157   ClassLinker* class_linker = runtime->GetClassLinker();
1158   Thread* self = Thread::Current();
1159   ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1160 
1161   // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1162   // sure the other ones don't get unloaded before the OatWriter runs.
1163   class_linker->VisitClassTables(
1164       [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1165     table->RemoveStrongRoots(
1166         [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1167       ObjPtr<mirror::Object> obj = root.Read();
1168       if (obj->IsDexCache()) {
1169         // Return true if the dex file is not one of the ones in the map.
1170         return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1171             dex_file_oat_index_map_.end();
1172       }
1173       // Return false to avoid removing.
1174       return false;
1175     });
1176   });
1177 
1178   // Remove the undesired classes from the class roots.
1179   ObjPtr<mirror::ClassLoader> class_loader;
1180   {
1181     PruneClassLoaderClassesVisitor class_loader_visitor(this);
1182     VisitClassLoaders(&class_loader_visitor);
1183     VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1184     class_loader = class_loader_visitor.GetClassLoader();
1185     DCHECK_EQ(class_loader != nullptr, compile_app_image_);
1186   }
1187 
1188   // Clear references to removed classes from the DexCaches.
1189   std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1190   {
1191     ReaderMutexLock mu2(self, *Locks::dex_lock_);
1192     dex_caches.reserve(class_linker->GetDexCachesData().size());
1193     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1194       if (self->IsJWeakCleared(data.weak_root)) {
1195         continue;
1196       }
1197       dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1198     }
1199   }
1200   for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1201     PruneAndPreloadDexCache(dex_cache, class_loader);
1202   }
1203 
1204   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1205   class_linker->DropFindArrayClassCache();
1206 
1207   // Clear to save RAM.
1208   prune_class_memo_.clear();
1209 }
1210 
CheckNonImageClassesRemoved()1211 void ImageWriter::CheckNonImageClassesRemoved() {
1212   if (compiler_driver_.GetImageClasses() != nullptr) {
1213     auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1214       if (obj->IsClass() && !IsInBootImage(obj)) {
1215         Class* klass = obj->AsClass();
1216         if (!KeepClass(klass)) {
1217           DumpImageClasses();
1218           std::string temp;
1219           CHECK(KeepClass(klass))
1220               << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1221         }
1222       }
1223     };
1224     gc::Heap* heap = Runtime::Current()->GetHeap();
1225     heap->VisitObjects(visitor);
1226   }
1227 }
1228 
DumpImageClasses()1229 void ImageWriter::DumpImageClasses() {
1230   auto image_classes = compiler_driver_.GetImageClasses();
1231   CHECK(image_classes != nullptr);
1232   for (const std::string& image_class : *image_classes) {
1233     LOG(INFO) << " " << image_class;
1234   }
1235 }
1236 
FindInternedString(mirror::String * string)1237 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
1238   Thread* const self = Thread::Current();
1239   for (const ImageInfo& image_info : image_infos_) {
1240     ObjPtr<mirror::String> const found = image_info.intern_table_->LookupStrong(self, string);
1241     DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
1242         << string->ToModifiedUtf8();
1243     if (found != nullptr) {
1244       return found.Ptr();
1245     }
1246   }
1247   if (compile_app_image_) {
1248     Runtime* const runtime = Runtime::Current();
1249     ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string);
1250     // If we found it in the runtime intern table it could either be in the boot image or interned
1251     // during app image compilation. If it was in the boot image return that, otherwise return null
1252     // since it belongs to another image space.
1253     if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) {
1254       return found.Ptr();
1255     }
1256     DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
1257         << string->ToModifiedUtf8();
1258   }
1259   return nullptr;
1260 }
1261 
1262 
CreateImageRoots(size_t oat_index) const1263 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1264   Runtime* runtime = Runtime::Current();
1265   ClassLinker* class_linker = runtime->GetClassLinker();
1266   Thread* self = Thread::Current();
1267   StackHandleScope<3> hs(self);
1268   Handle<Class> object_array_class(hs.NewHandle(
1269       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1270 
1271   std::unordered_set<const DexFile*> image_dex_files;
1272   for (auto& pair : dex_file_oat_index_map_) {
1273     const DexFile* image_dex_file = pair.first;
1274     size_t image_oat_index = pair.second;
1275     if (oat_index == image_oat_index) {
1276       image_dex_files.insert(image_dex_file);
1277     }
1278   }
1279 
1280   // build an Object[] of all the DexCaches used in the source_space_.
1281   // Since we can't hold the dex lock when allocating the dex_caches
1282   // ObjectArray, we lock the dex lock twice, first to get the number
1283   // of dex caches first and then lock it again to copy the dex
1284   // caches. We check that the number of dex caches does not change.
1285   size_t dex_cache_count = 0;
1286   {
1287     ReaderMutexLock mu(self, *Locks::dex_lock_);
1288     // Count number of dex caches not in the boot image.
1289     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1290       ObjPtr<mirror::DexCache> dex_cache =
1291           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1292       if (dex_cache == nullptr) {
1293         continue;
1294       }
1295       const DexFile* dex_file = dex_cache->GetDexFile();
1296       if (!IsInBootImage(dex_cache.Ptr())) {
1297         dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1298       }
1299     }
1300   }
1301   Handle<ObjectArray<Object>> dex_caches(
1302       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1303   CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1304   {
1305     ReaderMutexLock mu(self, *Locks::dex_lock_);
1306     size_t non_image_dex_caches = 0;
1307     // Re-count number of non image dex caches.
1308     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1309       ObjPtr<mirror::DexCache> dex_cache =
1310           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1311       if (dex_cache == nullptr) {
1312         continue;
1313       }
1314       const DexFile* dex_file = dex_cache->GetDexFile();
1315       if (!IsInBootImage(dex_cache.Ptr())) {
1316         non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1317       }
1318     }
1319     CHECK_EQ(dex_cache_count, non_image_dex_caches)
1320         << "The number of non-image dex caches changed.";
1321     size_t i = 0;
1322     for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1323       ObjPtr<mirror::DexCache> dex_cache =
1324           ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1325       if (dex_cache == nullptr) {
1326         continue;
1327       }
1328       const DexFile* dex_file = dex_cache->GetDexFile();
1329       if (!IsInBootImage(dex_cache.Ptr()) &&
1330           image_dex_files.find(dex_file) != image_dex_files.end()) {
1331         dex_caches->Set<false>(i, dex_cache.Ptr());
1332         ++i;
1333       }
1334     }
1335   }
1336 
1337   // build an Object[] of the roots needed to restore the runtime
1338   int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compile_app_image_);
1339   auto image_roots(hs.NewHandle(
1340       ObjectArray<Object>::Alloc(self, object_array_class.Get(), image_roots_size)));
1341   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1342   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1343   // image_roots[ImageHeader::kClassLoader] will be set later for app image.
1344   static_assert(ImageHeader::kClassLoader + 1u == ImageHeader::kImageRootsMax,
1345                 "Class loader should be the last image root.");
1346   for (int32_t i = 0; i < ImageHeader::kImageRootsMax - 1; ++i) {
1347     CHECK(image_roots->Get(i) != nullptr);
1348   }
1349   return image_roots.Get();
1350 }
1351 
TryAssignBinSlot(WorkStack & work_stack,mirror::Object * obj,size_t oat_index)1352 mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
1353                                               mirror::Object* obj,
1354                                               size_t oat_index) {
1355   if (obj == nullptr || IsInBootImage(obj)) {
1356     // Object is null or already in the image, there is no work to do.
1357     return obj;
1358   }
1359   if (!IsImageBinSlotAssigned(obj)) {
1360     // We want to intern all strings but also assign offsets for the source string. Since the
1361     // pruning phase has already happened, if we intern a string to one in the image we still
1362     // end up copying an unreachable string.
