• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "code_generator_x86.h"
18 
19 #include "art_method.h"
20 #include "code_generator_utils.h"
21 #include "compiled_method.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "entrypoints/quick/quick_entrypoints_enum.h"
24 #include "gc/accounting/card_table.h"
25 #include "intrinsics.h"
26 #include "intrinsics_x86.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/class-inl.h"
29 #include "lock_word.h"
30 #include "thread.h"
31 #include "utils/assembler.h"
32 #include "utils/stack_checks.h"
33 #include "utils/x86/assembler_x86.h"
34 #include "utils/x86/managed_register_x86.h"
35 
36 namespace art {
37 
38 template<class MirrorType>
39 class GcRoot;
40 
41 namespace x86 {
42 
43 static constexpr int kCurrentMethodStackOffset = 0;
44 static constexpr Register kMethodRegisterArgument = EAX;
45 static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
46 
47 static constexpr int kC2ConditionMask = 0x400;
48 
49 static constexpr int kFakeReturnRegister = Register(8);
50 
51 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
52 #define __ down_cast<X86Assembler*>(codegen->GetAssembler())->  // NOLINT
53 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value()
54 
55 class NullCheckSlowPathX86 : public SlowPathCode {
56  public:
NullCheckSlowPathX86(HNullCheck * instruction)57   explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
58 
EmitNativeCode(CodeGenerator * codegen)59   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
60     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
61     __ Bind(GetEntryLabel());
62     if (instruction_->CanThrowIntoCatchBlock()) {
63       // Live registers will be restored in the catch block if caught.
64       SaveLiveRegisters(codegen, instruction_->GetLocations());
65     }
66     x86_codegen->InvokeRuntime(kQuickThrowNullPointer,
67                                instruction_,
68                                instruction_->GetDexPc(),
69                                this);
70     CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
71   }
72 
IsFatal() const73   bool IsFatal() const OVERRIDE { return true; }
74 
GetDescription() const75   const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
76 
77  private:
78   DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
79 };
80 
81 class DivZeroCheckSlowPathX86 : public SlowPathCode {
82  public:
DivZeroCheckSlowPathX86(HDivZeroCheck * instruction)83   explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
84 
EmitNativeCode(CodeGenerator * codegen)85   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
86     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
87     __ Bind(GetEntryLabel());
88     x86_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
89     CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
90   }
91 
IsFatal() const92   bool IsFatal() const OVERRIDE { return true; }
93 
GetDescription() const94   const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
95 
96  private:
97   DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
98 };
99 
100 class DivRemMinusOneSlowPathX86 : public SlowPathCode {
101  public:
DivRemMinusOneSlowPathX86(HInstruction * instruction,Register reg,bool is_div)102   DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
103       : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
104 
EmitNativeCode(CodeGenerator * codegen)105   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
106     __ Bind(GetEntryLabel());
107     if (is_div_) {
108       __ negl(reg_);
109     } else {
110       __ movl(reg_, Immediate(0));
111     }
112     __ jmp(GetExitLabel());
113   }
114 
GetDescription() const115   const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
116 
117  private:
118   Register reg_;
119   bool is_div_;
120   DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
121 };
122 
123 class BoundsCheckSlowPathX86 : public SlowPathCode {
124  public:
BoundsCheckSlowPathX86(HBoundsCheck * instruction)125   explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
126 
EmitNativeCode(CodeGenerator * codegen)127   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
128     LocationSummary* locations = instruction_->GetLocations();
129     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
130     __ Bind(GetEntryLabel());
131     // We're moving two locations to locations that could overlap, so we need a parallel
132     // move resolver.
133     if (instruction_->CanThrowIntoCatchBlock()) {
134       // Live registers will be restored in the catch block if caught.
135       SaveLiveRegisters(codegen, instruction_->GetLocations());
136     }
137 
138     // Are we using an array length from memory?
139     HInstruction* array_length = instruction_->InputAt(1);
140     Location length_loc = locations->InAt(1);
141     InvokeRuntimeCallingConvention calling_convention;
142     if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) {
143       // Load the array length into our temporary.
144       uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength());
145       Location array_loc = array_length->GetLocations()->InAt(0);
146       Address array_len(array_loc.AsRegister<Register>(), len_offset);
147       length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1));
148       // Check for conflicts with index.
149       if (length_loc.Equals(locations->InAt(0))) {
150         // We know we aren't using parameter 2.
151         length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2));
152       }
153       __ movl(length_loc.AsRegister<Register>(), array_len);
154       if (mirror::kUseStringCompression) {
155         __ shrl(length_loc.AsRegister<Register>(), Immediate(1));
156       }
157     }
158     x86_codegen->EmitParallelMoves(
159         locations->InAt(0),
160         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
161         Primitive::kPrimInt,
162         length_loc,
163         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
164         Primitive::kPrimInt);
165     QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
166         ? kQuickThrowStringBounds
167         : kQuickThrowArrayBounds;
168     x86_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
169     CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
170     CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
171   }
172 
IsFatal() const173   bool IsFatal() const OVERRIDE { return true; }
174 
GetDescription() const175   const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
176 
177  private:
178   DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
179 };
180 
181 class SuspendCheckSlowPathX86 : public SlowPathCode {
182  public:
SuspendCheckSlowPathX86(HSuspendCheck * instruction,HBasicBlock * successor)183   SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
184       : SlowPathCode(instruction), successor_(successor) {}
185 
EmitNativeCode(CodeGenerator * codegen)186   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
187     LocationSummary* locations = instruction_->GetLocations();
188     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
189     __ Bind(GetEntryLabel());
190     SaveLiveRegisters(codegen, locations);  // Only saves full width XMM for SIMD.
191     x86_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
192     CheckEntrypointTypes<kQuickTestSuspend, void, void>();
193     RestoreLiveRegisters(codegen, locations);  // Only restores full width XMM for SIMD.
194     if (successor_ == nullptr) {
195       __ jmp(GetReturnLabel());
196     } else {
197       __ jmp(x86_codegen->GetLabelOf(successor_));
198     }
199   }
200 
GetReturnLabel()201   Label* GetReturnLabel() {
202     DCHECK(successor_ == nullptr);
203     return &return_label_;
204   }
205 
GetSuccessor() const206   HBasicBlock* GetSuccessor() const {
207     return successor_;
208   }
209 
GetDescription() const210   const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
211 
212  private:
213   HBasicBlock* const successor_;
214   Label return_label_;
215 
216   DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
217 };
218 
219 class LoadStringSlowPathX86 : public SlowPathCode {
220  public:
LoadStringSlowPathX86(HLoadString * instruction)221   explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
222 
EmitNativeCode(CodeGenerator * codegen)223   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
224     LocationSummary* locations = instruction_->GetLocations();
225     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
226 
227     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
228     __ Bind(GetEntryLabel());
229     SaveLiveRegisters(codegen, locations);
230 
231     InvokeRuntimeCallingConvention calling_convention;
232     const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
233     __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index.index_));
234     x86_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
235     CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
236     x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
237     RestoreLiveRegisters(codegen, locations);
238 
239     // Store the resolved String to the BSS entry.
240     Register method_address = locations->InAt(0).AsRegister<Register>();
241     __ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset),
242             locations->Out().AsRegister<Register>());
243     Label* fixup_label = x86_codegen->NewStringBssEntryPatch(instruction_->AsLoadString());
244     __ Bind(fixup_label);
245 
246     __ jmp(GetExitLabel());
247   }
248 
GetDescription() const249   const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
250 
251  private:
252   DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
253 };
254 
255 class LoadClassSlowPathX86 : public SlowPathCode {
256  public:
LoadClassSlowPathX86(HLoadClass * cls,HInstruction * at,uint32_t dex_pc,bool do_clinit)257   LoadClassSlowPathX86(HLoadClass* cls,
258                        HInstruction* at,
259                        uint32_t dex_pc,
260                        bool do_clinit)
261       : SlowPathCode(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) {
262     DCHECK(at->IsLoadClass() || at->IsClinitCheck());
263   }
264 
EmitNativeCode(CodeGenerator * codegen)265   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
266     LocationSummary* locations = instruction_->GetLocations();
267     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
268     __ Bind(GetEntryLabel());
269     SaveLiveRegisters(codegen, locations);
270 
271     InvokeRuntimeCallingConvention calling_convention;
272     dex::TypeIndex type_index = cls_->GetTypeIndex();
273     __ movl(calling_convention.GetRegisterAt(0), Immediate(type_index.index_));
274     x86_codegen->InvokeRuntime(do_clinit_ ? kQuickInitializeStaticStorage
275                                           : kQuickInitializeType,
276                                instruction_,
277                                dex_pc_,
278                                this);
279     if (do_clinit_) {
280       CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
281     } else {
282       CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
283     }
284 
285     // Move the class to the desired location.
286     Location out = locations->Out();
287     if (out.IsValid()) {
288       DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
289       x86_codegen->Move32(out, Location::RegisterLocation(EAX));
290     }
291     RestoreLiveRegisters(codegen, locations);
292     // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry.
293     DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
294     if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
295       DCHECK(out.IsValid());
296       Register method_address = locations->InAt(0).AsRegister<Register>();
297       __ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset),
298               locations->Out().AsRegister<Register>());
299       Label* fixup_label = x86_codegen->NewTypeBssEntryPatch(cls_);
300       __ Bind(fixup_label);
301     }
302     __ jmp(GetExitLabel());
303   }
304 
GetDescription() const305   const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
306 
307  private:
308   // The class this slow path will load.
309   HLoadClass* const cls_;
310 
311   // The dex PC of `at_`.
312   const uint32_t dex_pc_;
313 
314   // Whether to initialize the class.
315   const bool do_clinit_;
316 
317   DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
318 };
319 
320 class TypeCheckSlowPathX86 : public SlowPathCode {
321  public:
TypeCheckSlowPathX86(HInstruction * instruction,bool is_fatal)322   TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
323       : SlowPathCode(instruction), is_fatal_(is_fatal) {}
324 
EmitNativeCode(CodeGenerator * codegen)325   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
326     LocationSummary* locations = instruction_->GetLocations();
327     DCHECK(instruction_->IsCheckCast()
328            || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
329 
330     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
331     __ Bind(GetEntryLabel());
332 
333     if (!is_fatal_) {
334       SaveLiveRegisters(codegen, locations);
335     }
336 
337     // We're moving two locations to locations that could overlap, so we need a parallel
338     // move resolver.
339     InvokeRuntimeCallingConvention calling_convention;
340     x86_codegen->EmitParallelMoves(locations->InAt(0),
341                                    Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
342                                    Primitive::kPrimNot,
343                                    locations->InAt(1),
344                                    Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
345                                    Primitive::kPrimNot);
346     if (instruction_->IsInstanceOf()) {
347       x86_codegen->InvokeRuntime(kQuickInstanceofNonTrivial,
348                                  instruction_,
349                                  instruction_->GetDexPc(),
350                                  this);
351       CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
352     } else {
353       DCHECK(instruction_->IsCheckCast());
354       x86_codegen->InvokeRuntime(kQuickCheckInstanceOf,
355                                  instruction_,
356                                  instruction_->GetDexPc(),
357                                  this);
358       CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
359     }
360 
361     if (!is_fatal_) {
362       if (instruction_->IsInstanceOf()) {
363         x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
364       }
365       RestoreLiveRegisters(codegen, locations);
366 
367       __ jmp(GetExitLabel());
368     }
369   }
370 
GetDescription() const371   const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
IsFatal() const372   bool IsFatal() const OVERRIDE { return is_fatal_; }
373 
374  private:
375   const bool is_fatal_;
376 
377   DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
378 };
379 
380 class DeoptimizationSlowPathX86 : public SlowPathCode {
381  public:
DeoptimizationSlowPathX86(HDeoptimize * instruction)382   explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
383     : SlowPathCode(instruction) {}
384 
EmitNativeCode(CodeGenerator * codegen)385   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
386     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
387     __ Bind(GetEntryLabel());
388     LocationSummary* locations = instruction_->GetLocations();
389     SaveLiveRegisters(codegen, locations);
390     InvokeRuntimeCallingConvention calling_convention;
391     x86_codegen->Load32BitValue(
392         calling_convention.GetRegisterAt(0),
393         static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
394     x86_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
395     CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
396   }
397 
GetDescription() const398   const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
399 
400  private:
401   DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
402 };
403 
404 class ArraySetSlowPathX86 : public SlowPathCode {
405  public:
ArraySetSlowPathX86(HInstruction * instruction)406   explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
407 
EmitNativeCode(CodeGenerator * codegen)408   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
409     LocationSummary* locations = instruction_->GetLocations();
410     __ Bind(GetEntryLabel());
411     SaveLiveRegisters(codegen, locations);
412 
413     InvokeRuntimeCallingConvention calling_convention;
414     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
415     parallel_move.AddMove(
416         locations->InAt(0),
417         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
418         Primitive::kPrimNot,
419         nullptr);
420     parallel_move.AddMove(
421         locations->InAt(1),
422         Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
423         Primitive::kPrimInt,
424         nullptr);
425     parallel_move.AddMove(
426         locations->InAt(2),
427         Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
428         Primitive::kPrimNot,
429         nullptr);
430     codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
431 
432     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
433     x86_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
434     CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
435     RestoreLiveRegisters(codegen, locations);
436     __ jmp(GetExitLabel());
437   }
438 
GetDescription() const439   const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
440 
441  private:
442   DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
443 };
444 
445 // Slow path marking an object reference `ref` during a read
446 // barrier. The field `obj.field` in the object `obj` holding this
447 // reference does not get updated by this slow path after marking (see
448 // ReadBarrierMarkAndUpdateFieldSlowPathX86 below for that).
449 //
450 // This means that after the execution of this slow path, `ref` will
451 // always be up-to-date, but `obj.field` may not; i.e., after the
452 // flip, `ref` will be a to-space reference, but `obj.field` will
453 // probably still be a from-space reference (unless it gets updated by
454 // another thread, or if another thread installed another object
455 // reference (different from `ref`) in `obj.field`).
456 class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
457  public:
ReadBarrierMarkSlowPathX86(HInstruction * instruction,Location ref,bool unpoison_ref_before_marking)458   ReadBarrierMarkSlowPathX86(HInstruction* instruction,
459                              Location ref,
460                              bool unpoison_ref_before_marking)
461       : SlowPathCode(instruction),
462         ref_(ref),
463         unpoison_ref_before_marking_(unpoison_ref_before_marking) {
464     DCHECK(kEmitCompilerReadBarrier);
465   }
466 
GetDescription() const467   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
468 
EmitNativeCode(CodeGenerator * codegen)469   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
470     LocationSummary* locations = instruction_->GetLocations();
471     Register ref_reg = ref_.AsRegister<Register>();
472     DCHECK(locations->CanCall());
473     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
474     DCHECK(instruction_->IsInstanceFieldGet() ||
475            instruction_->IsStaticFieldGet() ||
476            instruction_->IsArrayGet() ||
477            instruction_->IsArraySet() ||
478            instruction_->IsLoadClass() ||
479            instruction_->IsLoadString() ||
480            instruction_->IsInstanceOf() ||
481            instruction_->IsCheckCast() ||
482            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
483            (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
484         << "Unexpected instruction in read barrier marking slow path: "
485         << instruction_->DebugName();
486 
487     __ Bind(GetEntryLabel());
488     if (unpoison_ref_before_marking_) {
489       // Object* ref = ref_addr->AsMirrorPtr()
490       __ MaybeUnpoisonHeapReference(ref_reg);
491     }
492     // No need to save live registers; it's taken care of by the
493     // entrypoint. Also, there is no need to update the stack mask,
494     // as this runtime call will not trigger a garbage collection.
495     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
496     DCHECK_NE(ref_reg, ESP);
497     DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
498     // "Compact" slow path, saving two moves.
499     //
500     // Instead of using the standard runtime calling convention (input
501     // and output in EAX):
502     //
503     //   EAX <- ref
504     //   EAX <- ReadBarrierMark(EAX)
505     //   ref <- EAX
506     //
507     // we just use rX (the register containing `ref`) as input and output
508     // of a dedicated entrypoint:
509     //
510     //   rX <- ReadBarrierMarkRegX(rX)
511     //
512     int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
513     // This runtime call does not require a stack map.
514     x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
515     __ jmp(GetExitLabel());
516   }
517 
518  private:
519   // The location (register) of the marked object reference.
520   const Location ref_;
521   // Should the reference in `ref_` be unpoisoned prior to marking it?
522   const bool unpoison_ref_before_marking_;
523 
524   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
525 };
526 
527 // Slow path marking an object reference `ref` during a read barrier,
528 // and if needed, atomically updating the field `obj.field` in the
529 // object `obj` holding this reference after marking (contrary to
530 // ReadBarrierMarkSlowPathX86 above, which never tries to update
531 // `obj.field`).
532 //
533 // This means that after the execution of this slow path, both `ref`
534 // and `obj.field` will be up-to-date; i.e., after the flip, both will
535 // hold the same to-space reference (unless another thread installed
536 // another object reference (different from `ref`) in `obj.field`).
537 class ReadBarrierMarkAndUpdateFieldSlowPathX86 : public SlowPathCode {
538  public:
ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction * instruction,Location ref,Register obj,const Address & field_addr,bool unpoison_ref_before_marking,Register temp)539   ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction* instruction,
540                                            Location ref,
541                                            Register obj,
542                                            const Address& field_addr,
543                                            bool unpoison_ref_before_marking,
544                                            Register temp)
545       : SlowPathCode(instruction),
546         ref_(ref),
547         obj_(obj),
548         field_addr_(field_addr),
549         unpoison_ref_before_marking_(unpoison_ref_before_marking),
550         temp_(temp) {
551     DCHECK(kEmitCompilerReadBarrier);
552   }
553 
GetDescription() const554   const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathX86"; }
555 
EmitNativeCode(CodeGenerator * codegen)556   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
557     LocationSummary* locations = instruction_->GetLocations();
558     Register ref_reg = ref_.AsRegister<Register>();
559     DCHECK(locations->CanCall());
560     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
561     // This slow path is only used by the UnsafeCASObject intrinsic.
562     DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
563         << "Unexpected instruction in read barrier marking and field updating slow path: "
564         << instruction_->DebugName();
565     DCHECK(instruction_->GetLocations()->Intrinsified());
566     DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
567 
568     __ Bind(GetEntryLabel());
569     if (unpoison_ref_before_marking_) {
570       // Object* ref = ref_addr->AsMirrorPtr()
571       __ MaybeUnpoisonHeapReference(ref_reg);
572     }
573 
574     // Save the old (unpoisoned) reference.
575     __ movl(temp_, ref_reg);
576 
577     // No need to save live registers; it's taken care of by the
578     // entrypoint. Also, there is no need to update the stack mask,
579     // as this runtime call will not trigger a garbage collection.
580     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
581     DCHECK_NE(ref_reg, ESP);
582     DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg;
583     // "Compact" slow path, saving two moves.
584     //
585     // Instead of using the standard runtime calling convention (input
586     // and output in EAX):
587     //
588     //   EAX <- ref
589     //   EAX <- ReadBarrierMark(EAX)
590     //   ref <- EAX
591     //
592     // we just use rX (the register containing `ref`) as input and output
593     // of a dedicated entrypoint:
594     //
595     //   rX <- ReadBarrierMarkRegX(rX)
596     //
597     int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg);
598     // This runtime call does not require a stack map.
599     x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
600 
601     // If the new reference is different from the old reference,
602     // update the field in the holder (`*field_addr`).
603     //
604     // Note that this field could also hold a different object, if
605     // another thread had concurrently changed it. In that case, the
606     // LOCK CMPXCHGL instruction in the compare-and-set (CAS)
607     // operation below would abort the CAS, leaving the field as-is.
608     NearLabel done;
609     __ cmpl(temp_, ref_reg);
610     __ j(kEqual, &done);
611 
612     // Update the the holder's field atomically.  This may fail if
613     // mutator updates before us, but it's OK.  This is achieved
614     // using a strong compare-and-set (CAS) operation with relaxed
615     // memory synchronization ordering, where the expected value is
616     // the old reference and the desired value is the new reference.
617     // This operation is implemented with a 32-bit LOCK CMPXLCHG
618     // instruction, which requires the expected value (the old
619     // reference) to be in EAX.  Save EAX beforehand, and move the
620     // expected value (stored in `temp_`) into EAX.
621     __ pushl(EAX);
622     __ movl(EAX, temp_);
623 
624     // Convenience aliases.
625     Register base = obj_;
626     Register expected = EAX;
627     Register value = ref_reg;
628 
629     bool base_equals_value = (base == value);
630     if (kPoisonHeapReferences) {
631       if (base_equals_value) {
632         // If `base` and `value` are the same register location, move
633         // `value` to a temporary register.  This way, poisoning
634         // `value` won't invalidate `base`.
635         value = temp_;
636         __ movl(value, base);
637       }
638 
639       // Check that the register allocator did not assign the location
640       // of `expected` (EAX) to `value` nor to `base`, so that heap
641       // poisoning (when enabled) works as intended below.
642       // - If `value` were equal to `expected`, both references would
643       //   be poisoned twice, meaning they would not be poisoned at
644       //   all, as heap poisoning uses address negation.
645       // - If `base` were equal to `expected`, poisoning `expected`
646       //   would invalidate `base`.
647       DCHECK_NE(value, expected);
648       DCHECK_NE(base, expected);
649 
650       __ PoisonHeapReference(expected);
651       __ PoisonHeapReference(value);
652     }
653 
654     __ LockCmpxchgl(field_addr_, value);
655 
656     // If heap poisoning is enabled, we need to unpoison the values
657     // that were poisoned earlier.
658     if (kPoisonHeapReferences) {
659       if (base_equals_value) {
660         // `value` has been moved to a temporary register, no need
661         // to unpoison it.
662       } else {
663         __ UnpoisonHeapReference(value);
664       }
665       // No need to unpoison `expected` (EAX), as it is be overwritten below.
666     }
667 
668     // Restore EAX.
669     __ popl(EAX);
670 
671     __ Bind(&done);
672     __ jmp(GetExitLabel());
673   }
674 
675  private:
676   // The location (register) of the marked object reference.
677   const Location ref_;
678   // The register containing the object holding the marked object reference field.
679   const Register obj_;
680   // The address of the marked reference field.  The base of this address must be `obj_`.
681   const Address field_addr_;
682 
683   // Should the reference in `ref_` be unpoisoned prior to marking it?
684   const bool unpoison_ref_before_marking_;
685 
686   const Register temp_;
687 
688   DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86);
689 };
690 
691 // Slow path generating a read barrier for a heap reference.
692 class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
693  public:
ReadBarrierForHeapReferenceSlowPathX86(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)694   ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
695                                          Location out,
696                                          Location ref,
697                                          Location obj,
698                                          uint32_t offset,
699                                          Location index)
700       : SlowPathCode(instruction),
701         out_(out),
702         ref_(ref),
703         obj_(obj),
704         offset_(offset),
705         index_(index) {
706     DCHECK(kEmitCompilerReadBarrier);
707     // If `obj` is equal to `out` or `ref`, it means the initial object
708     // has been overwritten by (or after) the heap object reference load
709     // to be instrumented, e.g.:
710     //
711     //   __ movl(out, Address(out, offset));
712     //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
713     //
714     // In that case, we have lost the information about the original
715     // object, and the emitted read barrier cannot work properly.
716     DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
717     DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
718   }
719 
EmitNativeCode(CodeGenerator * codegen)720   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
721     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
722     LocationSummary* locations = instruction_->GetLocations();
723     Register reg_out = out_.AsRegister<Register>();
724     DCHECK(locations->CanCall());
725     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
726     DCHECK(instruction_->IsInstanceFieldGet() ||
727            instruction_->IsStaticFieldGet() ||
728            instruction_->IsArrayGet() ||
729            instruction_->IsInstanceOf() ||
730            instruction_->IsCheckCast() ||
731            (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
732         << "Unexpected instruction in read barrier for heap reference slow path: "
733         << instruction_->DebugName();
734 
735     __ Bind(GetEntryLabel());
736     SaveLiveRegisters(codegen, locations);
737 
738     // We may have to change the index's value, but as `index_` is a
739     // constant member (like other "inputs" of this slow path),
740     // introduce a copy of it, `index`.
741     Location index = index_;
742     if (index_.IsValid()) {
743       // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
744       if (instruction_->IsArrayGet()) {
745         // Compute the actual memory offset and store it in `index`.
746         Register index_reg = index_.AsRegister<Register>();
747         DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
748         if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
749           // We are about to change the value of `index_reg` (see the
750           // calls to art::x86::X86Assembler::shll and
751           // art::x86::X86Assembler::AddImmediate below), but it has
752           // not been saved by the previous call to
753           // art::SlowPathCode::SaveLiveRegisters, as it is a
754           // callee-save register --
755           // art::SlowPathCode::SaveLiveRegisters does not consider
756           // callee-save registers, as it has been designed with the
757           // assumption that callee-save registers are supposed to be
758           // handled by the called function.  So, as a callee-save
759           // register, `index_reg` _would_ eventually be saved onto
760           // the stack, but it would be too late: we would have
761           // changed its value earlier.  Therefore, we manually save
762           // it here into another freely available register,
763           // `free_reg`, chosen of course among the caller-save
764           // registers (as a callee-save `free_reg` register would
765           // exhibit the same problem).
766           //
767           // Note we could have requested a temporary register from
768           // the register allocator instead; but we prefer not to, as
769           // this is a slow path, and we know we can find a
770           // caller-save register that is available.
771           Register free_reg = FindAvailableCallerSaveRegister(codegen);
772           __ movl(free_reg, index_reg);
773           index_reg = free_reg;
774           index = Location::RegisterLocation(index_reg);
775         } else {
776           // The initial register stored in `index_` has already been
777           // saved in the call to art::SlowPathCode::SaveLiveRegisters
778           // (as it is not a callee-save register), so we can freely
779           // use it.
780         }
781         // Shifting the index value contained in `index_reg` by the scale
782         // factor (2) cannot overflow in practice, as the runtime is
783         // unable to allocate object arrays with a size larger than
784         // 2^26 - 1 (that is, 2^28 - 4 bytes).
785         __ shll(index_reg, Immediate(TIMES_4));
786         static_assert(
787             sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
788             "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
789         __ AddImmediate(index_reg, Immediate(offset_));
790       } else {
791         // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
792         // intrinsics, `index_` is not shifted by a scale factor of 2
793         // (as in the case of ArrayGet), as it is actually an offset
794         // to an object field within an object.
795         DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
796         DCHECK(instruction_->GetLocations()->Intrinsified());
797         DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
798                (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
799             << instruction_->AsInvoke()->GetIntrinsic();
800         DCHECK_EQ(offset_, 0U);
801         DCHECK(index_.IsRegisterPair());
802         // UnsafeGet's offset location is a register pair, the low
803         // part contains the correct offset.
804         index = index_.ToLow();
805       }
806     }
807 
808     // We're moving two or three locations to locations that could
809     // overlap, so we need a parallel move resolver.
810     InvokeRuntimeCallingConvention calling_convention;
811     HParallelMove parallel_move(codegen->GetGraph()->GetArena());
812     parallel_move.AddMove(ref_,
813                           Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
814                           Primitive::kPrimNot,
815                           nullptr);
816     parallel_move.AddMove(obj_,
817                           Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
818                           Primitive::kPrimNot,
819                           nullptr);
820     if (index.IsValid()) {
821       parallel_move.AddMove(index,
822                             Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
823                             Primitive::kPrimInt,
824                             nullptr);
825       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
826     } else {
827       codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
828       __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
829     }
830     x86_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this);
831     CheckEntrypointTypes<
832         kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
833     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
834 
835     RestoreLiveRegisters(codegen, locations);
836     __ jmp(GetExitLabel());
837   }
838 
GetDescription() const839   const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
840 
841  private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)842   Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
843     size_t ref = static_cast<int>(ref_.AsRegister<Register>());
844     size_t obj = static_cast<int>(obj_.AsRegister<Register>());
845     for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
846       if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
847         return static_cast<Register>(i);
848       }
849     }
850     // We shall never fail to find a free caller-save register, as
851     // there are more than two core caller-save registers on x86
852     // (meaning it is possible to find one which is different from
853     // `ref` and `obj`).
854     DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
855     LOG(FATAL) << "Could not find a free caller-save register";
856     UNREACHABLE();
857   }
858 
859   const Location out_;
860   const Location ref_;
861   const Location obj_;
862   const uint32_t offset_;
863   // An additional location containing an index to an array.
864   // Only used for HArrayGet and the UnsafeGetObject &
865   // UnsafeGetObjectVolatile intrinsics.
866   const Location index_;
867 
868   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
869 };
870 
871 // Slow path generating a read barrier for a GC root.
872 class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
873  public:
ReadBarrierForRootSlowPathX86(HInstruction * instruction,Location out,Location root)874   ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
875       : SlowPathCode(instruction), out_(out), root_(root) {
876     DCHECK(kEmitCompilerReadBarrier);
877   }
878 
EmitNativeCode(CodeGenerator * codegen)879   void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
880     LocationSummary* locations = instruction_->GetLocations();
881     Register reg_out = out_.AsRegister<Register>();
882     DCHECK(locations->CanCall());
883     DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
884     DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
885         << "Unexpected instruction in read barrier for GC root slow path: "
886         << instruction_->DebugName();
887 
888     __ Bind(GetEntryLabel());
889     SaveLiveRegisters(codegen, locations);
890 
891     InvokeRuntimeCallingConvention calling_convention;
892     CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
893     x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
894     x86_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
895                                instruction_,
896                                instruction_->GetDexPc(),
897                                this);
898     CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
899     x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
900 
901     RestoreLiveRegisters(codegen, locations);
902     __ jmp(GetExitLabel());
903   }
904 
GetDescription() const905   const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
906 
907  private:
908   const Location out_;
909   const Location root_;
910 
911   DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
912 };
913 
914 #undef __
915 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
916 #define __ down_cast<X86Assembler*>(GetAssembler())->  // NOLINT
917 
X86Condition(IfCondition cond)918 inline Condition X86Condition(IfCondition cond) {
919   switch (cond) {
920     case kCondEQ: return kEqual;
921     case kCondNE: return kNotEqual;
922     case kCondLT: return kLess;
923     case kCondLE: return kLessEqual;
924     case kCondGT: return kGreater;
925     case kCondGE: return kGreaterEqual;
926     case kCondB:  return kBelow;
927     case kCondBE: return kBelowEqual;
928     case kCondA:  return kAbove;
929     case kCondAE: return kAboveEqual;
930   }
931   LOG(FATAL) << "Unreachable";
932   UNREACHABLE();
933 }
934 
935 // Maps signed condition to unsigned condition and FP condition to x86 name.
X86UnsignedOrFPCondition(IfCondition cond)936 inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
937   switch (cond) {
938     case kCondEQ: return kEqual;
939     case kCondNE: return kNotEqual;
940     // Signed to unsigned, and FP to x86 name.
941     case kCondLT: return kBelow;
942     case kCondLE: return kBelowEqual;
943     case kCondGT: return kAbove;
944     case kCondGE: return kAboveEqual;
945     // Unsigned remain unchanged.
946     case kCondB:  return kBelow;
947     case kCondBE: return kBelowEqual;
948     case kCondA:  return kAbove;
949     case kCondAE: return kAboveEqual;
950   }
951   LOG(FATAL) << "Unreachable";
952   UNREACHABLE();
953 }
954 
DumpCoreRegister(std::ostream & stream,int reg) const955 void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
956   stream << Register(reg);
957 }
958 
DumpFloatingPointRegister(std::ostream & stream,int reg) const959 void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
960   stream << XmmRegister(reg);
961 }
962 
SaveCoreRegister(size_t stack_index,uint32_t reg_id)963 size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
964   __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
965   return kX86WordSize;
966 }
967 
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)968 size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
969   __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
970   return kX86WordSize;
971 }
972 
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)973 size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
974   if (GetGraph()->HasSIMD()) {
975     __ movups(Address(ESP, stack_index), XmmRegister(reg_id));
976   } else {
977     __ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
978   }
979   return GetFloatingPointSpillSlotSize();
980 }
981 
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)982 size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
983   if (GetGraph()->HasSIMD()) {
984     __ movups(XmmRegister(reg_id), Address(ESP, stack_index));
985   } else {
986     __ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
987   }
988   return GetFloatingPointSpillSlotSize();
989 }
990 
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)991 void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
992                                      HInstruction* instruction,
993                                      uint32_t dex_pc,
994                                      SlowPathCode* slow_path) {
995   ValidateInvokeRuntime(entrypoint, instruction, slow_path);
996   GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value());
997   if (EntrypointRequiresStackMap(entrypoint)) {
998     RecordPcInfo(instruction, dex_pc, slow_path);
999   }
1000 }
1001 
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1002 void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1003                                                            HInstruction* instruction,
1004                                                            SlowPathCode* slow_path) {
1005   ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1006   GenerateInvokeRuntime(entry_point_offset);
1007 }
1008 
GenerateInvokeRuntime(int32_t entry_point_offset)1009 void CodeGeneratorX86::GenerateInvokeRuntime(int32_t entry_point_offset) {
1010   __ fs()->call(Address::Absolute(entry_point_offset));
1011 }
1012 
CodeGeneratorX86(HGraph * graph,const X86InstructionSetFeatures & isa_features,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1013 CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
1014                                    const X86InstructionSetFeatures& isa_features,
1015                                    const CompilerOptions& compiler_options,
1016                                    OptimizingCompilerStats* stats)
1017     : CodeGenerator(graph,
1018                     kNumberOfCpuRegisters,
1019                     kNumberOfXmmRegisters,
1020                     kNumberOfRegisterPairs,
1021                     ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
1022                                         arraysize(kCoreCalleeSaves))
1023                         | (1 << kFakeReturnRegister),
1024                     0,
1025                     compiler_options,
1026                     stats),
1027       block_labels_(nullptr),
1028       location_builder_(graph, this),
1029       instruction_visitor_(graph, this),
1030       move_resolver_(graph->GetArena(), this),
1031       assembler_(graph->GetArena()),
1032       isa_features_(isa_features),
1033       boot_image_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1034       method_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1035       boot_image_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1036       type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1037       string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1038       jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1039       jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1040       constant_area_start_(-1),
1041       fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
1042       method_address_offset_(std::less<uint32_t>(),
1043                              graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
1044   // Use a fake return address register to mimic Quick.
