1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
getClassPointerAlignment(const CXXRecordDecl * RD)36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37 if (!RD->isCompleteDefinition())
38 return CharUnits::One(); // Hopefully won't be used anywhere.
39
40 auto &layout = getContext().getASTRecordLayout(RD);
41
42 // If the class is final, then we know that the pointer points to an
43 // object of that type and can use the full alignment.
44 if (RD->hasAttr<FinalAttr>()) {
45 return layout.getAlignment();
46
47 // Otherwise, we have to assume it could be a subclass.
48 } else {
49 return layout.getNonVirtualAlignment();
50 }
51 }
52
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
getVBaseAlignment(CharUnits actualDerivedAlign,const CXXRecordDecl * derivedClass,const CXXRecordDecl * vbaseClass)55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56 const CXXRecordDecl *derivedClass,
57 const CXXRecordDecl *vbaseClass) {
58 // The basic idea here is that an underaligned derived pointer might
59 // indicate an underaligned base pointer.
60
61 assert(vbaseClass->isCompleteDefinition());
62 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64
65 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66 expectedVBaseAlign);
67 }
68
69 CharUnits
getDynamicOffsetAlignment(CharUnits actualBaseAlign,const CXXRecordDecl * baseDecl,CharUnits expectedTargetAlign)70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71 const CXXRecordDecl *baseDecl,
72 CharUnits expectedTargetAlign) {
73 // If the base is an incomplete type (which is, alas, possible with
74 // member pointers), be pessimistic.
75 if (!baseDecl->isCompleteDefinition())
76 return std::min(actualBaseAlign, expectedTargetAlign);
77
78 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80
81 // If the class is properly aligned, assume the target offset is, too.
82 //
83 // This actually isn't necessarily the right thing to do --- if the
84 // class is a complete object, but it's only properly aligned for a
85 // base subobject, then the alignments of things relative to it are
86 // probably off as well. (Note that this requires the alignment of
87 // the target to be greater than the NV alignment of the derived
88 // class.)
89 //
90 // However, our approach to this kind of under-alignment can only
91 // ever be best effort; after all, we're never going to propagate
92 // alignments through variables or parameters. Note, in particular,
93 // that constructing a polymorphic type in an address that's less
94 // than pointer-aligned will generally trap in the constructor,
95 // unless we someday add some sort of attribute to change the
96 // assumed alignment of 'this'. So our goal here is pretty much
97 // just to allow the user to explicitly say that a pointer is
98 // under-aligned and then safely access its fields and vtables.
99 if (actualBaseAlign >= expectedBaseAlign) {
100 return expectedTargetAlign;
101 }
102
103 // Otherwise, we might be offset by an arbitrary multiple of the
104 // actual alignment. The correct adjustment is to take the min of
105 // the two alignments.
106 return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108
LoadCXXThisAddress()109 Address CodeGenFunction::LoadCXXThisAddress() {
110 assert(CurFuncDecl && "loading 'this' without a func declaration?");
111 assert(isa<CXXMethodDecl>(CurFuncDecl));
112
113 // Lazily compute CXXThisAlignment.
114 if (CXXThisAlignment.isZero()) {
115 // Just use the best known alignment for the parent.
116 // TODO: if we're currently emitting a complete-object ctor/dtor,
117 // we can always use the complete-object alignment.
118 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119 CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120 }
121
122 return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
EmitCXXMemberDataPointerAddress(const Expr * E,Address base,llvm::Value * memberPtr,const MemberPointerType * memberPtrType,AlignmentSource * alignSource)129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130 llvm::Value *memberPtr,
131 const MemberPointerType *memberPtrType,
132 AlignmentSource *alignSource) {
133 // Ask the ABI to compute the actual address.
134 llvm::Value *ptr =
135 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136 memberPtr, memberPtrType);
137
138 QualType memberType = memberPtrType->getPointeeType();
139 CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
140 memberAlign =
141 CGM.getDynamicOffsetAlignment(base.getAlignment(),
142 memberPtrType->getClass()->getAsCXXRecordDecl(),
143 memberAlign);
144 return Address(ptr, memberAlign);
145 }
146
computeNonVirtualBaseClassOffset(const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149 CastExpr::path_const_iterator End) {
150 CharUnits Offset = CharUnits::Zero();
151
152 const ASTContext &Context = getContext();
153 const CXXRecordDecl *RD = DerivedClass;
154
155 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156 const CXXBaseSpecifier *Base = *I;
157 assert(!Base->isVirtual() && "Should not see virtual bases here!");
158
159 // Get the layout.
160 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161
162 const CXXRecordDecl *BaseDecl =
163 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164
165 // Add the offset.
166 Offset += Layout.getBaseClassOffset(BaseDecl);
167
168 RD = BaseDecl;
169 }
170
171 return Offset;
172 }
173
174 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176 CastExpr::path_const_iterator PathBegin,
177 CastExpr::path_const_iterator PathEnd) {
178 assert(PathBegin != PathEnd && "Base path should not be empty!");
179
180 CharUnits Offset =
181 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182 if (Offset.isZero())
183 return nullptr;
184
185 llvm::Type *PtrDiffTy =
186 Types.ConvertType(getContext().getPointerDiffType());
187
188 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
GetAddressOfDirectBaseInCompleteClass(Address This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198 const CXXRecordDecl *Derived,
199 const CXXRecordDecl *Base,
200 bool BaseIsVirtual) {
201 // 'this' must be a pointer (in some address space) to Derived.
202 assert(This.getElementType() == ConvertType(Derived));
203
204 // Compute the offset of the virtual base.
205 CharUnits Offset;
206 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207 if (BaseIsVirtual)
208 Offset = Layout.getVBaseClassOffset(Base);
209 else
210 Offset = Layout.getBaseClassOffset(Base);
211
212 // Shift and cast down to the base type.
213 // TODO: for complete types, this should be possible with a GEP.
214 Address V = This;
215 if (!Offset.isZero()) {
216 V = Builder.CreateElementBitCast(V, Int8Ty);
217 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218 }
219 V = Builder.CreateElementBitCast(V, ConvertType(Base));
220
221 return V;
222 }
223
224 static Address
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,Address addr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset,const CXXRecordDecl * derivedClass,const CXXRecordDecl * nearestVBase)225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226 CharUnits nonVirtualOffset,
227 llvm::Value *virtualOffset,
228 const CXXRecordDecl *derivedClass,
229 const CXXRecordDecl *nearestVBase) {
230 // Assert that we have something to do.
231 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232
233 // Compute the offset from the static and dynamic components.
234 llvm::Value *baseOffset;
235 if (!nonVirtualOffset.isZero()) {
236 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237 nonVirtualOffset.getQuantity());
238 if (virtualOffset) {
239 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240 }
241 } else {
242 baseOffset = virtualOffset;
243 }
244
245 // Apply the base offset.
246 llvm::Value *ptr = addr.getPointer();
247 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249
250 // If we have a virtual component, the alignment of the result will
251 // be relative only to the known alignment of that vbase.
252 CharUnits alignment;
253 if (virtualOffset) {
254 assert(nearestVBase && "virtual offset without vbase?");
255 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256 derivedClass, nearestVBase);
257 } else {
258 alignment = addr.getAlignment();
259 }
260 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261
262 return Address(ptr, alignment);
263 }
264
GetAddressOfBaseClass(Address Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)265 Address CodeGenFunction::GetAddressOfBaseClass(
266 Address Value, const CXXRecordDecl *Derived,
267 CastExpr::path_const_iterator PathBegin,
268 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269 SourceLocation Loc) {
270 assert(PathBegin != PathEnd && "Base path should not be empty!");
271
272 CastExpr::path_const_iterator Start = PathBegin;
273 const CXXRecordDecl *VBase = nullptr;
274
275 // Sema has done some convenient canonicalization here: if the
276 // access path involved any virtual steps, the conversion path will
277 // *start* with a step down to the correct virtual base subobject,
278 // and hence will not require any further steps.