1363     if (obj->IsString()) {
1364       // Need to check if the string is already interned in another image info so that we don't have
1365       // the intern tables of two different images contain the same string.
1366       mirror::String* interned = FindInternedString(obj->AsString());
1367       if (interned == nullptr) {
1368         // Not in another image space, insert to our table.
1369         interned =
1370             GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr();
1371         DCHECK_EQ(interned, obj);
1372       }
1373     } else if (obj->IsDexCache()) {
1374       oat_index = GetOatIndexForDexCache(obj->AsDexCache());
1375     } else if (obj->IsClass()) {
1376       // Visit and assign offsets for fields and field arrays.
1377       mirror::Class* as_klass = obj->AsClass();
1378       mirror::DexCache* dex_cache = as_klass->GetDexCache();
1379       DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
1380       if (compile_app_image_) {
1381         // Extra sanity, no boot loader classes should be left!
1382         CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
1383       }
1384       LengthPrefixedArray<ArtField>* fields[] = {
1385           as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1386       };
1387       // Overwrite the oat index value since the class' dex cache is more accurate of where it
1388       // belongs.
1389       oat_index = GetOatIndexForDexCache(dex_cache);
1390       ImageInfo& image_info = GetImageInfo(oat_index);
1391       if (!compile_app_image_) {
1392         // Note: Avoid locking to prevent lock order violations from root visiting;
1393         // image_info.class_table_ is only accessed from the image writer.
1394         image_info.class_table_->InsertWithoutLocks(as_klass);
1395       }
1396       for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1397         // Total array length including header.
1398         if (cur_fields != nullptr) {
1399           const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1400           // Forward the entire array at once.
1401           auto it = native_object_relocations_.find(cur_fields);
1402           CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1403                                                   << " already forwarded";
1404           size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1405           DCHECK(!IsInBootImage(cur_fields));
1406           native_object_relocations_.emplace(
1407               cur_fields,
1408               NativeObjectRelocation {
1409                   oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1410               });
1411           offset += header_size;
1412           // Forward individual fields so that we can quickly find where they belong.
1413           for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1414             // Need to forward arrays separate of fields.
1415             ArtField* field = &cur_fields->At(i);
1416             auto it2 = native_object_relocations_.find(field);
1417             CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1418                 << " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
1419             DCHECK(!IsInBootImage(field));
1420             native_object_relocations_.emplace(
1421                 field,
1422                 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1423             offset += sizeof(ArtField);
1424           }
1425         }
1426       }
1427       // Visit and assign offsets for methods.
1428       size_t num_methods = as_klass->NumMethods();
1429       if (num_methods != 0) {
1430         bool any_dirty = false;
1431         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1432           if (WillMethodBeDirty(&m)) {
1433             any_dirty = true;
1434             break;
1435           }
1436         }
1437         NativeObjectRelocationType type = any_dirty
1438             ? kNativeObjectRelocationTypeArtMethodDirty
1439             : kNativeObjectRelocationTypeArtMethodClean;
1440         Bin bin_type = BinTypeForNativeRelocationType(type);
1441         // Forward the entire array at once, but header first.
1442         const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1443         const size_t method_size = ArtMethod::Size(target_ptr_size_);
1444         const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1445                                                                                method_size,
1446                                                                                method_alignment);
1447         LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1448         auto it = native_object_relocations_.find(array);
1449         CHECK(it == native_object_relocations_.end())
1450             << "Method array " << array << " already forwarded";
1451         size_t& offset = image_info.bin_slot_sizes_[bin_type];
1452         DCHECK(!IsInBootImage(array));
1453         native_object_relocations_.emplace(array,
1454             NativeObjectRelocation {
1455                 oat_index,
1456                 offset,
1457                 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1458                           : kNativeObjectRelocationTypeArtMethodArrayClean });
1459         offset += header_size;
1460         for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1461           AssignMethodOffset(&m, type, oat_index);
1462         }
1463         (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1464       }
1465       // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1466       // live.
1467       if (as_klass->ShouldHaveImt()) {
1468         ImTable* imt = as_klass->GetImt(target_ptr_size_);
1469         if (TryAssignImTableOffset(imt, oat_index)) {
1470           // Since imt's can be shared only do this the first time to not double count imt method
1471           // fixups.
1472           for (size_t i = 0; i < ImTable::kSize; ++i) {
1473             ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1474             DCHECK(imt_method != nullptr);
1475             if (imt_method->IsRuntimeMethod() &&
1476                 !IsInBootImage(imt_method) &&
1477                 !NativeRelocationAssigned(imt_method)) {
1478               AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1479             }
1480           }
1481         }
1482       }
1483     } else if (obj->IsClassLoader()) {
1484       // Register the class loader if it has a class table.
1485       // The fake boot class loader should not get registered and we should end up with only one
1486       // class loader.
1487       mirror::ClassLoader* class_loader = obj->AsClassLoader();
1488       if (class_loader->GetClassTable() != nullptr) {
1489         DCHECK(compile_app_image_);
1490         DCHECK(class_loaders_.empty());
1491         class_loaders_.insert(class_loader);
1492         ImageInfo& image_info = GetImageInfo(oat_index);
1493         // Note: Avoid locking to prevent lock order violations from root visiting;
1494         // image_info.class_table_ table is only accessed from the image writer
1495         // and class_loader->GetClassTable() is iterated but not modified.
1496         image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
1497       }
1498     }
1499     AssignImageBinSlot(obj, oat_index);
1500     work_stack.emplace(obj, oat_index);
1501   }
1502   if (obj->IsString()) {
1503     // Always return the interned string if there exists one.
1504     mirror::String* interned = FindInternedString(obj->AsString());
1505     if (interned != nullptr) {
1506       return interned;
1507     }
1508   }
1509   return obj;
1510 }
1511 
NativeRelocationAssigned(void * ptr) const1512 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1513   return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1514 }
1515 
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1516 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1517   // No offset, or already assigned.
1518   if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1519     return false;
1520   }
1521   // If the method is a conflict method we also want to assign the conflict table offset.
1522   ImageInfo& image_info = GetImageInfo(oat_index);
1523   const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1524   native_object_relocations_.emplace(
1525       imt,
1526       NativeObjectRelocation {
1527           oat_index,
1528           image_info.bin_slot_sizes_[kBinImTable],
1529           kNativeObjectRelocationTypeIMTable});
1530   image_info.bin_slot_sizes_[kBinImTable] += size;
1531   return true;
1532 }
1533 
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1534 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1535   // No offset, or already assigned.
1536   if (table == nullptr || NativeRelocationAssigned(table)) {
1537     return;
1538   }
1539   CHECK(!IsInBootImage(table));
1540   // If the method is a conflict method we also want to assign the conflict table offset.
1541   ImageInfo& image_info = GetImageInfo(oat_index);
1542   const size_t size = table->ComputeSize(target_ptr_size_);
1543   native_object_relocations_.emplace(
1544       table,
1545       NativeObjectRelocation {
1546           oat_index,
1547           image_info.bin_slot_sizes_[kBinIMTConflictTable],
1548           kNativeObjectRelocationTypeIMTConflictTable});
1549   image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1550 }
1551 
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1552 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1553                                      NativeObjectRelocationType type,
1554                                      size_t oat_index) {
1555   DCHECK(!IsInBootImage(method));
1556   CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1557       << ArtMethod::PrettyMethod(method);
1558   if (method->IsRuntimeMethod()) {
1559     TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1560   }
1561   ImageInfo& image_info = GetImageInfo(oat_index);
1562   size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1563   native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1564   offset += ArtMethod::Size(target_ptr_size_);
1565 }
1566 
UnbinObjectsIntoOffset(mirror::Object * obj)1567 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1568   DCHECK(!IsInBootImage(obj));
1569   CHECK(obj != nullptr);
1570 
1571   // We know the bin slot, and the total bin sizes for all objects by now,
1572   // so calculate the object's final image offset.