1045   AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
1046 }
1047 
SetupBlockedRegisters() const1048 void CodeGeneratorX86::SetupBlockedRegisters() const {
1049   // Stack register is always reserved.
1050   blocked_core_registers_[ESP] = true;
1051 }
1052 
InstructionCodeGeneratorX86(HGraph * graph,CodeGeneratorX86 * codegen)1053 InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
1054       : InstructionCodeGenerator(graph, codegen),
1055         assembler_(codegen->GetAssembler()),
1056         codegen_(codegen) {}
1057 
DWARFReg(Register reg)1058 static dwarf::Reg DWARFReg(Register reg) {
1059   return dwarf::Reg::X86Core(static_cast<int>(reg));
1060 }
1061 
GenerateFrameEntry()1062 void CodeGeneratorX86::GenerateFrameEntry() {
1063   __ cfi().SetCurrentCFAOffset(kX86WordSize);  // return address
1064   __ Bind(&frame_entry_label_);
1065   bool skip_overflow_check =
1066       IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
1067   DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1068 
1069   if (!skip_overflow_check) {
1070     __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
1071     RecordPcInfo(nullptr, 0);
1072   }
1073 
1074   if (HasEmptyFrame()) {
1075     return;
1076   }
1077 
1078   for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
1079     Register reg = kCoreCalleeSaves[i];
1080     if (allocated_registers_.ContainsCoreRegister(reg)) {
1081       __ pushl(reg);
1082       __ cfi().AdjustCFAOffset(kX86WordSize);
1083       __ cfi().RelOffset(DWARFReg(reg), 0);
1084     }
1085   }
1086 
1087   int adjust = GetFrameSize() - FrameEntrySpillSize();
1088   __ subl(ESP, Immediate(adjust));
1089   __ cfi().AdjustCFAOffset(adjust);
1090   // Save the current method if we need it. Note that we do not
1091   // do this in HCurrentMethod, as the instruction might have been removed
1092   // in the SSA graph.
1093   if (RequiresCurrentMethod()) {
1094     __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
1095   }
1096 
1097   if (GetGraph()->HasShouldDeoptimizeFlag()) {
1098     // Initialize should_deoptimize flag to 0.
1099     __ movl(Address(ESP, GetStackOffsetOfShouldDeoptimizeFlag()), Immediate(0));
1100   }
1101 }
1102 
GenerateFrameExit()1103 void CodeGeneratorX86::GenerateFrameExit() {
1104   __ cfi().RememberState();
1105   if (!HasEmptyFrame()) {
1106     int adjust = GetFrameSize() - FrameEntrySpillSize();
1107     __ addl(ESP, Immediate(adjust));
1108     __ cfi().AdjustCFAOffset(-adjust);
1109 
1110     for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
1111       Register reg = kCoreCalleeSaves[i];
1112       if (allocated_registers_.ContainsCoreRegister(reg)) {
1113         __ popl(reg);
1114         __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
1115         __ cfi().Restore(DWARFReg(reg));
1116       }
1117     }
1118   }
1119   __ ret();
1120   __ cfi().RestoreState();
1121   __ cfi().DefCFAOffset(GetFrameSize());
1122 }
1123 
Bind(HBasicBlock * block)1124 void CodeGeneratorX86::Bind(HBasicBlock* block) {
1125   __ Bind(GetLabelOf(block));
1126 }
1127 
GetReturnLocation(Primitive::Type type) const1128 Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
1129   switch (type) {
1130     case Primitive::kPrimBoolean:
1131     case Primitive::kPrimByte:
1132     case Primitive::kPrimChar:
1133     case Primitive::kPrimShort:
1134     case Primitive::kPrimInt:
1135     case Primitive::kPrimNot:
1136       return Location::RegisterLocation(EAX);
1137 
1138     case Primitive::kPrimLong:
1139       return Location::RegisterPairLocation(EAX, EDX);
1140 
1141     case Primitive::kPrimVoid:
1142       return Location::NoLocation();
1143 
1144     case Primitive::kPrimDouble:
1145     case Primitive::kPrimFloat:
1146       return Location::FpuRegisterLocation(XMM0);
1147   }
1148 
1149   UNREACHABLE();
1150 }
1151 
GetMethodLocation() const1152 Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
1153   return Location::RegisterLocation(kMethodRegisterArgument);
1154 }
1155 
GetNextLocation(Primitive::Type type)1156 Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
1157   switch (type) {
1158     case Primitive::kPrimBoolean:
1159     case Primitive::kPrimByte:
1160     case Primitive::kPrimChar:
1161     case Primitive::kPrimShort:
1162     case Primitive::kPrimInt:
1163     case Primitive::kPrimNot: {
1164       uint32_t index = gp_index_++;
1165       stack_index_++;
1166       if (index < calling_convention.GetNumberOfRegisters()) {
1167         return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
1168       } else {
1169         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
1170       }
1171     }
1172 
1173     case Primitive::kPrimLong: {
1174       uint32_t index = gp_index_;
1175       gp_index_ += 2;
1176       stack_index_ += 2;
1177       if (index + 1 < calling_convention.GetNumberOfRegisters()) {
1178         X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
1179             calling_convention.GetRegisterPairAt(index));
1180         return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
1181       } else {
1182         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
1183       }
1184     }
1185 
1186     case Primitive::kPrimFloat: {
1187       uint32_t index = float_index_++;
1188       stack_index_++;
1189       if (index < calling_convention.GetNumberOfFpuRegisters()) {
1190         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
1191       } else {
1192         return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
1193       }
1194     }
1195 
1196     case Primitive::kPrimDouble: {
1197       uint32_t index = float_index_++;
1198       stack_index_ += 2;
1199       if (index < calling_convention.GetNumberOfFpuRegisters()) {
1200         return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
1201       } else {
1202         return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
1203       }
1204     }
1205 
1206     case Primitive::kPrimVoid:
1207       LOG(FATAL) << "Unexpected parameter type " << type;
1208       break;
1209   }
1210   return Location::NoLocation();
1211 }
1212 
Move32(Location destination,Location source)1213 void CodeGeneratorX86::Move32(Location destination, Location source) {
1214   if (source.Equals(destination)) {
1215     return;
1216   }
1217   if (destination.IsRegister()) {
1218     if (source.IsRegister()) {
1219       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
1220     } else if (source.IsFpuRegister()) {
1221       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
1222     } else {
1223       DCHECK(source.IsStackSlot());
1224       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
1225     }
1226   } else if (destination.IsFpuRegister()) {
1227     if (source.IsRegister()) {
1228       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
1229     } else if (source.IsFpuRegister()) {
1230       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1231     } else {
1232       DCHECK(source.IsStackSlot());
1233       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1234     }
1235   } else {
1236     DCHECK(destination.IsStackSlot()) << destination;
1237     if (source.IsRegister()) {
1238       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
1239     } else if (source.IsFpuRegister()) {
1240       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1241     } else if (source.IsConstant()) {
1242       HConstant* constant = source.GetConstant();
1243       int32_t value = GetInt32ValueOf(constant);
1244       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
1245     } else {
1246       DCHECK(source.IsStackSlot());
1247       __ pushl(Address(ESP, source.GetStackIndex()));
1248       __ popl(Address(ESP, destination.GetStackIndex()));
1249     }
1250   }
1251 }
1252 
Move64(Location destination,Location source)1253 void CodeGeneratorX86::Move64(Location destination, Location source) {
1254   if (source.Equals(destination)) {
1255     return;
1256   }
1257   if (destination.IsRegisterPair()) {
1258     if (source.IsRegisterPair()) {
1259       EmitParallelMoves(
1260           Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
1261           Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
1262           Primitive::kPrimInt,
1263           Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
1264           Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
1265           Primitive::kPrimInt);
1266     } else if (source.IsFpuRegister()) {
1267       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
1268       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
1269       __ psrlq(src_reg, Immediate(32));
1270       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
1271     } else {
1272       // No conflict possible, so just do the moves.
1273       DCHECK(source.IsDoubleStackSlot());
1274       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
1275       __ movl(destination.AsRegisterPairHigh<Register>(),
1276               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
1277     }
1278   } else if (destination.IsFpuRegister()) {
1279     if (source.IsFpuRegister()) {
1280       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
1281     } else if (source.IsDoubleStackSlot()) {
1282       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
1283     } else if (source.IsRegisterPair()) {
1284       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
1285       // Create stack space for 2 elements.
1286       __ subl(ESP, Immediate(2 * elem_size));
1287       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
1288       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
1289       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
1290       // And remove the temporary stack space we allocated.
1291       __ addl(ESP, Immediate(2 * elem_size));
1292     } else {
1293       LOG(FATAL) << "Unimplemented";
1294     }
1295   } else {
1296     DCHECK(destination.IsDoubleStackSlot()) << destination;
1297     if (source.IsRegisterPair()) {
1298       // No conflict possible, so just do the moves.
1299       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
1300       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1301               source.AsRegisterPairHigh<Register>());
1302     } else if (source.IsFpuRegister()) {
1303       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
1304     } else if (source.IsConstant()) {
1305       HConstant* constant = source.GetConstant();
1306       DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant());
1307       int64_t value = GetInt64ValueOf(constant);
1308       __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
1309       __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
1310               Immediate(High32Bits(value)));
1311     } else {
1312       DCHECK(source.IsDoubleStackSlot()) << source;
1313       EmitParallelMoves(
1314           Location::StackSlot(source.GetStackIndex()),
1315           Location::StackSlot(destination.GetStackIndex()),
1316           Primitive::kPrimInt,
1317           Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
1318           Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
1319           Primitive::kPrimInt);
1320     }
1321   }
1322 }
1323 
MoveConstant(Location location,int32_t value)1324 void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
1325   DCHECK(location.IsRegister());
1326   __ movl(location.AsRegister<Register>(), Immediate(value));
1327 }
1328 
MoveLocation(Location dst,Location src,Primitive::Type dst_type)1329 void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
1330   HParallelMove move(GetGraph()->GetArena());
1331   if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
1332     move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
1333     move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
1334   } else {
1335     move.AddMove(src, dst, dst_type, nullptr);
1336   }
1337   GetMoveResolver()->EmitNativeCode(&move);
1338 }
1339 
AddLocationAsTemp(Location location,LocationSummary * locations)1340 void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
1341   if (location.IsRegister()) {
1342     locations->AddTemp(location);
1343   } else if (location.IsRegisterPair()) {
1344     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1345     locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1346   } else {
1347     UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1348   }
1349 }
1350 
HandleGoto(HInstruction * got,HBasicBlock * successor)1351 void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
1352   DCHECK(!successor->IsExitBlock());
1353 
1354   HBasicBlock* block = got->GetBlock();
1355   HInstruction* previous = got->GetPrevious();
1356 
1357   HLoopInformation* info = block->GetLoopInformation();
1358   if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
1359     GenerateSuspendCheck(info->GetSuspendCheck(), successor);
1360     return;
1361   }
1362 
1363   if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
1364     GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
1365   }
1366   if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
1367     __ jmp(codegen_->GetLabelOf(successor));
1368   }
1369 }
1370 
VisitGoto(HGoto * got)1371 void LocationsBuilderX86::VisitGoto(HGoto* got) {
1372   got->SetLocations(nullptr);
1373 }
1374 
VisitGoto(HGoto * got)1375 void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
1376   HandleGoto(got, got->GetSuccessor());
1377 }
1378 
VisitTryBoundary(HTryBoundary * try_boundary)1379 void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1380   try_boundary->SetLocations(nullptr);
1381 }
1382 
VisitTryBoundary(HTryBoundary * try_boundary)1383 void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
1384   HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
1385   if (!successor->IsExitBlock()) {
1386     HandleGoto(try_boundary, successor);
1387   }
1388 }
1389 
VisitExit(HExit * exit)1390 void LocationsBuilderX86::VisitExit(HExit* exit) {
1391   exit->SetLocations(nullptr);
1392 }
1393 
VisitExit(HExit * exit ATTRIBUTE_UNUSED)1394 void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
1395 }
1396 
1397 template<class LabelType>
GenerateFPJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1398 void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
1399                                                   LabelType* true_label,
1400                                                   LabelType* false_label) {
1401   if (cond->IsFPConditionTrueIfNaN()) {
1402     __ j(kUnordered, true_label);
1403   } else if (cond->IsFPConditionFalseIfNaN()) {
1404     __ j(kUnordered, false_label);
1405   }
1406   __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
1407 }
1408 
1409 template<class LabelType>
GenerateLongComparesAndJumps(HCondition * cond,LabelType * true_label,LabelType * false_label)1410 void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
1411                                                                LabelType* true_label,
1412                                                                LabelType* false_label) {
1413   LocationSummary* locations = cond->GetLocations();
1414   Location left = locations->InAt(0);
1415   Location right = locations->InAt(1);
1416   IfCondition if_cond = cond->GetCondition();
1417 
1418   Register left_high = left.AsRegisterPairHigh<Register>();
1419   Register left_low = left.AsRegisterPairLow<Register>();
1420   IfCondition true_high_cond = if_cond;
1421   IfCondition false_high_cond = cond->GetOppositeCondition();
1422   Condition final_condition = X86UnsignedOrFPCondition(if_cond);  // unsigned on lower part
1423 
1424   // Set the conditions for the test, remembering that == needs to be
1425   // decided using the low words.
1426   switch (if_cond) {
1427     case kCondEQ:
1428     case kCondNE:
1429       // Nothing to do.
1430       break;
1431     case kCondLT:
1432       false_high_cond = kCondGT;
1433       break;
1434     case kCondLE:
1435       true_high_cond = kCondLT;
1436       break;
1437     case kCondGT:
1438       false_high_cond = kCondLT;
1439       break;
1440     case kCondGE:
1441       true_high_cond = kCondGT;
1442       break;
1443     case kCondB:
1444       false_high_cond = kCondA;
1445       break;
1446     case kCondBE:
1447       true_high_cond = kCondB;
1448       break;
1449     case kCondA:
1450       false_high_cond = kCondB;
1451       break;
1452     case kCondAE:
1453       true_high_cond = kCondA;
1454       break;
1455   }
1456 
1457   if (right.IsConstant()) {
1458     int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
1459     int32_t val_high = High32Bits(value);
1460     int32_t val_low = Low32Bits(value);
1461 
1462     codegen_->Compare32BitValue(left_high, val_high);
1463     if (if_cond == kCondNE) {
1464       __ j(X86Condition(true_high_cond), true_label);
1465     } else if (if_cond == kCondEQ) {
1466       __ j(X86Condition(false_high_cond), false_label);
1467     } else {
1468       __ j(X86Condition(true_high_cond), true_label);
1469       __ j(X86Condition(false_high_cond), false_label);
1470     }
1471     // Must be equal high, so compare the lows.
1472     codegen_->Compare32BitValue(left_low, val_low);
1473   } else if (right.IsRegisterPair()) {
1474     Register right_high = right.AsRegisterPairHigh<Register>();
1475     Register right_low = right.AsRegisterPairLow<Register>();
1476 
1477     __ cmpl(left_high, right_high);
1478     if (if_cond == kCondNE) {
1479       __ j(X86Condition(true_high_cond), true_label);
1480     } else if (if_cond == kCondEQ) {
1481       __ j(X86Condition(false_high_cond), false_label);
1482     } else {
1483       __ j(X86Condition(true_high_cond), true_label);
1484       __ j(X86Condition(false_high_cond), false_label);
1485     }
1486     // Must be equal high, so compare the lows.
1487     __ cmpl(left_low, right_low);
1488   } else {
1489     DCHECK(right.IsDoubleStackSlot());
1490     __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
1491     if (if_cond == kCondNE) {
1492       __ j(X86Condition(true_high_cond), true_label);
1493     } else if (if_cond == kCondEQ) {
1494       __ j(X86Condition(false_high_cond), false_label);
1495     } else {
1496       __ j(X86Condition(true_high_cond), true_label);
1497       __ j(X86Condition(false_high_cond), false_label);
1498     }
1499     // Must be equal high, so compare the lows.
1500     __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
1501   }
1502   // The last comparison might be unsigned.
1503   __ j(final_condition, true_label);
1504 }
1505 
GenerateFPCompare(Location lhs,Location rhs,HInstruction * insn,bool is_double)1506 void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
1507                                                     Location rhs,
1508                                                     HInstruction* insn,
1509                                                     bool is_double) {
1510   HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
1511   if (is_double) {
1512     if (rhs.IsFpuRegister()) {
1513       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1514     } else if (const_area != nullptr) {
1515       DCHECK(const_area->IsEmittedAtUseSite());
1516       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
1517                  codegen_->LiteralDoubleAddress(
1518                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
1519                      const_area->GetBaseMethodAddress(),
1520                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1521     } else {
1522       DCHECK(rhs.IsDoubleStackSlot());
1523       __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1524     }
1525   } else {
1526     if (rhs.IsFpuRegister()) {
1527       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
1528     } else if (const_area != nullptr) {
1529       DCHECK(const_area->IsEmittedAtUseSite());
1530       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
1531                  codegen_->LiteralFloatAddress(
1532                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
1533                      const_area->GetBaseMethodAddress(),
1534                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
1535     } else {
1536       DCHECK(rhs.IsStackSlot());
1537       __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
1538     }
1539   }
1540 }
1541 
1542 template<class LabelType>
GenerateCompareTestAndBranch(HCondition * condition,LabelType * true_target_in,LabelType * false_target_in)1543 void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
1544                                                                LabelType* true_target_in,
1545                                                                LabelType* false_target_in) {
1546   // Generated branching requires both targets to be explicit. If either of the
1547   // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
1548   LabelType fallthrough_target;
1549   LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
1550   LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
1551 
1552   LocationSummary* locations = condition->GetLocations();
1553   Location left = locations->InAt(0);
1554   Location right = locations->InAt(1);
1555 
1556   Primitive::Type type = condition->InputAt(0)->GetType();
1557   switch (type) {
1558     case Primitive::kPrimLong:
1559       GenerateLongComparesAndJumps(condition, true_target, false_target);
1560       break;
1561     case Primitive::kPrimFloat:
1562       GenerateFPCompare(left, right, condition, false);
1563       GenerateFPJumps(condition, true_target, false_target);
1564       break;
1565     case Primitive::kPrimDouble:
1566       GenerateFPCompare(left, right, condition, true);
1567       GenerateFPJumps(condition, true_target, false_target);
1568       break;
1569     default:
1570       LOG(FATAL) << "Unexpected compare type " << type;
1571   }
1572 
1573   if (false_target != &fallthrough_target) {
1574     __ jmp(false_target);
1575   }
1576 
1577   if (fallthrough_target.IsLinked()) {
1578     __ Bind(&fallthrough_target);
1579   }
1580 }
1581 
AreEflagsSetFrom(HInstruction * cond,HInstruction * branch)1582 static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
1583   // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
1584   // are set only strictly before `branch`. We can't use the eflags on long/FP
1585   // conditions if they are materialized due to the complex branching.
1586   return cond->IsCondition() &&
1587          cond->GetNext() == branch &&
1588          cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
1589          !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
1590 }
1591 
1592 template<class LabelType>
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,LabelType * true_target,LabelType * false_target)1593 void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
1594                                                         size_t condition_input_index,
1595                                                         LabelType* true_target,
1596                                                         LabelType* false_target) {
1597   HInstruction* cond = instruction->InputAt(condition_input_index);
1598 
1599   if (true_target == nullptr && false_target == nullptr) {
1600     // Nothing to do. The code always falls through.
1601     return;
1602   } else if (cond->IsIntConstant()) {
1603     // Constant condition, statically compared against "true" (integer value 1).
1604     if (cond->AsIntConstant()->IsTrue()) {
1605       if (true_target != nullptr) {
1606         __ jmp(true_target);
1607       }
1608     } else {
1609       DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
1610       if (false_target != nullptr) {
1611         __ jmp(false_target);
1612       }
1613     }
1614     return;
1615   }
1616 
1617   // The following code generates these patterns:
1618   //  (1) true_target == nullptr && false_target != nullptr
1619   //        - opposite condition true => branch to false_target
1620   //  (2) true_target != nullptr && false_target == nullptr
1621   //        - condition true => branch to true_target
1622   //  (3) true_target != nullptr && false_target != nullptr
1623   //        - condition true => branch to true_target
1624   //        - branch to false_target
1625   if (IsBooleanValueOrMaterializedCondition(cond)) {
1626     if (AreEflagsSetFrom(cond, instruction)) {
1627       if (true_target == nullptr) {
1628         __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
1629       } else {
1630         __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
1631       }
1632     } else {
1633       // Materialized condition, compare against 0.
1634       Location lhs = instruction->GetLocations()->InAt(condition_input_index);
1635       if (lhs.IsRegister()) {
1636         __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
1637       } else {
1638         __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
1639       }
1640       if (true_target == nullptr) {
1641         __ j(kEqual, false_target);
1642       } else {
1643         __ j(kNotEqual, true_target);
1644       }
1645     }
1646   } else {
1647     // Condition has not been materialized, use its inputs as the comparison and
1648     // its condition as the branch condition.
1649     HCondition* condition = cond->AsCondition();
1650 
1651     // If this is a long or FP comparison that has been folded into
1652     // the HCondition, generate the comparison directly.
1653     Primitive::Type type = condition->InputAt(0)->GetType();
1654     if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
1655       GenerateCompareTestAndBranch(condition, true_target, false_target);
1656       return;
1657     }
1658 
1659     Location lhs = condition->GetLocations()->InAt(0);
1660     Location rhs = condition->GetLocations()->InAt(1);
1661     // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
1662     codegen_->GenerateIntCompare(lhs, rhs);
1663     if (true_target == nullptr) {
1664       __ j(X86Condition(condition->GetOppositeCondition()), false_target);
1665     } else {
1666       __ j(X86Condition(condition->GetCondition()), true_target);
1667     }
1668   }
1669 
1670   // If neither branch falls through (case 3), the conditional branch to `true_target`
1671   // was already emitted (case 2) and we need to emit a jump to `false_target`.
1672   if (true_target != nullptr && false_target != nullptr) {
1673     __ jmp(false_target);
1674   }
1675 }
1676 
VisitIf(HIf * if_instr)1677 void LocationsBuilderX86::VisitIf(HIf* if_instr) {
1678   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
1679   if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
1680     locations->SetInAt(0, Location::Any());
1681   }
1682 }
1683 
VisitIf(HIf * if_instr)1684 void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
1685   HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
1686   HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
1687   Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
1688       nullptr : codegen_->GetLabelOf(true_successor);
1689   Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
1690       nullptr : codegen_->GetLabelOf(false_successor);
1691   GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
1692 }
1693 
VisitDeoptimize(HDeoptimize * deoptimize)1694 void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1695   LocationSummary* locations = new (GetGraph()->GetArena())
1696       LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
1697   InvokeRuntimeCallingConvention calling_convention;
1698   RegisterSet caller_saves = RegisterSet::Empty();
1699   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
1700   locations->SetCustomSlowPathCallerSaves(caller_saves);
1701   if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
1702     locations->SetInAt(0, Location::Any());
1703   }
1704 }
1705 
VisitDeoptimize(HDeoptimize * deoptimize)1706 void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
1707   SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
1708   GenerateTestAndBranch<Label>(deoptimize,
1709                                /* condition_input_index */ 0,
1710                                slow_path->GetEntryLabel(),
1711                                /* false_target */ nullptr);
1712 }
1713 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)1714 void LocationsBuilderX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
1715   LocationSummary* locations = new (GetGraph()->GetArena())
1716       LocationSummary(flag, LocationSummary::kNoCall);
1717   locations->SetOut(Location::RequiresRegister());
1718 }
1719 
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)1720 void InstructionCodeGeneratorX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
1721   __ movl(flag->GetLocations()->Out().AsRegister<Register>(),
1722           Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
1723 }
1724 
SelectCanUseCMOV(HSelect * select)1725 static bool SelectCanUseCMOV(HSelect* select) {
1726   // There are no conditional move instructions for XMMs.
1727   if (Primitive::IsFloatingPointType(select->GetType())) {
1728     return false;
1729   }
1730 
1731   // A FP condition doesn't generate the single CC that we need.
1732   // In 32 bit mode, a long condition doesn't generate a single CC either.
1733   HInstruction* condition = select->GetCondition();
1734   if (condition->IsCondition()) {
1735     Primitive::Type compare_type = condition->InputAt(0)->GetType();
1736     if (compare_type == Primitive::kPrimLong ||
1737         Primitive::IsFloatingPointType(compare_type)) {
1738       return false;
1739     }
1740   }
1741 
1742   // We can generate a CMOV for this Select.
1743   return true;
1744 }
1745 
VisitSelect(HSelect * select)1746 void LocationsBuilderX86::VisitSelect(HSelect* select) {
1747   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
1748   if (Primitive::IsFloatingPointType(select->GetType())) {
1749     locations->SetInAt(0, Location::RequiresFpuRegister());
1750     locations->SetInAt(1, Location::Any());
1751   } else {
1752     locations->SetInAt(0, Location::RequiresRegister());
1753     if (SelectCanUseCMOV(select)) {
1754       if (select->InputAt(1)->IsConstant()) {
1755         // Cmov can't handle a constant value.
1756         locations->SetInAt(1, Location::RequiresRegister());
1757       } else {
1758         locations->SetInAt(1, Location::Any());
1759       }
1760     } else {
1761       locations->SetInAt(1, Location::Any());
1762     }
1763   }
1764   if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
1765     locations->SetInAt(2, Location::RequiresRegister());
1766   }
1767   locations->SetOut(Location::SameAsFirstInput());
1768 }
1769 
VisitSelect(HSelect * select)1770 void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
1771   LocationSummary* locations = select->GetLocations();
1772   DCHECK(locations->InAt(0).Equals(locations->Out()));
1773   if (SelectCanUseCMOV(select)) {
1774     // If both the condition and the source types are integer, we can generate
1775     // a CMOV to implement Select.
1776 
1777     HInstruction* select_condition = select->GetCondition();
1778     Condition cond = kNotEqual;
1779 
1780     // Figure out how to test the 'condition'.
1781     if (select_condition->IsCondition()) {
1782       HCondition* condition = select_condition->AsCondition();
1783       if (!condition->IsEmittedAtUseSite()) {
1784         // This was a previously materialized condition.
1785         // Can we use the existing condition code?
1786         if (AreEflagsSetFrom(condition, select)) {
1787           // Materialization was the previous instruction. Condition codes are right.
1788           cond = X86Condition(condition->GetCondition());
1789         } else {
1790           // No, we have to recreate the condition code.
1791           Register cond_reg = locations->InAt(2).AsRegister<Register>();
1792           __ testl(cond_reg, cond_reg);
1793         }
1794       } else {
1795         // We can't handle FP or long here.
1796         DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
1797         DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
1798         LocationSummary* cond_locations = condition->GetLocations();
1799         codegen_->GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
1800         cond = X86Condition(condition->GetCondition());
1801       }
1802     } else {
1803       // Must be a Boolean condition, which needs to be compared to 0.
1804       Register cond_reg = locations->InAt(2).AsRegister<Register>();
1805       __ testl(cond_reg, cond_reg);
1806     }
1807 
1808     // If the condition is true, overwrite the output, which already contains false.
1809     Location false_loc = locations->InAt(0);
1810     Location true_loc = locations->InAt(1);
1811     if (select->GetType() == Primitive::kPrimLong) {
1812       // 64 bit conditional move.
1813       Register false_high = false_loc.AsRegisterPairHigh<Register>();
1814       Register false_low = false_loc.AsRegisterPairLow<Register>();
1815       if (true_loc.IsRegisterPair()) {
1816         __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
1817         __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
1818       } else {
1819         __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
1820         __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
1821       }
1822     } else {
1823       // 32 bit conditional move.
1824       Register false_reg = false_loc.AsRegister<Register>();
1825       if (true_loc.IsRegister()) {
1826         __ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
1827       } else {
1828         __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
1829       }
1830     }
1831   } else {
1832     NearLabel false_target;
1833     GenerateTestAndBranch<NearLabel>(
1834         select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
1835     codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
1836     __ Bind(&false_target);
1837   }
1838 }
1839 
VisitNativeDebugInfo(HNativeDebugInfo * info)1840 void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
1841   new (GetGraph()->GetArena()) LocationSummary(info);
1842 }
1843 
VisitNativeDebugInfo(HNativeDebugInfo *)1844 void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
1845   // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
1846 }
1847 
GenerateNop()1848 void CodeGeneratorX86::GenerateNop() {
1849   __ nop();
1850 }
1851 
HandleCondition(HCondition * cond)1852 void LocationsBuilderX86::HandleCondition(HCondition* cond) {
1853   LocationSummary* locations =
1854       new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
1855   // Handle the long/FP comparisons made in instruction simplification.
1856   switch (cond->InputAt(0)->GetType()) {
1857     case Primitive::kPrimLong: {
1858       locations->SetInAt(0, Location::RequiresRegister());
1859       locations->SetInAt(1, Location::Any());
1860       if (!cond->IsEmittedAtUseSite()) {
1861         locations->SetOut(Location::RequiresRegister());
1862       }
1863       break;
1864     }
1865     case Primitive::kPrimFloat:
1866     case Primitive::kPrimDouble: {
1867       locations->SetInAt(0, Location::RequiresFpuRegister());
1868       if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
1869         DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
1870       } else if (cond->InputAt(1)->IsConstant()) {
1871         locations->SetInAt(1, Location::RequiresFpuRegister());
1872       } else {
1873         locations->SetInAt(1, Location::Any());
1874       }
1875       if (!cond->IsEmittedAtUseSite()) {
1876         locations->SetOut(Location::RequiresRegister());
1877       }
1878       break;
1879     }
1880     default:
1881       locations->SetInAt(0, Location::RequiresRegister());
1882       locations->SetInAt(1, Location::Any());
1883       if (!cond->IsEmittedAtUseSite()) {
1884         // We need a byte register.
1885         locations->SetOut(Location::RegisterLocation(ECX));
1886       }
1887       break;
1888   }
1889 }
1890 
HandleCondition(HCondition * cond)1891 void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
1892   if (cond->IsEmittedAtUseSite()) {
1893     return;
1894   }
1895 
1896   LocationSummary* locations = cond->GetLocations();
1897   Location lhs = locations->InAt(0);
1898   Location rhs = locations->InAt(1);
1899   Register reg = locations->Out().AsRegister<Register>();
1900   NearLabel true_label, false_label;
1901 
1902   switch (cond->InputAt(0)->GetType()) {
1903     default: {
1904       // Integer case.
1905 
1906       // Clear output register: setb only sets the low byte.
1907       __ xorl(reg, reg);
1908       codegen_->GenerateIntCompare(lhs, rhs);
1909       __ setb(X86Condition(cond->GetCondition()), reg);
1910       return;
1911     }
1912     case Primitive::kPrimLong:
1913       GenerateLongComparesAndJumps(cond, &true_label, &false_label);
1914       break;
1915     case Primitive::kPrimFloat:
1916       GenerateFPCompare(lhs, rhs, cond, false);
1917       GenerateFPJumps(cond, &true_label, &false_label);
1918       break;
1919     case Primitive::kPrimDouble:
1920       GenerateFPCompare(lhs, rhs, cond, true);
1921       GenerateFPJumps(cond, &true_label, &false_label);
1922       break;
1923   }
1924 
1925   // Convert the jumps into the result.
1926   NearLabel done_label;
1927 
1928   // False case: result = 0.
1929   __ Bind(&false_label);
1930   __ xorl(reg, reg);
1931   __ jmp(&done_label);
1932 
1933   // True case: result = 1.
1934   __ Bind(&true_label);
1935   __ movl(reg, Immediate(1));
1936   __ Bind(&done_label);
1937 }
1938 
VisitEqual(HEqual * comp)1939 void LocationsBuilderX86::VisitEqual(HEqual* comp) {
1940   HandleCondition(comp);
1941 }
1942 
VisitEqual(HEqual * comp)1943 void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
1944   HandleCondition(comp);
1945 }
1946 
VisitNotEqual(HNotEqual * comp)1947 void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
1948   HandleCondition(comp);
1949 }
1950 
VisitNotEqual(HNotEqual * comp)1951 void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
1952   HandleCondition(comp);
1953 }
1954 
VisitLessThan(HLessThan * comp)1955 void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
1956   HandleCondition(comp);
1957 }
1958 
VisitLessThan(HLessThan * comp)1959 void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
1960   HandleCondition(comp);
1961 }
1962 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1963 void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1964   HandleCondition(comp);
1965 }
1966 
VisitLessThanOrEqual(HLessThanOrEqual * comp)1967 void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
1968   HandleCondition(comp);
1969 }
1970 
VisitGreaterThan(HGreaterThan * comp)1971 void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
1972   HandleCondition(comp);
1973 }
1974 
VisitGreaterThan(HGreaterThan * comp)1975 void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
1976   HandleCondition(comp);
1977 }
1978 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1979 void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1980   HandleCondition(comp);
1981 }
1982 
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)1983 void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
1984   HandleCondition(comp);
1985 }
1986 
VisitBelow(HBelow * comp)1987 void LocationsBuilderX86::VisitBelow(HBelow* comp) {
1988   HandleCondition(comp);
1989 }
1990 
VisitBelow(HBelow * comp)1991 void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
1992   HandleCondition(comp);
1993 }
1994 
VisitBelowOrEqual(HBelowOrEqual * comp)1995 void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
1996   HandleCondition(comp);
1997 }
1998 
VisitBelowOrEqual(HBelowOrEqual * comp)1999 void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
2000   HandleCondition(comp);
2001 }
2002 
VisitAbove(HAbove * comp)2003 void LocationsBuilderX86::VisitAbove(HAbove* comp) {
2004   HandleCondition(comp);
2005 }
2006 
VisitAbove(HAbove * comp)2007 void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
2008   HandleCondition(comp);
2009 }
2010 
VisitAboveOrEqual(HAboveOrEqual * comp)2011 void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
2012   HandleCondition(comp);
2013 }
2014 
VisitAboveOrEqual(HAboveOrEqual * comp)2015 void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
2016   HandleCondition(comp);
2017 }
2018 
VisitIntConstant(HIntConstant * constant)2019 void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
2020   LocationSummary* locations =
2021       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2022   locations->SetOut(Location::ConstantLocation(constant));
2023 }
2024 
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)2025 void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
2026   // Will be generated at use site.
2027 }
2028 
VisitNullConstant(HNullConstant * constant)2029 void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
2030   LocationSummary* locations =
2031       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2032   locations->SetOut(Location::ConstantLocation(constant));
2033 }
2034 
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)2035 void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
2036   // Will be generated at use site.