279 if ((*Start)->isVirtual()) {
280 VBase =
281 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282 ++Start;
283 }
284
285 // Compute the static offset of the ultimate destination within its
286 // allocating subobject (the virtual base, if there is one, or else
287 // the "complete" object that we see).
288 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289 VBase ? VBase : Derived, Start, PathEnd);
290
291 // If there's a virtual step, we can sometimes "devirtualize" it.
292 // For now, that's limited to when the derived type is final.
293 // TODO: "devirtualize" this for accesses to known-complete objects.
294 if (VBase && Derived->hasAttr<FinalAttr>()) {
295 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297 NonVirtualOffset += vBaseOffset;
298 VBase = nullptr; // we no longer have a virtual step
299 }
300
301 // Get the base pointer type.
302 llvm::Type *BasePtrTy =
303 ConvertType((PathEnd[-1])->getType())->getPointerTo();
304
305 QualType DerivedTy = getContext().getRecordType(Derived);
306 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307
308 // If the static offset is zero and we don't have a virtual step,
309 // just do a bitcast; null checks are unnecessary.
310 if (NonVirtualOffset.isZero() && !VBase) {
311 if (sanitizePerformTypeCheck()) {
312 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
313 DerivedTy, DerivedAlign, !NullCheckValue);
314 }
315 return Builder.CreateBitCast(Value, BasePtrTy);
316 }
317
318 llvm::BasicBlock *origBB = nullptr;
319 llvm::BasicBlock *endBB = nullptr;
320
321 // Skip over the offset (and the vtable load) if we're supposed to
322 // null-check the pointer.
323 if (NullCheckValue) {
324 origBB = Builder.GetInsertBlock();
325 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
326 endBB = createBasicBlock("cast.end");
327
328 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
329 Builder.CreateCondBr(isNull, endBB, notNullBB);
330 EmitBlock(notNullBB);
331 }
332
333 if (sanitizePerformTypeCheck()) {
334 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
335 Value.getPointer(), DerivedTy, DerivedAlign, true);
336 }
337
338 // Compute the virtual offset.
339 llvm::Value *VirtualOffset = nullptr;
340 if (VBase) {
341 VirtualOffset =
342 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
343 }
344
345 // Apply both offsets.
346 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
347 VirtualOffset, Derived, VBase);
348
349 // Cast to the destination type.
350 Value = Builder.CreateBitCast(Value, BasePtrTy);
351
352 // Build a phi if we needed a null check.
353 if (NullCheckValue) {
354 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
355 Builder.CreateBr(endBB);
356 EmitBlock(endBB);
357
358 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
359 PHI->addIncoming(Value.getPointer(), notNullBB);
360 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
361 Value = Address(PHI, Value.getAlignment());
362 }
363
364 return Value;
365 }
366
367 Address
GetAddressOfDerivedClass(Address BaseAddr,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
369 const CXXRecordDecl *Derived,
370 CastExpr::path_const_iterator PathBegin,
371 CastExpr::path_const_iterator PathEnd,
372 bool NullCheckValue) {
373 assert(PathBegin != PathEnd && "Base path should not be empty!");
374
375 QualType DerivedTy =
376 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
377 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
378
379 llvm::Value *NonVirtualOffset =
380 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
381
382 if (!NonVirtualOffset) {
383 // No offset, we can just cast back.
384 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
385 }
386
387 llvm::BasicBlock *CastNull = nullptr;
388 llvm::BasicBlock *CastNotNull = nullptr;
389 llvm::BasicBlock *CastEnd = nullptr;
390
391 if (NullCheckValue) {
392 CastNull = createBasicBlock("cast.null");
393 CastNotNull = createBasicBlock("cast.notnull");
394 CastEnd = createBasicBlock("cast.end");
395
396 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
397 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
398 EmitBlock(CastNotNull);
399 }
400
401 // Apply the offset.
402 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
403 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
404 "sub.ptr");
405
406 // Just cast.
407 Value = Builder.CreateBitCast(Value, DerivedPtrTy);
408
409 // Produce a PHI if we had a null-check.
410 if (NullCheckValue) {
411 Builder.CreateBr(CastEnd);
412 EmitBlock(CastNull);
413 Builder.CreateBr(CastEnd);
414 EmitBlock(CastEnd);
415
416 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
417 PHI->addIncoming(Value, CastNotNull);
418 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
419 Value = PHI;
420 }
421
422 return Address(Value, CGM.getClassPointerAlignment(Derived));
423 }
424
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
426 bool ForVirtualBase,
427 bool Delegating) {
428 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
429 // This constructor/destructor does not need a VTT parameter.
430 return nullptr;
431 }
432
433 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
434 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
435
436 llvm::Value *VTT;
437
438 uint64_t SubVTTIndex;
439
440 if (Delegating) {
441 // If this is a delegating constructor call, just load the VTT.
442 return LoadCXXVTT();
443 } else if (RD == Base) {
444 // If the record matches the base, this is the complete ctor/dtor
445 // variant calling the base variant in a class with virtual bases.
446 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
447 "doing no-op VTT offset in base dtor/ctor?");
448 assert(!ForVirtualBase && "Can't have same class as virtual base!");
449 SubVTTIndex = 0;
450 } else {
451 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
452 CharUnits BaseOffset = ForVirtualBase ?
453 Layout.getVBaseClassOffset(Base) :
454 Layout.getBaseClassOffset(Base);
455
456 SubVTTIndex =
457 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
458 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
459 }
460
461 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
462 // A VTT parameter was passed to the constructor, use it.
463 VTT = LoadCXXVTT();
464 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
465 } else {
466 // We're the complete constructor, so get the VTT by name.
467 VTT = CGM.getVTables().GetAddrOfVTT(RD);
468 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
469 }
470
471 return VTT;
472 }
473
474 namespace {
475 /// Call the destructor for a direct base class.
476 struct CallBaseDtor final : EHScopeStack::Cleanup {
477 const CXXRecordDecl *BaseClass;
478 bool BaseIsVirtual;
CallBaseDtor__anonf0bc8c9f0111::CallBaseDtor479 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
480 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
481
Emit__anonf0bc8c9f0111::CallBaseDtor482 void Emit(CodeGenFunction &CGF, Flags flags) override {
483 const CXXRecordDecl *DerivedClass =
484 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
485
486 const CXXDestructorDecl *D = BaseClass->getDestructor();
487 Address Addr =
488 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
489 DerivedClass, BaseClass,
490 BaseIsVirtual);
491 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
492 /*Delegating=*/false, Addr);
493 }
494 };
495
496 /// A visitor which checks whether an initializer uses 'this' in a
497 /// way which requires the vtable to be properly set.
498 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
499 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
500
501 bool UsesThis;
502
DynamicThisUseChecker__anonf0bc8c9f0111::DynamicThisUseChecker503 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
504
505 // Black-list all explicit and implicit references to 'this'.
506 //
507 // Do we need to worry about external references to 'this' derived
508 // from arbitrary code? If so, then anything which runs arbitrary
509 // external code might potentially access the vtable.