1573 
1574   DCHECK(IsImageBinSlotAssigned(obj));
1575   BinSlot bin_slot = GetImageBinSlot(obj);
1576   // Change the lockword from a bin slot into an offset
1577   AssignImageOffset(obj, bin_slot);
1578 }
1579 
1580 class ImageWriter::VisitReferencesVisitor {
1581  public:
VisitReferencesVisitor(ImageWriter * image_writer,WorkStack * work_stack,size_t oat_index)1582   VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
1583       : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
1584 
1585   // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1586   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1587       REQUIRES_SHARED(Locks::mutator_lock_) {
1588     if (!root->IsNull()) {
1589       VisitRoot(root);
1590     }
1591   }
1592 
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1593   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1594       REQUIRES_SHARED(Locks::mutator_lock_) {
1595     root->Assign(VisitReference(root->AsMirrorPtr()));
1596   }
1597 
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1598   ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1599                                  MemberOffset offset,
1600                                  bool is_static ATTRIBUTE_UNUSED) const
1601       REQUIRES_SHARED(Locks::mutator_lock_) {
1602     mirror::Object* ref =
1603         obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1604     obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
1605   }
1606 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1607   ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1608                                  ObjPtr<mirror::Reference> ref) const
1609       REQUIRES_SHARED(Locks::mutator_lock_) {
1610     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1611   }
1612 
1613  private:
VisitReference(mirror::Object * ref) const1614   mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1615     return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
1616   }
1617 
1618   ImageWriter* const image_writer_;
1619   WorkStack* const work_stack_;
1620   const size_t oat_index_;
1621 };
1622 
1623 class ImageWriter::GetRootsVisitor : public RootVisitor  {
1624  public:
GetRootsVisitor(std::vector<mirror::Object * > * roots)1625   explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
1626 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1627   void VisitRoots(mirror::Object*** roots,
1628                   size_t count,
1629                   const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1630       REQUIRES_SHARED(Locks::mutator_lock_) {
1631     for (size_t i = 0; i < count; ++i) {
1632       roots_->push_back(*roots[i]);
1633     }
1634   }
1635 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1636   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1637                   size_t count,
1638                   const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1639       REQUIRES_SHARED(Locks::mutator_lock_) {
1640     for (size_t i = 0; i < count; ++i) {
1641       roots_->push_back(roots[i]->AsMirrorPtr());
1642     }
1643   }
1644 
1645  private:
1646   std::vector<mirror::Object*>* const roots_;
1647 };
1648 
ProcessWorkStack(WorkStack * work_stack)1649 void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
1650   while (!work_stack->empty()) {
1651     std::pair<mirror::Object*, size_t> pair(work_stack->top());
1652     work_stack->pop();
1653     VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
1654     // Walk references and assign bin slots for them.
1655     pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1656         visitor,
1657         visitor);
1658   }
1659 }
1660 
CalculateNewObjectOffsets()1661 void ImageWriter::CalculateNewObjectOffsets() {
1662   Thread* const self = Thread::Current();
1663   VariableSizedHandleScope handles(self);
1664   std::vector<Handle<ObjectArray<Object>>> image_roots;
1665   for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1666     image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1667   }
1668 
1669   Runtime* const runtime = Runtime::Current();
1670   gc::Heap* const heap = runtime->GetHeap();
1671 
1672   // Leave space for the header, but do not write it yet, we need to
1673   // know where image_roots is going to end up
1674   image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
1675 
1676   const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1677   // Write the image runtime methods.
1678   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1679   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1680   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1681   image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
1682       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
1683   image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
1684       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
1685   image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
1686       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
1687   image_methods_[ImageHeader::kSaveEverythingMethod] =
1688       runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
1689   // Visit image methods first to have the main runtime methods in the first image.
1690   for (auto* m : image_methods_) {
1691     CHECK(m != nullptr);
1692     CHECK(m->IsRuntimeMethod());
1693     DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1694     if (!IsInBootImage(m)) {
1695       AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1696     }
1697   }
1698 
1699   // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
1700   // this lock while holding other locks may cause lock order violations.
1701   {
1702     auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1703       Monitor::Deflate(Thread::Current(), obj);
1704     };
1705     heap->VisitObjects(deflate_monitor);
1706   }
1707 
1708   // Work list of <object, oat_index> for objects. Everything on the stack must already be
1709   // assigned a bin slot.
1710   WorkStack work_stack;
1711 
1712   // Special case interned strings to put them in the image they are likely to be resolved from.
1713   for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
1714     auto it = dex_file_oat_index_map_.find(dex_file);
1715     DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1716     const size_t oat_index = it->second;
1717     InternTable* const intern_table = runtime->GetInternTable();
1718     for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
1719       uint32_t utf16_length;
1720       const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
1721                                                                       &utf16_length);
1722       mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr();
1723       TryAssignBinSlot(work_stack, string, oat_index);
1724     }
1725   }
1726 
1727   // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
1728   // visits roots while holding various locks.
1729   {
1730     std::vector<mirror::Object*> roots;
1731     GetRootsVisitor root_visitor(&roots);
1732     runtime->VisitRoots(&root_visitor);
1733     for (mirror::Object* obj : roots) {
1734       TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
1735     }
1736   }
1737   ProcessWorkStack(&work_stack);
1738 
1739   // For app images, there may be objects that are only held live by the by the boot image. One
1740   // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
1741   // does not fail any checks. TODO: We should probably avoid copying these objects.
1742   if (compile_app_image_) {
1743     for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
1744       DCHECK(space->IsImageSpace());
1745       gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1746       live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1747                                     reinterpret_cast<uintptr_t>(space->Limit()),
1748                                     [this, &work_stack](mirror::Object* obj)
1749           REQUIRES_SHARED(Locks::mutator_lock_) {
1750         VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
1751         // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
1752         obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1753             visitor,
1754             visitor);
1755       });
1756     }
1757     // Process the work stack in case anything was added by TryAssignBinSlot.
1758     ProcessWorkStack(&work_stack);
1759 
1760     // Store the class loader in the class roots.
1761     CHECK_EQ(class_loaders_.size(), 1u);
1762     CHECK_EQ(image_roots.size(), 1u);
1763     CHECK(*class_loaders_.begin() != nullptr);
1764     image_roots[0]->Set<false>(ImageHeader::kClassLoader, *class_loaders_.begin());
1765   }
1766 
1767   // Verify that all objects have assigned image bin slots.
1768   {
1769     auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
1770         REQUIRES_SHARED(Locks::mutator_lock_) {
1771       if (!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(obj)) {
1772         CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj;
1773       }
1774     };
1775     heap->VisitObjects(ensure_bin_slots_assigned);
1776   }
1777 
1778   // Calculate size of the dex cache arrays slot and prepare offsets.
1779   PrepareDexCacheArraySlots();
1780 
1781   // Calculate the sizes of the intern tables, class tables, and fixup tables.
1782   for (ImageInfo& image_info : image_infos_) {
1783     // Calculate how big the intern table will be after being serialized.
1784     InternTable* const intern_table = image_info.intern_table_.get();
1785     CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1786     if (intern_table->StrongSize() != 0u) {
1787       image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1788     }
1789 
1790     // Calculate the size of the class table.
1791     ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1792     DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
1793     if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
1794       image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1795     }
1796   }
1797 
1798   // Calculate bin slot offsets.