2037 }
2038 
VisitLongConstant(HLongConstant * constant)2039 void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
2040   LocationSummary* locations =
2041       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2042   locations->SetOut(Location::ConstantLocation(constant));
2043 }
2044 
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)2045 void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
2046   // Will be generated at use site.
2047 }
2048 
VisitFloatConstant(HFloatConstant * constant)2049 void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
2050   LocationSummary* locations =
2051       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2052   locations->SetOut(Location::ConstantLocation(constant));
2053 }
2054 
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)2055 void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
2056   // Will be generated at use site.
2057 }
2058 
VisitDoubleConstant(HDoubleConstant * constant)2059 void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
2060   LocationSummary* locations =
2061       new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
2062   locations->SetOut(Location::ConstantLocation(constant));
2063 }
2064 
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)2065 void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
2066   // Will be generated at use site.
2067 }
2068 
VisitConstructorFence(HConstructorFence * constructor_fence)2069 void LocationsBuilderX86::VisitConstructorFence(HConstructorFence* constructor_fence) {
2070   constructor_fence->SetLocations(nullptr);
2071 }
2072 
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)2073 void InstructionCodeGeneratorX86::VisitConstructorFence(
2074     HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
2075   codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
2076 }
2077 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)2078 void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2079   memory_barrier->SetLocations(nullptr);
2080 }
2081 
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)2082 void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
2083   codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
2084 }
2085 
VisitReturnVoid(HReturnVoid * ret)2086 void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
2087   ret->SetLocations(nullptr);
2088 }
2089 
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)2090 void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
2091   codegen_->GenerateFrameExit();
2092 }
2093 
VisitReturn(HReturn * ret)2094 void LocationsBuilderX86::VisitReturn(HReturn* ret) {
2095   LocationSummary* locations =
2096       new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
2097   switch (ret->InputAt(0)->GetType()) {
2098     case Primitive::kPrimBoolean:
2099     case Primitive::kPrimByte:
2100     case Primitive::kPrimChar:
2101     case Primitive::kPrimShort:
2102     case Primitive::kPrimInt:
2103     case Primitive::kPrimNot:
2104       locations->SetInAt(0, Location::RegisterLocation(EAX));
2105       break;
2106 
2107     case Primitive::kPrimLong:
2108       locations->SetInAt(
2109           0, Location::RegisterPairLocation(EAX, EDX));
2110       break;
2111 
2112     case Primitive::kPrimFloat:
2113     case Primitive::kPrimDouble:
2114       locations->SetInAt(
2115           0, Location::FpuRegisterLocation(XMM0));
2116       break;
2117 
2118     default:
2119       LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
2120   }
2121 }
2122 
VisitReturn(HReturn * ret)2123 void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
2124   if (kIsDebugBuild) {
2125     switch (ret->InputAt(0)->GetType()) {
2126       case Primitive::kPrimBoolean:
2127       case Primitive::kPrimByte:
2128       case Primitive::kPrimChar:
2129       case Primitive::kPrimShort:
2130       case Primitive::kPrimInt:
2131       case Primitive::kPrimNot:
2132         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
2133         break;
2134 
2135       case Primitive::kPrimLong:
2136         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
2137         DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
2138         break;
2139 
2140       case Primitive::kPrimFloat:
2141       case Primitive::kPrimDouble:
2142         DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
2143         break;
2144 
2145       default:
2146         LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
2147     }
2148   }
2149   codegen_->GenerateFrameExit();
2150 }
2151 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)2152 void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2153   // The trampoline uses the same calling convention as dex calling conventions,
2154   // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
2155   // the method_idx.
2156   HandleInvoke(invoke);
2157 }
2158 
VisitInvokeUnresolved(HInvokeUnresolved * invoke)2159 void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
2160   codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
2161 }
2162 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)2163 void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2164   // Explicit clinit checks triggered by static invokes must have been pruned by
2165   // art::PrepareForRegisterAllocation.
2166   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2167 
2168   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
2169   if (intrinsic.TryDispatch(invoke)) {
2170     if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeMethodLoadKind()) {
2171       invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
2172     }
2173     return;
2174   }
2175 
2176   HandleInvoke(invoke);
2177 
2178   // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
2179   if (invoke->HasPcRelativeMethodLoadKind()) {
2180     invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
2181   }
2182 }
2183 
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorX86 * codegen)2184 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
2185   if (invoke->GetLocations()->Intrinsified()) {
2186     IntrinsicCodeGeneratorX86 intrinsic(codegen);
2187     intrinsic.Dispatch(invoke);
2188     return true;
2189   }
2190   return false;
2191 }
2192 
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)2193 void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
2194   // Explicit clinit checks triggered by static invokes must have been pruned by
2195   // art::PrepareForRegisterAllocation.
2196   DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
2197 
2198   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2199     return;
2200   }
2201 
2202   LocationSummary* locations = invoke->GetLocations();
2203   codegen_->GenerateStaticOrDirectCall(
2204       invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
2205 }
2206 
VisitInvokeVirtual(HInvokeVirtual * invoke)2207 void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2208   IntrinsicLocationsBuilderX86 intrinsic(codegen_);
2209   if (intrinsic.TryDispatch(invoke)) {
2210     return;
2211   }
2212 
2213   HandleInvoke(invoke);
2214 }
2215 
HandleInvoke(HInvoke * invoke)2216 void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
2217   InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
2218   CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
2219 }
2220 
VisitInvokeVirtual(HInvokeVirtual * invoke)2221 void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
2222   if (TryGenerateIntrinsicCode(invoke, codegen_)) {
2223     return;
2224   }
2225 
2226   codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
2227   DCHECK(!codegen_->IsLeafMethod());
2228 }
2229 
VisitInvokeInterface(HInvokeInterface * invoke)2230 void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2231   // This call to HandleInvoke allocates a temporary (core) register
2232   // which is also used to transfer the hidden argument from FP to
2233   // core register.
2234   HandleInvoke(invoke);
2235   // Add the hidden argument.
2236   invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
2237 }
2238 
VisitInvokeInterface(HInvokeInterface * invoke)2239 void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
2240   // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
2241   LocationSummary* locations = invoke->GetLocations();
2242   Register temp = locations->GetTemp(0).AsRegister<Register>();
2243   XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2244   Location receiver = locations->InAt(0);
2245   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2246 
2247   // Set the hidden argument. This is safe to do this here, as XMM7
2248   // won't be modified thereafter, before the `call` instruction.
2249   DCHECK_EQ(XMM7, hidden_reg);
2250   __ movl(temp, Immediate(invoke->GetDexMethodIndex()));
2251   __ movd(hidden_reg, temp);
2252 
2253   if (receiver.IsStackSlot()) {
2254     __ movl(temp, Address(ESP, receiver.GetStackIndex()));
2255     // /* HeapReference<Class> */ temp = temp->klass_
2256     __ movl(temp, Address(temp, class_offset));
2257   } else {
2258     // /* HeapReference<Class> */ temp = receiver->klass_
2259     __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
2260   }
2261   codegen_->MaybeRecordImplicitNullCheck(invoke);
2262   // Instead of simply (possibly) unpoisoning `temp` here, we should
2263   // emit a read barrier for the previous class reference load.
2264   // However this is not required in practice, as this is an
2265   // intermediate/temporary reference and because the current
2266   // concurrent copying collector keeps the from-space memory
2267   // intact/accessible until the end of the marking phase (the
2268   // concurrent copying collector may not in the future).
2269   __ MaybeUnpoisonHeapReference(temp);
2270   // temp = temp->GetAddressOfIMT()
2271   __ movl(temp,
2272       Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
2273   // temp = temp->GetImtEntryAt(method_offset);
2274   uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
2275       invoke->GetImtIndex(), kX86PointerSize));
2276   __ movl(temp, Address(temp, method_offset));
2277   // call temp->GetEntryPoint();
2278   __ call(Address(temp,
2279                   ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
2280 
2281   DCHECK(!codegen_->IsLeafMethod());
2282   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
2283 }
2284 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)2285 void LocationsBuilderX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2286   HandleInvoke(invoke);
2287 }
2288 
VisitInvokePolymorphic(HInvokePolymorphic * invoke)2289 void InstructionCodeGeneratorX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
2290   codegen_->GenerateInvokePolymorphicCall(invoke);
2291 }
2292 
VisitNeg(HNeg * neg)2293 void LocationsBuilderX86::VisitNeg(HNeg* neg) {
2294   LocationSummary* locations =
2295       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2296   switch (neg->GetResultType()) {
2297     case Primitive::kPrimInt:
2298     case Primitive::kPrimLong:
2299       locations->SetInAt(0, Location::RequiresRegister());
2300       locations->SetOut(Location::SameAsFirstInput());
2301       break;
2302 
2303     case Primitive::kPrimFloat:
2304       locations->SetInAt(0, Location::RequiresFpuRegister());
2305       locations->SetOut(Location::SameAsFirstInput());
2306       locations->AddTemp(Location::RequiresRegister());
2307       locations->AddTemp(Location::RequiresFpuRegister());
2308       break;
2309 
2310     case Primitive::kPrimDouble:
2311       locations->SetInAt(0, Location::RequiresFpuRegister());
2312       locations->SetOut(Location::SameAsFirstInput());
2313       locations->AddTemp(Location::RequiresFpuRegister());
2314       break;
2315 
2316     default:
2317       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2318   }
2319 }
2320 
VisitNeg(HNeg * neg)2321 void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
2322   LocationSummary* locations = neg->GetLocations();
2323   Location out = locations->Out();
2324   Location in = locations->InAt(0);
2325   switch (neg->GetResultType()) {
2326     case Primitive::kPrimInt:
2327       DCHECK(in.IsRegister());
2328       DCHECK(in.Equals(out));
2329       __ negl(out.AsRegister<Register>());
2330       break;
2331 
2332     case Primitive::kPrimLong:
2333       DCHECK(in.IsRegisterPair());
2334       DCHECK(in.Equals(out));
2335       __ negl(out.AsRegisterPairLow<Register>());
2336       // Negation is similar to subtraction from zero.  The least
2337       // significant byte triggers a borrow when it is different from
2338       // zero; to take it into account, add 1 to the most significant
2339       // byte if the carry flag (CF) is set to 1 after the first NEGL
2340       // operation.
2341       __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
2342       __ negl(out.AsRegisterPairHigh<Register>());
2343       break;
2344 
2345     case Primitive::kPrimFloat: {
2346       DCHECK(in.Equals(out));
2347       Register constant = locations->GetTemp(0).AsRegister<Register>();
2348       XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
2349       // Implement float negation with an exclusive or with value
2350       // 0x80000000 (mask for bit 31, representing the sign of a
2351       // single-precision floating-point number).
2352       __ movl(constant, Immediate(INT32_C(0x80000000)));
2353       __ movd(mask, constant);
2354       __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2355       break;
2356     }
2357 
2358     case Primitive::kPrimDouble: {
2359       DCHECK(in.Equals(out));
2360       XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2361       // Implement double negation with an exclusive or with value
2362       // 0x8000000000000000 (mask for bit 63, representing the sign of
2363       // a double-precision floating-point number).
2364       __ LoadLongConstant(mask, INT64_C(0x8000000000000000));
2365       __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2366       break;
2367     }
2368 
2369     default:
2370       LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
2371   }
2372 }
2373 
VisitX86FPNeg(HX86FPNeg * neg)2374 void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
2375   LocationSummary* locations =
2376       new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
2377   DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
2378   locations->SetInAt(0, Location::RequiresFpuRegister());
2379   locations->SetInAt(1, Location::RequiresRegister());
2380   locations->SetOut(Location::SameAsFirstInput());
2381   locations->AddTemp(Location::RequiresFpuRegister());
2382 }
2383 
VisitX86FPNeg(HX86FPNeg * neg)2384 void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
2385   LocationSummary* locations = neg->GetLocations();
2386   Location out = locations->Out();
2387   DCHECK(locations->InAt(0).Equals(out));
2388 
2389   Register constant_area = locations->InAt(1).AsRegister<Register>();
2390   XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2391   if (neg->GetType() == Primitive::kPrimFloat) {
2392     __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000),
2393                                                  neg->GetBaseMethodAddress(),
2394                                                  constant_area));
2395     __ xorps(out.AsFpuRegister<XmmRegister>(), mask);
2396   } else {
2397      __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000),
2398                                                   neg->GetBaseMethodAddress(),
2399                                                   constant_area));
2400      __ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
2401   }
2402 }
2403 
VisitTypeConversion(HTypeConversion * conversion)2404 void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
2405   Primitive::Type result_type = conversion->GetResultType();
2406   Primitive::Type input_type = conversion->GetInputType();
2407   DCHECK_NE(result_type, input_type);
2408 
2409   // The float-to-long and double-to-long type conversions rely on a
2410   // call to the runtime.
2411   LocationSummary::CallKind call_kind =
2412       ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
2413        && result_type == Primitive::kPrimLong)
2414       ? LocationSummary::kCallOnMainOnly
2415       : LocationSummary::kNoCall;
2416   LocationSummary* locations =
2417       new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
2418 
2419   // The Java language does not allow treating boolean as an integral type but
2420   // our bit representation makes it safe.
2421 
2422   switch (result_type) {
2423     case Primitive::kPrimByte:
2424       switch (input_type) {
2425         case Primitive::kPrimLong: {
2426           // Type conversion from long to byte is a result of code transformations.
2427           HInstruction* input = conversion->InputAt(0);
2428           Location input_location = input->IsConstant()
2429               ? Location::ConstantLocation(input->AsConstant())
2430               : Location::RegisterPairLocation(EAX, EDX);
2431           locations->SetInAt(0, input_location);
2432           // Make the output overlap to please the register allocator. This greatly simplifies
2433           // the validation of the linear scan implementation
2434           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2435           break;
2436         }
2437         case Primitive::kPrimBoolean:
2438           // Boolean input is a result of code transformations.
2439         case Primitive::kPrimShort:
2440         case Primitive::kPrimInt:
2441         case Primitive::kPrimChar:
2442           // Processing a Dex `int-to-byte' instruction.
2443           locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
2444           // Make the output overlap to please the register allocator. This greatly simplifies
2445           // the validation of the linear scan implementation
2446           locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
2447           break;
2448 
2449         default:
2450           LOG(FATAL) << "Unexpected type conversion from " << input_type
2451                      << " to " << result_type;
2452       }
2453       break;
2454 
2455     case Primitive::kPrimShort:
2456       switch (input_type) {
2457         case Primitive::kPrimLong:
2458           // Type conversion from long to short is a result of code transformations.
2459         case Primitive::kPrimBoolean:
2460           // Boolean input is a result of code transformations.
2461         case Primitive::kPrimByte:
2462         case Primitive::kPrimInt:
2463         case Primitive::kPrimChar:
2464           // Processing a Dex `int-to-short' instruction.
2465           locations->SetInAt(0, Location::Any());
2466           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2467           break;
2468 
2469         default:
2470           LOG(FATAL) << "Unexpected type conversion from " << input_type
2471                      << " to " << result_type;
2472       }
2473       break;
2474 
2475     case Primitive::kPrimInt:
2476       switch (input_type) {
2477         case Primitive::kPrimLong:
2478           // Processing a Dex `long-to-int' instruction.
2479           locations->SetInAt(0, Location::Any());
2480           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2481           break;
2482 
2483         case Primitive::kPrimFloat:
2484           // Processing a Dex `float-to-int' instruction.
2485           locations->SetInAt(0, Location::RequiresFpuRegister());
2486           locations->SetOut(Location::RequiresRegister());
2487           locations->AddTemp(Location::RequiresFpuRegister());
2488           break;
2489 
2490         case Primitive::kPrimDouble:
2491           // Processing a Dex `double-to-int' instruction.
2492           locations->SetInAt(0, Location::RequiresFpuRegister());
2493           locations->SetOut(Location::RequiresRegister());
2494           locations->AddTemp(Location::RequiresFpuRegister());
2495           break;
2496 
2497         default:
2498           LOG(FATAL) << "Unexpected type conversion from " << input_type
2499                      << " to " << result_type;
2500       }
2501       break;
2502 
2503     case Primitive::kPrimLong:
2504       switch (input_type) {
2505         case Primitive::kPrimBoolean:
2506           // Boolean input is a result of code transformations.
2507         case Primitive::kPrimByte:
2508         case Primitive::kPrimShort:
2509         case Primitive::kPrimInt:
2510         case Primitive::kPrimChar:
2511           // Processing a Dex `int-to-long' instruction.
2512           locations->SetInAt(0, Location::RegisterLocation(EAX));
2513           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2514           break;
2515 
2516         case Primitive::kPrimFloat:
2517         case Primitive::kPrimDouble: {
2518           // Processing a Dex `float-to-long' or 'double-to-long' instruction.
2519           InvokeRuntimeCallingConvention calling_convention;
2520           XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
2521           locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
2522 
2523           // The runtime helper puts the result in EAX, EDX.
2524           locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
2525         }
2526         break;
2527 
2528         default:
2529           LOG(FATAL) << "Unexpected type conversion from " << input_type
2530                      << " to " << result_type;
2531       }
2532       break;
2533 
2534     case Primitive::kPrimChar:
2535       switch (input_type) {
2536         case Primitive::kPrimLong:
2537           // Type conversion from long to char is a result of code transformations.
2538         case Primitive::kPrimBoolean:
2539           // Boolean input is a result of code transformations.
2540         case Primitive::kPrimByte:
2541         case Primitive::kPrimShort:
2542         case Primitive::kPrimInt:
2543           // Processing a Dex `int-to-char' instruction.
2544           locations->SetInAt(0, Location::Any());
2545           locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2546           break;
2547 
2548         default:
2549           LOG(FATAL) << "Unexpected type conversion from " << input_type
2550                      << " to " << result_type;
2551       }
2552       break;
2553 
2554     case Primitive::kPrimFloat:
2555       switch (input_type) {
2556         case Primitive::kPrimBoolean:
2557           // Boolean input is a result of code transformations.
2558         case Primitive::kPrimByte:
2559         case Primitive::kPrimShort:
2560         case Primitive::kPrimInt:
2561         case Primitive::kPrimChar:
2562           // Processing a Dex `int-to-float' instruction.
2563           locations->SetInAt(0, Location::RequiresRegister());
2564           locations->SetOut(Location::RequiresFpuRegister());
2565           break;
2566 
2567         case Primitive::kPrimLong:
2568           // Processing a Dex `long-to-float' instruction.
2569           locations->SetInAt(0, Location::Any());
2570           locations->SetOut(Location::Any());
2571           break;
2572 
2573         case Primitive::kPrimDouble:
2574           // Processing a Dex `double-to-float' instruction.
2575           locations->SetInAt(0, Location::RequiresFpuRegister());
2576           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2577           break;
2578 
2579         default:
2580           LOG(FATAL) << "Unexpected type conversion from " << input_type
2581                      << " to " << result_type;
2582       };
2583       break;
2584 
2585     case Primitive::kPrimDouble:
2586       switch (input_type) {
2587         case Primitive::kPrimBoolean:
2588           // Boolean input is a result of code transformations.
2589         case Primitive::kPrimByte:
2590         case Primitive::kPrimShort:
2591         case Primitive::kPrimInt:
2592         case Primitive::kPrimChar:
2593           // Processing a Dex `int-to-double' instruction.
2594           locations->SetInAt(0, Location::RequiresRegister());
2595           locations->SetOut(Location::RequiresFpuRegister());
2596           break;
2597 
2598         case Primitive::kPrimLong:
2599           // Processing a Dex `long-to-double' instruction.
2600           locations->SetInAt(0, Location::Any());
2601           locations->SetOut(Location::Any());
2602           break;
2603 
2604         case Primitive::kPrimFloat:
2605           // Processing a Dex `float-to-double' instruction.
2606           locations->SetInAt(0, Location::RequiresFpuRegister());
2607           locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2608           break;
2609 
2610         default:
2611           LOG(FATAL) << "Unexpected type conversion from " << input_type
2612                      << " to " << result_type;
2613       }
2614       break;
2615 
2616     default:
2617       LOG(FATAL) << "Unexpected type conversion from " << input_type
2618                  << " to " << result_type;
2619   }
2620 }
2621 
VisitTypeConversion(HTypeConversion * conversion)2622 void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
2623   LocationSummary* locations = conversion->GetLocations();
2624   Location out = locations->Out();
2625   Location in = locations->InAt(0);
2626   Primitive::Type result_type = conversion->GetResultType();
2627   Primitive::Type input_type = conversion->GetInputType();
2628   DCHECK_NE(result_type, input_type);
2629   switch (result_type) {
2630     case Primitive::kPrimByte:
2631       switch (input_type) {
2632         case Primitive::kPrimLong:
2633           // Type conversion from long to byte is a result of code transformations.
2634           if (in.IsRegisterPair()) {
2635             __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
2636           } else {
2637             DCHECK(in.GetConstant()->IsLongConstant());
2638             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2639             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2640           }
2641           break;
2642         case Primitive::kPrimBoolean:
2643           // Boolean input is a result of code transformations.
2644         case Primitive::kPrimShort:
2645         case Primitive::kPrimInt:
2646         case Primitive::kPrimChar:
2647           // Processing a Dex `int-to-byte' instruction.
2648           if (in.IsRegister()) {
2649             __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
2650           } else {
2651             DCHECK(in.GetConstant()->IsIntConstant());
2652             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2653             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
2654           }
2655           break;
2656 
2657         default:
2658           LOG(FATAL) << "Unexpected type conversion from " << input_type
2659                      << " to " << result_type;
2660       }
2661       break;
2662 
2663     case Primitive::kPrimShort:
2664       switch (input_type) {
2665         case Primitive::kPrimLong:
2666           // Type conversion from long to short is a result of code transformations.
2667           if (in.IsRegisterPair()) {
2668             __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2669           } else if (in.IsDoubleStackSlot()) {
2670             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2671           } else {
2672             DCHECK(in.GetConstant()->IsLongConstant());
2673             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2674             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2675           }
2676           break;
2677         case Primitive::kPrimBoolean:
2678           // Boolean input is a result of code transformations.
2679         case Primitive::kPrimByte:
2680         case Primitive::kPrimInt:
2681         case Primitive::kPrimChar:
2682           // Processing a Dex `int-to-short' instruction.
2683           if (in.IsRegister()) {
2684             __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2685           } else if (in.IsStackSlot()) {
2686             __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2687           } else {
2688             DCHECK(in.GetConstant()->IsIntConstant());
2689             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2690             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
2691           }
2692           break;
2693 
2694         default:
2695           LOG(FATAL) << "Unexpected type conversion from " << input_type
2696                      << " to " << result_type;
2697       }
2698       break;
2699 
2700     case Primitive::kPrimInt:
2701       switch (input_type) {
2702         case Primitive::kPrimLong:
2703           // Processing a Dex `long-to-int' instruction.
2704           if (in.IsRegisterPair()) {
2705             __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2706           } else if (in.IsDoubleStackSlot()) {
2707             __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2708           } else {
2709             DCHECK(in.IsConstant());
2710             DCHECK(in.GetConstant()->IsLongConstant());
2711             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2712             __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
2713           }
2714           break;
2715 
2716         case Primitive::kPrimFloat: {
2717           // Processing a Dex `float-to-int' instruction.
2718           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2719           Register output = out.AsRegister<Register>();
2720           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2721           NearLabel done, nan;
2722 
2723           __ movl(output, Immediate(kPrimIntMax));
2724           // temp = int-to-float(output)
2725           __ cvtsi2ss(temp, output);
2726           // if input >= temp goto done
2727           __ comiss(input, temp);
2728           __ j(kAboveEqual, &done);
2729           // if input == NaN goto nan
2730           __ j(kUnordered, &nan);
2731           // output = float-to-int-truncate(input)
2732           __ cvttss2si(output, input);
2733           __ jmp(&done);
2734           __ Bind(&nan);
2735           //  output = 0
2736           __ xorl(output, output);
2737           __ Bind(&done);
2738           break;
2739         }
2740 
2741         case Primitive::kPrimDouble: {
2742           // Processing a Dex `double-to-int' instruction.
2743           XmmRegister input = in.AsFpuRegister<XmmRegister>();
2744           Register output = out.AsRegister<Register>();
2745           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
2746           NearLabel done, nan;
2747 
2748           __ movl(output, Immediate(kPrimIntMax));
2749           // temp = int-to-double(output)
2750           __ cvtsi2sd(temp, output);
2751           // if input >= temp goto done
2752           __ comisd(input, temp);
2753           __ j(kAboveEqual, &done);
2754           // if input == NaN goto nan
2755           __ j(kUnordered, &nan);
2756           // output = double-to-int-truncate(input)
2757           __ cvttsd2si(output, input);
2758           __ jmp(&done);
2759           __ Bind(&nan);
2760           //  output = 0
2761           __ xorl(output, output);
2762           __ Bind(&done);
2763           break;
2764         }
2765 
2766         default:
2767           LOG(FATAL) << "Unexpected type conversion from " << input_type
2768                      << " to " << result_type;
2769       }
2770       break;
2771 
2772     case Primitive::kPrimLong:
2773       switch (input_type) {
2774         case Primitive::kPrimBoolean:
2775           // Boolean input is a result of code transformations.
2776         case Primitive::kPrimByte:
2777         case Primitive::kPrimShort:
2778         case Primitive::kPrimInt:
2779         case Primitive::kPrimChar:
2780           // Processing a Dex `int-to-long' instruction.
2781           DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
2782           DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
2783           DCHECK_EQ(in.AsRegister<Register>(), EAX);
2784           __ cdq();
2785           break;
2786 
2787         case Primitive::kPrimFloat:
2788           // Processing a Dex `float-to-long' instruction.
2789           codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc());
2790           CheckEntrypointTypes<kQuickF2l, int64_t, float>();
2791           break;
2792 
2793         case Primitive::kPrimDouble:
2794           // Processing a Dex `double-to-long' instruction.
2795           codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc());
2796           CheckEntrypointTypes<kQuickD2l, int64_t, double>();
2797           break;
2798 
2799         default:
2800           LOG(FATAL) << "Unexpected type conversion from " << input_type
2801                      << " to " << result_type;
2802       }
2803       break;
2804 
2805     case Primitive::kPrimChar:
2806       switch (input_type) {
2807         case Primitive::kPrimLong:
2808           // Type conversion from long to short is a result of code transformations.
2809           if (in.IsRegisterPair()) {
2810             __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
2811           } else if (in.IsDoubleStackSlot()) {
2812             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2813           } else {
2814             DCHECK(in.GetConstant()->IsLongConstant());
2815             int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
2816             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2817           }
2818           break;
2819         case Primitive::kPrimBoolean:
2820           // Boolean input is a result of code transformations.
2821         case Primitive::kPrimByte:
2822         case Primitive::kPrimShort:
2823         case Primitive::kPrimInt:
2824           // Processing a Dex `Process a Dex `int-to-char'' instruction.
2825           if (in.IsRegister()) {
2826             __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
2827           } else if (in.IsStackSlot()) {
2828             __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
2829           } else {
2830             DCHECK(in.GetConstant()->IsIntConstant());
2831             int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
2832             __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
2833           }
2834           break;
2835 
2836         default:
2837           LOG(FATAL) << "Unexpected type conversion from " << input_type
2838                      << " to " << result_type;
2839       }
2840       break;
2841 
2842     case Primitive::kPrimFloat:
2843       switch (input_type) {
2844         case Primitive::kPrimBoolean:
2845           // Boolean input is a result of code transformations.
2846         case Primitive::kPrimByte:
2847         case Primitive::kPrimShort:
2848         case Primitive::kPrimInt:
2849         case Primitive::kPrimChar:
2850           // Processing a Dex `int-to-float' instruction.
2851           __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2852           break;
2853 
2854         case Primitive::kPrimLong: {
2855           // Processing a Dex `long-to-float' instruction.
2856           size_t adjustment = 0;
2857 
2858           // Create stack space for the call to
2859           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
2860           // TODO: enhance register allocator to ask for stack temporaries.
2861           if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
2862             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2863             __ subl(ESP, Immediate(adjustment));
2864           }
2865 
2866           // Load the value to the FP stack, using temporaries if needed.
2867           PushOntoFPStack(in, 0, adjustment, false, true);
2868 
2869           if (out.IsStackSlot()) {
2870             __ fstps(Address(ESP, out.GetStackIndex() + adjustment));
2871           } else {
2872             __ fstps(Address(ESP, 0));
2873             Location stack_temp = Location::StackSlot(0);
2874             codegen_->Move32(out, stack_temp);
2875           }
2876 
2877           // Remove the temporary stack space we allocated.
2878           if (adjustment != 0) {
2879             __ addl(ESP, Immediate(adjustment));
2880           }
2881           break;
2882         }
2883 
2884         case Primitive::kPrimDouble:
2885           // Processing a Dex `double-to-float' instruction.
2886           __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2887           break;
2888 
2889         default:
2890           LOG(FATAL) << "Unexpected type conversion from " << input_type
2891                      << " to " << result_type;
2892       };
2893       break;
2894 
2895     case Primitive::kPrimDouble:
2896       switch (input_type) {
2897         case Primitive::kPrimBoolean:
2898           // Boolean input is a result of code transformations.
2899         case Primitive::kPrimByte:
2900         case Primitive::kPrimShort:
2901         case Primitive::kPrimInt:
2902         case Primitive::kPrimChar:
2903           // Processing a Dex `int-to-double' instruction.
2904           __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
2905           break;
2906 
2907         case Primitive::kPrimLong: {
2908           // Processing a Dex `long-to-double' instruction.
2909           size_t adjustment = 0;
2910 
2911           // Create stack space for the call to
2912           // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
2913           // TODO: enhance register allocator to ask for stack temporaries.
2914           if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
2915             adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
2916             __ subl(ESP, Immediate(adjustment));
2917           }
2918 
2919           // Load the value to the FP stack, using temporaries if needed.
2920           PushOntoFPStack(in, 0, adjustment, false, true);
2921 
2922           if (out.IsDoubleStackSlot()) {
2923             __ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
2924           } else {
2925             __ fstpl(Address(ESP, 0));
2926             Location stack_temp = Location::DoubleStackSlot(0);
2927             codegen_->Move64(out, stack_temp);
2928           }
2929 
2930           // Remove the temporary stack space we allocated.
2931           if (adjustment != 0) {
2932             __ addl(ESP, Immediate(adjustment));
2933           }
2934           break;
2935         }
2936 
2937         case Primitive::kPrimFloat:
2938           // Processing a Dex `float-to-double' instruction.
2939           __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
2940           break;
2941 
2942         default:
2943           LOG(FATAL) << "Unexpected type conversion from " << input_type
2944                      << " to " << result_type;
2945       };
2946       break;
2947 
2948     default:
2949       LOG(FATAL) << "Unexpected type conversion from " << input_type
2950                  << " to " << result_type;
2951   }
2952 }
2953 
VisitAdd(HAdd * add)2954 void LocationsBuilderX86::VisitAdd(HAdd* add) {
2955   LocationSummary* locations =
2956       new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
2957   switch (add->GetResultType()) {
2958     case Primitive::kPrimInt: {
2959       locations->SetInAt(0, Location::RequiresRegister());
2960       locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
2961       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2962       break;
2963     }
2964 
2965     case Primitive::kPrimLong: {
2966       locations->SetInAt(0, Location::RequiresRegister());
2967       locations->SetInAt(1, Location::Any());
2968       locations->SetOut(Location::SameAsFirstInput());
2969       break;
2970     }
2971 
2972     case Primitive::kPrimFloat:
2973     case Primitive::kPrimDouble: {
2974       locations->SetInAt(0, Location::RequiresFpuRegister());
2975       if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
2976         DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
2977       } else if (add->InputAt(1)->IsConstant()) {
2978         locations->SetInAt(1, Location::RequiresFpuRegister());
2979       } else {
2980         locations->SetInAt(1, Location::Any());
2981       }
2982       locations->SetOut(Location::SameAsFirstInput());
2983       break;
2984     }
2985 
2986     default:
2987       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
2988       break;
2989   }
2990 }
2991 
VisitAdd(HAdd * add)2992 void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
2993   LocationSummary* locations = add->GetLocations();
2994   Location first = locations->InAt(0);
2995   Location second = locations->InAt(1);
2996   Location out = locations->Out();
2997 
2998   switch (add->GetResultType()) {
2999     case Primitive::kPrimInt: {
3000       if (second.IsRegister()) {
3001         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
3002           __ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
3003         } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
3004           __ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
3005         } else {
3006           __ leal(out.AsRegister<Register>(), Address(
3007               first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
3008           }
3009       } else if (second.IsConstant()) {
3010         int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
3011         if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
3012           __ addl(out.AsRegister<Register>(), Immediate(value));
3013         } else {
3014           __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
3015         }
3016       } else {
3017         DCHECK(first.Equals(locations->Out()));
3018         __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3019       }
3020       break;
3021     }
3022 
3023     case Primitive::kPrimLong: {
3024       if (second.IsRegisterPair()) {
3025         __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
3026         __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
3027       } else if (second.IsDoubleStackSlot()) {
3028         __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
3029         __ adcl(first.AsRegisterPairHigh<Register>(),
3030                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
3031       } else {
3032         DCHECK(second.IsConstant()) << second;
3033         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3034         __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
3035         __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
3036       }
3037       break;
3038     }
3039 
3040     case Primitive::kPrimFloat: {
3041       if (second.IsFpuRegister()) {
3042         __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3043       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
3044         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
3045         DCHECK(const_area->IsEmittedAtUseSite());
3046         __ addss(first.AsFpuRegister<XmmRegister>(),
3047                  codegen_->LiteralFloatAddress(
3048                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3049                      const_area->GetBaseMethodAddress(),
3050                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3051       } else {
3052         DCHECK(second.IsStackSlot());
3053         __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3054       }
3055       break;
3056     }
3057 
3058     case Primitive::kPrimDouble: {
3059       if (second.IsFpuRegister()) {
3060         __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3061       } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
3062         HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
3063         DCHECK(const_area->IsEmittedAtUseSite());
3064         __ addsd(first.AsFpuRegister<XmmRegister>(),
3065                  codegen_->LiteralDoubleAddress(
3066                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3067                      const_area->GetBaseMethodAddress(),
3068                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3069       } else {
3070         DCHECK(second.IsDoubleStackSlot());
3071         __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3072       }
3073       break;
3074     }
3075 
3076     default:
3077       LOG(FATAL) << "Unexpected add type " << add->GetResultType();
3078   }
3079 }
3080 
VisitSub(HSub * sub)3081 void LocationsBuilderX86::VisitSub(HSub* sub) {
3082   LocationSummary* locations =
3083       new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
3084   switch (sub->GetResultType()) {
3085     case Primitive::kPrimInt:
3086     case Primitive::kPrimLong: {
3087       locations->SetInAt(0, Location::RequiresRegister());
3088       locations->SetInAt(1, Location::Any());
3089       locations->SetOut(Location::SameAsFirstInput());
3090       break;
3091     }
3092     case Primitive::kPrimFloat:
3093     case Primitive::kPrimDouble: {
3094       locations->SetInAt(0, Location::RequiresFpuRegister());
3095       if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3096         DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
3097       } else if (sub->InputAt(1)->IsConstant()) {
3098         locations->SetInAt(1, Location::RequiresFpuRegister());
3099       } else {
3100         locations->SetInAt(1, Location::Any());
3101       }
3102       locations->SetOut(Location::SameAsFirstInput());
3103       break;
3104     }
3105 
3106     default:
3107       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3108   }
3109 }
3110 
VisitSub(HSub * sub)3111 void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
3112   LocationSummary* locations = sub->GetLocations();
3113   Location first = locations->InAt(0);
3114   Location second = locations->InAt(1);
3115   DCHECK(first.Equals(locations->Out()));
3116   switch (sub->GetResultType()) {
3117     case Primitive::kPrimInt: {
3118       if (second.IsRegister()) {
3119         __ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
3120       } else if (second.IsConstant()) {
3121         __ subl(first.AsRegister<Register>(),
3122                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
3123       } else {
3124         __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3125       }
3126       break;
3127     }
3128 
3129     case Primitive::kPrimLong: {
3130       if (second.IsRegisterPair()) {
3131         __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
3132         __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
3133       } else if (second.IsDoubleStackSlot()) {
3134         __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
3135         __ sbbl(first.AsRegisterPairHigh<Register>(),
3136                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
3137       } else {
3138         DCHECK(second.IsConstant()) << second;
3139         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3140         __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
3141         __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
3142       }
3143       break;
3144     }
3145 
3146     case Primitive::kPrimFloat: {
3147       if (second.IsFpuRegister()) {
3148         __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3149       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3150         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
3151         DCHECK(const_area->IsEmittedAtUseSite());
3152         __ subss(first.AsFpuRegister<XmmRegister>(),
3153                  codegen_->LiteralFloatAddress(
3154                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3155                      const_area->GetBaseMethodAddress(),
3156                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3157       } else {
3158         DCHECK(second.IsStackSlot());
3159         __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3160       }
3161       break;
3162     }
3163 
3164     case Primitive::kPrimDouble: {
3165       if (second.IsFpuRegister()) {
3166         __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3167       } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
3168         HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
3169         DCHECK(const_area->IsEmittedAtUseSite());
3170         __ subsd(first.AsFpuRegister<XmmRegister>(),
3171                  codegen_->LiteralDoubleAddress(
3172                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3173                      const_area->GetBaseMethodAddress(),
3174                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3175       } else {
3176         DCHECK(second.IsDoubleStackSlot());
3177         __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3178       }
3179       break;
3180     }
3181 
3182     default:
3183       LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
3184   }
3185 }
3186 
VisitMul(HMul * mul)3187 void LocationsBuilderX86::VisitMul(HMul* mul) {
3188   LocationSummary* locations =
3189       new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
3190   switch (mul->GetResultType()) {
3191     case Primitive::kPrimInt:
3192       locations->SetInAt(0, Location::RequiresRegister());
3193       locations->SetInAt(1, Location::Any());
3194       if (mul->InputAt(1)->IsIntConstant()) {
3195         // Can use 3 operand multiply.