VisitCXXThisExpr__anonf0bc8c9f0111::DynamicThisUseChecker510 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
511 };
512 } // end anonymous namespace
513
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
515 DynamicThisUseChecker Checker(C);
516 Checker.Visit(Init);
517 return Checker.UsesThis;
518 }
519
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)520 static void EmitBaseInitializer(CodeGenFunction &CGF,
521 const CXXRecordDecl *ClassDecl,
522 CXXCtorInitializer *BaseInit,
523 CXXCtorType CtorType) {
524 assert(BaseInit->isBaseInitializer() &&
525 "Must have base initializer!");
526
527 Address ThisPtr = CGF.LoadCXXThisAddress();
528
529 const Type *BaseType = BaseInit->getBaseClass();
530 CXXRecordDecl *BaseClassDecl =
531 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
532
533 bool isBaseVirtual = BaseInit->isBaseVirtual();
534
535 // The base constructor doesn't construct virtual bases.
536 if (CtorType == Ctor_Base && isBaseVirtual)
537 return;
538
539 // If the initializer for the base (other than the constructor
540 // itself) accesses 'this' in any way, we need to initialize the
541 // vtables.
542 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
543 CGF.InitializeVTablePointers(ClassDecl);
544
545 // We can pretend to be a complete class because it only matters for
546 // virtual bases, and we only do virtual bases for complete ctors.
547 Address V =
548 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
549 BaseClassDecl,
550 isBaseVirtual);
551 AggValueSlot AggSlot =
552 AggValueSlot::forAddr(V, Qualifiers(),
553 AggValueSlot::IsDestructed,
554 AggValueSlot::DoesNotNeedGCBarriers,
555 AggValueSlot::IsNotAliased);
556
557 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
558
559 if (CGF.CGM.getLangOpts().Exceptions &&
560 !BaseClassDecl->hasTrivialDestructor())
561 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
562 isBaseVirtual);
563 }
564
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,Address ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)565 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
566 LValue LHS,
567 Expr *Init,
568 Address ArrayIndexVar,
569 QualType T,
570 ArrayRef<VarDecl *> ArrayIndexes,
571 unsigned Index) {
572 if (Index == ArrayIndexes.size()) {
573 LValue LV = LHS;
574
575 if (ArrayIndexVar.isValid()) {
576 // If we have an array index variable, load it and use it as an offset.
577 // Then, increment the value.
578 llvm::Value *Dest = LHS.getPointer();
579 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
580 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
581 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
582 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
583 CGF.Builder.CreateStore(Next, ArrayIndexVar);
584
585 // Update the LValue.
586 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
587 CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
588 LV.setAddress(Address(Dest, Align));
589 }
590
591 switch (CGF.getEvaluationKind(T)) {
592 case TEK_Scalar:
593 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
594 break;
595 case TEK_Complex:
596 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
597 break;
598 case TEK_Aggregate: {
599 AggValueSlot Slot =
600 AggValueSlot::forLValue(LV,
601 AggValueSlot::IsDestructed,
602 AggValueSlot::DoesNotNeedGCBarriers,
603 AggValueSlot::IsNotAliased);
604
605 CGF.EmitAggExpr(Init, Slot);
606 break;
607 }
608 }
609
610 return;
611 }
612
613 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
614 assert(Array && "Array initialization without the array type?");
615 Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
616
617 // Initialize this index variable to zero.
618 llvm::Value* Zero
619 = llvm::Constant::getNullValue(IndexVar.getElementType());
620 CGF.Builder.CreateStore(Zero, IndexVar);
621
622 // Start the loop with a block that tests the condition.
623 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
624 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
625
626 CGF.EmitBlock(CondBlock);
627
628 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
629 // Generate: if (loop-index < number-of-elements) fall to the loop body,
630 // otherwise, go to the block after the for-loop.
631 uint64_t NumElements = Array->getSize().getZExtValue();
632 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
633 llvm::Value *NumElementsPtr =
634 llvm::ConstantInt::get(Counter->getType(), NumElements);
635 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
636 "isless");
637
638 // If the condition is true, execute the body.
639 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
640
641 CGF.EmitBlock(ForBody);
642 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
643
644 // Inside the loop body recurse to emit the inner loop or, eventually, the
645 // constructor call.
646 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
647 Array->getElementType(), ArrayIndexes, Index + 1);
648
649 CGF.EmitBlock(ContinueBlock);
650
651 // Emit the increment of the loop counter.
652 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
653 Counter = CGF.Builder.CreateLoad(IndexVar);
654 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
655 CGF.Builder.CreateStore(NextVal, IndexVar);
656
657 // Finally, branch back up to the condition for the next iteration.
658 CGF.EmitBranch(CondBlock);
659
660 // Emit the fall-through block.
661 CGF.EmitBlock(AfterFor, true);
662 }
663
isMemcpyEquivalentSpecialMember(const CXXMethodDecl * D)664 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
665 auto *CD = dyn_cast<CXXConstructorDecl>(D);
666 if (!(CD && CD->isCopyOrMoveConstructor()) &&
667 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
668 return false;
669
670 // We can emit a memcpy for a trivial copy or move constructor/assignment.
671 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
672 return true;
673
674 // We *must* emit a memcpy for a defaulted union copy or move op.
675 if (D->getParent()->isUnion() && D->isDefaulted())
676 return true;
677
678 return false;
679 }
680
EmitLValueForAnyFieldInitialization(CodeGenFunction & CGF,CXXCtorInitializer * MemberInit,LValue & LHS)681 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
682 CXXCtorInitializer *MemberInit,
683 LValue &LHS) {
684 FieldDecl *Field = MemberInit->getAnyMember();
685 if (MemberInit->isIndirectMemberInitializer()) {
686 // If we are initializing an anonymous union field, drill down to the field.
687 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
688 for (const auto *I : IndirectField->chain())
689 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
690 } else {
691 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
692 }
693 }
694
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)695 static void EmitMemberInitializer(CodeGenFunction &CGF,
696 const CXXRecordDecl *ClassDecl,
697 CXXCtorInitializer *MemberInit,
698 const CXXConstructorDecl *Constructor,
699 FunctionArgList &Args) {
700 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
701 assert(MemberInit->isAnyMemberInitializer() &&
702 "Must have member initializer!");
703 assert(MemberInit->getInit() && "Must have initializer!");
704
705 // non-static data member initializers.
706 FieldDecl *Field = MemberInit->getAnyMember();
707 QualType FieldType = Field->getType();
708
709 llvm::Value *ThisPtr = CGF.LoadCXXThis();
710 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
711 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
712
713 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
714
715 // Special case: if we are in a copy or move constructor, and we are copying
716 // an array of PODs or classes with trivial copy constructors, ignore the
717 // AST and perform the copy we know is equivalent.
718 // FIXME: This is hacky at best... if we had a bit more explicit information
719 // in the AST, we could generalize it more easily.
720 const ConstantArrayType *Array
721 = CGF.getContext().getAsConstantArrayType(FieldType);
722 if (Array && Constructor->isDefaulted() &&
723 Constructor->isCopyOrMoveConstructor()) {
724 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
725 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
726 if (BaseElementTy.isPODType(CGF.getContext()) ||
727 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
728 unsigned SrcArgIndex =
729 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
730 llvm::Value *SrcPtr
731 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
732 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
733 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
734
735 // Copy the aggregate.
736 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
737 LHS.isVolatileQualified());
738 // Ensure that we destroy the objects if an exception is thrown later in
739 // the constructor.