1799   for (ImageInfo& image_info : image_infos_) {
1800     size_t bin_offset = image_objects_offset_begin_;
1801     for (size_t i = 0; i != kBinSize; ++i) {
1802       switch (i) {
1803         case kBinArtMethodClean:
1804         case kBinArtMethodDirty: {
1805           bin_offset = RoundUp(bin_offset, method_alignment);
1806           break;
1807         }
1808         case kBinDexCacheArray:
1809           bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_));
1810           break;
1811         case kBinImTable:
1812         case kBinIMTConflictTable: {
1813           bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_));
1814           break;
1815         }
1816         default: {
1817           // Normal alignment.
1818         }
1819       }
1820       image_info.bin_slot_offsets_[i] = bin_offset;
1821       bin_offset += image_info.bin_slot_sizes_[i];
1822     }
1823     // NOTE: There may be additional padding between the bin slots and the intern table.
1824     DCHECK_EQ(image_info.image_end_,
1825               GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1826   }
1827 
1828   // Calculate image offsets.
1829   size_t image_offset = 0;
1830   for (ImageInfo& image_info : image_infos_) {
1831     image_info.image_begin_ = global_image_begin_ + image_offset;
1832     image_info.image_offset_ = image_offset;
1833     ImageSection unused_sections[ImageHeader::kSectionCount];
1834     image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1835     // There should be no gaps until the next image.
1836     image_offset += image_info.image_size_;
1837   }
1838 
1839   // Transform each object's bin slot into an offset which will be used to do the final copy.
1840   {
1841     auto unbin_objects_into_offset = [&](mirror::Object* obj)
1842         REQUIRES_SHARED(Locks::mutator_lock_) {
1843       if (!IsInBootImage(obj)) {
1844         UnbinObjectsIntoOffset(obj);
1845       }
1846     };
1847     heap->VisitObjects(unbin_objects_into_offset);
1848   }
1849 
1850   size_t i = 0;
1851   for (ImageInfo& image_info : image_infos_) {
1852     image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1853     i++;
1854   }
1855 
1856   // Update the native relocations by adding their bin sums.
1857   for (auto& pair : native_object_relocations_) {
1858     NativeObjectRelocation& relocation = pair.second;
1859     Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1860     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1861     relocation.offset += image_info.bin_slot_offsets_[bin_type];
1862   }
1863 }
1864 
CreateImageSections(ImageSection * out_sections) const1865 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1866   DCHECK(out_sections != nullptr);
1867 
1868   // Do not round up any sections here that are represented by the bins since it will break
1869   // offsets.
1870 
1871   // Objects section
1872   ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1873   *objects_section = ImageSection(0u, image_end_);
1874 
1875   // Add field section.
1876   ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1877   *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1878   CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1879 
1880   // Add method section.
1881   ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1882   *methods_section = ImageSection(
1883       bin_slot_offsets_[kBinArtMethodClean],
1884       bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1885 
1886   // IMT section.
1887   ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
1888   *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);
1889 
1890   // Conflict tables section.
1891   ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1892   *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1893                                               bin_slot_sizes_[kBinIMTConflictTable]);
1894 
1895   // Runtime methods section.
1896   ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1897   *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1898                                           bin_slot_sizes_[kBinRuntimeMethod]);
1899 
1900   // Add dex cache arrays section.
1901   ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1902   *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1903                                            bin_slot_sizes_[kBinDexCacheArray]);
1904   // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1905   size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1906   // Calculate the size of the interned strings.
1907   ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1908   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1909   cur_pos = interned_strings_section->End();
1910   // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1911   cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1912   // Calculate the size of the class table section.
1913   ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1914   *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1915   cur_pos = class_table_section->End();
1916   // Image end goes right before the start of the image bitmap.
1917   return cur_pos;
1918 }
1919 
CreateHeader(size_t oat_index)1920 void ImageWriter::CreateHeader(size_t oat_index) {
1921   ImageInfo& image_info = GetImageInfo(oat_index);
1922   const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1923   const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1924   const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1925 
1926   // Create the image sections.
1927   ImageSection sections[ImageHeader::kSectionCount];
1928   const size_t image_end = image_info.CreateImageSections(sections);
1929 
1930   // Finally bitmap section.
1931   const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1932   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
1933   *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1934   if (VLOG_IS_ON(compiler)) {
1935     LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1936     size_t idx = 0;
1937     for (const ImageSection& section : sections) {
1938       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1939       ++idx;
1940     }
1941     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1942     LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1943     LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1944               << " Image offset=" << image_info.image_offset_ << std::dec;
1945     LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1946               << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1947               << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1948               << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1949   }
1950   // Store boot image info for app image so that we can relocate.
1951   uint32_t boot_image_begin = 0;
1952   uint32_t boot_image_end = 0;
1953   uint32_t boot_oat_begin = 0;
1954   uint32_t boot_oat_end = 0;
1955   gc::Heap* const heap = Runtime::Current()->GetHeap();
1956   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1957 
1958   // Create the header, leave 0 for data size since we will fill this in as we are writing the
1959   // image.
1960   new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1961                                                image_end,
1962                                                sections,
1963                                                image_info.image_roots_address_,
1964                                                image_info.oat_checksum_,
1965                                                PointerToLowMemUInt32(oat_file_begin),
1966                                                PointerToLowMemUInt32(image_info.oat_data_begin_),
1967                                                PointerToLowMemUInt32(oat_data_end),
1968                                                PointerToLowMemUInt32(oat_file_end),
1969                                                boot_image_begin,
1970                                                boot_image_end - boot_image_begin,
1971                                                boot_oat_begin,
1972                                                boot_oat_end - boot_oat_begin,
1973                                                static_cast<uint32_t>(target_ptr_size_),
1974                                                compile_pic_,
1975                                                /*is_pic*/compile_app_image_,
1976                                                image_storage_mode_,
1977                                                /*data_size*/0u);
1978 }
1979 
GetImageMethodAddress(ArtMethod * method)1980 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1981   auto it = native_object_relocations_.find(method);
1982   CHECK(it != native_object_relocations_.end()) << ArtMethod::PrettyMethod(method) << " @ "
1983                                                 << method;
1984   size_t oat_index = GetOatIndex(method->GetDexCache());
1985   ImageInfo& image_info = GetImageInfo(oat_index);
1986   CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1987   return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1988 }
1989 
1990 class ImageWriter::FixupRootVisitor : public RootVisitor {
1991  public:
FixupRootVisitor(ImageWriter * image_writer)1992   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1993   }
1994 
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)1995   void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
1996                   size_t count ATTRIBUTE_UNUSED,
1997                   const RootInfo& info ATTRIBUTE_UNUSED)
1998       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
1999     LOG(FATAL) << "Unsupported";
2000   }
2001 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2002   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
2003                   const RootInfo& info ATTRIBUTE_UNUSED)
2004       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2005     for (size_t i = 0; i < count; ++i) {
2006       image_writer_->CopyReference(roots[i], roots[i]->AsMirrorPtr());
2007     }
2008   }
2009 
2010  private:
2011   ImageWriter* const image_writer_;
2012 };
2013 
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2014 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2015   for (size_t i = 0; i < ImTable::kSize; ++i) {
2016     ArtMethod* method = orig->Get(i, target_ptr_size_);
2017     void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2018     CopyAndFixupPointer(address, method);
2019     DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2020   }
2021 }
2022 
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2023 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2024   const size_t count = orig->NumEntries(target_ptr_size_);
2025   for (size_t i = 0; i < count; ++i) {
2026     ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2027     ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2028     CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2029     CopyAndFixupPointer(copy->AddressOfImplementationMethod(i, target_ptr_size_),
2030                         implementation_method);
2031     DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2032               NativeLocationInImage(interface_method));
2033     DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2034               NativeLocationInImage(implementation_method));
2035   }
2036 }
2037 
CopyAndFixupNativeData(size_t oat_index)2038 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2039   const ImageInfo& image_info = GetImageInfo(oat_index);
2040   // Copy ArtFields and methods to their locations and update the array for convenience.