3196         locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3197       } else {
3198         locations->SetOut(Location::SameAsFirstInput());
3199       }
3200       break;
3201     case Primitive::kPrimLong: {
3202       locations->SetInAt(0, Location::RequiresRegister());
3203       locations->SetInAt(1, Location::Any());
3204       locations->SetOut(Location::SameAsFirstInput());
3205       // Needed for imul on 32bits with 64bits output.
3206       locations->AddTemp(Location::RegisterLocation(EAX));
3207       locations->AddTemp(Location::RegisterLocation(EDX));
3208       break;
3209     }
3210     case Primitive::kPrimFloat:
3211     case Primitive::kPrimDouble: {
3212       locations->SetInAt(0, Location::RequiresFpuRegister());
3213       if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3214         DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
3215       } else if (mul->InputAt(1)->IsConstant()) {
3216         locations->SetInAt(1, Location::RequiresFpuRegister());
3217       } else {
3218         locations->SetInAt(1, Location::Any());
3219       }
3220       locations->SetOut(Location::SameAsFirstInput());
3221       break;
3222     }
3223 
3224     default:
3225       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3226   }
3227 }
3228 
VisitMul(HMul * mul)3229 void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
3230   LocationSummary* locations = mul->GetLocations();
3231   Location first = locations->InAt(0);
3232   Location second = locations->InAt(1);
3233   Location out = locations->Out();
3234 
3235   switch (mul->GetResultType()) {
3236     case Primitive::kPrimInt:
3237       // The constant may have ended up in a register, so test explicitly to avoid
3238       // problems where the output may not be the same as the first operand.
3239       if (mul->InputAt(1)->IsIntConstant()) {
3240         Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
3241         __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
3242       } else if (second.IsRegister()) {
3243         DCHECK(first.Equals(out));
3244         __ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
3245       } else {
3246         DCHECK(second.IsStackSlot());
3247         DCHECK(first.Equals(out));
3248         __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
3249       }
3250       break;
3251 
3252     case Primitive::kPrimLong: {
3253       Register in1_hi = first.AsRegisterPairHigh<Register>();
3254       Register in1_lo = first.AsRegisterPairLow<Register>();
3255       Register eax = locations->GetTemp(0).AsRegister<Register>();
3256       Register edx = locations->GetTemp(1).AsRegister<Register>();
3257 
3258       DCHECK_EQ(EAX, eax);
3259       DCHECK_EQ(EDX, edx);
3260 
3261       // input: in1 - 64 bits, in2 - 64 bits.
3262       // output: in1
3263       // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
3264       // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
3265       // parts: in1.lo = (in1.lo * in2.lo)[31:0]
3266       if (second.IsConstant()) {
3267         DCHECK(second.GetConstant()->IsLongConstant());
3268 
3269         int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
3270         int32_t low_value = Low32Bits(value);
3271         int32_t high_value = High32Bits(value);
3272         Immediate low(low_value);
3273         Immediate high(high_value);
3274 
3275         __ movl(eax, high);
3276         // eax <- in1.lo * in2.hi
3277         __ imull(eax, in1_lo);
3278         // in1.hi <- in1.hi * in2.lo
3279         __ imull(in1_hi, low);
3280         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3281         __ addl(in1_hi, eax);
3282         // move in2_lo to eax to prepare for double precision
3283         __ movl(eax, low);
3284         // edx:eax <- in1.lo * in2.lo
3285         __ mull(in1_lo);
3286         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3287         __ addl(in1_hi, edx);
3288         // in1.lo <- (in1.lo * in2.lo)[31:0];
3289         __ movl(in1_lo, eax);
3290       } else if (second.IsRegisterPair()) {
3291         Register in2_hi = second.AsRegisterPairHigh<Register>();
3292         Register in2_lo = second.AsRegisterPairLow<Register>();
3293 
3294         __ movl(eax, in2_hi);
3295         // eax <- in1.lo * in2.hi
3296         __ imull(eax, in1_lo);
3297         // in1.hi <- in1.hi * in2.lo
3298         __ imull(in1_hi, in2_lo);
3299         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3300         __ addl(in1_hi, eax);
3301         // move in1_lo to eax to prepare for double precision
3302         __ movl(eax, in1_lo);
3303         // edx:eax <- in1.lo * in2.lo
3304         __ mull(in2_lo);
3305         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3306         __ addl(in1_hi, edx);
3307         // in1.lo <- (in1.lo * in2.lo)[31:0];
3308         __ movl(in1_lo, eax);
3309       } else {
3310         DCHECK(second.IsDoubleStackSlot()) << second;
3311         Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
3312         Address in2_lo(ESP, second.GetStackIndex());
3313 
3314         __ movl(eax, in2_hi);
3315         // eax <- in1.lo * in2.hi
3316         __ imull(eax, in1_lo);
3317         // in1.hi <- in1.hi * in2.lo
3318         __ imull(in1_hi, in2_lo);
3319         // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
3320         __ addl(in1_hi, eax);
3321         // move in1_lo to eax to prepare for double precision
3322         __ movl(eax, in1_lo);
3323         // edx:eax <- in1.lo * in2.lo
3324         __ mull(in2_lo);
3325         // in1.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
3326         __ addl(in1_hi, edx);
3327         // in1.lo <- (in1.lo * in2.lo)[31:0];
3328         __ movl(in1_lo, eax);
3329       }
3330 
3331       break;
3332     }
3333 
3334     case Primitive::kPrimFloat: {
3335       DCHECK(first.Equals(locations->Out()));
3336       if (second.IsFpuRegister()) {
3337         __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3338       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3339         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3340         DCHECK(const_area->IsEmittedAtUseSite());
3341         __ mulss(first.AsFpuRegister<XmmRegister>(),
3342                  codegen_->LiteralFloatAddress(
3343                      const_area->GetConstant()->AsFloatConstant()->GetValue(),
3344                      const_area->GetBaseMethodAddress(),
3345                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3346       } else {
3347         DCHECK(second.IsStackSlot());
3348         __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3349       }
3350       break;
3351     }
3352 
3353     case Primitive::kPrimDouble: {
3354       DCHECK(first.Equals(locations->Out()));
3355       if (second.IsFpuRegister()) {
3356         __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3357       } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
3358         HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
3359         DCHECK(const_area->IsEmittedAtUseSite());
3360         __ mulsd(first.AsFpuRegister<XmmRegister>(),
3361                  codegen_->LiteralDoubleAddress(
3362                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3363                      const_area->GetBaseMethodAddress(),
3364                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3365       } else {
3366         DCHECK(second.IsDoubleStackSlot());
3367         __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3368       }
3369       break;
3370     }
3371 
3372     default:
3373       LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
3374   }
3375 }
3376 
PushOntoFPStack(Location source,uint32_t temp_offset,uint32_t stack_adjustment,bool is_fp,bool is_wide)3377 void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
3378                                                   uint32_t temp_offset,
3379                                                   uint32_t stack_adjustment,
3380                                                   bool is_fp,
3381                                                   bool is_wide) {
3382   if (source.IsStackSlot()) {
3383     DCHECK(!is_wide);
3384     if (is_fp) {
3385       __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3386     } else {
3387       __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
3388     }
3389   } else if (source.IsDoubleStackSlot()) {
3390     DCHECK(is_wide);
3391     if (is_fp) {
3392       __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3393     } else {
3394       __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
3395     }
3396   } else {
3397     // Write the value to the temporary location on the stack and load to FP stack.
3398     if (!is_wide) {
3399       Location stack_temp = Location::StackSlot(temp_offset);
3400       codegen_->Move32(stack_temp, source);
3401       if (is_fp) {
3402         __ flds(Address(ESP, temp_offset));
3403       } else {
3404         __ filds(Address(ESP, temp_offset));
3405       }
3406     } else {
3407       Location stack_temp = Location::DoubleStackSlot(temp_offset);
3408       codegen_->Move64(stack_temp, source);
3409       if (is_fp) {
3410         __ fldl(Address(ESP, temp_offset));
3411       } else {
3412         __ fildl(Address(ESP, temp_offset));
3413       }
3414     }
3415   }
3416 }
3417 
GenerateRemFP(HRem * rem)3418 void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
3419   Primitive::Type type = rem->GetResultType();
3420   bool is_float = type == Primitive::kPrimFloat;
3421   size_t elem_size = Primitive::ComponentSize(type);
3422   LocationSummary* locations = rem->GetLocations();
3423   Location first = locations->InAt(0);
3424   Location second = locations->InAt(1);
3425   Location out = locations->Out();
3426 
3427   // Create stack space for 2 elements.
3428   // TODO: enhance register allocator to ask for stack temporaries.
3429   __ subl(ESP, Immediate(2 * elem_size));
3430 
3431   // Load the values to the FP stack in reverse order, using temporaries if needed.
3432   const bool is_wide = !is_float;
3433   PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
3434   PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
3435 
3436   // Loop doing FPREM until we stabilize.
3437   NearLabel retry;
3438   __ Bind(&retry);
3439   __ fprem();
3440 
3441   // Move FP status to AX.
3442   __ fstsw();
3443 
3444   // And see if the argument reduction is complete. This is signaled by the
3445   // C2 FPU flag bit set to 0.
3446   __ andl(EAX, Immediate(kC2ConditionMask));
3447   __ j(kNotEqual, &retry);
3448 
3449   // We have settled on the final value. Retrieve it into an XMM register.
3450   // Store FP top of stack to real stack.
3451   if (is_float) {
3452     __ fsts(Address(ESP, 0));
3453   } else {
3454     __ fstl(Address(ESP, 0));
3455   }
3456 
3457   // Pop the 2 items from the FP stack.
3458   __ fucompp();
3459 
3460   // Load the value from the stack into an XMM register.
3461   DCHECK(out.IsFpuRegister()) << out;
3462   if (is_float) {
3463     __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3464   } else {
3465     __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
3466   }
3467 
3468   // And remove the temporary stack space we allocated.
3469   __ addl(ESP, Immediate(2 * elem_size));
3470 }
3471 
3472 
DivRemOneOrMinusOne(HBinaryOperation * instruction)3473 void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3474   DCHECK(instruction->IsDiv() || instruction->IsRem());
3475 
3476   LocationSummary* locations = instruction->GetLocations();
3477   DCHECK(locations->InAt(1).IsConstant());
3478   DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
3479 
3480   Register out_register = locations->Out().AsRegister<Register>();
3481   Register input_register = locations->InAt(0).AsRegister<Register>();
3482   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3483 
3484   DCHECK(imm == 1 || imm == -1);
3485 
3486   if (instruction->IsRem()) {
3487     __ xorl(out_register, out_register);
3488   } else {
3489     __ movl(out_register, input_register);
3490     if (imm == -1) {
3491       __ negl(out_register);
3492     }
3493   }
3494 }
3495 
3496 
DivByPowerOfTwo(HDiv * instruction)3497 void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
3498   LocationSummary* locations = instruction->GetLocations();
3499 
3500   Register out_register = locations->Out().AsRegister<Register>();
3501   Register input_register = locations->InAt(0).AsRegister<Register>();
3502   int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3503   DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
3504   uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3505 
3506   Register num = locations->GetTemp(0).AsRegister<Register>();
3507 
3508   __ leal(num, Address(input_register, abs_imm - 1));
3509   __ testl(input_register, input_register);
3510   __ cmovl(kGreaterEqual, num, input_register);
3511   int shift = CTZ(imm);
3512   __ sarl(num, Immediate(shift));
3513 
3514   if (imm < 0) {
3515     __ negl(num);
3516   }
3517 
3518   __ movl(out_register, num);
3519 }
3520 
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)3521 void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
3522   DCHECK(instruction->IsDiv() || instruction->IsRem());
3523 
3524   LocationSummary* locations = instruction->GetLocations();
3525   int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
3526 
3527   Register eax = locations->InAt(0).AsRegister<Register>();
3528   Register out = locations->Out().AsRegister<Register>();
3529   Register num;
3530   Register edx;
3531 
3532   if (instruction->IsDiv()) {
3533     edx = locations->GetTemp(0).AsRegister<Register>();
3534     num = locations->GetTemp(1).AsRegister<Register>();
3535   } else {
3536     edx = locations->Out().AsRegister<Register>();
3537     num = locations->GetTemp(0).AsRegister<Register>();
3538   }
3539 
3540   DCHECK_EQ(EAX, eax);
3541   DCHECK_EQ(EDX, edx);
3542   if (instruction->IsDiv()) {
3543     DCHECK_EQ(EAX, out);
3544   } else {
3545     DCHECK_EQ(EDX, out);
3546   }
3547 
3548   int64_t magic;
3549   int shift;
3550   CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
3551 
3552   // Save the numerator.
3553   __ movl(num, eax);
3554 
3555   // EAX = magic
3556   __ movl(eax, Immediate(magic));
3557 
3558   // EDX:EAX = magic * numerator
3559   __ imull(num);
3560 
3561   if (imm > 0 && magic < 0) {
3562     // EDX += num
3563     __ addl(edx, num);
3564   } else if (imm < 0 && magic > 0) {
3565     __ subl(edx, num);
3566   }
3567 
3568   // Shift if needed.
3569   if (shift != 0) {
3570     __ sarl(edx, Immediate(shift));
3571   }
3572 
3573   // EDX += 1 if EDX < 0
3574   __ movl(eax, edx);
3575   __ shrl(edx, Immediate(31));
3576   __ addl(edx, eax);
3577 
3578   if (instruction->IsRem()) {
3579     __ movl(eax, num);
3580     __ imull(edx, Immediate(imm));
3581     __ subl(eax, edx);
3582     __ movl(edx, eax);
3583   } else {
3584     __ movl(eax, edx);
3585   }
3586 }
3587 
GenerateDivRemIntegral(HBinaryOperation * instruction)3588 void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
3589   DCHECK(instruction->IsDiv() || instruction->IsRem());
3590 
3591   LocationSummary* locations = instruction->GetLocations();
3592   Location out = locations->Out();
3593   Location first = locations->InAt(0);
3594   Location second = locations->InAt(1);
3595   bool is_div = instruction->IsDiv();
3596 
3597   switch (instruction->GetResultType()) {
3598     case Primitive::kPrimInt: {
3599       DCHECK_EQ(EAX, first.AsRegister<Register>());
3600       DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
3601 
3602       if (second.IsConstant()) {
3603         int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3604 
3605         if (imm == 0) {
3606           // Do not generate anything for 0. DivZeroCheck would forbid any generated code.
3607         } else if (imm == 1 || imm == -1) {
3608           DivRemOneOrMinusOne(instruction);
3609         } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
3610           DivByPowerOfTwo(instruction->AsDiv());
3611         } else {
3612           DCHECK(imm <= -2 || imm >= 2);
3613           GenerateDivRemWithAnyConstant(instruction);
3614         }
3615       } else {
3616         SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
3617             instruction, out.AsRegister<Register>(), is_div);
3618         codegen_->AddSlowPath(slow_path);
3619 
3620         Register second_reg = second.AsRegister<Register>();
3621         // 0x80000000/-1 triggers an arithmetic exception!
3622         // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
3623         // it's safe to just use negl instead of more complex comparisons.
3624 
3625         __ cmpl(second_reg, Immediate(-1));
3626         __ j(kEqual, slow_path->GetEntryLabel());
3627 
3628         // edx:eax <- sign-extended of eax
3629         __ cdq();
3630         // eax = quotient, edx = remainder
3631         __ idivl(second_reg);
3632         __ Bind(slow_path->GetExitLabel());
3633       }
3634       break;
3635     }
3636 
3637     case Primitive::kPrimLong: {
3638       InvokeRuntimeCallingConvention calling_convention;
3639       DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
3640       DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
3641       DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
3642       DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
3643       DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
3644       DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
3645 
3646       if (is_div) {
3647         codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
3648         CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
3649       } else {
3650         codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
3651         CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
3652       }
3653       break;
3654     }
3655 
3656     default:
3657       LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
3658   }
3659 }
3660 
VisitDiv(HDiv * div)3661 void LocationsBuilderX86::VisitDiv(HDiv* div) {
3662   LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
3663       ? LocationSummary::kCallOnMainOnly
3664       : LocationSummary::kNoCall;
3665   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
3666 
3667   switch (div->GetResultType()) {
3668     case Primitive::kPrimInt: {
3669       locations->SetInAt(0, Location::RegisterLocation(EAX));
3670       locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3671       locations->SetOut(Location::SameAsFirstInput());
3672       // Intel uses edx:eax as the dividend.
3673       locations->AddTemp(Location::RegisterLocation(EDX));
3674       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3675       // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
3676       // output and request another temp.
3677       if (div->InputAt(1)->IsIntConstant()) {
3678         locations->AddTemp(Location::RequiresRegister());
3679       }
3680       break;
3681     }
3682     case Primitive::kPrimLong: {
3683       InvokeRuntimeCallingConvention calling_convention;
3684       locations->SetInAt(0, Location::RegisterPairLocation(
3685           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3686       locations->SetInAt(1, Location::RegisterPairLocation(
3687           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3688       // Runtime helper puts the result in EAX, EDX.
3689       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3690       break;
3691     }
3692     case Primitive::kPrimFloat:
3693     case Primitive::kPrimDouble: {
3694       locations->SetInAt(0, Location::RequiresFpuRegister());
3695       if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3696         DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
3697       } else if (div->InputAt(1)->IsConstant()) {
3698         locations->SetInAt(1, Location::RequiresFpuRegister());
3699       } else {
3700         locations->SetInAt(1, Location::Any());
3701       }
3702       locations->SetOut(Location::SameAsFirstInput());
3703       break;
3704     }
3705 
3706     default:
3707       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3708   }
3709 }
3710 
VisitDiv(HDiv * div)3711 void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
3712   LocationSummary* locations = div->GetLocations();
3713   Location first = locations->InAt(0);
3714   Location second = locations->InAt(1);
3715 
3716   switch (div->GetResultType()) {
3717     case Primitive::kPrimInt:
3718     case Primitive::kPrimLong: {
3719       GenerateDivRemIntegral(div);
3720       break;
3721     }
3722 
3723     case Primitive::kPrimFloat: {
3724       if (second.IsFpuRegister()) {
3725         __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3726       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3727         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3728         DCHECK(const_area->IsEmittedAtUseSite());
3729         __ divss(first.AsFpuRegister<XmmRegister>(),
3730                  codegen_->LiteralFloatAddress(
3731                    const_area->GetConstant()->AsFloatConstant()->GetValue(),
3732                    const_area->GetBaseMethodAddress(),
3733                    const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3734       } else {
3735         DCHECK(second.IsStackSlot());
3736         __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3737       }
3738       break;
3739     }
3740 
3741     case Primitive::kPrimDouble: {
3742       if (second.IsFpuRegister()) {
3743         __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
3744       } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
3745         HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
3746         DCHECK(const_area->IsEmittedAtUseSite());
3747         __ divsd(first.AsFpuRegister<XmmRegister>(),
3748                  codegen_->LiteralDoubleAddress(
3749                      const_area->GetConstant()->AsDoubleConstant()->GetValue(),
3750                      const_area->GetBaseMethodAddress(),
3751                      const_area->GetLocations()->InAt(0).AsRegister<Register>()));
3752       } else {
3753         DCHECK(second.IsDoubleStackSlot());
3754         __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
3755       }
3756       break;
3757     }
3758 
3759     default:
3760       LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3761   }
3762 }
3763 
VisitRem(HRem * rem)3764 void LocationsBuilderX86::VisitRem(HRem* rem) {
3765   Primitive::Type type = rem->GetResultType();
3766 
3767   LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
3768       ? LocationSummary::kCallOnMainOnly
3769       : LocationSummary::kNoCall;
3770   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
3771 
3772   switch (type) {
3773     case Primitive::kPrimInt: {
3774       locations->SetInAt(0, Location::RegisterLocation(EAX));
3775       locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
3776       locations->SetOut(Location::RegisterLocation(EDX));
3777       // We need to save the numerator while we tweak eax and edx. As we are using imul in a way
3778       // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
3779       // output and request another temp.
3780       if (rem->InputAt(1)->IsIntConstant()) {
3781         locations->AddTemp(Location::RequiresRegister());
3782       }
3783       break;
3784     }
3785     case Primitive::kPrimLong: {
3786       InvokeRuntimeCallingConvention calling_convention;
3787       locations->SetInAt(0, Location::RegisterPairLocation(
3788           calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
3789       locations->SetInAt(1, Location::RegisterPairLocation(
3790           calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
3791       // Runtime helper puts the result in EAX, EDX.
3792       locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
3793       break;
3794     }
3795     case Primitive::kPrimDouble:
3796     case Primitive::kPrimFloat: {
3797       locations->SetInAt(0, Location::Any());
3798       locations->SetInAt(1, Location::Any());
3799       locations->SetOut(Location::RequiresFpuRegister());
3800       locations->AddTemp(Location::RegisterLocation(EAX));
3801       break;
3802     }
3803 
3804     default:
3805       LOG(FATAL) << "Unexpected rem type " << type;
3806   }
3807 }
3808 
VisitRem(HRem * rem)3809 void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
3810   Primitive::Type type = rem->GetResultType();
3811   switch (type) {
3812     case Primitive::kPrimInt:
3813     case Primitive::kPrimLong: {
3814       GenerateDivRemIntegral(rem);
3815       break;
3816     }
3817     case Primitive::kPrimFloat:
3818     case Primitive::kPrimDouble: {
3819       GenerateRemFP(rem);
3820       break;
3821     }
3822     default:
3823       LOG(FATAL) << "Unexpected rem type " << type;
3824   }
3825 }
3826 
VisitDivZeroCheck(HDivZeroCheck * instruction)3827 void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3828   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3829   switch (instruction->GetType()) {
3830     case Primitive::kPrimBoolean:
3831     case Primitive::kPrimByte:
3832     case Primitive::kPrimChar:
3833     case Primitive::kPrimShort:
3834     case Primitive::kPrimInt: {
3835       locations->SetInAt(0, Location::Any());
3836       break;
3837     }
3838     case Primitive::kPrimLong: {
3839       locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3840       if (!instruction->IsConstant()) {
3841         locations->AddTemp(Location::RequiresRegister());
3842       }
3843       break;
3844     }
3845     default:
3846       LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
3847   }
3848 }
3849 
VisitDivZeroCheck(HDivZeroCheck * instruction)3850 void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3851   SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
3852   codegen_->AddSlowPath(slow_path);
3853 
3854   LocationSummary* locations = instruction->GetLocations();
3855   Location value = locations->InAt(0);
3856 
3857   switch (instruction->GetType()) {
3858     case Primitive::kPrimBoolean:
3859     case Primitive::kPrimByte:
3860     case Primitive::kPrimChar:
3861     case Primitive::kPrimShort:
3862     case Primitive::kPrimInt: {
3863       if (value.IsRegister()) {
3864         __ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
3865         __ j(kEqual, slow_path->GetEntryLabel());
3866       } else if (value.IsStackSlot()) {
3867         __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
3868         __ j(kEqual, slow_path->GetEntryLabel());
3869       } else {
3870         DCHECK(value.IsConstant()) << value;
3871         if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
3872           __ jmp(slow_path->GetEntryLabel());
3873         }
3874       }
3875       break;
3876     }
3877     case Primitive::kPrimLong: {
3878       if (value.IsRegisterPair()) {
3879         Register temp = locations->GetTemp(0).AsRegister<Register>();
3880         __ movl(temp, value.AsRegisterPairLow<Register>());
3881         __ orl(temp, value.AsRegisterPairHigh<Register>());
3882         __ j(kEqual, slow_path->GetEntryLabel());
3883       } else {
3884         DCHECK(value.IsConstant()) << value;
3885         if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
3886           __ jmp(slow_path->GetEntryLabel());
3887         }
3888       }
3889       break;
3890     }
3891     default:
3892       LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
3893   }
3894 }
3895 
HandleShift(HBinaryOperation * op)3896 void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
3897   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3898 
3899   LocationSummary* locations =
3900       new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
3901 
3902   switch (op->GetResultType()) {
3903     case Primitive::kPrimInt:
3904     case Primitive::kPrimLong: {
3905       // Can't have Location::Any() and output SameAsFirstInput()
3906       locations->SetInAt(0, Location::RequiresRegister());
3907       // The shift count needs to be in CL or a constant.
3908       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
3909       locations->SetOut(Location::SameAsFirstInput());
3910       break;
3911     }
3912     default:
3913       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3914   }
3915 }
3916 
HandleShift(HBinaryOperation * op)3917 void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
3918   DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
3919 
3920   LocationSummary* locations = op->GetLocations();
3921   Location first = locations->InAt(0);
3922   Location second = locations->InAt(1);
3923   DCHECK(first.Equals(locations->Out()));
3924 
3925   switch (op->GetResultType()) {
3926     case Primitive::kPrimInt: {
3927       DCHECK(first.IsRegister());
3928       Register first_reg = first.AsRegister<Register>();
3929       if (second.IsRegister()) {
3930         Register second_reg = second.AsRegister<Register>();
3931         DCHECK_EQ(ECX, second_reg);
3932         if (op->IsShl()) {
3933           __ shll(first_reg, second_reg);
3934         } else if (op->IsShr()) {
3935           __ sarl(first_reg, second_reg);
3936         } else {
3937           __ shrl(first_reg, second_reg);
3938         }
3939       } else {
3940         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
3941         if (shift == 0) {
3942           return;
3943         }
3944         Immediate imm(shift);
3945         if (op->IsShl()) {
3946           __ shll(first_reg, imm);
3947         } else if (op->IsShr()) {
3948           __ sarl(first_reg, imm);
3949         } else {
3950           __ shrl(first_reg, imm);
3951         }
3952       }
3953       break;
3954     }
3955     case Primitive::kPrimLong: {
3956       if (second.IsRegister()) {
3957         Register second_reg = second.AsRegister<Register>();
3958         DCHECK_EQ(ECX, second_reg);
3959         if (op->IsShl()) {
3960           GenerateShlLong(first, second_reg);
3961         } else if (op->IsShr()) {
3962           GenerateShrLong(first, second_reg);
3963         } else {
3964           GenerateUShrLong(first, second_reg);
3965         }
3966       } else {
3967         // Shift by a constant.
3968         int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
3969         // Nothing to do if the shift is 0, as the input is already the output.
3970         if (shift != 0) {
3971           if (op->IsShl()) {
3972             GenerateShlLong(first, shift);
3973           } else if (op->IsShr()) {
3974             GenerateShrLong(first, shift);
3975           } else {
3976             GenerateUShrLong(first, shift);
3977           }
3978         }
3979       }
3980       break;
3981     }
3982     default:
3983       LOG(FATAL) << "Unexpected op type " << op->GetResultType();
3984   }
3985 }
3986 
GenerateShlLong(const Location & loc,int shift)3987 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
3988   Register low = loc.AsRegisterPairLow<Register>();
3989   Register high = loc.AsRegisterPairHigh<Register>();
3990   if (shift == 1) {
3991     // This is just an addition.
3992     __ addl(low, low);
3993     __ adcl(high, high);
3994   } else if (shift == 32) {
3995     // Shift by 32 is easy. High gets low, and low gets 0.
3996     codegen_->EmitParallelMoves(
3997         loc.ToLow(),
3998         loc.ToHigh(),
3999         Primitive::kPrimInt,
4000         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
4001         loc.ToLow(),
4002         Primitive::kPrimInt);
4003   } else if (shift > 32) {
4004     // Low part becomes 0.  High part is low part << (shift-32).
4005     __ movl(high, low);
4006     __ shll(high, Immediate(shift - 32));
4007     __ xorl(low, low);
4008   } else {
4009     // Between 1 and 31.
4010     __ shld(high, low, Immediate(shift));
4011     __ shll(low, Immediate(shift));
4012   }
4013 }
4014 
GenerateShlLong(const Location & loc,Register shifter)4015 void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
4016   NearLabel done;
4017   __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
4018   __ shll(loc.AsRegisterPairLow<Register>(), shifter);
4019   __ testl(shifter, Immediate(32));
4020   __ j(kEqual, &done);
4021   __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
4022   __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
4023   __ Bind(&done);
4024 }
4025 
GenerateShrLong(const Location & loc,int shift)4026 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
4027   Register low = loc.AsRegisterPairLow<Register>();
4028   Register high = loc.AsRegisterPairHigh<Register>();
4029   if (shift == 32) {
4030     // Need to copy the sign.
4031     DCHECK_NE(low, high);
4032     __ movl(low, high);
4033     __ sarl(high, Immediate(31));
4034   } else if (shift > 32) {
4035     DCHECK_NE(low, high);
4036     // High part becomes sign. Low part is shifted by shift - 32.
4037     __ movl(low, high);
4038     __ sarl(high, Immediate(31));
4039     __ sarl(low, Immediate(shift - 32));
4040   } else {
4041     // Between 1 and 31.
4042     __ shrd(low, high, Immediate(shift));
4043     __ sarl(high, Immediate(shift));
4044   }
4045 }
4046 
GenerateShrLong(const Location & loc,Register shifter)4047 void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
4048   NearLabel done;
4049   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
4050   __ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
4051   __ testl(shifter, Immediate(32));
4052   __ j(kEqual, &done);
4053   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
4054   __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
4055   __ Bind(&done);
4056 }
4057 
GenerateUShrLong(const Location & loc,int shift)4058 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
4059   Register low = loc.AsRegisterPairLow<Register>();
4060   Register high = loc.AsRegisterPairHigh<Register>();
4061   if (shift == 32) {
4062     // Shift by 32 is easy. Low gets high, and high gets 0.
4063     codegen_->EmitParallelMoves(
4064         loc.ToHigh(),
4065         loc.ToLow(),
4066         Primitive::kPrimInt,
4067         Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
4068         loc.ToHigh(),
4069         Primitive::kPrimInt);
4070   } else if (shift > 32) {
4071     // Low part is high >> (shift - 32). High part becomes 0.
4072     __ movl(low, high);
4073     __ shrl(low, Immediate(shift - 32));
4074     __ xorl(high, high);
4075   } else {
4076     // Between 1 and 31.
4077     __ shrd(low, high, Immediate(shift));
4078     __ shrl(high, Immediate(shift));
4079   }
4080 }
4081 
GenerateUShrLong(const Location & loc,Register shifter)4082 void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
4083   NearLabel done;
4084   __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
4085   __ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
4086   __ testl(shifter, Immediate(32));
4087   __ j(kEqual, &done);
4088   __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
4089   __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
4090   __ Bind(&done);
4091 }
4092 
VisitRor(HRor * ror)4093 void LocationsBuilderX86::VisitRor(HRor* ror) {
4094   LocationSummary* locations =
4095       new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
4096 
4097   switch (ror->GetResultType()) {
4098     case Primitive::kPrimLong:
4099       // Add the temporary needed.