740 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
741 if (CGF.needsEHCleanup(dtorKind))
742 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
743 return;
744 }
745 }
746
747 ArrayRef<VarDecl *> ArrayIndexes;
748 if (MemberInit->getNumArrayIndices())
749 ArrayIndexes = MemberInit->getArrayIndices();
750 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
751 }
752
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)753 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
754 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
755 QualType FieldType = Field->getType();
756 switch (getEvaluationKind(FieldType)) {
757 case TEK_Scalar:
758 if (LHS.isSimple()) {
759 EmitExprAsInit(Init, Field, LHS, false);
760 } else {
761 RValue RHS = RValue::get(EmitScalarExpr(Init));
762 EmitStoreThroughLValue(RHS, LHS);
763 }
764 break;
765 case TEK_Complex:
766 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
767 break;
768 case TEK_Aggregate: {
769 Address ArrayIndexVar = Address::invalid();
770 if (ArrayIndexes.size()) {
771 // The LHS is a pointer to the first object we'll be constructing, as
772 // a flat array.
773 QualType BaseElementTy = getContext().getBaseElementType(FieldType);
774 llvm::Type *BasePtr = ConvertType(BaseElementTy);
775 BasePtr = llvm::PointerType::getUnqual(BasePtr);
776 Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
777 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
778
779 // Create an array index that will be used to walk over all of the
780 // objects we're constructing.
781 ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
782 llvm::Value *Zero =
783 llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
784 Builder.CreateStore(Zero, ArrayIndexVar);
785
786 // Emit the block variables for the array indices, if any.
787 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
788 EmitAutoVarDecl(*ArrayIndexes[I]);
789 }
790
791 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
792 ArrayIndexes, 0);
793 }
794 }
795
796 // Ensure that we destroy this object if an exception is thrown
797 // later in the constructor.
798 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
799 if (needsEHCleanup(dtorKind))
800 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
801 }
802
803 /// Checks whether the given constructor is a valid subject for the
804 /// complete-to-base constructor delegation optimization, i.e.
805 /// emitting the complete constructor as a simple call to the base
806 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)807 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
808
809 // Currently we disable the optimization for classes with virtual
810 // bases because (1) the addresses of parameter variables need to be
811 // consistent across all initializers but (2) the delegate function
812 // call necessarily creates a second copy of the parameter variable.
813 //
814 // The limiting example (purely theoretical AFAIK):
815 // struct A { A(int &c) { c++; } };
816 // struct B : virtual A {
817 // B(int count) : A(count) { printf("%d\n", count); }
818 // };
819 // ...although even this example could in principle be emitted as a
820 // delegation since the address of the parameter doesn't escape.
821 if (Ctor->getParent()->getNumVBases()) {
822 // TODO: white-list trivial vbase initializers. This case wouldn't
823 // be subject to the restrictions below.
824
825 // TODO: white-list cases where:
826 // - there are no non-reference parameters to the constructor
827 // - the initializers don't access any non-reference parameters
828 // - the initializers don't take the address of non-reference
829 // parameters
830 // - etc.
831 // If we ever add any of the above cases, remember that:
832 // - function-try-blocks will always blacklist this optimization
833 // - we need to perform the constructor prologue and cleanup in
834 // EmitConstructorBody.
835
836 return false;
837 }
838
839 // We also disable the optimization for variadic functions because
840 // it's impossible to "re-pass" varargs.
841 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
842 return false;
843
844 // FIXME: Decide if we can do a delegation of a delegating constructor.
845 if (Ctor->isDelegatingConstructor())
846 return false;
847
848 return true;
849 }
850
851 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
852 // to poison the extra field paddings inserted under
853 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)854 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
855 ASTContext &Context = getContext();
856 const CXXRecordDecl *ClassDecl =
857 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
858 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
859 if (!ClassDecl->mayInsertExtraPadding()) return;
860
861 struct SizeAndOffset {
862 uint64_t Size;
863 uint64_t Offset;
864 };
865
866 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
867 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
868
869 // Populate sizes and offsets of fields.
870 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
871 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
872 SSV[i].Offset =
873 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
874
875 size_t NumFields = 0;
876 for (const auto *Field : ClassDecl->fields()) {
877 const FieldDecl *D = Field;
878 std::pair<CharUnits, CharUnits> FieldInfo =
879 Context.getTypeInfoInChars(D->getType());
880 CharUnits FieldSize = FieldInfo.first;
881 assert(NumFields < SSV.size());
882 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
883 NumFields++;
884 }
885 assert(NumFields == SSV.size());
886 if (SSV.size() <= 1) return;
887
888 // We will insert calls to __asan_* run-time functions.
889 // LLVM AddressSanitizer pass may decide to inline them later.
890 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
891 llvm::FunctionType *FTy =
892 llvm::FunctionType::get(CGM.VoidTy, Args, false);
893 llvm::Constant *F = CGM.CreateRuntimeFunction(
894 FTy, Prologue ? "__asan_poison_intra_object_redzone"
895 : "__asan_unpoison_intra_object_redzone");
896
897 llvm::Value *ThisPtr = LoadCXXThis();
898 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
899 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
900 // For each field check if it has sufficient padding,
901 // if so (un)poison it with a call.
902 for (size_t i = 0; i < SSV.size(); i++) {
903 uint64_t AsanAlignment = 8;
904 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
905 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
906 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
907 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
908 (NextField % AsanAlignment) != 0)
909 continue;
910 Builder.CreateCall(
911 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
912 Builder.getIntN(PtrSize, PoisonSize)});
913 }
914 }
915
916 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)917 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
918 EmitAsanPrologueOrEpilogue(true);
919 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
920 CXXCtorType CtorType = CurGD.getCtorType();
921
922 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
923 CtorType == Ctor_Complete) &&
924 "can only generate complete ctor for this ABI");
925
926 // Before we go any further, try the complete->base constructor
927 // delegation optimization.
928 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
929 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
930 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
931 return;
932 }
933
934 const FunctionDecl *Definition = nullptr;
935 Stmt *Body = Ctor->getBody(Definition);
936 assert(Definition == Ctor && "emitting wrong constructor body");
937
938 // Enter the function-try-block before the constructor prologue if
939 // applicable.
940 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
941 if (IsTryBody)
942 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
943
944 incrementProfileCounter(Body);
945
946 RunCleanupsScope RunCleanups(*this);
947
948 // TODO: in restricted cases, we can emit the vbase initializers of
949 // a complete ctor and then delegate to the base ctor.
950
951 // Emit the constructor prologue, i.e. the base and member
952 // initializers.
953 EmitCtorPrologue(Ctor, CtorType, Args);
954
955 // Emit the body of the statement.
956 if (IsTryBody)
957 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
958 else if (Body)
959 EmitStmt(Body);
960
961 // Emit any cleanup blocks associated with the member or base
962 // initializers, which includes (along the exceptional path) the
963 // destructors for those members and bases that were fully
964 // constructed.
965 RunCleanups.ForceCleanup();
966
967 if (IsTryBody)
968 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
969 }
970
971 namespace {
972 /// RAII object to indicate that codegen is copying the value representation
973 /// instead of the object representation. Useful when copying a struct or
974 /// class which has uninitialized members and we're only performing
975 /// lvalue-to-rvalue conversion on the object but not its members.
976 class CopyingValueRepresentation {
977 public:
CopyingValueRepresentation(CodeGenFunction & CGF)978 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
979 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
980 CGF.SanOpts.set(SanitizerKind::Bool, false);
981 CGF.SanOpts.set(SanitizerKind::Enum, false);
982 }
~CopyingValueRepresentation()983 ~CopyingValueRepresentation() {
984 CGF.SanOpts = OldSanOpts;
985 }
986 private:
987 CodeGenFunction &CGF;
988 SanitizerSet OldSanOpts;
989 };
990 } // end anonymous namespace
991
992 namespace {
993 class FieldMemcpyizer {
994 public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)995 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
996 const VarDecl *SrcRec)
997 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
998 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
999 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
1000 LastFieldOffset(0), LastAddedFieldIndex(0) {}
1001
isMemcpyableField(FieldDecl * F) const1002 bool isMemcpyableField(FieldDecl *F) const {
1003 // Never memcpy fields when we are adding poisoned paddings.