2041   for (auto& pair : native_object_relocations_) {
2042     NativeObjectRelocation& relocation = pair.second;
2043     // Only work with fields and methods that are in the current oat file.
2044     if (relocation.oat_index != oat_index) {
2045       continue;
2046     }
2047     auto* dest = image_info.image_->Begin() + relocation.offset;
2048     DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
2049     DCHECK(!IsInBootImage(pair.first));
2050     switch (relocation.type) {
2051       case kNativeObjectRelocationTypeArtField: {
2052         memcpy(dest, pair.first, sizeof(ArtField));
2053         CopyReference(
2054             reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
2055             reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass().Ptr());
2056         break;
2057       }
2058       case kNativeObjectRelocationTypeRuntimeMethod:
2059       case kNativeObjectRelocationTypeArtMethodClean:
2060       case kNativeObjectRelocationTypeArtMethodDirty: {
2061         CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2062                            reinterpret_cast<ArtMethod*>(dest),
2063                            image_info);
2064         break;
2065       }
2066       // For arrays, copy just the header since the elements will get copied by their corresponding
2067       // relocations.
2068       case kNativeObjectRelocationTypeArtFieldArray: {
2069         memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
2070         break;
2071       }
2072       case kNativeObjectRelocationTypeArtMethodArrayClean:
2073       case kNativeObjectRelocationTypeArtMethodArrayDirty: {
2074         size_t size = ArtMethod::Size(target_ptr_size_);
2075         size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2076         memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2077         // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
2078         reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2079         break;
2080       }
2081       case kNativeObjectRelocationTypeDexCacheArray:
2082         // Nothing to copy here, everything is done in FixupDexCache().
2083         break;
2084       case kNativeObjectRelocationTypeIMTable: {
2085         ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2086         ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2087         CopyAndFixupImTable(orig_imt, dest_imt);
2088         break;
2089       }
2090       case kNativeObjectRelocationTypeIMTConflictTable: {
2091         auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2092         CopyAndFixupImtConflictTable(
2093             orig_table,
2094             new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2095         break;
2096       }
2097     }
2098   }
2099   // Fixup the image method roots.
2100   auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
2101   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2102     ArtMethod* method = image_methods_[i];
2103     CHECK(method != nullptr);
2104     if (!IsInBootImage(method)) {
2105       method = NativeLocationInImage(method);
2106     }
2107     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
2108   }
2109   FixupRootVisitor root_visitor(this);
2110 
2111   // Write the intern table into the image.
2112   if (image_info.intern_table_bytes_ > 0) {
2113     const ImageSection& intern_table_section = image_header->GetImageSection(
2114         ImageHeader::kSectionInternedStrings);
2115     InternTable* const intern_table = image_info.intern_table_.get();
2116     uint8_t* const intern_table_memory_ptr =
2117         image_info.image_->Begin() + intern_table_section.Offset();
2118     const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
2119     CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2120     // Fixup the pointers in the newly written intern table to contain image addresses.
2121     InternTable temp_intern_table;
2122     // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
2123     // the VisitRoots() will update the memory directly rather than the copies.
2124     // This also relies on visit roots not doing any verification which could fail after we update
2125     // the roots to be the image addresses.
2126     temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
2127     CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
2128     temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2129   }
2130   // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2131   // class loaders. Writing multiple class tables into the image is currently unsupported.
2132   if (image_info.class_table_bytes_ > 0u) {
2133     const ImageSection& class_table_section = image_header->GetImageSection(
2134         ImageHeader::kSectionClassTable);
2135     uint8_t* const class_table_memory_ptr =
2136         image_info.image_->Begin() + class_table_section.Offset();
2137     ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
2138 
2139     ClassTable* table = image_info.class_table_.get();
2140     CHECK(table != nullptr);
2141     const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
2142     CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2143     // Fixup the pointers in the newly written class table to contain image addresses. See
2144     // above comment for intern tables.
2145     ClassTable temp_class_table;
2146     temp_class_table.ReadFromMemory(class_table_memory_ptr);
2147     CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
2148              table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
2149     UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2150     temp_class_table.VisitRoots(visitor);
2151   }
2152 }
2153 
CopyAndFixupObjects()2154 void ImageWriter::CopyAndFixupObjects() {
2155   auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2156     DCHECK(obj != nullptr);
2157     CopyAndFixupObject(obj);
2158   };
2159   Runtime::Current()->GetHeap()->VisitObjects(visitor);
2160   // Fix up the object previously had hash codes.
2161   for (const auto& hash_pair : saved_hashcode_map_) {
2162     Object* obj = hash_pair.first;
2163     DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
2164     obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
2165   }
2166   saved_hashcode_map_.clear();
2167 }
2168 
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,mirror::Class * klass,Bin array_type)2169 void ImageWriter::FixupPointerArray(mirror::Object* dst,
2170                                     mirror::PointerArray* arr,
2171                                     mirror::Class* klass,
2172                                     Bin array_type) {
2173   CHECK(klass->IsArrayClass());
2174   CHECK(arr->IsIntArray() || arr->IsLongArray()) << klass->PrettyClass() << " " << arr;
2175   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2176   const size_t num_elements = arr->GetLength();
2177   dst->SetClass(GetImageAddress(arr->GetClass()));
2178   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2179   for (size_t i = 0, count = num_elements; i < count; ++i) {
2180     void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2181     if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2182       auto it = native_object_relocations_.find(elem);
2183       if (UNLIKELY(it == native_object_relocations_.end())) {
2184         if (it->second.IsArtMethodRelocation()) {
2185           auto* method = reinterpret_cast<ArtMethod*>(elem);
2186           LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2187                      << method << " idx=" << i << "/" << num_elements << " with declaring class "
2188                      << Class::PrettyClass(method->GetDeclaringClass());
2189         } else {
2190           CHECK_EQ(array_type, kBinArtField);
2191           auto* field = reinterpret_cast<ArtField*>(elem);
2192           LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
2193               << field << " idx=" << i << "/" << num_elements << " with declaring class "
2194               << Class::PrettyClass(field->GetDeclaringClass());
2195         }
2196         UNREACHABLE();
2197       }
2198     }
2199     CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2200   }
2201 }
2202 
CopyAndFixupObject(Object * obj)2203 void ImageWriter::CopyAndFixupObject(Object* obj) {
2204   if (IsInBootImage(obj)) {
2205     return;
2206   }
2207   size_t offset = GetImageOffset(obj);
2208   size_t oat_index = GetOatIndex(obj);
2209   ImageInfo& image_info = GetImageInfo(oat_index);
2210   auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
2211   DCHECK_LT(offset, image_info.image_end_);
2212   const auto* src = reinterpret_cast<const uint8_t*>(obj);
2213 
2214   image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
2215 
2216   const size_t n = obj->SizeOf();
2217   DCHECK_LE(offset + n, image_info.image_->Size());
2218   memcpy(dst, src, n);
2219 
2220   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
2221   // word.
2222   const auto it = saved_hashcode_map_.find(obj);
2223   dst->SetLockWord(it != saved_hashcode_map_.end() ?
2224       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
2225   if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2226     // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
2227     // safe since we mark all of the objects that may reference non immune objects as gray.