4100       locations->AddTemp(Location::RequiresRegister());
4101       FALLTHROUGH_INTENDED;
4102     case Primitive::kPrimInt:
4103       locations->SetInAt(0, Location::RequiresRegister());
4104       // The shift count needs to be in CL (unless it is a constant).
4105       locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
4106       locations->SetOut(Location::SameAsFirstInput());
4107       break;
4108     default:
4109       LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
4110       UNREACHABLE();
4111   }
4112 }
4113 
VisitRor(HRor * ror)4114 void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
4115   LocationSummary* locations = ror->GetLocations();
4116   Location first = locations->InAt(0);
4117   Location second = locations->InAt(1);
4118 
4119   if (ror->GetResultType() == Primitive::kPrimInt) {
4120     Register first_reg = first.AsRegister<Register>();
4121     if (second.IsRegister()) {
4122       Register second_reg = second.AsRegister<Register>();
4123       __ rorl(first_reg, second_reg);
4124     } else {
4125       Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
4126       __ rorl(first_reg, imm);
4127     }
4128     return;
4129   }
4130 
4131   DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
4132   Register first_reg_lo = first.AsRegisterPairLow<Register>();
4133   Register first_reg_hi = first.AsRegisterPairHigh<Register>();
4134   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
4135   if (second.IsRegister()) {
4136     Register second_reg = second.AsRegister<Register>();
4137     DCHECK_EQ(second_reg, ECX);
4138     __ movl(temp_reg, first_reg_hi);
4139     __ shrd(first_reg_hi, first_reg_lo, second_reg);
4140     __ shrd(first_reg_lo, temp_reg, second_reg);
4141     __ movl(temp_reg, first_reg_hi);
4142     __ testl(second_reg, Immediate(32));
4143     __ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
4144     __ cmovl(kNotEqual, first_reg_lo, temp_reg);
4145   } else {
4146     int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
4147     if (shift_amt == 0) {
4148       // Already fine.
4149       return;
4150     }
4151     if (shift_amt == 32) {
4152       // Just swap.
4153       __ movl(temp_reg, first_reg_lo);
4154       __ movl(first_reg_lo, first_reg_hi);
4155       __ movl(first_reg_hi, temp_reg);
4156       return;
4157     }
4158 
4159     Immediate imm(shift_amt);
4160     // Save the constents of the low value.
4161     __ movl(temp_reg, first_reg_lo);
4162 
4163     // Shift right into low, feeding bits from high.
4164     __ shrd(first_reg_lo, first_reg_hi, imm);
4165 
4166     // Shift right into high, feeding bits from the original low.
4167     __ shrd(first_reg_hi, temp_reg, imm);
4168 
4169     // Swap if needed.
4170     if (shift_amt > 32) {
4171       __ movl(temp_reg, first_reg_lo);
4172       __ movl(first_reg_lo, first_reg_hi);
4173       __ movl(first_reg_hi, temp_reg);
4174     }
4175   }
4176 }
4177 
VisitShl(HShl * shl)4178 void LocationsBuilderX86::VisitShl(HShl* shl) {
4179   HandleShift(shl);
4180 }
4181 
VisitShl(HShl * shl)4182 void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
4183   HandleShift(shl);
4184 }
4185 
VisitShr(HShr * shr)4186 void LocationsBuilderX86::VisitShr(HShr* shr) {
4187   HandleShift(shr);
4188 }
4189 
VisitShr(HShr * shr)4190 void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
4191   HandleShift(shr);
4192 }
4193 
VisitUShr(HUShr * ushr)4194 void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
4195   HandleShift(ushr);
4196 }
4197 
VisitUShr(HUShr * ushr)4198 void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
4199   HandleShift(ushr);
4200 }
4201 
VisitNewInstance(HNewInstance * instruction)4202 void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
4203   LocationSummary* locations =
4204       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
4205   locations->SetOut(Location::RegisterLocation(EAX));
4206   if (instruction->IsStringAlloc()) {
4207     locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
4208   } else {
4209     InvokeRuntimeCallingConvention calling_convention;
4210     locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4211   }
4212 }
4213 
VisitNewInstance(HNewInstance * instruction)4214 void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
4215   // Note: if heap poisoning is enabled, the entry point takes cares
4216   // of poisoning the reference.
4217   if (instruction->IsStringAlloc()) {
4218     // String is allocated through StringFactory. Call NewEmptyString entry point.
4219     Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
4220     MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize);
4221     __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
4222     __ call(Address(temp, code_offset.Int32Value()));
4223     codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
4224   } else {
4225     codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
4226     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
4227     DCHECK(!codegen_->IsLeafMethod());
4228   }
4229 }
4230 
VisitNewArray(HNewArray * instruction)4231 void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
4232   LocationSummary* locations =
4233       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
4234   locations->SetOut(Location::RegisterLocation(EAX));
4235   InvokeRuntimeCallingConvention calling_convention;
4236   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
4237   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
4238 }
4239 
VisitNewArray(HNewArray * instruction)4240 void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
4241   // Note: if heap poisoning is enabled, the entry point takes cares
4242   // of poisoning the reference.
4243   QuickEntrypointEnum entrypoint =
4244       CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
4245   codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
4246   CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
4247   DCHECK(!codegen_->IsLeafMethod());
4248 }
4249 
VisitParameterValue(HParameterValue * instruction)4250 void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
4251   LocationSummary* locations =
4252       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4253   Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
4254   if (location.IsStackSlot()) {
4255     location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4256   } else if (location.IsDoubleStackSlot()) {
4257     location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
4258   }
4259   locations->SetOut(location);
4260 }
4261 
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)4262 void InstructionCodeGeneratorX86::VisitParameterValue(
4263     HParameterValue* instruction ATTRIBUTE_UNUSED) {
4264 }
4265 
VisitCurrentMethod(HCurrentMethod * instruction)4266 void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
4267   LocationSummary* locations =
4268       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4269   locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
4270 }
4271 
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)4272 void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
4273 }
4274 
VisitClassTableGet(HClassTableGet * instruction)4275 void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
4276   LocationSummary* locations =
4277       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4278   locations->SetInAt(0, Location::RequiresRegister());
4279   locations->SetOut(Location::RequiresRegister());
4280 }
4281 
VisitClassTableGet(HClassTableGet * instruction)4282 void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
4283   LocationSummary* locations = instruction->GetLocations();
4284   if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
4285     uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4286         instruction->GetIndex(), kX86PointerSize).SizeValue();
4287     __ movl(locations->Out().AsRegister<Register>(),
4288             Address(locations->InAt(0).AsRegister<Register>(), method_offset));
4289   } else {
4290     uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4291         instruction->GetIndex(), kX86PointerSize));
4292     __ movl(locations->Out().AsRegister<Register>(),
4293             Address(locations->InAt(0).AsRegister<Register>(),
4294                     mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
4295     // temp = temp->GetImtEntryAt(method_offset);
4296     __ movl(locations->Out().AsRegister<Register>(),
4297             Address(locations->Out().AsRegister<Register>(), method_offset));
4298   }
4299 }
4300 
VisitNot(HNot * not_)4301 void LocationsBuilderX86::VisitNot(HNot* not_) {
4302   LocationSummary* locations =
4303       new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
4304   locations->SetInAt(0, Location::RequiresRegister());
4305   locations->SetOut(Location::SameAsFirstInput());
4306 }
4307 
VisitNot(HNot * not_)4308 void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
4309   LocationSummary* locations = not_->GetLocations();
4310   Location in = locations->InAt(0);
4311   Location out = locations->Out();
4312   DCHECK(in.Equals(out));
4313   switch (not_->GetResultType()) {
4314     case Primitive::kPrimInt:
4315       __ notl(out.AsRegister<Register>());
4316       break;
4317 
4318     case Primitive::kPrimLong:
4319       __ notl(out.AsRegisterPairLow<Register>());
4320       __ notl(out.AsRegisterPairHigh<Register>());
4321       break;
4322 
4323     default:
4324       LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
4325   }
4326 }
4327 
VisitBooleanNot(HBooleanNot * bool_not)4328 void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
4329   LocationSummary* locations =
4330       new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
4331   locations->SetInAt(0, Location::RequiresRegister());
4332   locations->SetOut(Location::SameAsFirstInput());
4333 }
4334 
VisitBooleanNot(HBooleanNot * bool_not)4335 void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
4336   LocationSummary* locations = bool_not->GetLocations();
4337   Location in = locations->InAt(0);
4338   Location out = locations->Out();
4339   DCHECK(in.Equals(out));
4340   __ xorl(out.AsRegister<Register>(), Immediate(1));
4341 }
4342 
VisitCompare(HCompare * compare)4343 void LocationsBuilderX86::VisitCompare(HCompare* compare) {
4344   LocationSummary* locations =
4345       new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
4346   switch (compare->InputAt(0)->GetType()) {
4347     case Primitive::kPrimBoolean:
4348     case Primitive::kPrimByte:
4349     case Primitive::kPrimShort:
4350     case Primitive::kPrimChar:
4351     case Primitive::kPrimInt:
4352     case Primitive::kPrimLong: {
4353       locations->SetInAt(0, Location::RequiresRegister());
4354       locations->SetInAt(1, Location::Any());
4355       locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4356       break;
4357     }
4358     case Primitive::kPrimFloat:
4359     case Primitive::kPrimDouble: {
4360       locations->SetInAt(0, Location::RequiresFpuRegister());
4361       if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
4362         DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
4363       } else if (compare->InputAt(1)->IsConstant()) {
4364         locations->SetInAt(1, Location::RequiresFpuRegister());
4365       } else {
4366         locations->SetInAt(1, Location::Any());
4367       }
4368       locations->SetOut(Location::RequiresRegister());
4369       break;
4370     }
4371     default:
4372       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4373   }
4374 }
4375 
VisitCompare(HCompare * compare)4376 void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
4377   LocationSummary* locations = compare->GetLocations();
4378   Register out = locations->Out().AsRegister<Register>();
4379   Location left = locations->InAt(0);
4380   Location right = locations->InAt(1);
4381 
4382   NearLabel less, greater, done;
4383   Condition less_cond = kLess;
4384 
4385   switch (compare->InputAt(0)->GetType()) {
4386     case Primitive::kPrimBoolean:
4387     case Primitive::kPrimByte:
4388     case Primitive::kPrimShort:
4389     case Primitive::kPrimChar:
4390     case Primitive::kPrimInt: {
4391       codegen_->GenerateIntCompare(left, right);
4392       break;
4393     }
4394     case Primitive::kPrimLong: {
4395       Register left_low = left.AsRegisterPairLow<Register>();
4396       Register left_high = left.AsRegisterPairHigh<Register>();
4397       int32_t val_low = 0;
4398       int32_t val_high = 0;
4399       bool right_is_const = false;
4400 
4401       if (right.IsConstant()) {
4402         DCHECK(right.GetConstant()->IsLongConstant());
4403         right_is_const = true;
4404         int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
4405         val_low = Low32Bits(val);
4406         val_high = High32Bits(val);
4407       }
4408 
4409       if (right.IsRegisterPair()) {
4410         __ cmpl(left_high, right.AsRegisterPairHigh<Register>());
4411       } else if (right.IsDoubleStackSlot()) {
4412         __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
4413       } else {
4414         DCHECK(right_is_const) << right;
4415         codegen_->Compare32BitValue(left_high, val_high);
4416       }
4417       __ j(kLess, &less);  // Signed compare.
4418       __ j(kGreater, &greater);  // Signed compare.
4419       if (right.IsRegisterPair()) {
4420         __ cmpl(left_low, right.AsRegisterPairLow<Register>());
4421       } else if (right.IsDoubleStackSlot()) {
4422         __ cmpl(left_low, Address(ESP, right.GetStackIndex()));
4423       } else {
4424         DCHECK(right_is_const) << right;
4425         codegen_->Compare32BitValue(left_low, val_low);
4426       }
4427       less_cond = kBelow;  // for CF (unsigned).
4428       break;
4429     }
4430     case Primitive::kPrimFloat: {
4431       GenerateFPCompare(left, right, compare, false);
4432       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4433       less_cond = kBelow;  // for CF (floats).
4434       break;
4435     }
4436     case Primitive::kPrimDouble: {
4437       GenerateFPCompare(left, right, compare, true);
4438       __ j(kUnordered, compare->IsGtBias() ? &greater : &less);
4439       less_cond = kBelow;  // for CF (floats).
4440       break;
4441     }
4442     default:
4443       LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
4444   }
4445 
4446   __ movl(out, Immediate(0));
4447   __ j(kEqual, &done);
4448   __ j(less_cond, &less);
4449 
4450   __ Bind(&greater);
4451   __ movl(out, Immediate(1));
4452   __ jmp(&done);
4453 
4454   __ Bind(&less);
4455   __ movl(out, Immediate(-1));
4456 
4457   __ Bind(&done);
4458 }
4459 
VisitPhi(HPhi * instruction)4460 void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
4461   LocationSummary* locations =
4462       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4463   for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
4464     locations->SetInAt(i, Location::Any());
4465   }
4466   locations->SetOut(Location::Any());
4467 }
4468 
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)4469 void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
4470   LOG(FATAL) << "Unreachable";
4471 }
4472 
GenerateMemoryBarrier(MemBarrierKind kind)4473 void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
4474   /*
4475    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
4476    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
4477    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
4478    */
4479   switch (kind) {
4480     case MemBarrierKind::kAnyAny: {
4481       MemoryFence();
4482       break;
4483     }
4484     case MemBarrierKind::kAnyStore:
4485     case MemBarrierKind::kLoadAny:
4486     case MemBarrierKind::kStoreStore: {
4487       // nop
4488       break;
4489     }
4490     case MemBarrierKind::kNTStoreStore:
4491       // Non-Temporal Store/Store needs an explicit fence.
4492       MemoryFence(/* non-temporal */ true);
4493       break;
4494   }
4495 }
4496 
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,HInvokeStaticOrDirect * invoke ATTRIBUTE_UNUSED)4497 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
4498       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4499       HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
4500   return desired_dispatch_info;
4501 }
4502 
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)4503 Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
4504                                                                  Register temp) {
4505   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
4506   Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4507   if (!invoke->GetLocations()->Intrinsified()) {
4508     return location.AsRegister<Register>();
4509   }
4510   // For intrinsics we allow any location, so it may be on the stack.
4511   if (!location.IsRegister()) {
4512     __ movl(temp, Address(ESP, location.GetStackIndex()));
4513     return temp;
4514   }
4515   // For register locations, check if the register was saved. If so, get it from the stack.
4516   // Note: There is a chance that the register was saved but not overwritten, so we could
4517   // save one load. However, since this is just an intrinsic slow path we prefer this
4518   // simple and more robust approach rather that trying to determine if that's the case.
4519   SlowPathCode* slow_path = GetCurrentSlowPath();
4520   DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
4521   if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
4522     int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
4523     __ movl(temp, Address(ESP, stack_offset));
4524     return temp;
4525   }
4526   return location.AsRegister<Register>();
4527 }
4528 
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)4529 void CodeGeneratorX86::GenerateStaticOrDirectCall(
4530     HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
4531   Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
4532   switch (invoke->GetMethodLoadKind()) {
4533     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
4534       // temp = thread->string_init_entrypoint
4535       uint32_t offset =
4536           GetThreadOffset<kX86PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
4537       __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(offset));
4538       break;
4539     }
4540     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
4541       callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
4542       break;
4543     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
4544       DCHECK(GetCompilerOptions().IsBootImage());
4545       Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
4546                                                                 temp.AsRegister<Register>());
4547       __ leal(temp.AsRegister<Register>(), Address(base_reg, CodeGeneratorX86::kDummy32BitOffset));
4548       RecordBootMethodPatch(invoke);
4549       break;
4550     }
4551     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
4552       __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
4553       break;
4554     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
4555       Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
4556                                                                 temp.AsRegister<Register>());
4557       __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
4558       // Bind a new fixup label at the end of the "movl" insn.
4559       __ Bind(NewMethodBssEntryPatch(
4560           invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(),
4561           MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex())));
4562       break;
4563     }
4564     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
4565       GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
4566       return;  // No code pointer retrieval; the runtime performs the call directly.
4567     }
4568   }
4569 
4570   switch (invoke->GetCodePtrLocation()) {
4571     case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
4572       __ call(GetFrameEntryLabel());
4573       break;
4574     case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
4575       // (callee_method + offset_of_quick_compiled_code)()
4576       __ call(Address(callee_method.AsRegister<Register>(),
4577                       ArtMethod::EntryPointFromQuickCompiledCodeOffset(
4578                           kX86PointerSize).Int32Value()));
4579       break;
4580   }
4581   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4582 
4583   DCHECK(!IsLeafMethod());
4584 }
4585 
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)4586 void CodeGeneratorX86::GenerateVirtualCall(
4587     HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
4588   Register temp = temp_in.AsRegister<Register>();
4589   uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4590       invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
4591 
4592   // Use the calling convention instead of the location of the receiver, as
4593   // intrinsics may have put the receiver in a different register. In the intrinsics
4594   // slow path, the arguments have been moved to the right place, so here we are
4595   // guaranteed that the receiver is the first register of the calling convention.
4596   InvokeDexCallingConvention calling_convention;
4597   Register receiver = calling_convention.GetRegisterAt(0);
4598   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4599   // /* HeapReference<Class> */ temp = receiver->klass_
4600   __ movl(temp, Address(receiver, class_offset));
4601   MaybeRecordImplicitNullCheck(invoke);
4602   // Instead of simply (possibly) unpoisoning `temp` here, we should
4603   // emit a read barrier for the previous class reference load.
4604   // However this is not required in practice, as this is an
4605   // intermediate/temporary reference and because the current
4606   // concurrent copying collector keeps the from-space memory
4607   // intact/accessible until the end of the marking phase (the
4608   // concurrent copying collector may not in the future).
4609   __ MaybeUnpoisonHeapReference(temp);
4610   // temp = temp->GetMethodAt(method_offset);
4611   __ movl(temp, Address(temp, method_offset));
4612   // call temp->GetEntryPoint();
4613   __ call(Address(
4614       temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value()));
4615   RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4616 }
4617 
RecordBootMethodPatch(HInvokeStaticOrDirect * invoke)4618 void CodeGeneratorX86::RecordBootMethodPatch(HInvokeStaticOrDirect* invoke) {
4619   DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
4620   HX86ComputeBaseMethodAddress* address =
4621       invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress();
4622   boot_image_method_patches_.emplace_back(address,
4623                                           *invoke->GetTargetMethod().dex_file,
4624                                           invoke->GetTargetMethod().dex_method_index);
4625   __ Bind(&boot_image_method_patches_.back().label);
4626 }
4627 
NewMethodBssEntryPatch(HX86ComputeBaseMethodAddress * method_address,MethodReference target_method)4628 Label* CodeGeneratorX86::NewMethodBssEntryPatch(
4629     HX86ComputeBaseMethodAddress* method_address,
4630     MethodReference target_method) {
4631   // Add the patch entry and bind its label at the end of the instruction.
4632   method_bss_entry_patches_.emplace_back(method_address,
4633                                          *target_method.dex_file,
4634                                          target_method.dex_method_index);
4635   return &method_bss_entry_patches_.back().label;
4636 }
4637 
RecordBootTypePatch(HLoadClass * load_class)4638 void CodeGeneratorX86::RecordBootTypePatch(HLoadClass* load_class) {
4639   HX86ComputeBaseMethodAddress* address = load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
4640   boot_image_type_patches_.emplace_back(address,
4641                                         load_class->GetDexFile(),
4642                                         load_class->GetTypeIndex().index_);
4643   __ Bind(&boot_image_type_patches_.back().label);
4644 }
4645 
NewTypeBssEntryPatch(HLoadClass * load_class)4646 Label* CodeGeneratorX86::NewTypeBssEntryPatch(HLoadClass* load_class) {
4647   HX86ComputeBaseMethodAddress* address =
4648       load_class->InputAt(0)->AsX86ComputeBaseMethodAddress();
4649   type_bss_entry_patches_.emplace_back(
4650       address, load_class->GetDexFile(), load_class->GetTypeIndex().index_);
4651   return &type_bss_entry_patches_.back().label;
4652 }
4653 
RecordBootStringPatch(HLoadString * load_string)4654 void CodeGeneratorX86::RecordBootStringPatch(HLoadString* load_string) {
4655   DCHECK(GetCompilerOptions().IsBootImage());
4656   HX86ComputeBaseMethodAddress* address = load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
4657   string_patches_.emplace_back(address,
4658                                load_string->GetDexFile(),
4659                                load_string->GetStringIndex().index_);
4660   __ Bind(&string_patches_.back().label);
4661 }
4662 
NewStringBssEntryPatch(HLoadString * load_string)4663 Label* CodeGeneratorX86::NewStringBssEntryPatch(HLoadString* load_string) {
4664   DCHECK(!GetCompilerOptions().IsBootImage());
4665   HX86ComputeBaseMethodAddress* address =
4666       load_string->InputAt(0)->AsX86ComputeBaseMethodAddress();
4667   string_patches_.emplace_back(
4668       address, load_string->GetDexFile(), load_string->GetStringIndex().index_);
4669   return &string_patches_.back().label;
4670 }
4671 
4672 // The label points to the end of the "movl" or another instruction but the literal offset
4673 // for method patch needs to point to the embedded constant which occupies the last 4 bytes.
4674 constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
4675 
4676 template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<X86PcRelativePatchInfo> & infos,ArenaVector<LinkerPatch> * linker_patches)4677 inline void CodeGeneratorX86::EmitPcRelativeLinkerPatches(
4678     const ArenaDeque<X86PcRelativePatchInfo>& infos,
4679     ArenaVector<LinkerPatch>* linker_patches) {
4680   for (const X86PcRelativePatchInfo& info : infos) {
4681     uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
4682     linker_patches->push_back(Factory(
4683         literal_offset, &info.dex_file, GetMethodAddressOffset(info.method_address), info.index));
4684   }
4685 }
4686 
EmitLinkerPatches(ArenaVector<LinkerPatch> * linker_patches)4687 void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
4688   DCHECK(linker_patches->empty());
4689   size_t size =
4690       boot_image_method_patches_.size() +
4691       method_bss_entry_patches_.size() +
4692       boot_image_type_patches_.size() +
4693       type_bss_entry_patches_.size() +
4694       string_patches_.size();
4695   linker_patches->reserve(size);
4696   if (GetCompilerOptions().IsBootImage()) {
4697     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(boot_image_method_patches_,
4698                                                                   linker_patches);
4699     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(boot_image_type_patches_,
4700                                                                 linker_patches);
4701     EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(string_patches_, linker_patches);
4702   } else {
4703     DCHECK(boot_image_method_patches_.empty());
4704     DCHECK(boot_image_type_patches_.empty());
4705     EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(string_patches_, linker_patches);
4706   }
4707   EmitPcRelativeLinkerPatches<LinkerPatch::MethodBssEntryPatch>(method_bss_entry_patches_,
4708                                                                 linker_patches);
4709   EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
4710                                                               linker_patches);
4711   DCHECK_EQ(size, linker_patches->size());
4712 }
4713 
MarkGCCard(Register temp,Register card,Register object,Register value,bool value_can_be_null)4714 void CodeGeneratorX86::MarkGCCard(Register temp,
4715                                   Register card,
4716                                   Register object,
4717                                   Register value,
4718                                   bool value_can_be_null) {
4719   NearLabel is_null;
4720   if (value_can_be_null) {
4721     __ testl(value, value);
4722     __ j(kEqual, &is_null);
4723   }
4724   __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value()));
4725   __ movl(temp, object);
4726   __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
4727   __ movb(Address(temp, card, TIMES_1, 0),
4728           X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
4729   if (value_can_be_null) {
4730     __ Bind(&is_null);
4731   }
4732 }
4733 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4734 void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
4735   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4736 
4737   bool object_field_get_with_read_barrier =
4738       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
4739   LocationSummary* locations =
4740       new (GetGraph()->GetArena()) LocationSummary(instruction,
4741                                                    kEmitCompilerReadBarrier ?
4742                                                        LocationSummary::kCallOnSlowPath :
4743                                                        LocationSummary::kNoCall);
4744   if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
4745     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
4746   }
4747   locations->SetInAt(0, Location::RequiresRegister());
4748 
4749   if (Primitive::IsFloatingPointType(instruction->GetType())) {
4750     locations->SetOut(Location::RequiresFpuRegister());
4751   } else {
4752     // The output overlaps in case of long: we don't want the low move
4753     // to overwrite the object's location.  Likewise, in the case of
4754     // an object field get with read barriers enabled, we do not want
4755     // the move to overwrite the object's location, as we need it to emit
4756     // the read barrier.
4757     locations->SetOut(
4758         Location::RequiresRegister(),
4759         (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
4760             Location::kOutputOverlap :
4761             Location::kNoOutputOverlap);
4762   }
4763 
4764   if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
4765     // Long values can be loaded atomically into an XMM using movsd.
4766     // So we use an XMM register as a temp to achieve atomicity (first
4767     // load the temp into the XMM and then copy the XMM into the
4768     // output, 32 bits at a time).
4769     locations->AddTemp(Location::RequiresFpuRegister());
4770   }
4771 }
4772 
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)4773 void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
4774                                                  const FieldInfo& field_info) {
4775   DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
4776 
4777   LocationSummary* locations = instruction->GetLocations();
4778   Location base_loc = locations->InAt(0);
4779   Register base = base_loc.AsRegister<Register>();
4780   Location out = locations->Out();
4781   bool is_volatile = field_info.IsVolatile();
4782   Primitive::Type field_type = field_info.GetFieldType();
4783   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4784 
4785   switch (field_type) {
4786     case Primitive::kPrimBoolean: {
4787       __ movzxb(out.AsRegister<Register>(), Address(base, offset));
4788       break;
4789     }
4790 
4791     case Primitive::kPrimByte: {
4792       __ movsxb(out.AsRegister<Register>(), Address(base, offset));
4793       break;
4794     }
4795 
4796     case Primitive::kPrimShort: {
4797       __ movsxw(out.AsRegister<Register>(), Address(base, offset));
4798       break;
4799     }
4800 
4801     case Primitive::kPrimChar: {
4802       __ movzxw(out.AsRegister<Register>(), Address(base, offset));
4803       break;
4804     }
4805 
4806     case Primitive::kPrimInt:
4807       __ movl(out.AsRegister<Register>(), Address(base, offset));
4808       break;
4809 
4810     case Primitive::kPrimNot: {
4811       // /* HeapReference<Object> */ out = *(base + offset)
4812       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
4813         // Note that a potential implicit null check is handled in this
4814         // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
4815         codegen_->GenerateFieldLoadWithBakerReadBarrier(
4816             instruction, out, base, offset, /* needs_null_check */ true);
4817         if (is_volatile) {
4818           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4819         }
4820       } else {
4821         __ movl(out.AsRegister<Register>(), Address(base, offset));
4822         codegen_->MaybeRecordImplicitNullCheck(instruction);
4823         if (is_volatile) {
4824           codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4825         }
4826         // If read barriers are enabled, emit read barriers other than
4827         // Baker's using a slow path (and also unpoison the loaded
4828         // reference, if heap poisoning is enabled).
4829         codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
4830       }
4831       break;
4832     }
4833 
4834     case Primitive::kPrimLong: {
4835       if (is_volatile) {
4836         XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4837         __ movsd(temp, Address(base, offset));
4838         codegen_->MaybeRecordImplicitNullCheck(instruction);
4839         __ movd(out.AsRegisterPairLow<Register>(), temp);
4840         __ psrlq(temp, Immediate(32));
4841         __ movd(out.AsRegisterPairHigh<Register>(), temp);
4842       } else {
4843         DCHECK_NE(base, out.AsRegisterPairLow<Register>());
4844         __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
4845         codegen_->MaybeRecordImplicitNullCheck(instruction);
4846         __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
4847       }
4848       break;
4849     }
4850 
4851     case Primitive::kPrimFloat: {
4852       __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4853       break;
4854     }
4855 
4856     case Primitive::kPrimDouble: {
4857       __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
4858       break;
4859     }
4860 
4861     case Primitive::kPrimVoid:
4862       LOG(FATAL) << "Unreachable type " << field_type;
4863       UNREACHABLE();
4864   }
4865 
4866   if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
4867     // Potential implicit null checks, in the case of reference or
4868     // long fields, are handled in the previous switch statement.
4869   } else {
4870     codegen_->MaybeRecordImplicitNullCheck(instruction);
4871   }
4872 
4873   if (is_volatile) {
4874     if (field_type == Primitive::kPrimNot) {
4875       // Memory barriers, in the case of references, are also handled
4876       // in the previous switch statement.
4877     } else {
4878       codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
4879     }
4880   }
4881 }
4882 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)4883 void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
4884   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4885 
4886   LocationSummary* locations =
4887       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
4888   locations->SetInAt(0, Location::RequiresRegister());
4889   bool is_volatile = field_info.IsVolatile();
4890   Primitive::Type field_type = field_info.GetFieldType();
4891   bool is_byte_type = (field_type == Primitive::kPrimBoolean)
4892     || (field_type == Primitive::kPrimByte);
4893 
4894   // The register allocator does not support multiple
4895   // inputs that die at entry with one in a specific register.
4896   if (is_byte_type) {
4897     // Ensure the value is in a byte register.
4898     locations->SetInAt(1, Location::RegisterLocation(EAX));
4899   } else if (Primitive::IsFloatingPointType(field_type)) {
4900     if (is_volatile && field_type == Primitive::kPrimDouble) {
4901       // In order to satisfy the semantics of volatile, this must be a single instruction store.
4902       locations->SetInAt(1, Location::RequiresFpuRegister());
4903     } else {
4904       locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
4905     }
4906   } else if (is_volatile && field_type == Primitive::kPrimLong) {
4907     // In order to satisfy the semantics of volatile, this must be a single instruction store.
4908     locations->SetInAt(1, Location::RequiresRegister());
4909 
4910     // 64bits value can be atomically written to an address with movsd and an XMM register.
4911     // We need two XMM registers because there's no easier way to (bit) copy a register pair
4912     // into a single XMM register (we copy each pair part into the XMMs and then interleave them).
4913     // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
4914     // isolated cases when we need this it isn't worth adding the extra complexity.
4915     locations->AddTemp(Location::RequiresFpuRegister());
4916     locations->AddTemp(Location::RequiresFpuRegister());
4917   } else {
4918     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
4919 
4920     if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
4921       // Temporary registers for the write barrier.
4922       locations->AddTemp(Location::RequiresRegister());  // May be used for reference poisoning too.
4923       // Ensure the card is in a byte register.
4924       locations->AddTemp(Location::RegisterLocation(ECX));
4925     }
4926   }
4927 }
4928 
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null)4929 void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
4930                                                  const FieldInfo& field_info,
4931                                                  bool value_can_be_null) {
4932   DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
4933 
4934   LocationSummary* locations = instruction->GetLocations();
4935   Register base = locations->InAt(0).AsRegister<Register>();
4936   Location value = locations->InAt(1);
4937   bool is_volatile = field_info.IsVolatile();
4938   Primitive::Type field_type = field_info.GetFieldType();
4939   uint32_t offset = field_info.GetFieldOffset().Uint32Value();
4940   bool needs_write_barrier =
4941       CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
4942 
4943   if (is_volatile) {
4944     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
4945   }
4946 
4947   bool maybe_record_implicit_null_check_done = false;
4948 
4949   switch (field_type) {
4950     case Primitive::kPrimBoolean:
4951     case Primitive::kPrimByte: {
4952       __ movb(Address(base, offset), value.AsRegister<ByteRegister>());
4953       break;
4954     }
4955 
4956     case Primitive::kPrimShort:
4957     case Primitive::kPrimChar: {
4958       if (value.IsConstant()) {
4959         int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4960         __ movw(Address(base, offset), Immediate(v));
4961       } else {
4962         __ movw(Address(base, offset), value.AsRegister<Register>());
4963       }
4964       break;
4965     }
4966 
4967     case Primitive::kPrimInt:
4968     case Primitive::kPrimNot: {
4969       if (kPoisonHeapReferences && needs_write_barrier) {
4970         // Note that in the case where `value` is a null reference,
4971         // we do not enter this block, as the reference does not
4972         // need poisoning.