1004 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1005 return false;
1006 Qualifiers Qual = F->getType().getQualifiers();
1007 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1008 return false;
1009 return true;
1010 }
1011
addMemcpyableField(FieldDecl * F)1012 void addMemcpyableField(FieldDecl *F) {
1013 if (!FirstField)
1014 addInitialField(F);
1015 else
1016 addNextField(F);
1017 }
1018
getMemcpySize(uint64_t FirstByteOffset) const1019 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1020 unsigned LastFieldSize =
1021 LastField->isBitField() ?
1022 LastField->getBitWidthValue(CGF.getContext()) :
1023 CGF.getContext().getTypeSize(LastField->getType());
1024 uint64_t MemcpySizeBits =
1025 LastFieldOffset + LastFieldSize - FirstByteOffset +
1026 CGF.getContext().getCharWidth() - 1;
1027 CharUnits MemcpySize =
1028 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1029 return MemcpySize;
1030 }
1031
emitMemcpy()1032 void emitMemcpy() {
1033 // Give the subclass a chance to bail out if it feels the memcpy isn't
1034 // worth it (e.g. Hasn't aggregated enough data).
1035 if (!FirstField) {
1036 return;
1037 }
1038
1039 uint64_t FirstByteOffset;
1040 if (FirstField->isBitField()) {
1041 const CGRecordLayout &RL =
1042 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1043 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1044 // FirstFieldOffset is not appropriate for bitfields,
1045 // we need to use the storage offset instead.
1046 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1047 } else {
1048 FirstByteOffset = FirstFieldOffset;
1049 }
1050
1051 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1052 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1053 Address ThisPtr = CGF.LoadCXXThisAddress();
1054 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1055 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1056 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1057 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1058 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1059
1060 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1061 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1062 MemcpySize);
1063 reset();
1064 }
1065
reset()1066 void reset() {
1067 FirstField = nullptr;
1068 }
1069
1070 protected:
1071 CodeGenFunction &CGF;
1072 const CXXRecordDecl *ClassDecl;
1073
1074 private:
emitMemcpyIR(Address DestPtr,Address SrcPtr,CharUnits Size)1075 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1076 llvm::PointerType *DPT = DestPtr.getType();
1077 llvm::Type *DBP =
1078 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1079 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1080
1081 llvm::PointerType *SPT = SrcPtr.getType();
1082 llvm::Type *SBP =
1083 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1084 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1085
1086 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1087 }
1088
addInitialField(FieldDecl * F)1089 void addInitialField(FieldDecl *F) {
1090 FirstField = F;
1091 LastField = F;
1092 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1093 LastFieldOffset = FirstFieldOffset;
1094 LastAddedFieldIndex = F->getFieldIndex();
1095 }
1096
addNextField(FieldDecl * F)1097 void addNextField(FieldDecl *F) {
1098 // For the most part, the following invariant will hold:
1099 // F->getFieldIndex() == LastAddedFieldIndex + 1
1100 // The one exception is that Sema won't add a copy-initializer for an
1101 // unnamed bitfield, which will show up here as a gap in the sequence.
1102 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1103 "Cannot aggregate fields out of order.");
1104 LastAddedFieldIndex = F->getFieldIndex();
1105
1106 // The 'first' and 'last' fields are chosen by offset, rather than field
1107 // index. This allows the code to support bitfields, as well as regular
1108 // fields.
1109 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1110 if (FOffset < FirstFieldOffset) {
1111 FirstField = F;
1112 FirstFieldOffset = FOffset;
1113 } else if (FOffset > LastFieldOffset) {
1114 LastField = F;
1115 LastFieldOffset = FOffset;
1116 }
1117 }
1118
1119 const VarDecl *SrcRec;
1120 const ASTRecordLayout &RecLayout;
1121 FieldDecl *FirstField;
1122 FieldDecl *LastField;
1123 uint64_t FirstFieldOffset, LastFieldOffset;
1124 unsigned LastAddedFieldIndex;
1125 };
1126
1127 class ConstructorMemcpyizer : public FieldMemcpyizer {
1128 private:
1129 /// Get source argument for copy constructor. Returns null if not a copy
1130 /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1131 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1132 const CXXConstructorDecl *CD,
1133 FunctionArgList &Args) {
1134 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1135 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1136 return nullptr;
1137 }
1138
1139 // Returns true if a CXXCtorInitializer represents a member initialization
1140 // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1141 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1142 if (!MemcpyableCtor)
1143 return false;
1144 FieldDecl *Field = MemberInit->getMember();
1145 assert(Field && "No field for member init.");
1146 QualType FieldType = Field->getType();
1147 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1148
1149 // Bail out on non-memcpyable, not-trivially-copyable members.
1150 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1151 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1152 FieldType->isReferenceType()))
1153 return false;
1154
1155 // Bail out on volatile fields.
1156 if (!isMemcpyableField(Field))
1157 return false;
1158
1159 // Otherwise we're good.
1160 return true;
1161 }
1162
1163 public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1164 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1165 FunctionArgList &Args)
1166 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1167 ConstructorDecl(CD),
1168 MemcpyableCtor(CD->isDefaulted() &&
1169 CD->isCopyOrMoveConstructor() &&
1170 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1171 Args(Args) { }
1172
addMemberInitializer(CXXCtorInitializer * MemberInit)1173 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1174 if (isMemberInitMemcpyable(MemberInit)) {
1175 AggregatedInits.push_back(MemberInit);
1176 addMemcpyableField(MemberInit->getMember());
1177 } else {
1178 emitAggregatedInits();
1179 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1180 ConstructorDecl, Args);
1181 }
1182 }
1183
emitAggregatedInits()1184 void emitAggregatedInits() {
1185 if (AggregatedInits.size() <= 1) {
1186 // This memcpy is too small to be worthwhile. Fall back on default
1187 // codegen.
1188 if (!AggregatedInits.empty()) {
1189 CopyingValueRepresentation CVR(CGF);
1190 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1191 AggregatedInits[0], ConstructorDecl, Args);
1192 AggregatedInits.clear();
1193 }
1194 reset();
1195 return;
1196 }
1197
1198 pushEHDestructors();
1199 emitMemcpy();
1200 AggregatedInits.clear();
1201 }
1202
pushEHDestructors()1203 void pushEHDestructors() {
1204 Address ThisPtr = CGF.LoadCXXThisAddress();
1205 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1206 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1207
1208 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1209 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1210 QualType FieldType = MemberInit->getAnyMember()->getType();
1211 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1212 if (!CGF.needsEHCleanup(dtorKind))
1213 continue;
1214 LValue FieldLHS = LHS;
1215 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1216 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1217 }
1218 }
1219
finish()1220 void finish() {
1221 emitAggregatedInits();
1222 }
1223
1224 private:
1225 const CXXConstructorDecl *ConstructorDecl;
1226 bool MemcpyableCtor;
1227 FunctionArgList &Args;
1228 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1229 };
1230
1231 class AssignmentMemcpyizer : public FieldMemcpyizer {
1232 private:
1233 // Returns the memcpyable field copied by the given statement, if one
1234 // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1235 FieldDecl *getMemcpyableField(Stmt *S) {
1236 if (!AssignmentsMemcpyable)
1237 return nullptr;
1238 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1239 // Recognise trivial assignments.