2228     CHECK(dst->AtomicSetMarkBit(0, 1));
2229   }
2230   FixupObject(obj, dst);
2231 }
2232 
2233 // Rewrite all the references in the copied object to point to their image address equivalent
2234 class ImageWriter::FixupVisitor {
2235  public:
FixupVisitor(ImageWriter * image_writer,Object * copy)2236   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
2237   }
2238 
2239   // Ignore class roots since we don't have a way to map them to the destination. These are handled
2240   // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2241   void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2242       const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2243   void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2244 
2245 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2246   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2247       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2248     ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
2249     // Copy the reference and record the fixup if necessary.
2250     image_writer_->CopyReference(
2251         copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset),
2252         ref.Ptr());
2253   }
2254 
2255   // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2256   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2257                   ObjPtr<mirror::Reference> ref) const
2258       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2259     operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
2260   }
2261 
2262  protected:
2263   ImageWriter* const image_writer_;
2264   mirror::Object* const copy_;
2265 };
2266 
2267 class ImageWriter::FixupClassVisitor FINAL : public FixupVisitor {
2268  public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)2269   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
2270   }
2271 
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2272   void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2273       REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2274     DCHECK(obj->IsClass());
2275     FixupVisitor::operator()(obj, offset, /*is_static*/false);
2276   }
2277 
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2278   void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2279                   ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2280       REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2281     LOG(FATAL) << "Reference not expected here.";
2282   }
2283 };
2284 
NativeOffsetInImage(void * obj)2285 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
2286   DCHECK(obj != nullptr);
2287   DCHECK(!IsInBootImage(obj));
2288   auto it = native_object_relocations_.find(obj);
2289   CHECK(it != native_object_relocations_.end()) << obj << " spaces "
2290       << Runtime::Current()->GetHeap()->DumpSpaces();
2291   const NativeObjectRelocation& relocation = it->second;
2292   return relocation.offset;
2293 }
2294 
2295 template <typename T>
PrettyPrint(T * ptr)2296 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
2297   std::ostringstream oss;
2298   oss << ptr;
2299   return oss.str();
2300 }
2301 
2302 template <>
PrettyPrint(ArtMethod * method)2303 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
2304   return ArtMethod::PrettyMethod(method);
2305 }
2306 
2307 template <typename T>
NativeLocationInImage(T * obj)2308 T* ImageWriter::NativeLocationInImage(T* obj) {
2309   if (obj == nullptr || IsInBootImage(obj)) {
2310     return obj;
2311   } else {
2312     auto it = native_object_relocations_.find(obj);
2313     CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
2314         << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
2315     const NativeObjectRelocation& relocation = it->second;
2316     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2317     return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
2318   }
2319 }
2320 
2321 template <typename T>
NativeCopyLocation(T * obj,mirror::DexCache * dex_cache)2322 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
2323   if (obj == nullptr || IsInBootImage(obj)) {
2324     return obj;
2325   } else {
2326     size_t oat_index = GetOatIndexForDexCache(dex_cache);
2327     ImageInfo& image_info = GetImageInfo(oat_index);
2328     return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
2329   }
2330 }
2331 
2332 class ImageWriter::NativeLocationVisitor {
2333  public:
NativeLocationVisitor(ImageWriter * image_writer)2334   explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
2335 
2336   template <typename T>
operator ()(T * ptr,void ** dest_addr=nullptr) const2337   T* operator()(T* ptr, void** dest_addr = nullptr) const REQUIRES_SHARED(Locks::mutator_lock_) {
2338     if (dest_addr != nullptr) {
2339       image_writer_->CopyAndFixupPointer(dest_addr, ptr);
2340     }
2341     return image_writer_->NativeLocationInImage(ptr);
2342   }
2343 
2344  private:
2345   ImageWriter* const image_writer_;
2346 };
2347 
FixupClass(mirror::Class * orig,mirror::Class * copy)2348 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
2349   orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
2350   FixupClassVisitor visitor(this, copy);
2351   ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
2352 
2353   // Remove the clinitThreadId. This is required for image determinism.
2354   copy->SetClinitThreadId(static_cast<pid_t>(0));
2355 }
2356 
FixupObject(Object * orig,Object * copy)2357 void ImageWriter::FixupObject(Object* orig, Object* copy) {
2358   DCHECK(orig != nullptr);
2359   DCHECK(copy != nullptr);
2360   if (kUseBakerReadBarrier) {
2361     orig->AssertReadBarrierState();
2362   }
2363   auto* klass = orig->GetClass();
2364   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
2365     // Is this a native pointer array?
2366     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
2367     if (it != pointer_arrays_.end()) {
2368       // Should only need to fixup every pointer array exactly once.
2369       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
2370       pointer_arrays_.erase(it);
2371       return;
2372     }
2373   }
2374   if (orig->IsClass()) {
2375     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
2376   } else {
2377     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
2378       // Need to go update the ArtMethod.
2379       auto* dest = down_cast<mirror::Executable*>(copy);
2380       auto* src = down_cast<mirror::Executable*>(orig);
2381       ArtMethod* src_method = src->GetArtMethod();
2382       dest->SetArtMethod(GetImageMethodAddress(src_method));
2383     } else if (!klass->IsArrayClass()) {
2384       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2385       if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
2386         FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
2387       } else if (klass->IsClassLoaderClass()) {
2388         mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
2389         // If src is a ClassLoader, set the class table to null so that it gets recreated by the
2390         // ClassLoader.
2391         copy_loader->SetClassTable(nullptr);
2392         // Also set allocator to null to be safe. The allocator is created when we create the class
2393         // table. We also never expect to unload things in the image since they are held live as
2394         // roots.
2395         copy_loader->SetAllocator(nullptr);
2396       }
2397     }
2398     FixupVisitor visitor(this, copy);
2399     orig->VisitReferences(visitor, visitor);
2400   }
2401 }
2402 
2403 class ImageWriter::ImageAddressVisitorForDexCacheArray {
2404  public:
ImageAddressVisitorForDexCacheArray(ImageWriter * image_writer)2405   explicit ImageAddressVisitorForDexCacheArray(ImageWriter* image_writer)
2406       : image_writer_(image_writer) {}
2407 
2408   template <typename T>
operator ()(T * ptr) const2409   T* operator()(T* ptr) const REQUIRES_SHARED(Locks::mutator_lock_) {
2410     return image_writer_->GetImageAddress(ptr);
2411   }
2412 
2413  private:
2414   ImageWriter* const image_writer_;
2415 };
2416 
FixupDexCache(mirror::DexCache * orig_dex_cache,mirror::DexCache * copy_dex_cache)2417 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
2418                                 mirror::DexCache* copy_dex_cache) {
2419   ImageAddressVisitorForDexCacheArray fixup_visitor(this);
2420   // Though the DexCache array fields are usually treated as native pointers, we set the full
2421   // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
2422   // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
2423   //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
2424   mirror::StringDexCacheType* orig_strings = orig_dex_cache->GetStrings();
2425   if (orig_strings != nullptr) {
2426     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
2427                                                NativeLocationInImage(orig_strings),
2428                                                PointerSize::k64);
2429     orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), fixup_visitor);
2430   }
2431   mirror::TypeDexCacheType* orig_types = orig_dex_cache->GetResolvedTypes();
2432   if (orig_types != nullptr) {
2433     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
2434                                                NativeLocationInImage(orig_types),
2435                                                PointerSize::k64);
2436     orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
2437                                        fixup_visitor);
2438   }
2439   mirror::MethodDexCacheType* orig_methods = orig_dex_cache->GetResolvedMethods();
2440   if (orig_methods != nullptr) {
2441     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
2442                                                NativeLocationInImage(orig_methods),
2443                                                PointerSize::k64);
2444     mirror::MethodDexCacheType* copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
2445     for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
2446       mirror::MethodDexCachePair orig_pair =
2447           mirror::DexCache::GetNativePairPtrSize(orig_methods, i, target_ptr_size_);
2448       // NativeLocationInImage also handles runtime methods since these have relocation info.