4973         DCHECK_EQ(field_type, Primitive::kPrimNot);
4974         Register temp = locations->GetTemp(0).AsRegister<Register>();
4975         __ movl(temp, value.AsRegister<Register>());
4976         __ PoisonHeapReference(temp);
4977         __ movl(Address(base, offset), temp);
4978       } else if (value.IsConstant()) {
4979         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
4980         __ movl(Address(base, offset), Immediate(v));
4981       } else {
4982         DCHECK(value.IsRegister()) << value;
4983         __ movl(Address(base, offset), value.AsRegister<Register>());
4984       }
4985       break;
4986     }
4987 
4988     case Primitive::kPrimLong: {
4989       if (is_volatile) {
4990         XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
4991         XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
4992         __ movd(temp1, value.AsRegisterPairLow<Register>());
4993         __ movd(temp2, value.AsRegisterPairHigh<Register>());
4994         __ punpckldq(temp1, temp2);
4995         __ movsd(Address(base, offset), temp1);
4996         codegen_->MaybeRecordImplicitNullCheck(instruction);
4997       } else if (value.IsConstant()) {
4998         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
4999         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
5000         codegen_->MaybeRecordImplicitNullCheck(instruction);
5001         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
5002       } else {
5003         __ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
5004         codegen_->MaybeRecordImplicitNullCheck(instruction);
5005         __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
5006       }
5007       maybe_record_implicit_null_check_done = true;
5008       break;
5009     }
5010 
5011     case Primitive::kPrimFloat: {
5012       if (value.IsConstant()) {
5013         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5014         __ movl(Address(base, offset), Immediate(v));
5015       } else {
5016         __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
5017       }
5018       break;
5019     }
5020 
5021     case Primitive::kPrimDouble: {
5022       if (value.IsConstant()) {
5023         int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
5024         __ movl(Address(base, offset), Immediate(Low32Bits(v)));
5025         codegen_->MaybeRecordImplicitNullCheck(instruction);
5026         __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
5027         maybe_record_implicit_null_check_done = true;
5028       } else {
5029         __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
5030       }
5031       break;
5032     }
5033 
5034     case Primitive::kPrimVoid:
5035       LOG(FATAL) << "Unreachable type " << field_type;
5036       UNREACHABLE();
5037   }
5038 
5039   if (!maybe_record_implicit_null_check_done) {
5040     codegen_->MaybeRecordImplicitNullCheck(instruction);
5041   }
5042 
5043   if (needs_write_barrier) {
5044     Register temp = locations->GetTemp(0).AsRegister<Register>();
5045     Register card = locations->GetTemp(1).AsRegister<Register>();
5046     codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
5047   }
5048 
5049   if (is_volatile) {
5050     codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
5051   }
5052 }
5053 
VisitStaticFieldGet(HStaticFieldGet * instruction)5054 void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5055   HandleFieldGet(instruction, instruction->GetFieldInfo());
5056 }
5057 
VisitStaticFieldGet(HStaticFieldGet * instruction)5058 void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
5059   HandleFieldGet(instruction, instruction->GetFieldInfo());
5060 }
5061 
VisitStaticFieldSet(HStaticFieldSet * instruction)5062 void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5063   HandleFieldSet(instruction, instruction->GetFieldInfo());
5064 }
5065 
VisitStaticFieldSet(HStaticFieldSet * instruction)5066 void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
5067   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5068 }
5069 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5070 void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5071   HandleFieldSet(instruction, instruction->GetFieldInfo());
5072 }
5073 
VisitInstanceFieldSet(HInstanceFieldSet * instruction)5074 void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
5075   HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
5076 }
5077 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5078 void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5079   HandleFieldGet(instruction, instruction->GetFieldInfo());
5080 }
5081 
VisitInstanceFieldGet(HInstanceFieldGet * instruction)5082 void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
5083   HandleFieldGet(instruction, instruction->GetFieldInfo());
5084 }
5085 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5086 void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
5087     HUnresolvedInstanceFieldGet* instruction) {
5088   FieldAccessCallingConventionX86 calling_convention;
5089   codegen_->CreateUnresolvedFieldLocationSummary(
5090       instruction, instruction->GetFieldType(), calling_convention);
5091 }
5092 
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)5093 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
5094     HUnresolvedInstanceFieldGet* instruction) {
5095   FieldAccessCallingConventionX86 calling_convention;
5096   codegen_->GenerateUnresolvedFieldAccess(instruction,
5097                                           instruction->GetFieldType(),
5098                                           instruction->GetFieldIndex(),
5099                                           instruction->GetDexPc(),
5100                                           calling_convention);
5101 }
5102 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5103 void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
5104     HUnresolvedInstanceFieldSet* instruction) {
5105   FieldAccessCallingConventionX86 calling_convention;
5106   codegen_->CreateUnresolvedFieldLocationSummary(
5107       instruction, instruction->GetFieldType(), calling_convention);
5108 }
5109 
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)5110 void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
5111     HUnresolvedInstanceFieldSet* instruction) {
5112   FieldAccessCallingConventionX86 calling_convention;
5113   codegen_->GenerateUnresolvedFieldAccess(instruction,
5114                                           instruction->GetFieldType(),
5115                                           instruction->GetFieldIndex(),
5116                                           instruction->GetDexPc(),
5117                                           calling_convention);
5118 }
5119 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5120 void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
5121     HUnresolvedStaticFieldGet* instruction) {
5122   FieldAccessCallingConventionX86 calling_convention;
5123   codegen_->CreateUnresolvedFieldLocationSummary(
5124       instruction, instruction->GetFieldType(), calling_convention);
5125 }
5126 
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)5127 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
5128     HUnresolvedStaticFieldGet* instruction) {
5129   FieldAccessCallingConventionX86 calling_convention;
5130   codegen_->GenerateUnresolvedFieldAccess(instruction,
5131                                           instruction->GetFieldType(),
5132                                           instruction->GetFieldIndex(),
5133                                           instruction->GetDexPc(),
5134                                           calling_convention);
5135 }
5136 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5137 void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
5138     HUnresolvedStaticFieldSet* instruction) {
5139   FieldAccessCallingConventionX86 calling_convention;
5140   codegen_->CreateUnresolvedFieldLocationSummary(
5141       instruction, instruction->GetFieldType(), calling_convention);
5142 }
5143 
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)5144 void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
5145     HUnresolvedStaticFieldSet* instruction) {
5146   FieldAccessCallingConventionX86 calling_convention;
5147   codegen_->GenerateUnresolvedFieldAccess(instruction,
5148                                           instruction->GetFieldType(),
5149                                           instruction->GetFieldIndex(),
5150                                           instruction->GetDexPc(),
5151                                           calling_convention);
5152 }
5153 
VisitNullCheck(HNullCheck * instruction)5154 void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
5155   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5156   Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks()
5157       ? Location::RequiresRegister()
5158       : Location::Any();
5159   locations->SetInAt(0, loc);
5160 }
5161 
GenerateImplicitNullCheck(HNullCheck * instruction)5162 void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
5163   if (CanMoveNullCheckToUser(instruction)) {
5164     return;
5165   }
5166   LocationSummary* locations = instruction->GetLocations();
5167   Location obj = locations->InAt(0);
5168 
5169   __ testl(EAX, Address(obj.AsRegister<Register>(), 0));
5170   RecordPcInfo(instruction, instruction->GetDexPc());
5171 }
5172 
GenerateExplicitNullCheck(HNullCheck * instruction)5173 void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
5174   SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
5175   AddSlowPath(slow_path);
5176 
5177   LocationSummary* locations = instruction->GetLocations();
5178   Location obj = locations->InAt(0);
5179 
5180   if (obj.IsRegister()) {
5181     __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
5182   } else if (obj.IsStackSlot()) {
5183     __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
5184   } else {
5185     DCHECK(obj.IsConstant()) << obj;
5186     DCHECK(obj.GetConstant()->IsNullConstant());
5187     __ jmp(slow_path->GetEntryLabel());
5188     return;
5189   }
5190   __ j(kEqual, slow_path->GetEntryLabel());
5191 }
5192 
VisitNullCheck(HNullCheck * instruction)5193 void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
5194   codegen_->GenerateNullCheck(instruction);
5195 }
5196 
VisitArrayGet(HArrayGet * instruction)5197 void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
5198   bool object_array_get_with_read_barrier =
5199       kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
5200   LocationSummary* locations =
5201       new (GetGraph()->GetArena()) LocationSummary(instruction,
5202                                                    object_array_get_with_read_barrier ?
5203                                                        LocationSummary::kCallOnSlowPath :
5204                                                        LocationSummary::kNoCall);
5205   if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
5206     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
5207   }
5208   locations->SetInAt(0, Location::RequiresRegister());
5209   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5210   if (Primitive::IsFloatingPointType(instruction->GetType())) {
5211     locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5212   } else {
5213     // The output overlaps in case of long: we don't want the low move
5214     // to overwrite the array's location.  Likewise, in the case of an
5215     // object array get with read barriers enabled, we do not want the
5216     // move to overwrite the array's location, as we need it to emit
5217     // the read barrier.
5218     locations->SetOut(
5219         Location::RequiresRegister(),
5220         (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
5221             Location::kOutputOverlap :
5222             Location::kNoOutputOverlap);
5223   }
5224 }
5225 
VisitArrayGet(HArrayGet * instruction)5226 void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
5227   LocationSummary* locations = instruction->GetLocations();
5228   Location obj_loc = locations->InAt(0);
5229   Register obj = obj_loc.AsRegister<Register>();
5230   Location index = locations->InAt(1);
5231   Location out_loc = locations->Out();
5232   uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
5233 
5234   Primitive::Type type = instruction->GetType();
5235   switch (type) {
5236     case Primitive::kPrimBoolean: {
5237       Register out = out_loc.AsRegister<Register>();
5238       __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
5239       break;
5240     }
5241 
5242     case Primitive::kPrimByte: {
5243       Register out = out_loc.AsRegister<Register>();
5244       __ movsxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
5245       break;
5246     }
5247 
5248     case Primitive::kPrimShort: {
5249       Register out = out_loc.AsRegister<Register>();
5250       __ movsxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
5251       break;
5252     }
5253 
5254     case Primitive::kPrimChar: {
5255       Register out = out_loc.AsRegister<Register>();
5256       if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
5257         // Branch cases into compressed and uncompressed for each index's type.
5258         uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
5259         NearLabel done, not_compressed;
5260         __ testb(Address(obj, count_offset), Immediate(1));
5261         codegen_->MaybeRecordImplicitNullCheck(instruction);
5262         static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
5263                       "Expecting 0=compressed, 1=uncompressed");
5264         __ j(kNotZero, &not_compressed);
5265         __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset));
5266         __ jmp(&done);
5267         __ Bind(&not_compressed);
5268         __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
5269         __ Bind(&done);
5270       } else {
5271         // Common case for charAt of array of char or when string compression's
5272         // feature is turned off.
5273         __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset));
5274       }
5275       break;
5276     }
5277 
5278     case Primitive::kPrimInt: {
5279       Register out = out_loc.AsRegister<Register>();
5280       __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
5281       break;
5282     }
5283 
5284     case Primitive::kPrimNot: {
5285       static_assert(
5286           sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
5287           "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
5288       // /* HeapReference<Object> */ out =
5289       //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
5290       if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
5291         // Note that a potential implicit null check is handled in this
5292         // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
5293         codegen_->GenerateArrayLoadWithBakerReadBarrier(
5294             instruction, out_loc, obj, data_offset, index, /* needs_null_check */ true);
5295       } else {
5296         Register out = out_loc.AsRegister<Register>();
5297         __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
5298         codegen_->MaybeRecordImplicitNullCheck(instruction);
5299         // If read barriers are enabled, emit read barriers other than
5300         // Baker's using a slow path (and also unpoison the loaded
5301         // reference, if heap poisoning is enabled).
5302         if (index.IsConstant()) {
5303           uint32_t offset =
5304               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
5305           codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
5306         } else {
5307           codegen_->MaybeGenerateReadBarrierSlow(
5308               instruction, out_loc, out_loc, obj_loc, data_offset, index);
5309         }
5310       }
5311       break;
5312     }
5313 
5314     case Primitive::kPrimLong: {
5315       DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
5316       __ movl(out_loc.AsRegisterPairLow<Register>(),
5317               CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset));
5318       codegen_->MaybeRecordImplicitNullCheck(instruction);
5319       __ movl(out_loc.AsRegisterPairHigh<Register>(),
5320               CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset + kX86WordSize));
5321       break;
5322     }
5323 
5324     case Primitive::kPrimFloat: {
5325       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5326       __ movss(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset));
5327       break;
5328     }
5329 
5330     case Primitive::kPrimDouble: {
5331       XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
5332       __ movsd(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset));
5333       break;
5334     }
5335 
5336     case Primitive::kPrimVoid:
5337       LOG(FATAL) << "Unreachable type " << type;
5338       UNREACHABLE();
5339   }
5340 
5341   if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
5342     // Potential implicit null checks, in the case of reference or
5343     // long arrays, are handled in the previous switch statement.
5344   } else {
5345     codegen_->MaybeRecordImplicitNullCheck(instruction);
5346   }
5347 }
5348 
VisitArraySet(HArraySet * instruction)5349 void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
5350   Primitive::Type value_type = instruction->GetComponentType();
5351 
5352   bool needs_write_barrier =
5353       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5354   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5355 
5356   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
5357       instruction,
5358       may_need_runtime_call_for_type_check ?
5359           LocationSummary::kCallOnSlowPath :
5360           LocationSummary::kNoCall);
5361 
5362   bool is_byte_type = (value_type == Primitive::kPrimBoolean)
5363       || (value_type == Primitive::kPrimByte);
5364   // We need the inputs to be different than the output in case of long operation.
5365   // In case of a byte operation, the register allocator does not support multiple
5366   // inputs that die at entry with one in a specific register.
5367   locations->SetInAt(0, Location::RequiresRegister());
5368   locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5369   if (is_byte_type) {
5370     // Ensure the value is in a byte register.
5371     locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
5372   } else if (Primitive::IsFloatingPointType(value_type)) {
5373     locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
5374   } else {
5375     locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
5376   }
5377   if (needs_write_barrier) {
5378     // Temporary registers for the write barrier.
5379     locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
5380     // Ensure the card is in a byte register.
5381     locations->AddTemp(Location::RegisterLocation(ECX));
5382   }
5383 }
5384 
VisitArraySet(HArraySet * instruction)5385 void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
5386   LocationSummary* locations = instruction->GetLocations();
5387   Location array_loc = locations->InAt(0);
5388   Register array = array_loc.AsRegister<Register>();
5389   Location index = locations->InAt(1);
5390   Location value = locations->InAt(2);
5391   Primitive::Type value_type = instruction->GetComponentType();
5392   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
5393   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
5394   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
5395   bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
5396   bool needs_write_barrier =
5397       CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
5398 
5399   switch (value_type) {
5400     case Primitive::kPrimBoolean:
5401     case Primitive::kPrimByte: {
5402       uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
5403       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_1, offset);
5404       if (value.IsRegister()) {
5405         __ movb(address, value.AsRegister<ByteRegister>());
5406       } else {
5407         __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5408       }
5409       codegen_->MaybeRecordImplicitNullCheck(instruction);
5410       break;
5411     }
5412 
5413     case Primitive::kPrimShort:
5414     case Primitive::kPrimChar: {
5415       uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
5416       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_2, offset);
5417       if (value.IsRegister()) {
5418         __ movw(address, value.AsRegister<Register>());
5419       } else {
5420         __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
5421       }
5422       codegen_->MaybeRecordImplicitNullCheck(instruction);
5423       break;
5424     }
5425 
5426     case Primitive::kPrimNot: {
5427       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5428       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
5429 
5430       if (!value.IsRegister()) {
5431         // Just setting null.
5432         DCHECK(instruction->InputAt(2)->IsNullConstant());
5433         DCHECK(value.IsConstant()) << value;
5434         __ movl(address, Immediate(0));
5435         codegen_->MaybeRecordImplicitNullCheck(instruction);
5436         DCHECK(!needs_write_barrier);
5437         DCHECK(!may_need_runtime_call_for_type_check);
5438         break;
5439       }
5440 
5441       DCHECK(needs_write_barrier);
5442       Register register_value = value.AsRegister<Register>();
5443       // We cannot use a NearLabel for `done`, as its range may be too
5444       // short when Baker read barriers are enabled.
5445       Label done;
5446       NearLabel not_null, do_put;
5447       SlowPathCode* slow_path = nullptr;
5448       Location temp_loc = locations->GetTemp(0);
5449       Register temp = temp_loc.AsRegister<Register>();
5450       if (may_need_runtime_call_for_type_check) {
5451         slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
5452         codegen_->AddSlowPath(slow_path);
5453         if (instruction->GetValueCanBeNull()) {
5454           __ testl(register_value, register_value);
5455           __ j(kNotEqual, &not_null);
5456           __ movl(address, Immediate(0));
5457           codegen_->MaybeRecordImplicitNullCheck(instruction);
5458           __ jmp(&done);
5459           __ Bind(&not_null);
5460         }
5461 
5462         // Note that when Baker read barriers are enabled, the type
5463         // checks are performed without read barriers.  This is fine,
5464         // even in the case where a class object is in the from-space
5465         // after the flip, as a comparison involving such a type would
5466         // not produce a false positive; it may of course produce a
5467         // false negative, in which case we would take the ArraySet
5468         // slow path.
5469 
5470         // /* HeapReference<Class> */ temp = array->klass_
5471         __ movl(temp, Address(array, class_offset));
5472         codegen_->MaybeRecordImplicitNullCheck(instruction);
5473         __ MaybeUnpoisonHeapReference(temp);
5474 
5475         // /* HeapReference<Class> */ temp = temp->component_type_
5476         __ movl(temp, Address(temp, component_offset));
5477         // If heap poisoning is enabled, no need to unpoison `temp`
5478         // nor the object reference in `register_value->klass`, as
5479         // we are comparing two poisoned references.
5480         __ cmpl(temp, Address(register_value, class_offset));
5481 
5482         if (instruction->StaticTypeOfArrayIsObjectArray()) {
5483           __ j(kEqual, &do_put);
5484           // If heap poisoning is enabled, the `temp` reference has
5485           // not been unpoisoned yet; unpoison it now.
5486           __ MaybeUnpoisonHeapReference(temp);
5487 
5488           // If heap poisoning is enabled, no need to unpoison the
5489           // heap reference loaded below, as it is only used for a
5490           // comparison with null.
5491           __ cmpl(Address(temp, super_offset), Immediate(0));
5492           __ j(kNotEqual, slow_path->GetEntryLabel());
5493           __ Bind(&do_put);
5494         } else {
5495           __ j(kNotEqual, slow_path->GetEntryLabel());
5496         }
5497       }
5498 
5499       if (kPoisonHeapReferences) {
5500         __ movl(temp, register_value);
5501         __ PoisonHeapReference(temp);
5502         __ movl(address, temp);
5503       } else {
5504         __ movl(address, register_value);
5505       }
5506       if (!may_need_runtime_call_for_type_check) {
5507         codegen_->MaybeRecordImplicitNullCheck(instruction);
5508       }
5509 
5510       Register card = locations->GetTemp(1).AsRegister<Register>();
5511       codegen_->MarkGCCard(
5512           temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
5513       __ Bind(&done);
5514 
5515       if (slow_path != nullptr) {
5516         __ Bind(slow_path->GetExitLabel());
5517       }
5518 
5519       break;
5520     }
5521 
5522     case Primitive::kPrimInt: {
5523       uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
5524       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
5525       if (value.IsRegister()) {
5526         __ movl(address, value.AsRegister<Register>());
5527       } else {
5528         DCHECK(value.IsConstant()) << value;
5529         int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
5530         __ movl(address, Immediate(v));
5531       }
5532       codegen_->MaybeRecordImplicitNullCheck(instruction);
5533       break;
5534     }
5535 
5536     case Primitive::kPrimLong: {
5537       uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
5538       if (value.IsRegisterPair()) {
5539         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
5540                 value.AsRegisterPairLow<Register>());
5541         codegen_->MaybeRecordImplicitNullCheck(instruction);
5542         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
5543                 value.AsRegisterPairHigh<Register>());
5544       } else {
5545         DCHECK(value.IsConstant());
5546         int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
5547         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset),
5548                 Immediate(Low32Bits(val)));
5549         codegen_->MaybeRecordImplicitNullCheck(instruction);
5550         __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize),
5551                 Immediate(High32Bits(val)));
5552       }
5553       break;
5554     }
5555 
5556     case Primitive::kPrimFloat: {
5557       uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
5558       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset);
5559       if (value.IsFpuRegister()) {
5560         __ movss(address, value.AsFpuRegister<XmmRegister>());
5561       } else {
5562         DCHECK(value.IsConstant());
5563         int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
5564         __ movl(address, Immediate(v));
5565       }
5566       codegen_->MaybeRecordImplicitNullCheck(instruction);
5567       break;
5568     }
5569 
5570     case Primitive::kPrimDouble: {
5571       uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
5572       Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset);
5573       if (value.IsFpuRegister()) {
5574         __ movsd(address, value.AsFpuRegister<XmmRegister>());
5575       } else {
5576         DCHECK(value.IsConstant());
5577         Address address_hi =
5578             CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset + kX86WordSize);
5579         int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
5580         __ movl(address, Immediate(Low32Bits(v)));
5581         codegen_->MaybeRecordImplicitNullCheck(instruction);
5582         __ movl(address_hi, Immediate(High32Bits(v)));
5583       }
5584       break;
5585     }
5586 
5587     case Primitive::kPrimVoid:
5588       LOG(FATAL) << "Unreachable type " << instruction->GetType();
5589       UNREACHABLE();
5590   }
5591 }
5592 
VisitArrayLength(HArrayLength * instruction)5593 void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
5594   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
5595   locations->SetInAt(0, Location::RequiresRegister());
5596   if (!instruction->IsEmittedAtUseSite()) {
5597     locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5598   }
5599 }
5600 
VisitArrayLength(HArrayLength * instruction)5601 void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
5602   if (instruction->IsEmittedAtUseSite()) {
5603     return;
5604   }
5605 
5606   LocationSummary* locations = instruction->GetLocations();
5607   uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
5608   Register obj = locations->InAt(0).AsRegister<Register>();
5609   Register out = locations->Out().AsRegister<Register>();
5610   __ movl(out, Address(obj, offset));
5611   codegen_->MaybeRecordImplicitNullCheck(instruction);
5612   // Mask out most significant bit in case the array is String's array of char.
5613   if (mirror::kUseStringCompression && instruction->IsStringLength()) {
5614     __ shrl(out, Immediate(1));
5615   }
5616 }
5617 
VisitBoundsCheck(HBoundsCheck * instruction)5618 void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5619   RegisterSet caller_saves = RegisterSet::Empty();
5620   InvokeRuntimeCallingConvention calling_convention;
5621   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5622   caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
5623   LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
5624   locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
5625   HInstruction* length = instruction->InputAt(1);
5626   if (!length->IsEmittedAtUseSite()) {
5627     locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
5628   }
5629   // Need register to see array's length.
5630   if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
5631     locations->AddTemp(Location::RequiresRegister());
5632   }
5633 }
5634 
VisitBoundsCheck(HBoundsCheck * instruction)5635 void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
5636   const bool is_string_compressed_char_at =
5637       mirror::kUseStringCompression && instruction->IsStringCharAt();
5638   LocationSummary* locations = instruction->GetLocations();
5639   Location index_loc = locations->InAt(0);
5640   Location length_loc = locations->InAt(1);
5641   SlowPathCode* slow_path =
5642     new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
5643 
5644   if (length_loc.IsConstant()) {
5645     int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
5646     if (index_loc.IsConstant()) {
5647       // BCE will remove the bounds check if we are guarenteed to pass.
5648       int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5649       if (index < 0 || index >= length) {
5650         codegen_->AddSlowPath(slow_path);
5651         __ jmp(slow_path->GetEntryLabel());
5652       } else {
5653         // Some optimization after BCE may have generated this, and we should not
5654         // generate a bounds check if it is a valid range.
5655       }
5656       return;
5657     }
5658 
5659     // We have to reverse the jump condition because the length is the constant.
5660     Register index_reg = index_loc.AsRegister<Register>();
5661     __ cmpl(index_reg, Immediate(length));
5662     codegen_->AddSlowPath(slow_path);
5663     __ j(kAboveEqual, slow_path->GetEntryLabel());
5664   } else {
5665     HInstruction* array_length = instruction->InputAt(1);
5666     if (array_length->IsEmittedAtUseSite()) {
5667       // Address the length field in the array.
5668       DCHECK(array_length->IsArrayLength());
5669       uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength());
5670       Location array_loc = array_length->GetLocations()->InAt(0);
5671       Address array_len(array_loc.AsRegister<Register>(), len_offset);
5672       if (is_string_compressed_char_at) {
5673         // TODO: if index_loc.IsConstant(), compare twice the index (to compensate for
5674         // the string compression flag) with the in-memory length and avoid the temporary.
5675         Register length_reg = locations->GetTemp(0).AsRegister<Register>();
5676         __ movl(length_reg, array_len);
5677         codegen_->MaybeRecordImplicitNullCheck(array_length);
5678         __ shrl(length_reg, Immediate(1));
5679         codegen_->GenerateIntCompare(length_reg, index_loc);
5680       } else {
5681         // Checking bounds for general case:
5682         // Array of char or string's array with feature compression off.
5683         if (index_loc.IsConstant()) {
5684           int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
5685           __ cmpl(array_len, Immediate(value));
5686         } else {
5687           __ cmpl(array_len, index_loc.AsRegister<Register>());
5688         }
5689         codegen_->MaybeRecordImplicitNullCheck(array_length);
5690       }
5691     } else {
5692       codegen_->GenerateIntCompare(length_loc, index_loc);
5693     }
5694     codegen_->AddSlowPath(slow_path);
5695     __ j(kBelowEqual, slow_path->GetEntryLabel());
5696   }
5697 }
5698 
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5699 void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5700   LOG(FATAL) << "Unreachable";
5701 }
5702 
VisitParallelMove(HParallelMove * instruction)5703 void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
5704   codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5705 }
5706 
VisitSuspendCheck(HSuspendCheck * instruction)5707 void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5708   LocationSummary* locations =
5709       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
5710   // In suspend check slow path, usually there are no caller-save registers at all.
5711   // If SIMD instructions are present, however, we force spilling all live SIMD
5712   // registers in full width (since the runtime only saves/restores lower part).
5713   locations->SetCustomSlowPathCallerSaves(
5714       GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
5715 }
5716 
VisitSuspendCheck(HSuspendCheck * instruction)5717 void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
5718   HBasicBlock* block = instruction->GetBlock();
5719   if (block->GetLoopInformation() != nullptr) {
5720     DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
5721     // The back edge will generate the suspend check.
5722     return;
5723   }
5724   if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
5725     // The goto will generate the suspend check.
5726     return;
5727   }
5728   GenerateSuspendCheck(instruction, nullptr);
5729 }
5730 
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)5731 void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
5732                                                        HBasicBlock* successor) {
5733   SuspendCheckSlowPathX86* slow_path =
5734       down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
5735   if (slow_path == nullptr) {
5736     slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
5737     instruction->SetSlowPath(slow_path);
5738     codegen_->AddSlowPath(slow_path);
5739     if (successor != nullptr) {
5740       DCHECK(successor->IsLoopHeader());
5741       codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
5742     }
5743   } else {
5744     DCHECK_EQ(slow_path->GetSuccessor(), successor);
5745   }
5746 
5747   __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()),
5748                 Immediate(0));
5749   if (successor == nullptr) {
5750     __ j(kNotEqual, slow_path->GetEntryLabel());
5751     __ Bind(slow_path->GetReturnLabel());
5752   } else {
5753     __ j(kEqual, codegen_->GetLabelOf(successor));
5754     __ jmp(slow_path->GetEntryLabel());
5755   }
5756 }
5757 
GetAssembler() const5758 X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
5759   return codegen_->GetAssembler();
5760 }
5761 
MoveMemoryToMemory32(int dst,int src)5762 void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
5763   ScratchRegisterScope ensure_scratch(
5764       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5765   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5766   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5767   __ movl(temp_reg, Address(ESP, src + stack_offset));
5768   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5769 }
5770 
MoveMemoryToMemory64(int dst,int src)5771 void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
5772   ScratchRegisterScope ensure_scratch(
5773       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5774   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5775   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5776   __ movl(temp_reg, Address(ESP, src + stack_offset));
5777   __ movl(Address(ESP, dst + stack_offset), temp_reg);
5778   __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
5779   __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
5780 }
5781 
EmitMove(size_t index)5782 void ParallelMoveResolverX86::EmitMove(size_t index) {
5783   MoveOperands* move = moves_[index];
5784   Location source = move->GetSource();
5785   Location destination = move->GetDestination();
5786 
5787   if (source.IsRegister()) {
5788     if (destination.IsRegister()) {
5789       __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5790     } else if (destination.IsFpuRegister()) {
5791       __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
5792     } else {
5793       DCHECK(destination.IsStackSlot());
5794       __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
5795     }
5796   } else if (source.IsRegisterPair()) {
5797       size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
5798       // Create stack space for 2 elements.
5799       __ subl(ESP, Immediate(2 * elem_size));
5800       __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
5801       __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
5802       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
5803       // And remove the temporary stack space we allocated.
5804       __ addl(ESP, Immediate(2 * elem_size));
5805   } else if (source.IsFpuRegister()) {
5806     if (destination.IsRegister()) {
5807       __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
5808     } else if (destination.IsFpuRegister()) {
5809       __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5810     } else if (destination.IsRegisterPair()) {
5811       XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
5812       __ movd(destination.AsRegisterPairLow<Register>(), src_reg);
5813       __ psrlq(src_reg, Immediate(32));
5814       __ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
5815     } else if (destination.IsStackSlot()) {
5816       __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5817     } else if (destination.IsDoubleStackSlot()) {
5818       __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5819     } else {
5820       DCHECK(destination.IsSIMDStackSlot());
5821       __ movups(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
5822     }
5823   } else if (source.IsStackSlot()) {
5824     if (destination.IsRegister()) {
5825       __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
5826     } else if (destination.IsFpuRegister()) {
5827       __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5828     } else {
5829       DCHECK(destination.IsStackSlot());
5830       MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
5831     }
5832   } else if (source.IsDoubleStackSlot()) {
5833     if (destination.IsRegisterPair()) {
5834       __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
5835       __ movl(destination.AsRegisterPairHigh<Register>(),
5836               Address(ESP, source.GetHighStackIndex(kX86WordSize)));
5837     } else if (destination.IsFpuRegister()) {
5838       __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5839     } else {
5840       DCHECK(destination.IsDoubleStackSlot()) << destination;
5841       MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
5842     }
5843   } else if (source.IsSIMDStackSlot()) {
5844     DCHECK(destination.IsFpuRegister());
5845     __ movups(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
5846   } else if (source.IsConstant()) {
5847     HConstant* constant = source.GetConstant();
5848     if (constant->IsIntConstant() || constant->IsNullConstant()) {
5849       int32_t value = CodeGenerator::GetInt32ValueOf(constant);
5850       if (destination.IsRegister()) {
5851         if (value == 0) {
5852           __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
5853         } else {
5854           __ movl(destination.AsRegister<Register>(), Immediate(value));
5855         }
5856       } else {
5857         DCHECK(destination.IsStackSlot()) << destination;
5858         __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
5859       }
5860     } else if (constant->IsFloatConstant()) {
5861       float fp_value = constant->AsFloatConstant()->GetValue();
5862       int32_t value = bit_cast<int32_t, float>(fp_value);
5863       Immediate imm(value);
5864       if (destination.IsFpuRegister()) {
5865         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5866         if (value == 0) {
5867           // Easy handling of 0.0.
5868           __ xorps(dest, dest);
5869         } else {
5870           ScratchRegisterScope ensure_scratch(
5871               this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5872           Register temp = static_cast<Register>(ensure_scratch.GetRegister());
5873           __ movl(temp, Immediate(value));
5874           __ movd(dest, temp);
5875         }
5876       } else {
5877         DCHECK(destination.IsStackSlot()) << destination;
5878         __ movl(Address(ESP, destination.GetStackIndex()), imm);
5879       }
5880     } else if (constant->IsLongConstant()) {
5881       int64_t value = constant->AsLongConstant()->GetValue();
5882       int32_t low_value = Low32Bits(value);
5883       int32_t high_value = High32Bits(value);
5884       Immediate low(low_value);
5885       Immediate high(high_value);
5886       if (destination.IsDoubleStackSlot()) {
5887         __ movl(Address(ESP, destination.GetStackIndex()), low);
5888         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5889       } else {
5890         __ movl(destination.AsRegisterPairLow<Register>(), low);
5891         __ movl(destination.AsRegisterPairHigh<Register>(), high);
5892       }
5893     } else {
5894       DCHECK(constant->IsDoubleConstant());
5895       double dbl_value = constant->AsDoubleConstant()->GetValue();
5896       int64_t value = bit_cast<int64_t, double>(dbl_value);
5897       int32_t low_value = Low32Bits(value);
5898       int32_t high_value = High32Bits(value);
5899       Immediate low(low_value);
5900       Immediate high(high_value);
5901       if (destination.IsFpuRegister()) {
5902         XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
5903         if (value == 0) {
5904           // Easy handling of 0.0.
5905           __ xorpd(dest, dest);
5906         } else {
5907           __ pushl(high);
5908           __ pushl(low);
5909           __ movsd(dest, Address(ESP, 0));
5910           __ addl(ESP, Immediate(8));
5911         }
5912       } else {
5913         DCHECK(destination.IsDoubleStackSlot()) << destination;
5914         __ movl(Address(ESP, destination.GetStackIndex()), low);
5915         __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
5916       }
5917     }
5918   } else {
5919     LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
5920   }
5921 }
5922 
Exchange(Register reg,int mem)5923 void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
5924   Register suggested_scratch = reg == EAX ? EBX : EAX;
5925   ScratchRegisterScope ensure_scratch(
5926       this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5927 
5928   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5929   __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
5930   __ movl(Address(ESP, mem + stack_offset), reg);
5931   __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
5932 }
5933 
Exchange32(XmmRegister reg,int mem)5934 void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
5935   ScratchRegisterScope ensure_scratch(
5936       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5937 
5938   Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
5939   int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
5940   __ movl(temp_reg, Address(ESP, mem + stack_offset));
5941   __ movss(Address(ESP, mem + stack_offset), reg);
5942   __ movd(reg, temp_reg);
5943 }
5944 
Exchange(int mem1,int mem2)5945 void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
5946   ScratchRegisterScope ensure_scratch1(
5947       this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
5948 
5949   Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
5950   ScratchRegisterScope ensure_scratch2(
5951       this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
5952 
5953   int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
5954   stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
5955   __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
5956   __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
5957   __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
5958   __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
5959 }
5960 
EmitSwap(size_t index)5961 void ParallelMoveResolverX86::EmitSwap(size_t index) {
5962   MoveOperands* move = moves_[index];
5963   Location source = move->GetSource();
5964   Location destination = move->GetDestination();
5965 
5966   if (source.IsRegister() && destination.IsRegister()) {
5967     // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
5968     DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
5969     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5970     __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
5971     __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
5972   } else if (source.IsRegister() && destination.IsStackSlot()) {
5973     Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
5974   } else if (source.IsStackSlot() && destination.IsRegister()) {
5975     Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
5976   } else if (source.IsStackSlot() && destination.IsStackSlot()) {
5977     Exchange(destination.GetStackIndex(), source.GetStackIndex());
5978   } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
5979     // Use XOR Swap algorithm to avoid a temporary.
5980     DCHECK_NE(source.reg(), destination.reg());
5981     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5982     __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
5983     __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
5984   } else if (source.IsFpuRegister() && destination.IsStackSlot()) {
5985     Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
5986   } else if (destination.IsFpuRegister() && source.IsStackSlot()) {
5987     Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
5988   } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
5989     // Take advantage of the 16 bytes in the XMM register.
5990     XmmRegister reg = source.AsFpuRegister<XmmRegister>();
5991     Address stack(ESP, destination.GetStackIndex());
5992     // Load the double into the high doubleword.
5993     __ movhpd(reg, stack);
5994 
5995     // Store the low double into the destination.
5996     __ movsd(stack, reg);
5997 
5998     // Move the high double to the low double.
5999     __ psrldq(reg, Immediate(8));
6000   } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
6001     // Take advantage of the 16 bytes in the XMM register.