1240 if (BO->getOpcode() != BO_Assign)
1241 return nullptr;
1242 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1243 if (!ME)
1244 return nullptr;
1245 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1246 if (!Field || !isMemcpyableField(Field))
1247 return nullptr;
1248 Stmt *RHS = BO->getRHS();
1249 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1250 RHS = EC->getSubExpr();
1251 if (!RHS)
1252 return nullptr;
1253 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1254 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1255 return nullptr;
1256 return Field;
1257 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1258 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1259 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1260 return nullptr;
1261 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1262 if (!IOA)
1263 return nullptr;
1264 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1265 if (!Field || !isMemcpyableField(Field))
1266 return nullptr;
1267 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1268 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1269 return nullptr;
1270 return Field;
1271 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1272 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1273 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1274 return nullptr;
1275 Expr *DstPtr = CE->getArg(0);
1276 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1277 DstPtr = DC->getSubExpr();
1278 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1279 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1280 return nullptr;
1281 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1282 if (!ME)
1283 return nullptr;
1284 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1285 if (!Field || !isMemcpyableField(Field))
1286 return nullptr;
1287 Expr *SrcPtr = CE->getArg(1);
1288 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1289 SrcPtr = SC->getSubExpr();
1290 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1291 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1292 return nullptr;
1293 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1294 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1295 return nullptr;
1296 return Field;
1297 }
1298
1299 return nullptr;
1300 }
1301
1302 bool AssignmentsMemcpyable;
1303 SmallVector<Stmt*, 16> AggregatedStmts;
1304
1305 public:
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1306 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1307 FunctionArgList &Args)
1308 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1309 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1310 assert(Args.size() == 2);
1311 }
1312
emitAssignment(Stmt * S)1313 void emitAssignment(Stmt *S) {
1314 FieldDecl *F = getMemcpyableField(S);
1315 if (F) {
1316 addMemcpyableField(F);
1317 AggregatedStmts.push_back(S);
1318 } else {
1319 emitAggregatedStmts();
1320 CGF.EmitStmt(S);
1321 }
1322 }
1323
emitAggregatedStmts()1324 void emitAggregatedStmts() {
1325 if (AggregatedStmts.size() <= 1) {
1326 if (!AggregatedStmts.empty()) {
1327 CopyingValueRepresentation CVR(CGF);
1328 CGF.EmitStmt(AggregatedStmts[0]);
1329 }
1330 reset();
1331 }
1332
1333 emitMemcpy();
1334 AggregatedStmts.clear();
1335 }
1336
finish()1337 void finish() {
1338 emitAggregatedStmts();
1339 }
1340 };
1341 } // end anonymous namespace
1342
isInitializerOfDynamicClass(const CXXCtorInitializer * BaseInit)1343 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1344 const Type *BaseType = BaseInit->getBaseClass();
1345 const auto *BaseClassDecl =
1346 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1347 return BaseClassDecl->isDynamicClass();
1348 }
1349
1350 /// EmitCtorPrologue - This routine generates necessary code to initialize
1351 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1352 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1353 CXXCtorType CtorType,
1354 FunctionArgList &Args) {
1355 if (CD->isDelegatingConstructor())
1356 return EmitDelegatingCXXConstructorCall(CD, Args);
1357
1358 const CXXRecordDecl *ClassDecl = CD->getParent();
1359
1360 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1361 E = CD->init_end();
1362
1363 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1364 if (ClassDecl->getNumVBases() &&
1365 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1366 // The ABIs that don't have constructor variants need to put a branch
1367 // before the virtual base initialization code.
1368 BaseCtorContinueBB =
1369 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1370 assert(BaseCtorContinueBB);
1371 }
1372
1373 llvm::Value *const OldThis = CXXThisValue;
1374 // Virtual base initializers first.
1375 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1376 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1377 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1378 isInitializerOfDynamicClass(*B))
1379 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1380 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1381 }
1382
1383 if (BaseCtorContinueBB) {
1384 // Complete object handler should continue to the remaining initializers.
1385 Builder.CreateBr(BaseCtorContinueBB);
1386 EmitBlock(BaseCtorContinueBB);
1387 }
1388
1389 // Then, non-virtual base initializers.
1390 for (; B != E && (*B)->isBaseInitializer(); B++) {
1391 assert(!(*B)->isBaseVirtual());
1392
1393 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1394 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1395 isInitializerOfDynamicClass(*B))
1396 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1397 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1398 }
1399
1400 CXXThisValue = OldThis;
1401
1402 InitializeVTablePointers(ClassDecl);
1403
1404 // And finally, initialize class members.
1405 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1406 ConstructorMemcpyizer CM(*this, CD, Args);
1407 for (; B != E; B++) {
1408 CXXCtorInitializer *Member = (*B);
1409 assert(!Member->isBaseInitializer());
1410 assert(Member->isAnyMemberInitializer() &&
1411 "Delegating initializer on non-delegating constructor");
1412 CM.addMemberInitializer(Member);
1413 }
1414 CM.finish();
1415 }
1416
1417 static bool
1418 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1419
1420 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1421 HasTrivialDestructorBody(ASTContext &Context,
1422 const CXXRecordDecl *BaseClassDecl,
1423 const CXXRecordDecl *MostDerivedClassDecl)
1424 {
1425 // If the destructor is trivial we don't have to check anything else.
1426 if (BaseClassDecl->hasTrivialDestructor())
1427 return true;
1428
1429 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1430 return false;
1431
1432 // Check fields.
1433 for (const auto *Field : BaseClassDecl->fields())
1434 if (!FieldHasTrivialDestructorBody(Context, Field))
1435 return false;
1436
1437 // Check non-virtual bases.
1438 for (const auto &I : BaseClassDecl->bases()) {
1439 if (I.isVirtual())
1440 continue;
1441
1442 const CXXRecordDecl *NonVirtualBase =
1443 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1444 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1445 MostDerivedClassDecl))
1446 return false;
1447 }
1448
1449 if (BaseClassDecl == MostDerivedClassDecl) {
1450 // Check virtual bases.
1451 for (const auto &I : BaseClassDecl->vbases()) {
1452 const CXXRecordDecl *VirtualBase =
1453 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1454 if (!HasTrivialDestructorBody(Context, VirtualBase,
1455 MostDerivedClassDecl))
1456 return false;
1457 }
1458 }
1459
1460 return true;
1461 }
1462
1463 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1464 FieldHasTrivialDestructorBody(ASTContext &Context,
1465 const FieldDecl *Field)
1466 {
1467 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1468
1469 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1470 if (!RT)
1471 return true;
1472
1473 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1474
1475 // The destructor for an implicit anonymous union member is never invoked.
1476 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1477 return false;
1478
1479 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1480 }
1481
1482 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1483 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor)1484 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1485 const CXXDestructorDecl *Dtor) {
1486 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1487 if (!ClassDecl->isDynamicClass())
1488 return true;
1489
1490 if (!Dtor->hasTrivialBody())
1491 return false;
1492
1493 // Check the fields.
1494 for (const auto *Field : ClassDecl->fields())
1495 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1496 return false;
1497
1498 return true;
1499 }
1500
1501 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1502 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1503 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1504 CXXDtorType DtorType = CurGD.getDtorType();
1505
1506 Stmt *Body = Dtor->getBody();
1507 if (Body)
1508 incrementProfileCounter(Body);
1509
1510 // The call to operator delete in a deleting destructor happens
1511 // outside of the function-try-block, which means it's always
1512 // possible to delegate the destructor body to the complete
1513 // destructor. Do so.