2449       mirror::MethodDexCachePair copy_pair(NativeLocationInImage(orig_pair.object),
2450                                            orig_pair.index);
2451       mirror::DexCache::SetNativePairPtrSize(copy_methods, i, copy_pair, target_ptr_size_);
2452     }
2453   }
2454   mirror::FieldDexCacheType* orig_fields = orig_dex_cache->GetResolvedFields();
2455   if (orig_fields != nullptr) {
2456     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2457                                                NativeLocationInImage(orig_fields),
2458                                                PointerSize::k64);
2459     mirror::FieldDexCacheType* copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2460     for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2461       mirror::FieldDexCachePair orig =
2462           mirror::DexCache::GetNativePairPtrSize(orig_fields, i, target_ptr_size_);
2463       mirror::FieldDexCachePair copy = orig;
2464       copy.object = NativeLocationInImage(orig.object);
2465       mirror::DexCache::SetNativePairPtrSize(copy_fields, i, copy, target_ptr_size_);
2466     }
2467   }
2468   mirror::MethodTypeDexCacheType* orig_method_types = orig_dex_cache->GetResolvedMethodTypes();
2469   if (orig_method_types != nullptr) {
2470     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodTypesOffset(),
2471                                                NativeLocationInImage(orig_method_types),
2472                                                PointerSize::k64);
2473     orig_dex_cache->FixupResolvedMethodTypes(NativeCopyLocation(orig_method_types, orig_dex_cache),
2474                                              fixup_visitor);
2475   }
2476   GcRoot<mirror::CallSite>* orig_call_sites = orig_dex_cache->GetResolvedCallSites();
2477   if (orig_call_sites != nullptr) {
2478     copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedCallSitesOffset(),
2479                                                NativeLocationInImage(orig_call_sites),
2480                                                PointerSize::k64);
2481     orig_dex_cache->FixupResolvedCallSites(NativeCopyLocation(orig_call_sites, orig_dex_cache),
2482                                            fixup_visitor);
2483   }
2484 
2485   // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2486   // compiler pointers in here will make the output non-deterministic.
2487   copy_dex_cache->SetDexFile(nullptr);
2488 }
2489 
GetOatAddress(OatAddress type) const2490 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2491   DCHECK_LT(type, kOatAddressCount);
2492   // If we are compiling an app image, we need to use the stubs of the boot image.
2493   if (compile_app_image_) {
2494     // Use the current image pointers.
2495     const std::vector<gc::space::ImageSpace*>& image_spaces =
2496         Runtime::Current()->GetHeap()->GetBootImageSpaces();
2497     DCHECK(!image_spaces.empty());
2498     const OatFile* oat_file = image_spaces[0]->GetOatFile();
2499     CHECK(oat_file != nullptr);
2500     const OatHeader& header = oat_file->GetOatHeader();
2501     switch (type) {
2502       // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2503       case kOatAddressQuickGenericJNITrampoline:
2504         return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2505       case kOatAddressInterpreterToInterpreterBridge:
2506         return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2507       case kOatAddressInterpreterToCompiledCodeBridge:
2508         return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2509       case kOatAddressJNIDlsymLookup:
2510         return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2511       case kOatAddressQuickIMTConflictTrampoline:
2512         return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2513       case kOatAddressQuickResolutionTrampoline:
2514         return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2515       case kOatAddressQuickToInterpreterBridge:
2516         return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2517       default:
2518         UNREACHABLE();
2519     }
2520   }
2521   const ImageInfo& primary_image_info = GetImageInfo(0);
2522   return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2523 }
2524 
GetQuickCode(ArtMethod * method,const ImageInfo & image_info,bool * quick_is_interpreted)2525 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2526                                          const ImageInfo& image_info,
2527                                          bool* quick_is_interpreted) {
2528   DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
2529   DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
2530   DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
2531   DCHECK(method->IsInvokable()) << method->PrettyMethod();
2532   DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
2533 
2534   // Use original code if it exists. Otherwise, set the code pointer to the resolution
2535   // trampoline.
2536 
2537   // Quick entrypoint:
2538   const void* quick_oat_entry_point =
2539       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2540   const uint8_t* quick_code;
2541 
2542   if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2543     DCHECK(method->IsCopied());
2544     // If the code is not in the oat file corresponding to this image (e.g. default methods)
2545     quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2546   } else {
2547     uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2548     quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2549   }
2550 
2551   *quick_is_interpreted = false;
2552   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2553       method->GetDeclaringClass()->IsInitialized())) {
2554     // We have code for a non-static or initialized method, just use the code.
2555   } else if (quick_code == nullptr && method->IsNative() &&
2556       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2557     // Non-static or initialized native method missing compiled code, use generic JNI version.
2558     quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2559   } else if (quick_code == nullptr && !method->IsNative()) {
2560     // We don't have code at all for a non-native method, use the interpreter.
2561     quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2562     *quick_is_interpreted = true;
2563   } else {
2564     CHECK(!method->GetDeclaringClass()->IsInitialized());
2565     // We have code for a static method, but need to go through the resolution stub for class
2566     // initialization.
2567     quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2568   }
2569   if (!IsInBootOatFile(quick_code)) {
2570     // DCHECK_GE(quick_code, oat_data_begin_);
2571   }
2572   return quick_code;
2573 }
2574 
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,const ImageInfo & image_info)2575 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2576                                      ArtMethod* copy,
2577                                      const ImageInfo& image_info) {
2578   if (orig->IsAbstract()) {
2579     // Ignore the single-implementation info for abstract method.
2580     // Do this on orig instead of copy, otherwise there is a crash due to methods
2581     // are copied before classes.
2582     // TODO: handle fixup of single-implementation method for abstract method.
2583     orig->SetHasSingleImplementation(false);
2584     orig->SetSingleImplementation(
2585         nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2586   }
2587 
2588   memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2589 
2590   CopyReference(copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
2591 
2592   mirror::MethodDexCacheType* orig_resolved_methods =
2593       orig->GetDexCacheResolvedMethods(target_ptr_size_);
2594   copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2595 
2596   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2597   // oat_begin_
2598 
2599   // The resolution method has a special trampoline to call.
2600   Runtime* runtime = Runtime::Current();
2601   if (orig->IsRuntimeMethod()) {
2602     ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2603     if (orig_table != nullptr) {
2604       // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2605       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2606           GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2607       copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2608     } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2609       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2610           GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2611     } else {
2612       bool found_one = false;
2613       for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
2614         auto idx = static_cast<CalleeSaveType>(i);
2615         if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2616           found_one = true;
2617           break;
2618         }
2619       }
2620       CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
2621       CHECK(copy->IsRuntimeMethod());
2622     }
2623   } else {
2624     // We assume all methods have code. If they don't currently then we set them to the use the
2625     // resolution trampoline. Abstract methods never have code and so we need to make sure their
2626     // use results in an AbstractMethodError. We use the interpreter to achieve this.
2627     if (UNLIKELY(!orig->IsInvokable())) {
2628       copy->SetEntryPointFromQuickCompiledCodePtrSize(
2629           GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2630     } else {
2631       bool quick_is_interpreted;
2632       const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2633       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2634 
2635       // JNI entrypoint:
2636       if (orig->IsNative()) {
2637         // The native method's pointer is set to a stub to lookup via dlsym.
2638         // Note this is not the code_ pointer, that is handled above.