6002     XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
6003     Address stack(ESP, source.GetStackIndex());
6004     // Load the double into the high doubleword.
6005     __ movhpd(reg, stack);
6006 
6007     // Store the low double into the destination.
6008     __ movsd(stack, reg);
6009 
6010     // Move the high double to the low double.
6011     __ psrldq(reg, Immediate(8));
6012   } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
6013     Exchange(destination.GetStackIndex(), source.GetStackIndex());
6014     Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
6015   } else {
6016     LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
6017   }
6018 }
6019 
SpillScratch(int reg)6020 void ParallelMoveResolverX86::SpillScratch(int reg) {
6021   __ pushl(static_cast<Register>(reg));
6022 }
6023 
RestoreScratch(int reg)6024 void ParallelMoveResolverX86::RestoreScratch(int reg) {
6025   __ popl(static_cast<Register>(reg));
6026 }
6027 
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)6028 HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind(
6029     HLoadClass::LoadKind desired_class_load_kind) {
6030   switch (desired_class_load_kind) {
6031     case HLoadClass::LoadKind::kInvalid:
6032       LOG(FATAL) << "UNREACHABLE";
6033       UNREACHABLE();
6034     case HLoadClass::LoadKind::kReferrersClass:
6035       break;
6036     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
6037     case HLoadClass::LoadKind::kBssEntry:
6038       DCHECK(!Runtime::Current()->UseJitCompilation());
6039       break;
6040     case HLoadClass::LoadKind::kJitTableAddress:
6041       DCHECK(Runtime::Current()->UseJitCompilation());
6042       break;
6043     case HLoadClass::LoadKind::kBootImageAddress:
6044     case HLoadClass::LoadKind::kRuntimeCall:
6045       break;
6046   }
6047   return desired_class_load_kind;
6048 }
6049 
VisitLoadClass(HLoadClass * cls)6050 void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
6051   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
6052   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
6053     InvokeRuntimeCallingConvention calling_convention;
6054     CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
6055         cls,
6056         Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
6057         Location::RegisterLocation(EAX));
6058     DCHECK_EQ(calling_convention.GetRegisterAt(0), EAX);
6059     return;
6060   }
6061   DCHECK(!cls->NeedsAccessCheck());
6062 
6063   const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
6064   LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
6065       ? LocationSummary::kCallOnSlowPath
6066       : LocationSummary::kNoCall;
6067   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
6068   if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
6069     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6070   }
6071 
6072   if (load_kind == HLoadClass::LoadKind::kReferrersClass ||
6073       load_kind == HLoadClass::LoadKind::kBootImageLinkTimePcRelative ||
6074       load_kind == HLoadClass::LoadKind::kBssEntry) {
6075     locations->SetInAt(0, Location::RequiresRegister());
6076   }
6077   locations->SetOut(Location::RequiresRegister());
6078   if (load_kind == HLoadClass::LoadKind::kBssEntry) {
6079     if (!kUseReadBarrier || kUseBakerReadBarrier) {
6080       // Rely on the type resolution and/or initialization to save everything.
6081       RegisterSet caller_saves = RegisterSet::Empty();
6082       InvokeRuntimeCallingConvention calling_convention;
6083       caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6084       locations->SetCustomSlowPathCallerSaves(caller_saves);
6085     } else {
6086       // For non-Baker read barrier we have a temp-clobbering call.
6087     }
6088   }
6089 }
6090 
NewJitRootClassPatch(const DexFile & dex_file,dex::TypeIndex dex_index,Handle<mirror::Class> handle)6091 Label* CodeGeneratorX86::NewJitRootClassPatch(const DexFile& dex_file,
6092                                               dex::TypeIndex dex_index,
6093                                               Handle<mirror::Class> handle) {
6094   jit_class_roots_.Overwrite(TypeReference(&dex_file, dex_index),
6095                              reinterpret_cast64<uint64_t>(handle.GetReference()));
6096   // Add a patch entry and return the label.
6097   jit_class_patches_.emplace_back(dex_file, dex_index.index_);
6098   PatchInfo<Label>* info = &jit_class_patches_.back();
6099   return &info->label;
6100 }
6101 
6102 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6103 // move.
VisitLoadClass(HLoadClass * cls)6104 void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
6105   HLoadClass::LoadKind load_kind = cls->GetLoadKind();
6106   if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
6107     codegen_->GenerateLoadClassRuntimeCall(cls);
6108     return;
6109   }
6110   DCHECK(!cls->NeedsAccessCheck());
6111 
6112   LocationSummary* locations = cls->GetLocations();
6113   Location out_loc = locations->Out();
6114   Register out = out_loc.AsRegister<Register>();
6115 
6116   bool generate_null_check = false;
6117   const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
6118       ? kWithoutReadBarrier
6119       : kCompilerReadBarrierOption;
6120   switch (load_kind) {
6121     case HLoadClass::LoadKind::kReferrersClass: {
6122       DCHECK(!cls->CanCallRuntime());
6123       DCHECK(!cls->MustGenerateClinitCheck());
6124       // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
6125       Register current_method = locations->InAt(0).AsRegister<Register>();
6126       GenerateGcRootFieldLoad(
6127           cls,
6128           out_loc,
6129           Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()),
6130           /* fixup_label */ nullptr,
6131           read_barrier_option);
6132       break;
6133     }
6134     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
6135       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
6136       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
6137       Register method_address = locations->InAt(0).AsRegister<Register>();
6138       __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
6139       codegen_->RecordBootTypePatch(cls);
6140       break;
6141     }
6142     case HLoadClass::LoadKind::kBootImageAddress: {
6143       DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
6144       uint32_t address = dchecked_integral_cast<uint32_t>(
6145           reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
6146       DCHECK_NE(address, 0u);
6147       __ movl(out, Immediate(address));
6148       break;
6149     }
6150     case HLoadClass::LoadKind::kBssEntry: {
6151       Register method_address = locations->InAt(0).AsRegister<Register>();
6152       Address address(method_address, CodeGeneratorX86::kDummy32BitOffset);
6153       Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls);
6154       GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
6155       generate_null_check = true;
6156       break;
6157     }
6158     case HLoadClass::LoadKind::kJitTableAddress: {
6159       Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset);
6160       Label* fixup_label = codegen_->NewJitRootClassPatch(
6161           cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass());
6162       // /* GcRoot<mirror::Class> */ out = *address
6163       GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option);
6164       break;
6165     }
6166     case HLoadClass::LoadKind::kRuntimeCall:
6167     case HLoadClass::LoadKind::kInvalid:
6168       LOG(FATAL) << "UNREACHABLE";
6169       UNREACHABLE();
6170   }
6171 
6172   if (generate_null_check || cls->MustGenerateClinitCheck()) {
6173     DCHECK(cls->CanCallRuntime());
6174     SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
6175         cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
6176     codegen_->AddSlowPath(slow_path);
6177 
6178     if (generate_null_check) {
6179       __ testl(out, out);
6180       __ j(kEqual, slow_path->GetEntryLabel());
6181     }
6182 
6183     if (cls->MustGenerateClinitCheck()) {
6184       GenerateClassInitializationCheck(slow_path, out);
6185     } else {
6186       __ Bind(slow_path->GetExitLabel());
6187     }
6188   }
6189 }
6190 
VisitClinitCheck(HClinitCheck * check)6191 void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
6192   LocationSummary* locations =
6193       new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
6194   locations->SetInAt(0, Location::RequiresRegister());
6195   if (check->HasUses()) {
6196     locations->SetOut(Location::SameAsFirstInput());
6197   }
6198 }
6199 
VisitClinitCheck(HClinitCheck * check)6200 void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
6201   // We assume the class to not be null.
6202   SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
6203       check->GetLoadClass(), check, check->GetDexPc(), true);
6204   codegen_->AddSlowPath(slow_path);
6205   GenerateClassInitializationCheck(slow_path,
6206                                    check->GetLocations()->InAt(0).AsRegister<Register>());
6207 }
6208 
GenerateClassInitializationCheck(SlowPathCode * slow_path,Register class_reg)6209 void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
6210     SlowPathCode* slow_path, Register class_reg) {
6211   __ cmpl(Address(class_reg,  mirror::Class::StatusOffset().Int32Value()),
6212           Immediate(mirror::Class::kStatusInitialized));
6213   __ j(kLess, slow_path->GetEntryLabel());
6214   __ Bind(slow_path->GetExitLabel());
6215   // No need for memory fence, thanks to the X86 memory model.
6216 }
6217 
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)6218 HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
6219     HLoadString::LoadKind desired_string_load_kind) {
6220   switch (desired_string_load_kind) {
6221     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
6222     case HLoadString::LoadKind::kBssEntry:
6223       DCHECK(!Runtime::Current()->UseJitCompilation());
6224       break;
6225     case HLoadString::LoadKind::kJitTableAddress:
6226       DCHECK(Runtime::Current()->UseJitCompilation());
6227       break;
6228     case HLoadString::LoadKind::kBootImageAddress:
6229     case HLoadString::LoadKind::kRuntimeCall:
6230       break;
6231   }
6232   return desired_string_load_kind;
6233 }
6234 
VisitLoadString(HLoadString * load)6235 void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
6236   LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
6237   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
6238   HLoadString::LoadKind load_kind = load->GetLoadKind();
6239   if (load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
6240       load_kind == HLoadString::LoadKind::kBssEntry) {
6241     locations->SetInAt(0, Location::RequiresRegister());
6242   }
6243   if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
6244     locations->SetOut(Location::RegisterLocation(EAX));
6245   } else {
6246     locations->SetOut(Location::RequiresRegister());
6247     if (load_kind == HLoadString::LoadKind::kBssEntry) {
6248       if (!kUseReadBarrier || kUseBakerReadBarrier) {
6249         // Rely on the pResolveString to save everything.
6250         RegisterSet caller_saves = RegisterSet::Empty();
6251         InvokeRuntimeCallingConvention calling_convention;
6252         caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6253         locations->SetCustomSlowPathCallerSaves(caller_saves);
6254       } else {
6255         // For non-Baker read barrier we have a temp-clobbering call.
6256       }
6257     }
6258   }
6259 }
6260 
NewJitRootStringPatch(const DexFile & dex_file,dex::StringIndex dex_index,Handle<mirror::String> handle)6261 Label* CodeGeneratorX86::NewJitRootStringPatch(const DexFile& dex_file,
6262                                                dex::StringIndex dex_index,
6263                                                Handle<mirror::String> handle) {
6264   jit_string_roots_.Overwrite(
6265       StringReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference()));
6266   // Add a patch entry and return the label.
6267   jit_string_patches_.emplace_back(dex_file, dex_index.index_);
6268   PatchInfo<Label>* info = &jit_string_patches_.back();
6269   return &info->label;
6270 }
6271 
6272 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
6273 // move.
VisitLoadString(HLoadString * load)6274 void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
6275   LocationSummary* locations = load->GetLocations();
6276   Location out_loc = locations->Out();
6277   Register out = out_loc.AsRegister<Register>();
6278 
6279   switch (load->GetLoadKind()) {
6280     case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
6281       DCHECK(codegen_->GetCompilerOptions().IsBootImage());
6282       Register method_address = locations->InAt(0).AsRegister<Register>();
6283       __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
6284       codegen_->RecordBootStringPatch(load);
6285       return;  // No dex cache slow path.
6286     }
6287     case HLoadString::LoadKind::kBootImageAddress: {
6288       uint32_t address = dchecked_integral_cast<uint32_t>(
6289           reinterpret_cast<uintptr_t>(load->GetString().Get()));
6290       DCHECK_NE(address, 0u);
6291       __ movl(out, Immediate(address));
6292       return;  // No dex cache slow path.
6293     }
6294     case HLoadString::LoadKind::kBssEntry: {
6295       Register method_address = locations->InAt(0).AsRegister<Register>();
6296       Address address = Address(method_address, CodeGeneratorX86::kDummy32BitOffset);
6297       Label* fixup_label = codegen_->NewStringBssEntryPatch(load);
6298       // /* GcRoot<mirror::String> */ out = *address  /* PC-relative */
6299       GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
6300       SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
6301       codegen_->AddSlowPath(slow_path);
6302       __ testl(out, out);
6303       __ j(kEqual, slow_path->GetEntryLabel());
6304       __ Bind(slow_path->GetExitLabel());
6305       return;
6306     }
6307     case HLoadString::LoadKind::kJitTableAddress: {
6308       Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset);
6309       Label* fixup_label = codegen_->NewJitRootStringPatch(
6310           load->GetDexFile(), load->GetStringIndex(), load->GetString());
6311       // /* GcRoot<mirror::String> */ out = *address
6312       GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption);
6313       return;
6314     }
6315     default:
6316       break;
6317   }
6318 
6319   // TODO: Re-add the compiler code to do string dex cache lookup again.
6320   InvokeRuntimeCallingConvention calling_convention;
6321   DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
6322   __ movl(calling_convention.GetRegisterAt(0), Immediate(load->GetStringIndex().index_));
6323   codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
6324   CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
6325 }
6326 
GetExceptionTlsAddress()6327 static Address GetExceptionTlsAddress() {
6328   return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value());
6329 }
6330 
VisitLoadException(HLoadException * load)6331 void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
6332   LocationSummary* locations =
6333       new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
6334   locations->SetOut(Location::RequiresRegister());
6335 }
6336 
VisitLoadException(HLoadException * load)6337 void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
6338   __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
6339 }
6340 
VisitClearException(HClearException * clear)6341 void LocationsBuilderX86::VisitClearException(HClearException* clear) {
6342   new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
6343 }
6344 
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)6345 void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
6346   __ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
6347 }
6348 
VisitThrow(HThrow * instruction)6349 void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
6350   LocationSummary* locations =
6351       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6352   InvokeRuntimeCallingConvention calling_convention;
6353   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6354 }
6355 
VisitThrow(HThrow * instruction)6356 void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
6357   codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6358   CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6359 }
6360 
6361 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)6362 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
6363   if (kEmitCompilerReadBarrier &&
6364       !kUseBakerReadBarrier &&
6365       (type_check_kind == TypeCheckKind::kAbstractClassCheck ||
6366        type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
6367        type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
6368     return 1;
6369   }
6370   return 0;
6371 }
6372 
6373 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
6374 // interface pointer, one for loading the current interface.
6375 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)6376 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
6377   if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) {
6378     return 2;
6379   }
6380   return 1 + NumberOfInstanceOfTemps(type_check_kind);
6381 }
6382 
VisitInstanceOf(HInstanceOf * instruction)6383 void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
6384   LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
6385   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6386   bool baker_read_barrier_slow_path = false;
6387   switch (type_check_kind) {
6388     case TypeCheckKind::kExactCheck:
6389     case TypeCheckKind::kAbstractClassCheck:
6390     case TypeCheckKind::kClassHierarchyCheck:
6391     case TypeCheckKind::kArrayObjectCheck:
6392       call_kind =
6393           kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
6394       baker_read_barrier_slow_path = kUseBakerReadBarrier;
6395       break;
6396     case TypeCheckKind::kArrayCheck:
6397     case TypeCheckKind::kUnresolvedCheck:
6398     case TypeCheckKind::kInterfaceCheck:
6399       call_kind = LocationSummary::kCallOnSlowPath;
6400       break;
6401   }
6402 
6403   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6404   if (baker_read_barrier_slow_path) {
6405     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
6406   }
6407   locations->SetInAt(0, Location::RequiresRegister());
6408   locations->SetInAt(1, Location::Any());
6409   // Note that TypeCheckSlowPathX86 uses this "out" register too.
6410   locations->SetOut(Location::RequiresRegister());
6411   // When read barriers are enabled, we need a temporary register for some cases.
6412   locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
6413 }
6414 
VisitInstanceOf(HInstanceOf * instruction)6415 void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
6416   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6417   LocationSummary* locations = instruction->GetLocations();
6418   Location obj_loc = locations->InAt(0);
6419   Register obj = obj_loc.AsRegister<Register>();
6420   Location cls = locations->InAt(1);
6421   Location out_loc = locations->Out();
6422   Register out = out_loc.AsRegister<Register>();
6423   const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
6424   DCHECK_LE(num_temps, 1u);
6425   Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
6426   uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6427   uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6428   uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6429   uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6430   SlowPathCode* slow_path = nullptr;
6431   NearLabel done, zero;
6432 
6433   // Return 0 if `obj` is null.
6434   // Avoid null check if we know obj is not null.
6435   if (instruction->MustDoNullCheck()) {
6436     __ testl(obj, obj);
6437     __ j(kEqual, &zero);
6438   }
6439 
6440   switch (type_check_kind) {
6441     case TypeCheckKind::kExactCheck: {
6442       // /* HeapReference<Class> */ out = obj->klass_
6443       GenerateReferenceLoadTwoRegisters(instruction,
6444                                         out_loc,
6445                                         obj_loc,
6446                                         class_offset,
6447                                         kCompilerReadBarrierOption);
6448       if (cls.IsRegister()) {
6449         __ cmpl(out, cls.AsRegister<Register>());
6450       } else {
6451         DCHECK(cls.IsStackSlot()) << cls;
6452         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6453       }
6454 
6455       // Classes must be equal for the instanceof to succeed.
6456       __ j(kNotEqual, &zero);
6457       __ movl(out, Immediate(1));
6458       __ jmp(&done);
6459       break;
6460     }
6461 
6462     case TypeCheckKind::kAbstractClassCheck: {
6463       // /* HeapReference<Class> */ out = obj->klass_
6464       GenerateReferenceLoadTwoRegisters(instruction,
6465                                         out_loc,
6466                                         obj_loc,
6467                                         class_offset,
6468                                         kCompilerReadBarrierOption);
6469       // If the class is abstract, we eagerly fetch the super class of the
6470       // object to avoid doing a comparison we know will fail.
6471       NearLabel loop;
6472       __ Bind(&loop);
6473       // /* HeapReference<Class> */ out = out->super_class_
6474       GenerateReferenceLoadOneRegister(instruction,
6475                                        out_loc,
6476                                        super_offset,
6477                                        maybe_temp_loc,
6478                                        kCompilerReadBarrierOption);
6479       __ testl(out, out);
6480       // If `out` is null, we use it for the result, and jump to `done`.
6481       __ j(kEqual, &done);
6482       if (cls.IsRegister()) {
6483         __ cmpl(out, cls.AsRegister<Register>());
6484       } else {
6485         DCHECK(cls.IsStackSlot()) << cls;
6486         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6487       }
6488       __ j(kNotEqual, &loop);
6489       __ movl(out, Immediate(1));
6490       if (zero.IsLinked()) {
6491         __ jmp(&done);
6492       }
6493       break;
6494     }
6495 
6496     case TypeCheckKind::kClassHierarchyCheck: {
6497       // /* HeapReference<Class> */ out = obj->klass_
6498       GenerateReferenceLoadTwoRegisters(instruction,
6499                                         out_loc,
6500                                         obj_loc,
6501                                         class_offset,
6502                                         kCompilerReadBarrierOption);
6503       // Walk over the class hierarchy to find a match.
6504       NearLabel loop, success;
6505       __ Bind(&loop);
6506       if (cls.IsRegister()) {
6507         __ cmpl(out, cls.AsRegister<Register>());
6508       } else {
6509         DCHECK(cls.IsStackSlot()) << cls;
6510         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6511       }
6512       __ j(kEqual, &success);
6513       // /* HeapReference<Class> */ out = out->super_class_
6514       GenerateReferenceLoadOneRegister(instruction,
6515                                        out_loc,
6516                                        super_offset,
6517                                        maybe_temp_loc,
6518                                        kCompilerReadBarrierOption);
6519       __ testl(out, out);
6520       __ j(kNotEqual, &loop);
6521       // If `out` is null, we use it for the result, and jump to `done`.
6522       __ jmp(&done);
6523       __ Bind(&success);
6524       __ movl(out, Immediate(1));
6525       if (zero.IsLinked()) {
6526         __ jmp(&done);
6527       }
6528       break;
6529     }
6530 
6531     case TypeCheckKind::kArrayObjectCheck: {
6532       // /* HeapReference<Class> */ out = obj->klass_
6533       GenerateReferenceLoadTwoRegisters(instruction,
6534                                         out_loc,
6535                                         obj_loc,
6536                                         class_offset,
6537                                         kCompilerReadBarrierOption);
6538       // Do an exact check.
6539       NearLabel exact_check;
6540       if (cls.IsRegister()) {
6541         __ cmpl(out, cls.AsRegister<Register>());
6542       } else {
6543         DCHECK(cls.IsStackSlot()) << cls;
6544         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6545       }
6546       __ j(kEqual, &exact_check);
6547       // Otherwise, we need to check that the object's class is a non-primitive array.
6548       // /* HeapReference<Class> */ out = out->component_type_
6549       GenerateReferenceLoadOneRegister(instruction,
6550                                        out_loc,
6551                                        component_offset,
6552                                        maybe_temp_loc,
6553                                        kCompilerReadBarrierOption);
6554       __ testl(out, out);
6555       // If `out` is null, we use it for the result, and jump to `done`.
6556       __ j(kEqual, &done);
6557       __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
6558       __ j(kNotEqual, &zero);
6559       __ Bind(&exact_check);
6560       __ movl(out, Immediate(1));
6561       __ jmp(&done);
6562       break;
6563     }
6564 
6565     case TypeCheckKind::kArrayCheck: {
6566       // No read barrier since the slow path will retry upon failure.
6567       // /* HeapReference<Class> */ out = obj->klass_
6568       GenerateReferenceLoadTwoRegisters(instruction,
6569                                         out_loc,
6570                                         obj_loc,
6571                                         class_offset,
6572                                         kWithoutReadBarrier);
6573       if (cls.IsRegister()) {
6574         __ cmpl(out, cls.AsRegister<Register>());
6575       } else {
6576         DCHECK(cls.IsStackSlot()) << cls;
6577         __ cmpl(out, Address(ESP, cls.GetStackIndex()));
6578       }
6579       DCHECK(locations->OnlyCallsOnSlowPath());
6580       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6581                                                                     /* is_fatal */ false);
6582       codegen_->AddSlowPath(slow_path);
6583       __ j(kNotEqual, slow_path->GetEntryLabel());
6584       __ movl(out, Immediate(1));
6585       if (zero.IsLinked()) {
6586         __ jmp(&done);
6587       }
6588       break;
6589     }
6590 
6591     case TypeCheckKind::kUnresolvedCheck:
6592     case TypeCheckKind::kInterfaceCheck: {
6593       // Note that we indeed only call on slow path, but we always go
6594       // into the slow path for the unresolved and interface check
6595       // cases.
6596       //
6597       // We cannot directly call the InstanceofNonTrivial runtime
6598       // entry point without resorting to a type checking slow path
6599       // here (i.e. by calling InvokeRuntime directly), as it would
6600       // require to assign fixed registers for the inputs of this
6601       // HInstanceOf instruction (following the runtime calling
6602       // convention), which might be cluttered by the potential first
6603       // read barrier emission at the beginning of this method.
6604       //
6605       // TODO: Introduce a new runtime entry point taking the object
6606       // to test (instead of its class) as argument, and let it deal
6607       // with the read barrier issues. This will let us refactor this
6608       // case of the `switch` code as it was previously (with a direct
6609       // call to the runtime not using a type checking slow path).
6610       // This should also be beneficial for the other cases above.
6611       DCHECK(locations->OnlyCallsOnSlowPath());
6612       slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6613                                                                     /* is_fatal */ false);
6614       codegen_->AddSlowPath(slow_path);
6615       __ jmp(slow_path->GetEntryLabel());
6616       if (zero.IsLinked()) {
6617         __ jmp(&done);
6618       }
6619       break;
6620     }
6621   }
6622 
6623   if (zero.IsLinked()) {
6624     __ Bind(&zero);
6625     __ xorl(out, out);
6626   }
6627 
6628   if (done.IsLinked()) {
6629     __ Bind(&done);
6630   }
6631 
6632   if (slow_path != nullptr) {
6633     __ Bind(slow_path->GetExitLabel());
6634   }
6635 }
6636 
IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind,bool throws_into_catch)6637 static bool IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind, bool throws_into_catch) {
6638   switch (type_check_kind) {
6639   case TypeCheckKind::kExactCheck:
6640   case TypeCheckKind::kAbstractClassCheck:
6641   case TypeCheckKind::kClassHierarchyCheck:
6642   case TypeCheckKind::kArrayObjectCheck:
6643     return !throws_into_catch && !kEmitCompilerReadBarrier;
6644   case TypeCheckKind::kInterfaceCheck:
6645     return !throws_into_catch && !kEmitCompilerReadBarrier && !kPoisonHeapReferences;
6646   case TypeCheckKind::kArrayCheck:
6647   case TypeCheckKind::kUnresolvedCheck:
6648     return false;
6649   }
6650   LOG(FATAL) << "Unreachable";
6651   UNREACHABLE();
6652 }
6653 
VisitCheckCast(HCheckCast * instruction)6654 void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
6655   bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
6656   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6657   LocationSummary::CallKind call_kind =
6658       IsTypeCheckSlowPathFatal(type_check_kind, throws_into_catch)
6659           ? LocationSummary::kNoCall
6660           : LocationSummary::kCallOnSlowPath;
6661   LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
6662   locations->SetInAt(0, Location::RequiresRegister());
6663   if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
6664     // Require a register for the interface check since there is a loop that compares the class to
6665     // a memory address.
6666     locations->SetInAt(1, Location::RequiresRegister());
6667   } else {
6668     locations->SetInAt(1, Location::Any());
6669   }
6670   // Note that TypeCheckSlowPathX86 uses this "temp" register too.
6671   locations->AddTemp(Location::RequiresRegister());
6672   // When read barriers are enabled, we need an additional temporary register for some cases.
6673   locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
6674 }
6675 
VisitCheckCast(HCheckCast * instruction)6676 void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
6677   TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
6678   LocationSummary* locations = instruction->GetLocations();
6679   Location obj_loc = locations->InAt(0);
6680   Register obj = obj_loc.AsRegister<Register>();
6681   Location cls = locations->InAt(1);
6682   Location temp_loc = locations->GetTemp(0);
6683   Register temp = temp_loc.AsRegister<Register>();
6684   const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
6685   DCHECK_GE(num_temps, 1u);
6686   DCHECK_LE(num_temps, 2u);
6687   Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
6688   const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
6689   const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
6690   const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
6691   const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
6692   const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
6693   const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
6694   const uint32_t object_array_data_offset =
6695       mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
6696 
6697   // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
6698   // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
6699   // read barriers is done for performance and code size reasons.
6700   bool is_type_check_slow_path_fatal =
6701       IsTypeCheckSlowPathFatal(type_check_kind, instruction->CanThrowIntoCatchBlock());
6702 
6703   SlowPathCode* type_check_slow_path =
6704       new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
6705                                                         is_type_check_slow_path_fatal);
6706   codegen_->AddSlowPath(type_check_slow_path);
6707 
6708   NearLabel done;
6709   // Avoid null check if we know obj is not null.
6710   if (instruction->MustDoNullCheck()) {
6711     __ testl(obj, obj);
6712     __ j(kEqual, &done);
6713   }
6714 
6715   switch (type_check_kind) {
6716     case TypeCheckKind::kExactCheck:
6717     case TypeCheckKind::kArrayCheck: {
6718       // /* HeapReference<Class> */ temp = obj->klass_
6719       GenerateReferenceLoadTwoRegisters(instruction,
6720                                         temp_loc,
6721                                         obj_loc,
6722                                         class_offset,
6723                                         kWithoutReadBarrier);
6724 
6725       if (cls.IsRegister()) {
6726         __ cmpl(temp, cls.AsRegister<Register>());
6727       } else {
6728         DCHECK(cls.IsStackSlot()) << cls;
6729         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6730       }
6731       // Jump to slow path for throwing the exception or doing a
6732       // more involved array check.
6733       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
6734       break;
6735     }
6736 
6737     case TypeCheckKind::kAbstractClassCheck: {
6738       // /* HeapReference<Class> */ temp = obj->klass_
6739       GenerateReferenceLoadTwoRegisters(instruction,
6740                                         temp_loc,
6741                                         obj_loc,
6742                                         class_offset,
6743                                         kWithoutReadBarrier);
6744 
6745       // If the class is abstract, we eagerly fetch the super class of the
6746       // object to avoid doing a comparison we know will fail.
6747       NearLabel loop;
6748       __ Bind(&loop);
6749       // /* HeapReference<Class> */ temp = temp->super_class_
6750       GenerateReferenceLoadOneRegister(instruction,
6751                                        temp_loc,
6752                                        super_offset,
6753                                        maybe_temp2_loc,
6754                                        kWithoutReadBarrier);
6755 
6756       // If the class reference currently in `temp` is null, jump to the slow path to throw the
6757       // exception.
6758       __ testl(temp, temp);
6759       __ j(kZero, type_check_slow_path->GetEntryLabel());
6760 
6761       // Otherwise, compare the classes
6762       if (cls.IsRegister()) {
6763         __ cmpl(temp, cls.AsRegister<Register>());
6764       } else {
6765         DCHECK(cls.IsStackSlot()) << cls;
6766         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6767       }
6768       __ j(kNotEqual, &loop);
6769       break;
6770     }
6771 
6772     case TypeCheckKind::kClassHierarchyCheck: {
6773       // /* HeapReference<Class> */ temp = obj->klass_
6774       GenerateReferenceLoadTwoRegisters(instruction,
6775                                         temp_loc,
6776                                         obj_loc,
6777                                         class_offset,
6778                                         kWithoutReadBarrier);
6779 
6780       // Walk over the class hierarchy to find a match.
6781       NearLabel loop;
6782       __ Bind(&loop);
6783       if (cls.IsRegister()) {
6784         __ cmpl(temp, cls.AsRegister<Register>());
6785       } else {
6786         DCHECK(cls.IsStackSlot()) << cls;
6787         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6788       }
6789       __ j(kEqual, &done);
6790 
6791       // /* HeapReference<Class> */ temp = temp->super_class_
6792       GenerateReferenceLoadOneRegister(instruction,
6793                                        temp_loc,
6794                                        super_offset,
6795                                        maybe_temp2_loc,
6796                                        kWithoutReadBarrier);
6797 
6798       // If the class reference currently in `temp` is not null, jump
6799       // back at the beginning of the loop.
6800       __ testl(temp, temp);
6801       __ j(kNotZero, &loop);
6802       // Otherwise, jump to the slow path to throw the exception.;
6803       __ jmp(type_check_slow_path->GetEntryLabel());
6804       break;
6805     }
6806 
6807     case TypeCheckKind::kArrayObjectCheck: {
6808       // /* HeapReference<Class> */ temp = obj->klass_
6809       GenerateReferenceLoadTwoRegisters(instruction,
6810                                         temp_loc,
6811                                         obj_loc,
6812                                         class_offset,
6813                                         kWithoutReadBarrier);
6814 
6815       // Do an exact check.
6816       if (cls.IsRegister()) {
6817         __ cmpl(temp, cls.AsRegister<Register>());
6818       } else {
6819         DCHECK(cls.IsStackSlot()) << cls;
6820         __ cmpl(temp, Address(ESP, cls.GetStackIndex()));
6821       }
6822       __ j(kEqual, &done);
6823 
6824       // Otherwise, we need to check that the object's class is a non-primitive array.
6825       // /* HeapReference<Class> */ temp = temp->component_type_
6826       GenerateReferenceLoadOneRegister(instruction,
6827                                        temp_loc,
6828                                        component_offset,
6829                                        maybe_temp2_loc,
6830                                        kWithoutReadBarrier);
6831 
6832       // If the component type is null (i.e. the object not an array),  jump to the slow path to
6833       // throw the exception. Otherwise proceed with the check.
6834       __ testl(temp, temp);
6835       __ j(kZero, type_check_slow_path->GetEntryLabel());
6836 
6837       __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
6838       __ j(kNotEqual, type_check_slow_path->GetEntryLabel());
6839       break;
6840     }
6841 
6842     case TypeCheckKind::kUnresolvedCheck:
6843       // We always go into the type check slow path for the unresolved check case.
6844       // We cannot directly call the CheckCast runtime entry point
6845       // without resorting to a type checking slow path here (i.e. by
6846       // calling InvokeRuntime directly), as it would require to
6847       // assign fixed registers for the inputs of this HInstanceOf
6848       // instruction (following the runtime calling convention), which
6849       // might be cluttered by the potential first read barrier
6850       // emission at the beginning of this method.
6851       __ jmp(type_check_slow_path->GetEntryLabel());
6852       break;
6853 
6854     case TypeCheckKind::kInterfaceCheck: {
6855       // Fast path for the interface check. Since we compare with a memory location in the inner
6856       // loop we would need to have cls poisoned. However unpoisoning cls would reset the
6857       // conditional flags and cause the conditional jump to be incorrect. Therefore we just jump
6858       // to the slow path if we are running under poisoning.
6859       if (!kPoisonHeapReferences) {
6860         // Try to avoid read barriers to improve the fast path. We can not get false positives by
6861         // doing this.
6862         // /* HeapReference<Class> */ temp = obj->klass_
6863         GenerateReferenceLoadTwoRegisters(instruction,
6864                                           temp_loc,
6865                                           obj_loc,
6866                                           class_offset,
6867                                           kWithoutReadBarrier);
6868 
6869         // /* HeapReference<Class> */ temp = temp->iftable_
6870         GenerateReferenceLoadTwoRegisters(instruction,
6871                                           temp_loc,
6872                                           temp_loc,
6873                                           iftable_offset,
6874                                           kWithoutReadBarrier);
6875         // Iftable is never null.
6876         __ movl(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset));
6877         // Loop through the iftable and check if any class matches.
6878         NearLabel start_loop;
6879         __ Bind(&start_loop);
6880         // Need to subtract first to handle the empty array case.
6881         __ subl(maybe_temp2_loc.AsRegister<Register>(), Immediate(2));
6882         __ j(kNegative, type_check_slow_path->GetEntryLabel());
6883         // Go to next interface if the classes do not match.