1514 if (DtorType == Dtor_Deleting) {
1515 EnterDtorCleanups(Dtor, Dtor_Deleting);
1516 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1517 /*Delegating=*/false, LoadCXXThisAddress());
1518 PopCleanupBlock();
1519 return;
1520 }
1521
1522 // If the body is a function-try-block, enter the try before
1523 // anything else.
1524 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1525 if (isTryBody)
1526 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1527 EmitAsanPrologueOrEpilogue(false);
1528
1529 // Enter the epilogue cleanups.
1530 RunCleanupsScope DtorEpilogue(*this);
1531
1532 // If this is the complete variant, just invoke the base variant;
1533 // the epilogue will destruct the virtual bases. But we can't do
1534 // this optimization if the body is a function-try-block, because
1535 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1536 // always delegate because we might not have a definition in this TU.
1537 switch (DtorType) {
1538 case Dtor_Comdat:
1539 llvm_unreachable("not expecting a COMDAT");
1540
1541 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1542
1543 case Dtor_Complete:
1544 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1545 "can't emit a dtor without a body for non-Microsoft ABIs");
1546
1547 // Enter the cleanup scopes for virtual bases.
1548 EnterDtorCleanups(Dtor, Dtor_Complete);
1549
1550 if (!isTryBody) {
1551 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1552 /*Delegating=*/false, LoadCXXThisAddress());
1553 break;
1554 }
1555 // Fallthrough: act like we're in the base variant.
1556
1557 case Dtor_Base:
1558 assert(Body);
1559
1560 // Enter the cleanup scopes for fields and non-virtual bases.
1561 EnterDtorCleanups(Dtor, Dtor_Base);
1562
1563 // Initialize the vtable pointers before entering the body.
1564 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1565 // Insert the llvm.invariant.group.barrier intrinsic before initializing
1566 // the vptrs to cancel any previous assumptions we might have made.
1567 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1568 CGM.getCodeGenOpts().OptimizationLevel > 0)
1569 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1570 InitializeVTablePointers(Dtor->getParent());
1571 }
1572
1573 if (isTryBody)
1574 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1575 else if (Body)
1576 EmitStmt(Body);
1577 else {
1578 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1579 // nothing to do besides what's in the epilogue
1580 }
1581 // -fapple-kext must inline any call to this dtor into
1582 // the caller's body.
1583 if (getLangOpts().AppleKext)
1584 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1585
1586 break;
1587 }
1588
1589 // Jump out through the epilogue cleanups.
1590 DtorEpilogue.ForceCleanup();
1591
1592 // Exit the try if applicable.
1593 if (isTryBody)
1594 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1595 }
1596
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1597 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1598 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1599 const Stmt *RootS = AssignOp->getBody();
1600 assert(isa<CompoundStmt>(RootS) &&
1601 "Body of an implicit assignment operator should be compound stmt.");
1602 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1603
1604 LexicalScope Scope(*this, RootCS->getSourceRange());
1605
1606 incrementProfileCounter(RootCS);
1607 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1608 for (auto *I : RootCS->body())
1609 AM.emitAssignment(I);
1610 AM.finish();
1611 }
1612
1613 namespace {
1614 /// Call the operator delete associated with the current destructor.
1615 struct CallDtorDelete final : EHScopeStack::Cleanup {
CallDtorDelete__anonf0bc8c9f0411::CallDtorDelete1616 CallDtorDelete() {}
1617
Emit__anonf0bc8c9f0411::CallDtorDelete1618 void Emit(CodeGenFunction &CGF, Flags flags) override {
1619 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1620 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1621 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1622 CGF.getContext().getTagDeclType(ClassDecl));
1623 }
1624 };
1625
1626 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1627 llvm::Value *ShouldDeleteCondition;
1628
1629 public:
CallDtorDeleteConditional__anonf0bc8c9f0411::CallDtorDeleteConditional1630 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1631 : ShouldDeleteCondition(ShouldDeleteCondition) {
1632 assert(ShouldDeleteCondition != nullptr);
1633 }
1634
Emit__anonf0bc8c9f0411::CallDtorDeleteConditional1635 void Emit(CodeGenFunction &CGF, Flags flags) override {
1636 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1637 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1638 llvm::Value *ShouldCallDelete
1639 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1640 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1641
1642 CGF.EmitBlock(callDeleteBB);
1643 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1644 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1645 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1646 CGF.getContext().getTagDeclType(ClassDecl));
1647 CGF.Builder.CreateBr(continueBB);
1648
1649 CGF.EmitBlock(continueBB);
1650 }
1651 };
1652
1653 class DestroyField final : public EHScopeStack::Cleanup {
1654 const FieldDecl *field;
1655 CodeGenFunction::Destroyer *destroyer;
1656 bool useEHCleanupForArray;
1657
1658 public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1659 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1660 bool useEHCleanupForArray)
1661 : field(field), destroyer(destroyer),
1662 useEHCleanupForArray(useEHCleanupForArray) {}
1663
Emit(CodeGenFunction & CGF,Flags flags)1664 void Emit(CodeGenFunction &CGF, Flags flags) override {
1665 // Find the address of the field.
1666 Address thisValue = CGF.LoadCXXThisAddress();
1667 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1668 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1669 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1670 assert(LV.isSimple());
1671
1672 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1673 flags.isForNormalCleanup() && useEHCleanupForArray);
1674 }
1675 };
1676
EmitSanitizerDtorCallback(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits::QuantityType PoisonSize)1677 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1678 CharUnits::QuantityType PoisonSize) {
1679 // Pass in void pointer and size of region as arguments to runtime
1680 // function
1681 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1682 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1683
1684 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1685
1686 llvm::FunctionType *FnType =
1687 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1688 llvm::Value *Fn =
1689 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1690 CGF.EmitNounwindRuntimeCall(Fn, Args);
1691 }
1692
1693 class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1694 const CXXDestructorDecl *Dtor;
1695
1696 public:
SanitizeDtorMembers(const CXXDestructorDecl * Dtor)1697 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1698
1699 // Generate function call for handling object poisoning.
1700 // Disables tail call elimination, to prevent the current stack frame
1701 // from disappearing from the stack trace.
Emit(CodeGenFunction & CGF,Flags flags)1702 void Emit(CodeGenFunction &CGF, Flags flags) override {
1703 const ASTRecordLayout &Layout =
1704 CGF.getContext().getASTRecordLayout(Dtor->getParent());
1705
1706 // Nothing to poison.
1707 if (Layout.getFieldCount() == 0)
1708 return;
1709
1710 // Prevent the current stack frame from disappearing from the stack trace.
1711 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1712
1713 // Construct pointer to region to begin poisoning, and calculate poison
1714 // size, so that only members declared in this class are poisoned.
1715 ASTContext &Context = CGF.getContext();
1716 unsigned fieldIndex = 0;
1717 int startIndex = -1;
1718 // RecordDecl::field_iterator Field;
1719 for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1720 // Poison field if it is trivial
1721 if (FieldHasTrivialDestructorBody(Context, Field)) {
1722 // Start sanitizing at this field
1723 if (startIndex < 0)
1724 startIndex = fieldIndex;
1725
1726 // Currently on the last field, and it must be poisoned with the
1727 // current block.