2639         copy->SetEntryPointFromJniPtrSize(
2640             GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2641       }
2642     }
2643   }
2644 }
2645 
GetBinSizeSum(ImageWriter::ImageInfo & image_info,ImageWriter::Bin up_to) const2646 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2647   DCHECK_LE(up_to, kBinSize);
2648   return std::accumulate(&image_info.bin_slot_sizes_[0],
2649                          &image_info.bin_slot_sizes_[up_to],
2650                          /*init*/0);
2651 }
2652 
BinSlot(uint32_t lockword)2653 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2654   // These values may need to get updated if more bins are added to the enum Bin
2655   static_assert(kBinBits == 3, "wrong number of bin bits");
2656   static_assert(kBinShift == 27, "wrong number of shift");
2657   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2658 
2659   DCHECK_LT(GetBin(), kBinSize);
2660   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2661 }
2662 
BinSlot(Bin bin,uint32_t index)2663 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2664     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2665   DCHECK_EQ(index, GetIndex());
2666 }
2667 
GetBin() const2668 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2669   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2670 }
2671 
GetIndex() const2672 uint32_t ImageWriter::BinSlot::GetIndex() const {
2673   return lockword_ & ~kBinMask;
2674 }
2675 
BinTypeForNativeRelocationType(NativeObjectRelocationType type)2676 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2677   switch (type) {
2678     case kNativeObjectRelocationTypeArtField:
2679     case kNativeObjectRelocationTypeArtFieldArray:
2680       return kBinArtField;
2681     case kNativeObjectRelocationTypeArtMethodClean:
2682     case kNativeObjectRelocationTypeArtMethodArrayClean:
2683       return kBinArtMethodClean;
2684     case kNativeObjectRelocationTypeArtMethodDirty:
2685     case kNativeObjectRelocationTypeArtMethodArrayDirty:
2686       return kBinArtMethodDirty;
2687     case kNativeObjectRelocationTypeDexCacheArray:
2688       return kBinDexCacheArray;
2689     case kNativeObjectRelocationTypeRuntimeMethod:
2690       return kBinRuntimeMethod;
2691     case kNativeObjectRelocationTypeIMTable:
2692       return kBinImTable;
2693     case kNativeObjectRelocationTypeIMTConflictTable:
2694       return kBinIMTConflictTable;
2695   }
2696   UNREACHABLE();
2697 }
2698 
GetOatIndex(mirror::Object * obj) const2699 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2700   if (!IsMultiImage()) {
2701     return GetDefaultOatIndex();
2702   }
2703   auto it = oat_index_map_.find(obj);
2704   DCHECK(it != oat_index_map_.end()) << obj;
2705   return it->second;
2706 }
2707 
GetOatIndexForDexFile(const DexFile * dex_file) const2708 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2709   if (!IsMultiImage()) {
2710     return GetDefaultOatIndex();
2711   }
2712   auto it = dex_file_oat_index_map_.find(dex_file);
2713   DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2714   return it->second;
2715 }
2716 
GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const2717 size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
2718   return (dex_cache == nullptr)
2719       ? GetDefaultOatIndex()
2720       : GetOatIndexForDexFile(dex_cache->GetDexFile());
2721 }
2722 
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)2723 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2724                                       size_t oat_loaded_size,
2725                                       size_t oat_data_offset,
2726                                       size_t oat_data_size) {
2727   const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2728   for (const ImageInfo& info : image_infos_) {
2729     DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2730   }
2731   DCHECK(images_end != nullptr);  // Image space must be ready.
2732 
2733   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2734   cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2735   cur_image_info.oat_loaded_size_ = oat_loaded_size;
2736   cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2737   cur_image_info.oat_size_ = oat_data_size;
2738 
2739   if (compile_app_image_) {
2740     CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2741     return;
2742   }
2743 
2744   // Update the oat_offset of the next image info.
2745   if (oat_index + 1u != oat_filenames_.size()) {
2746     // There is a following one.
2747     ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2748     next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2749   }
2750 }
2751 
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)2752 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2753   ImageInfo& cur_image_info = GetImageInfo(oat_index);
2754   cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2755 
2756   if (oat_index == GetDefaultOatIndex()) {
2757     // Primary oat file, read the trampolines.
2758     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2759         oat_header.GetInterpreterToInterpreterBridgeOffset();
2760     cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2761         oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2762     cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2763         oat_header.GetJniDlsymLookupOffset();
2764     cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2765         oat_header.GetQuickGenericJniTrampolineOffset();
2766     cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2767         oat_header.GetQuickImtConflictTrampolineOffset();
2768     cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2769         oat_header.GetQuickResolutionTrampolineOffset();
2770     cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2771         oat_header.GetQuickToInterpreterBridgeOffset();
2772   }
2773 }
2774 
ImageWriter(const CompilerDriver & compiler_driver,uintptr_t image_begin,bool compile_pic,bool compile_app_image,ImageHeader::StorageMode image_storage_mode,const std::vector<const char * > & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map,const std::unordered_set<std::string> * dirty_image_objects)2775 ImageWriter::ImageWriter(
2776     const CompilerDriver& compiler_driver,
2777     uintptr_t image_begin,
2778     bool compile_pic,
2779     bool compile_app_image,
2780     ImageHeader::StorageMode image_storage_mode,
2781     const std::vector<const char*>& oat_filenames,
2782     const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
2783     const std::unordered_set<std::string>* dirty_image_objects)
2784     : compiler_driver_(compiler_driver),
2785       global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2786       image_objects_offset_begin_(0),
2787       compile_pic_(compile_pic),
2788       compile_app_image_(compile_app_image),
2789       target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2790       image_infos_(oat_filenames.size()),
2791       dirty_methods_(0u),
2792       clean_methods_(0u),
2793       image_storage_mode_(image_storage_mode),
2794       oat_filenames_(oat_filenames),
2795       dex_file_oat_index_map_(dex_file_oat_index_map),
2796       dirty_image_objects_(dirty_image_objects) {
2797   CHECK_NE(image_begin, 0U);
2798   std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2799   CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2800       << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2801 }
2802 
ImageInfo()2803 ImageWriter::ImageInfo::ImageInfo()
2804     : intern_table_(new InternTable),
2805       class_table_(new ClassTable) {}
2806 
CopyReference(mirror::HeapReference<mirror::Object> * dest,ObjPtr<mirror::Object> src)2807 void ImageWriter::CopyReference(mirror::HeapReference<mirror::Object>* dest,
2808                                 ObjPtr<mirror::Object> src) {
2809   dest->Assign(GetImageAddress(src.Ptr()));
2810 }
2811 
CopyReference(mirror::CompressedReference<mirror::Object> * dest,ObjPtr<mirror::Object> src)2812 void ImageWriter::CopyReference(mirror::CompressedReference<mirror::Object>* dest,
2813                                 ObjPtr<mirror::Object> src) {
2814   dest->Assign(GetImageAddress(src.Ptr()));
2815 }
2816 
CopyAndFixupPointer(void ** target,void * value)2817 void ImageWriter::CopyAndFixupPointer(void** target, void* value) {
2818   void* new_value = value;
2819   if (value != nullptr && !IsInBootImage(value)) {
2820     auto it = native_object_relocations_.find(value);
2821     CHECK(it != native_object_relocations_.end()) << value;
2822     const NativeObjectRelocation& relocation = it->second;
2823     ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2824     new_value = reinterpret_cast<void*>(image_info.image_begin_ + relocation.offset);
2825   }
2826   if (target_ptr_size_ == PointerSize::k32) {
2827     *reinterpret_cast<uint32_t*>(target) = PointerToLowMemUInt32(new_value);
2828   } else {
2829     *reinterpret_cast<uint64_t*>(target) = reinterpret_cast<uintptr_t>(new_value);
2830   }
2831 }
2832 
2833 
2834 }  // namespace art
2835