6884         __ cmpl(cls.AsRegister<Register>(),
6885                 CodeGeneratorX86::ArrayAddress(temp,
6886                                                maybe_temp2_loc,
6887                                                TIMES_4,
6888                                                object_array_data_offset));
6889         __ j(kNotEqual, &start_loop);
6890       } else {
6891         __ jmp(type_check_slow_path->GetEntryLabel());
6892       }
6893       break;
6894     }
6895   }
6896   __ Bind(&done);
6897 
6898   __ Bind(type_check_slow_path->GetExitLabel());
6899 }
6900 
VisitMonitorOperation(HMonitorOperation * instruction)6901 void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6902   LocationSummary* locations =
6903       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
6904   InvokeRuntimeCallingConvention calling_convention;
6905   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6906 }
6907 
VisitMonitorOperation(HMonitorOperation * instruction)6908 void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
6909   codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject
6910                                                  : kQuickUnlockObject,
6911                           instruction,
6912                           instruction->GetDexPc());
6913   if (instruction->IsEnter()) {
6914     CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
6915   } else {
6916     CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
6917   }
6918 }
6919 
VisitAnd(HAnd * instruction)6920 void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
VisitOr(HOr * instruction)6921 void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
VisitXor(HXor * instruction)6922 void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
6923 
HandleBitwiseOperation(HBinaryOperation * instruction)6924 void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6925   LocationSummary* locations =
6926       new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
6927   DCHECK(instruction->GetResultType() == Primitive::kPrimInt
6928          || instruction->GetResultType() == Primitive::kPrimLong);
6929   locations->SetInAt(0, Location::RequiresRegister());
6930   locations->SetInAt(1, Location::Any());
6931   locations->SetOut(Location::SameAsFirstInput());
6932 }
6933 
VisitAnd(HAnd * instruction)6934 void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
6935   HandleBitwiseOperation(instruction);
6936 }
6937 
VisitOr(HOr * instruction)6938 void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
6939   HandleBitwiseOperation(instruction);
6940 }
6941 
VisitXor(HXor * instruction)6942 void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
6943   HandleBitwiseOperation(instruction);
6944 }
6945 
HandleBitwiseOperation(HBinaryOperation * instruction)6946 void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
6947   LocationSummary* locations = instruction->GetLocations();
6948   Location first = locations->InAt(0);
6949   Location second = locations->InAt(1);
6950   DCHECK(first.Equals(locations->Out()));
6951 
6952   if (instruction->GetResultType() == Primitive::kPrimInt) {
6953     if (second.IsRegister()) {
6954       if (instruction->IsAnd()) {
6955         __ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
6956       } else if (instruction->IsOr()) {
6957         __ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
6958       } else {
6959         DCHECK(instruction->IsXor());
6960         __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
6961       }
6962     } else if (second.IsConstant()) {
6963       if (instruction->IsAnd()) {
6964         __ andl(first.AsRegister<Register>(),
6965                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6966       } else if (instruction->IsOr()) {
6967         __ orl(first.AsRegister<Register>(),
6968                Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6969       } else {
6970         DCHECK(instruction->IsXor());
6971         __ xorl(first.AsRegister<Register>(),
6972                 Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
6973       }
6974     } else {
6975       if (instruction->IsAnd()) {
6976         __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6977       } else if (instruction->IsOr()) {
6978         __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6979       } else {
6980         DCHECK(instruction->IsXor());
6981         __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
6982       }
6983     }
6984   } else {
6985     DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
6986     if (second.IsRegisterPair()) {
6987       if (instruction->IsAnd()) {
6988         __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6989         __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6990       } else if (instruction->IsOr()) {
6991         __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6992         __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6993       } else {
6994         DCHECK(instruction->IsXor());
6995         __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
6996         __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
6997       }
6998     } else if (second.IsDoubleStackSlot()) {
6999       if (instruction->IsAnd()) {
7000         __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
7001         __ andl(first.AsRegisterPairHigh<Register>(),
7002                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
7003       } else if (instruction->IsOr()) {
7004         __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
7005         __ orl(first.AsRegisterPairHigh<Register>(),
7006                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
7007       } else {
7008         DCHECK(instruction->IsXor());
7009         __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
7010         __ xorl(first.AsRegisterPairHigh<Register>(),
7011                 Address(ESP, second.GetHighStackIndex(kX86WordSize)));
7012       }
7013     } else {
7014       DCHECK(second.IsConstant()) << second;
7015       int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
7016       int32_t low_value = Low32Bits(value);
7017       int32_t high_value = High32Bits(value);
7018       Immediate low(low_value);
7019       Immediate high(high_value);
7020       Register first_low = first.AsRegisterPairLow<Register>();
7021       Register first_high = first.AsRegisterPairHigh<Register>();
7022       if (instruction->IsAnd()) {
7023         if (low_value == 0) {
7024           __ xorl(first_low, first_low);
7025         } else if (low_value != -1) {
7026           __ andl(first_low, low);
7027         }
7028         if (high_value == 0) {
7029           __ xorl(first_high, first_high);
7030         } else if (high_value != -1) {
7031           __ andl(first_high, high);
7032         }
7033       } else if (instruction->IsOr()) {
7034         if (low_value != 0) {
7035           __ orl(first_low, low);
7036         }
7037         if (high_value != 0) {
7038           __ orl(first_high, high);
7039         }
7040       } else {
7041         DCHECK(instruction->IsXor());
7042         if (low_value != 0) {
7043           __ xorl(first_low, low);
7044         }
7045         if (high_value != 0) {
7046           __ xorl(first_high, high);
7047         }
7048       }
7049     }
7050   }
7051 }
7052 
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)7053 void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(
7054     HInstruction* instruction,
7055     Location out,
7056     uint32_t offset,
7057     Location maybe_temp,
7058     ReadBarrierOption read_barrier_option) {
7059   Register out_reg = out.AsRegister<Register>();
7060   if (read_barrier_option == kWithReadBarrier) {
7061     CHECK(kEmitCompilerReadBarrier);
7062     if (kUseBakerReadBarrier) {
7063       // Load with fast path based Baker's read barrier.
7064       // /* HeapReference<Object> */ out = *(out + offset)
7065       codegen_->GenerateFieldLoadWithBakerReadBarrier(
7066           instruction, out, out_reg, offset, /* needs_null_check */ false);
7067     } else {
7068       // Load with slow path based read barrier.
7069       // Save the value of `out` into `maybe_temp` before overwriting it
7070       // in the following move operation, as we will need it for the
7071       // read barrier below.
7072       DCHECK(maybe_temp.IsRegister()) << maybe_temp;
7073       __ movl(maybe_temp.AsRegister<Register>(), out_reg);
7074       // /* HeapReference<Object> */ out = *(out + offset)
7075       __ movl(out_reg, Address(out_reg, offset));
7076       codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
7077     }
7078   } else {
7079     // Plain load with no read barrier.
7080     // /* HeapReference<Object> */ out = *(out + offset)
7081     __ movl(out_reg, Address(out_reg, offset));
7082     __ MaybeUnpoisonHeapReference(out_reg);
7083   }
7084 }
7085 
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,ReadBarrierOption read_barrier_option)7086 void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(
7087     HInstruction* instruction,
7088     Location out,
7089     Location obj,
7090     uint32_t offset,
7091     ReadBarrierOption read_barrier_option) {
7092   Register out_reg = out.AsRegister<Register>();
7093   Register obj_reg = obj.AsRegister<Register>();
7094   if (read_barrier_option == kWithReadBarrier) {
7095     CHECK(kEmitCompilerReadBarrier);
7096     if (kUseBakerReadBarrier) {
7097       // Load with fast path based Baker's read barrier.
7098       // /* HeapReference<Object> */ out = *(obj + offset)
7099       codegen_->GenerateFieldLoadWithBakerReadBarrier(
7100           instruction, out, obj_reg, offset, /* needs_null_check */ false);
7101     } else {
7102       // Load with slow path based read barrier.
7103       // /* HeapReference<Object> */ out = *(obj + offset)
7104       __ movl(out_reg, Address(obj_reg, offset));
7105       codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
7106     }
7107   } else {
7108     // Plain load with no read barrier.
7109     // /* HeapReference<Object> */ out = *(obj + offset)
7110     __ movl(out_reg, Address(obj_reg, offset));
7111     __ MaybeUnpoisonHeapReference(out_reg);
7112   }
7113 }
7114 
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,const Address & address,Label * fixup_label,ReadBarrierOption read_barrier_option)7115 void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(
7116     HInstruction* instruction,
7117     Location root,
7118     const Address& address,
7119     Label* fixup_label,
7120     ReadBarrierOption read_barrier_option) {
7121   Register root_reg = root.AsRegister<Register>();
7122   if (read_barrier_option == kWithReadBarrier) {
7123     DCHECK(kEmitCompilerReadBarrier);
7124     if (kUseBakerReadBarrier) {
7125       // Fast path implementation of art::ReadBarrier::BarrierForRoot when
7126       // Baker's read barrier are used:
7127       //
7128       //   root = obj.field;
7129       //   temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
7130       //   if (temp != null) {
7131       //     root = temp(root)
7132       //   }
7133 
7134       // /* GcRoot<mirror::Object> */ root = *address
7135       __ movl(root_reg, address);
7136       if (fixup_label != nullptr) {
7137         __ Bind(fixup_label);
7138       }
7139       static_assert(
7140           sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
7141           "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
7142           "have different sizes.");
7143       static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
7144                     "art::mirror::CompressedReference<mirror::Object> and int32_t "
7145                     "have different sizes.");
7146 
7147       // Slow path marking the GC root `root`.
7148       SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(
7149           instruction, root, /* unpoison_ref_before_marking */ false);
7150       codegen_->AddSlowPath(slow_path);
7151 
7152       // Test the entrypoint (`Thread::Current()->pReadBarrierMarkReg ## root.reg()`).
7153       const int32_t entry_point_offset =
7154           Thread::ReadBarrierMarkEntryPointsOffset<kX86PointerSize>(root.reg());
7155       __ fs()->cmpl(Address::Absolute(entry_point_offset), Immediate(0));
7156       // The entrypoint is null when the GC is not marking.
7157       __ j(kNotEqual, slow_path->GetEntryLabel());
7158       __ Bind(slow_path->GetExitLabel());
7159     } else {
7160       // GC root loaded through a slow path for read barriers other
7161       // than Baker's.
7162       // /* GcRoot<mirror::Object>* */ root = address
7163       __ leal(root_reg, address);
7164       if (fixup_label != nullptr) {
7165         __ Bind(fixup_label);
7166       }
7167       // /* mirror::Object* */ root = root->Read()
7168       codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
7169     }
7170   } else {
7171     // Plain GC root load with no read barrier.
7172     // /* GcRoot<mirror::Object> */ root = *address
7173     __ movl(root_reg, address);
7174     if (fixup_label != nullptr) {
7175       __ Bind(fixup_label);
7176     }
7177     // Note that GC roots are not affected by heap poisoning, thus we
7178     // do not have to unpoison `root_reg` here.
7179   }
7180 }
7181 
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,bool needs_null_check)7182 void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7183                                                              Location ref,
7184                                                              Register obj,
7185                                                              uint32_t offset,
7186                                                              bool needs_null_check) {
7187   DCHECK(kEmitCompilerReadBarrier);
7188   DCHECK(kUseBakerReadBarrier);
7189 
7190   // /* HeapReference<Object> */ ref = *(obj + offset)
7191   Address src(obj, offset);
7192   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
7193 }
7194 
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)7195 void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
7196                                                              Location ref,
7197                                                              Register obj,
7198                                                              uint32_t data_offset,
7199                                                              Location index,
7200                                                              bool needs_null_check) {
7201   DCHECK(kEmitCompilerReadBarrier);
7202   DCHECK(kUseBakerReadBarrier);
7203 
7204   static_assert(
7205       sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
7206       "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
7207   // /* HeapReference<Object> */ ref =
7208   //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
7209   Address src = CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset);
7210   GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check);
7211 }
7212 
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,const Address & src,bool needs_null_check,bool always_update_field,Register * temp)7213 void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
7214                                                                  Location ref,
7215                                                                  Register obj,
7216                                                                  const Address& src,
7217                                                                  bool needs_null_check,
7218                                                                  bool always_update_field,
7219                                                                  Register* temp) {
7220   DCHECK(kEmitCompilerReadBarrier);
7221   DCHECK(kUseBakerReadBarrier);
7222 
7223   // In slow path based read barriers, the read barrier call is
7224   // inserted after the original load. However, in fast path based
7225   // Baker's read barriers, we need to perform the load of
7226   // mirror::Object::monitor_ *before* the original reference load.
7227   // This load-load ordering is required by the read barrier.
7228   // The fast path/slow path (for Baker's algorithm) should look like:
7229   //
7230   //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
7231   //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
7232   //   HeapReference<Object> ref = *src;  // Original reference load.
7233   //   bool is_gray = (rb_state == ReadBarrier::GrayState());
7234   //   if (is_gray) {
7235   //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
7236   //   }
7237   //
7238   // Note: the original implementation in ReadBarrier::Barrier is
7239   // slightly more complex as:
7240   // - it implements the load-load fence using a data dependency on
7241   //   the high-bits of rb_state, which are expected to be all zeroes
7242   //   (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
7243   //   which is a no-op thanks to the x86 memory model);
7244   // - it performs additional checks that we do not do here for
7245   //   performance reasons.
7246 
7247   Register ref_reg = ref.AsRegister<Register>();
7248   uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
7249 
7250   // Given the numeric representation, it's enough to check the low bit of the rb_state.
7251   static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
7252   static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7253   constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
7254   constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
7255   constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
7256 
7257   // if (rb_state == ReadBarrier::GrayState())
7258   //   ref = ReadBarrier::Mark(ref);
7259   // At this point, just do the "if" and make sure that flags are preserved until the branch.
7260   __ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value));
7261   if (needs_null_check) {
7262     MaybeRecordImplicitNullCheck(instruction);
7263   }
7264 
7265   // Load fence to prevent load-load reordering.
7266   // Note that this is a no-op, thanks to the x86 memory model.
7267   GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
7268 
7269   // The actual reference load.
7270   // /* HeapReference<Object> */ ref = *src
7271   __ movl(ref_reg, src);  // Flags are unaffected.
7272 
7273   // Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch.
7274   // Slow path marking the object `ref` when it is gray.
7275   SlowPathCode* slow_path;
7276   if (always_update_field) {
7277     DCHECK(temp != nullptr);
7278     slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathX86(
7279         instruction, ref, obj, src, /* unpoison_ref_before_marking */ true, *temp);
7280   } else {
7281     slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(
7282         instruction, ref, /* unpoison_ref_before_marking */ true);
7283   }
7284   AddSlowPath(slow_path);
7285 
7286   // We have done the "if" of the gray bit check above, now branch based on the flags.
7287   __ j(kNotZero, slow_path->GetEntryLabel());
7288 
7289   // Object* ref = ref_addr->AsMirrorPtr()
7290   __ MaybeUnpoisonHeapReference(ref_reg);
7291 
7292   __ Bind(slow_path->GetExitLabel());
7293 }
7294 
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7295 void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
7296                                                Location out,
7297                                                Location ref,
7298                                                Location obj,
7299                                                uint32_t offset,
7300                                                Location index) {
7301   DCHECK(kEmitCompilerReadBarrier);
7302 
7303   // Insert a slow path based read barrier *after* the reference load.
7304   //
7305   // If heap poisoning is enabled, the unpoisoning of the loaded
7306   // reference will be carried out by the runtime within the slow
7307   // path.
7308   //
7309   // Note that `ref` currently does not get unpoisoned (when heap
7310   // poisoning is enabled), which is alright as the `ref` argument is
7311   // not used by the artReadBarrierSlow entry point.
7312   //
7313   // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7314   SlowPathCode* slow_path = new (GetGraph()->GetArena())
7315       ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
7316   AddSlowPath(slow_path);
7317 
7318   __ jmp(slow_path->GetEntryLabel());
7319   __ Bind(slow_path->GetExitLabel());
7320 }
7321 
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7322 void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7323                                                     Location out,
7324                                                     Location ref,
7325                                                     Location obj,
7326                                                     uint32_t offset,
7327                                                     Location index) {
7328   if (kEmitCompilerReadBarrier) {
7329     // Baker's read barriers shall be handled by the fast path
7330     // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
7331     DCHECK(!kUseBakerReadBarrier);
7332     // If heap poisoning is enabled, unpoisoning will be taken care of
7333     // by the runtime within the slow path.
7334     GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7335   } else if (kPoisonHeapReferences) {
7336     __ UnpoisonHeapReference(out.AsRegister<Register>());
7337   }
7338 }
7339 
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)7340 void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7341                                                       Location out,
7342                                                       Location root) {
7343   DCHECK(kEmitCompilerReadBarrier);
7344 
7345   // Insert a slow path based read barrier *after* the GC root load.
7346   //
7347   // Note that GC roots are not affected by heap poisoning, so we do
7348   // not need to do anything special for this here.
7349   SlowPathCode* slow_path =
7350       new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
7351   AddSlowPath(slow_path);
7352 
7353   __ jmp(slow_path->GetEntryLabel());
7354   __ Bind(slow_path->GetExitLabel());
7355 }
7356 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7357 void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7358   // Nothing to do, this should be removed during prepare for register allocator.
7359   LOG(FATAL) << "Unreachable";
7360 }
7361 
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)7362 void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
7363   // Nothing to do, this should be removed during prepare for register allocator.
7364   LOG(FATAL) << "Unreachable";
7365 }
7366 
7367 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)7368 void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7369   LocationSummary* locations =
7370       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7371   locations->SetInAt(0, Location::RequiresRegister());
7372 }
7373 
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)7374 void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
7375                                                               int32_t lower_bound,
7376                                                               uint32_t num_entries,
7377                                                               HBasicBlock* switch_block,
7378                                                               HBasicBlock* default_block) {
7379   // Figure out the correct compare values and jump conditions.
7380   // Handle the first compare/branch as a special case because it might
7381   // jump to the default case.
7382   DCHECK_GT(num_entries, 2u);
7383   Condition first_condition;
7384   uint32_t index;
7385   const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
7386   if (lower_bound != 0) {
7387     first_condition = kLess;
7388     __ cmpl(value_reg, Immediate(lower_bound));
7389     __ j(first_condition, codegen_->GetLabelOf(default_block));
7390     __ j(kEqual, codegen_->GetLabelOf(successors[0]));
7391 
7392     index = 1;
7393   } else {
7394     // Handle all the compare/jumps below.
7395     first_condition = kBelow;
7396     index = 0;
7397   }
7398 
7399   // Handle the rest of the compare/jumps.
7400   for (; index + 1 < num_entries; index += 2) {
7401     int32_t compare_to_value = lower_bound + index + 1;
7402     __ cmpl(value_reg, Immediate(compare_to_value));
7403     // Jump to successors[index] if value < case_value[index].
7404     __ j(first_condition, codegen_->GetLabelOf(successors[index]));
7405     // Jump to successors[index + 1] if value == case_value[index + 1].
7406     __ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
7407   }
7408 
7409   if (index != num_entries) {
7410     // There are an odd number of entries. Handle the last one.
7411     DCHECK_EQ(index + 1, num_entries);
7412     __ cmpl(value_reg, Immediate(lower_bound + index));
7413     __ j(kEqual, codegen_->GetLabelOf(successors[index]));
7414   }
7415 
7416   // And the default for any other value.
7417   if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
7418     __ jmp(codegen_->GetLabelOf(default_block));
7419   }
7420 }
7421 
VisitPackedSwitch(HPackedSwitch * switch_instr)7422 void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
7423   int32_t lower_bound = switch_instr->GetStartValue();
7424   uint32_t num_entries = switch_instr->GetNumEntries();
7425   LocationSummary* locations = switch_instr->GetLocations();
7426   Register value_reg = locations->InAt(0).AsRegister<Register>();
7427 
7428   GenPackedSwitchWithCompares(value_reg,
7429                               lower_bound,
7430                               num_entries,
7431                               switch_instr->GetBlock(),
7432                               switch_instr->GetDefaultBlock());
7433 }
7434 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7435 void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7436   LocationSummary* locations =
7437       new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
7438   locations->SetInAt(0, Location::RequiresRegister());
7439 
7440   // Constant area pointer.
7441   locations->SetInAt(1, Location::RequiresRegister());
7442 
7443   // And the temporary we need.
7444   locations->AddTemp(Location::RequiresRegister());
7445 }
7446 
VisitX86PackedSwitch(HX86PackedSwitch * switch_instr)7447 void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
7448   int32_t lower_bound = switch_instr->GetStartValue();
7449   uint32_t num_entries = switch_instr->GetNumEntries();
7450   LocationSummary* locations = switch_instr->GetLocations();
7451   Register value_reg = locations->InAt(0).AsRegister<Register>();
7452   HBasicBlock* default_block = switch_instr->GetDefaultBlock();
7453 
7454   if (num_entries <= kPackedSwitchJumpTableThreshold) {
7455     GenPackedSwitchWithCompares(value_reg,
7456                                 lower_bound,
7457                                 num_entries,
7458                                 switch_instr->GetBlock(),
7459                                 default_block);
7460     return;
7461   }
7462 
7463   // Optimizing has a jump area.
7464   Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
7465   Register constant_area = locations->InAt(1).AsRegister<Register>();
7466 
7467   // Remove the bias, if needed.
7468   if (lower_bound != 0) {
7469     __ leal(temp_reg, Address(value_reg, -lower_bound));
7470     value_reg = temp_reg;
7471   }
7472 
7473   // Is the value in range?
7474   DCHECK_GE(num_entries, 1u);
7475   __ cmpl(value_reg, Immediate(num_entries - 1));
7476   __ j(kAbove, codegen_->GetLabelOf(default_block));
7477 
7478   // We are in the range of the table.
7479   // Load (target-constant_area) from the jump table, indexing by the value.
7480   __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
7481 
7482   // Compute the actual target address by adding in constant_area.
7483   __ addl(temp_reg, constant_area);
7484 
7485   // And jump.
7486   __ jmp(temp_reg);
7487 }
7488 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7489 void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
7490     HX86ComputeBaseMethodAddress* insn) {
7491   LocationSummary* locations =
7492       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7493   locations->SetOut(Location::RequiresRegister());
7494 }
7495 
VisitX86ComputeBaseMethodAddress(HX86ComputeBaseMethodAddress * insn)7496 void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
7497     HX86ComputeBaseMethodAddress* insn) {
7498   LocationSummary* locations = insn->GetLocations();
7499   Register reg = locations->Out().AsRegister<Register>();
7500 
7501   // Generate call to next instruction.
7502   Label next_instruction;
7503   __ call(&next_instruction);
7504   __ Bind(&next_instruction);
7505 
7506   // Remember this offset for later use with constant area.
7507   codegen_->AddMethodAddressOffset(insn, GetAssembler()->CodeSize());
7508 
7509   // Grab the return address off the stack.
7510   __ popl(reg);
7511 }
7512 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7513 void LocationsBuilderX86::VisitX86LoadFromConstantTable(
7514     HX86LoadFromConstantTable* insn) {
7515   LocationSummary* locations =
7516       new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
7517 
7518   locations->SetInAt(0, Location::RequiresRegister());
7519   locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
7520 
7521   // If we don't need to be materialized, we only need the inputs to be set.
7522   if (insn->IsEmittedAtUseSite()) {
7523     return;
7524   }
7525 
7526   switch (insn->GetType()) {
7527     case Primitive::kPrimFloat:
7528     case Primitive::kPrimDouble:
7529       locations->SetOut(Location::RequiresFpuRegister());
7530       break;
7531 
7532     case Primitive::kPrimInt:
7533       locations->SetOut(Location::RequiresRegister());
7534       break;
7535 
7536     default:
7537       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7538   }
7539 }
7540 
VisitX86LoadFromConstantTable(HX86LoadFromConstantTable * insn)7541 void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
7542   if (insn->IsEmittedAtUseSite()) {
7543     return;
7544   }
7545 
7546   LocationSummary* locations = insn->GetLocations();
7547   Location out = locations->Out();
7548   Register const_area = locations->InAt(0).AsRegister<Register>();
7549   HConstant *value = insn->GetConstant();
7550 
7551   switch (insn->GetType()) {
7552     case Primitive::kPrimFloat:
7553       __ movss(out.AsFpuRegister<XmmRegister>(),
7554                codegen_->LiteralFloatAddress(
7555                   value->AsFloatConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
7556       break;
7557 
7558     case Primitive::kPrimDouble:
7559       __ movsd(out.AsFpuRegister<XmmRegister>(),
7560                codegen_->LiteralDoubleAddress(
7561                   value->AsDoubleConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
7562       break;
7563 
7564     case Primitive::kPrimInt:
7565       __ movl(out.AsRegister<Register>(),
7566               codegen_->LiteralInt32Address(
7567                   value->AsIntConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area));
7568       break;
7569 
7570     default:
7571       LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
7572   }
7573 }
7574 
7575 /**
7576  * Class to handle late fixup of offsets into constant area.
7577  */
7578 class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
7579  public:
RIPFixup(CodeGeneratorX86 & codegen,HX86ComputeBaseMethodAddress * base_method_address,size_t offset)7580   RIPFixup(CodeGeneratorX86& codegen,
7581            HX86ComputeBaseMethodAddress* base_method_address,
7582            size_t offset)
7583       : codegen_(&codegen),
7584         base_method_address_(base_method_address),
7585         offset_into_constant_area_(offset) {}
7586 
7587  protected:
SetOffset(size_t offset)7588   void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
7589 
7590   CodeGeneratorX86* codegen_;
7591   HX86ComputeBaseMethodAddress* base_method_address_;
7592 
7593  private:
Process(const MemoryRegion & region,int pos)7594   void Process(const MemoryRegion& region, int pos) OVERRIDE {
7595     // Patch the correct offset for the instruction.  The place to patch is the
7596     // last 4 bytes of the instruction.
7597     // The value to patch is the distance from the offset in the constant area
7598     // from the address computed by the HX86ComputeBaseMethodAddress instruction.
7599     int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
7600     int32_t relative_position =
7601         constant_offset - codegen_->GetMethodAddressOffset(base_method_address_);
7602 
7603     // Patch in the right value.
7604     region.StoreUnaligned<int32_t>(pos - 4, relative_position);
7605   }
7606 
7607   // Location in constant area that the fixup refers to.
7608   int32_t offset_into_constant_area_;
7609 };
7610 
7611 /**
7612  * Class to handle late fixup of offsets to a jump table that will be created in the
7613  * constant area.
7614  */
7615 class JumpTableRIPFixup : public RIPFixup {
7616  public:
JumpTableRIPFixup(CodeGeneratorX86 & codegen,HX86PackedSwitch * switch_instr)7617   JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
7618       : RIPFixup(codegen, switch_instr->GetBaseMethodAddress(), static_cast<size_t>(-1)),
7619         switch_instr_(switch_instr) {}
7620 
CreateJumpTable()7621   void CreateJumpTable() {
7622     X86Assembler* assembler = codegen_->GetAssembler();
7623 
7624     // Ensure that the reference to the jump table has the correct offset.
7625     const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
7626     SetOffset(offset_in_constant_table);
7627 
7628     // The label values in the jump table are computed relative to the
7629     // instruction addressing the constant area.
7630     const int32_t relative_offset = codegen_->GetMethodAddressOffset(base_method_address_);
7631 
7632     // Populate the jump table with the correct values for the jump table.
7633     int32_t num_entries = switch_instr_->GetNumEntries();
7634     HBasicBlock* block = switch_instr_->GetBlock();
7635     const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
7636     // The value that we want is the target offset - the position of the table.
7637     for (int32_t i = 0; i < num_entries; i++) {
7638       HBasicBlock* b = successors[i];
7639       Label* l = codegen_->GetLabelOf(b);
7640       DCHECK(l->IsBound());
7641       int32_t offset_to_block = l->Position() - relative_offset;
7642       assembler->AppendInt32(offset_to_block);
7643     }
7644   }
7645 
7646  private:
7647   const HX86PackedSwitch* switch_instr_;
7648 };
7649 
Finalize(CodeAllocator * allocator)7650 void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
7651   // Generate the constant area if needed.
7652   X86Assembler* assembler = GetAssembler();
7653   if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
7654     // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
7655     // byte values.
7656     assembler->Align(4, 0);
7657     constant_area_start_ = assembler->CodeSize();
7658 
7659     // Populate any jump tables.
7660     for (JumpTableRIPFixup* jump_table : fixups_to_jump_tables_) {
7661       jump_table->CreateJumpTable();
7662     }
7663 
7664     // And now add the constant area to the generated code.
7665     assembler->AddConstantArea();
7666   }
7667 
7668   // And finish up.
7669   CodeGenerator::Finalize(allocator);
7670 }
7671 
LiteralDoubleAddress(double v,HX86ComputeBaseMethodAddress * method_base,Register reg)7672 Address CodeGeneratorX86::LiteralDoubleAddress(double v,
7673                                                HX86ComputeBaseMethodAddress* method_base,
7674                                                Register reg) {
7675   AssemblerFixup* fixup =
7676       new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddDouble(v));
7677   return Address(reg, kDummy32BitOffset, fixup);
7678 }
7679 
LiteralFloatAddress(float v,HX86ComputeBaseMethodAddress * method_base,Register reg)7680 Address CodeGeneratorX86::LiteralFloatAddress(float v,
7681                                               HX86ComputeBaseMethodAddress* method_base,
7682                                               Register reg) {
7683   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddFloat(v));
7684   return Address(reg, kDummy32BitOffset, fixup);
7685 }
7686 
LiteralInt32Address(int32_t v,HX86ComputeBaseMethodAddress * method_base,Register reg)7687 Address CodeGeneratorX86::LiteralInt32Address(int32_t v,
7688                                               HX86ComputeBaseMethodAddress* method_base,
7689                                               Register reg) {
7690   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt32(v));
7691   return Address(reg, kDummy32BitOffset, fixup);
7692 }
7693 
LiteralInt64Address(int64_t v,HX86ComputeBaseMethodAddress * method_base,Register reg)7694 Address CodeGeneratorX86::LiteralInt64Address(int64_t v,
7695                                               HX86ComputeBaseMethodAddress* method_base,
7696                                               Register reg) {
7697   AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt64(v));
7698   return Address(reg, kDummy32BitOffset, fixup);
7699 }
7700 
Load32BitValue(Register dest,int32_t value)7701 void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
7702   if (value == 0) {
7703     __ xorl(dest, dest);
7704   } else {
7705     __ movl(dest, Immediate(value));
7706   }
7707 }
7708 
Compare32BitValue(Register dest,int32_t value)7709 void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
7710   if (value == 0) {
7711     __ testl(dest, dest);
7712   } else {
7713     __ cmpl(dest, Immediate(value));
7714   }
7715 }
7716 
GenerateIntCompare(Location lhs,Location rhs)7717 void CodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
7718   Register lhs_reg = lhs.AsRegister<Register>();
7719   GenerateIntCompare(lhs_reg, rhs);
7720 }
7721 
GenerateIntCompare(Register lhs,Location rhs)7722 void CodeGeneratorX86::GenerateIntCompare(Register lhs, Location rhs) {
7723   if (rhs.IsConstant()) {
7724     int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
7725     Compare32BitValue(lhs, value);
7726   } else if (rhs.IsStackSlot()) {
7727     __ cmpl(lhs, Address(ESP, rhs.GetStackIndex()));
7728   } else {
7729     __ cmpl(lhs, rhs.AsRegister<Register>());
7730   }
7731 }
7732 
ArrayAddress(Register obj,Location index,ScaleFactor scale,uint32_t data_offset)7733 Address CodeGeneratorX86::ArrayAddress(Register obj,
7734                                        Location index,
7735                                        ScaleFactor scale,
7736                                        uint32_t data_offset) {
7737   return index.IsConstant() ?
7738       Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) :
7739       Address(obj, index.AsRegister<Register>(), scale, data_offset);
7740 }
7741 
LiteralCaseTable(HX86PackedSwitch * switch_instr,Register reg,Register value)7742 Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
7743                                            Register reg,
7744                                            Register value) {
7745   // Create a fixup to be used to create and address the jump table.
7746   JumpTableRIPFixup* table_fixup =
7747       new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
7748 
7749   // We have to populate the jump tables.
7750   fixups_to_jump_tables_.push_back(table_fixup);
7751 
7752   // We want a scaled address, as we are extracting the correct offset from the table.
7753   return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
7754 }
7755 
7756 // TODO: target as memory.
MoveFromReturnRegister(Location target,Primitive::Type type)7757 void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
7758   if (!target.IsValid()) {
7759     DCHECK_EQ(type, Primitive::kPrimVoid);
7760     return;
7761   }
7762 
7763   DCHECK_NE(type, Primitive::kPrimVoid);
7764 
7765   Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
7766   if (target.Equals(return_loc)) {
7767     return;
7768   }
7769 
7770   // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
7771   //       with the else branch.
7772   if (type == Primitive::kPrimLong) {
7773     HParallelMove parallel_move(GetGraph()->GetArena());
7774     parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
7775     parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
7776     GetMoveResolver()->EmitNativeCode(&parallel_move);
7777   } else {
7778     // Let the parallel move resolver take care of all of this.
7779     HParallelMove parallel_move(GetGraph()->GetArena());
7780     parallel_move.AddMove(return_loc, target, type, nullptr);
7781     GetMoveResolver()->EmitNativeCode(&parallel_move);
7782   }
7783 }
7784 
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,const PatchInfo<Label> & info,uint64_t index_in_table) const7785 void CodeGeneratorX86::PatchJitRootUse(uint8_t* code,
7786                                        const uint8_t* roots_data,
7787                                        const PatchInfo<Label>& info,
7788                                        uint64_t index_in_table) const {
7789   uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
7790   uintptr_t address =
7791       reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
7792   typedef __attribute__((__aligned__(1))) uint32_t unaligned_uint32_t;
7793   reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] =
7794      dchecked_integral_cast<uint32_t>(address);
7795 }
7796 
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)7797 void CodeGeneratorX86::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
7798   for (const PatchInfo<Label>& info : jit_string_patches_) {
7799     const auto it = jit_string_roots_.find(
7800         StringReference(&info.dex_file, dex::StringIndex(info.index)));
7801     DCHECK(it != jit_string_roots_.end());
7802     uint64_t index_in_table = it->second;
7803     PatchJitRootUse(code, roots_data, info, index_in_table);
7804   }
7805 
7806   for (const PatchInfo<Label>& info : jit_class_patches_) {
7807     const auto it = jit_class_roots_.find(
7808         TypeReference(&info.dex_file, dex::TypeIndex(info.index)));
7809     DCHECK(it != jit_class_roots_.end());
7810     uint64_t index_in_table = it->second;
7811     PatchJitRootUse(code, roots_data, info, index_in_table);
7812   }
7813 }
7814 
7815 #undef __
7816 
7817 }  // namespace x86
7818 }  // namespace art
7819