1728 if (fieldIndex == Layout.getFieldCount() - 1) {
1729 PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1730 }
1731 } else if (startIndex >= 0) {
1732 // No longer within a block of memory to poison, so poison the block
1733 PoisonMembers(CGF, startIndex, fieldIndex);
1734 // Re-set the start index
1735 startIndex = -1;
1736 }
1737 fieldIndex += 1;
1738 }
1739 }
1740
1741 private:
1742 /// \param layoutStartOffset index of the ASTRecordLayout field to
1743 /// start poisoning (inclusive)
1744 /// \param layoutEndOffset index of the ASTRecordLayout field to
1745 /// end poisoning (exclusive)
PoisonMembers(CodeGenFunction & CGF,unsigned layoutStartOffset,unsigned layoutEndOffset)1746 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1747 unsigned layoutEndOffset) {
1748 ASTContext &Context = CGF.getContext();
1749 const ASTRecordLayout &Layout =
1750 Context.getASTRecordLayout(Dtor->getParent());
1751
1752 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1753 CGF.SizeTy,
1754 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1755 .getQuantity());
1756
1757 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1758 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1759 OffsetSizePtr);
1760
1761 CharUnits::QuantityType PoisonSize;
1762 if (layoutEndOffset >= Layout.getFieldCount()) {
1763 PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1764 Context.toCharUnitsFromBits(
1765 Layout.getFieldOffset(layoutStartOffset))
1766 .getQuantity();
1767 } else {
1768 PoisonSize = Context.toCharUnitsFromBits(
1769 Layout.getFieldOffset(layoutEndOffset) -
1770 Layout.getFieldOffset(layoutStartOffset))
1771 .getQuantity();
1772 }
1773
1774 if (PoisonSize == 0)
1775 return;
1776
1777 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1778 }
1779 };
1780
1781 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1782 const CXXDestructorDecl *Dtor;
1783
1784 public:
SanitizeDtorVTable(const CXXDestructorDecl * Dtor)1785 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1786
1787 // Generate function call for handling vtable pointer poisoning.
Emit(CodeGenFunction & CGF,Flags flags)1788 void Emit(CodeGenFunction &CGF, Flags flags) override {
1789 assert(Dtor->getParent()->isDynamicClass());
1790 (void)Dtor;
1791 ASTContext &Context = CGF.getContext();
1792 // Poison vtable and vtable ptr if they exist for this class.
1793 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1794
1795 CharUnits::QuantityType PoisonSize =
1796 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1797 // Pass in void pointer and size of region as arguments to runtime
1798 // function
1799 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1800 }
1801 };
1802 } // end anonymous namespace
1803
1804 /// \brief Emit all code that comes at the end of class's
1805 /// destructor. This is to call destructors on members and base classes
1806 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1807 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1808 CXXDtorType DtorType) {
1809 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1810 "Should not emit dtor epilogue for non-exported trivial dtor!");
1811
1812 // The deleting-destructor phase just needs to call the appropriate
1813 // operator delete that Sema picked up.
1814 if (DtorType == Dtor_Deleting) {
1815 assert(DD->getOperatorDelete() &&
1816 "operator delete missing - EnterDtorCleanups");
1817 if (CXXStructorImplicitParamValue) {
1818 // If there is an implicit param to the deleting dtor, it's a boolean
1819 // telling whether we should call delete at the end of the dtor.
1820 EHStack.pushCleanup<CallDtorDeleteConditional>(
1821 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1822 } else {
1823 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1824 }
1825 return;
1826 }
1827
1828 const CXXRecordDecl *ClassDecl = DD->getParent();
1829
1830 // Unions have no bases and do not call field destructors.
1831 if (ClassDecl->isUnion())
1832 return;
1833
1834 // The complete-destructor phase just destructs all the virtual bases.
1835 if (DtorType == Dtor_Complete) {
1836 // Poison the vtable pointer such that access after the base
1837 // and member destructors are invoked is invalid.
1838 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1839 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1840 ClassDecl->isPolymorphic())
1841 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1842
1843 // We push them in the forward order so that they'll be popped in
1844 // the reverse order.
1845 for (const auto &Base : ClassDecl->vbases()) {
1846 CXXRecordDecl *BaseClassDecl
1847 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1848
1849 // Ignore trivial destructors.
1850 if (BaseClassDecl->hasTrivialDestructor())
1851 continue;
1852
1853 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1854 BaseClassDecl,
1855 /*BaseIsVirtual*/ true);
1856 }
1857
1858 return;
1859 }
1860
1861 assert(DtorType == Dtor_Base);
1862 // Poison the vtable pointer if it has no virtual bases, but inherits
1863 // virtual functions.
1864 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1865 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1866 ClassDecl->isPolymorphic())
1867 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1868
1869 // Destroy non-virtual bases.
1870 for (const auto &Base : ClassDecl->bases()) {
1871 // Ignore virtual bases.
1872 if (Base.isVirtual())
1873 continue;
1874
1875 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1876
1877 // Ignore trivial destructors.
1878 if (BaseClassDecl->hasTrivialDestructor())
1879 continue;
1880
1881 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1882 BaseClassDecl,
1883 /*BaseIsVirtual*/ false);
1884 }
1885
1886 // Poison fields such that access after their destructors are
1887 // invoked, and before the base class destructor runs, is invalid.
1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1889 SanOpts.has(SanitizerKind::Memory))
1890 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1891
1892 // Destroy direct fields.
1893 for (const auto *Field : ClassDecl->fields()) {
1894 QualType type = Field->getType();
1895 QualType::DestructionKind dtorKind = type.isDestructedType();
1896 if (!dtorKind) continue;
1897
1898 // Anonymous union members do not have their destructors called.
1899 const RecordType *RT = type->getAsUnionType();
1900 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1901
1902 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1903 EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1904 getDestroyer(dtorKind),
1905 cleanupKind & EHCleanup);
1906 }
1907 }
1908
1909 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1910 /// constructor for each of several members of an array.
1911 ///
1912 /// \param ctor the constructor to call for each element
1913 /// \param arrayType the type of the array to initialize
1914 /// \param arrayBegin an arrayType*
1915 /// \param zeroInitialize true if each element should be
1916 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ArrayType * arrayType,Address arrayBegin,const CXXConstructExpr * E,bool zeroInitialize)1917 void CodeGenFunction::EmitCXXAggrConstructorCall(
1918 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1919 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1920 QualType elementType;
1921 llvm::Value *numElements =
1922 emitArrayLength(arrayType, elementType, arrayBegin);
1923
1924 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1925 }
1926
1927 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1928 /// constructor for each of several members of an array.
1929 ///
1930 /// \param ctor the constructor to call for each element
1931 /// \param numElements the number of elements in the array;
1932 /// may be zero
1933 /// \param arrayBase a T*, where T is the type constructed by ctor
1934 /// \param zeroInitialize true if each element should be
1935 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,Address arrayBase,const CXXConstructExpr * E,bool zeroInitialize)1936 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1937 llvm::Value *numElements,
1938 Address arrayBase,
1939 const CXXConstructExpr *E,
1940 bool zeroInitialize) {
1941 // It's legal for numElements to be zero. This can happen both
1942 // dynamically, because x can be zero in 'new A[x]', and statically,
1943 // because of GCC extensions that permit zero-length arrays. There
1944 // are probably legitimate places where we could assume that this
1945 // doesn't happen, but it's not clear that it's worth it.
1946 llvm::BranchInst *zeroCheckBranch = nullptr;
1947
1948 // Optimize for a constant count.
1949 llvm::ConstantInt *constantCount
1950 = dyn_cast<llvm::ConstantInt>(numElements);
1951 if (constantCount) {
1952 // Just skip out if the constant count is zero.
1953 if (constantCount->isZero()) return;
1954
1955 // Otherwise, emit the check.
1956 } else {
1957 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1958 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1959 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1960 EmitBlock(loopBB);
1961 }
1962
1963 // Find the end of the array.
1964 llvm::Value *arrayBegin = arrayBase.getPointer();
1965 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1966 "arrayctor.end");
1967
1968 // Enter the loop, setting up a phi for the current location to initialize.
1969 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1970 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1971 EmitBlock(loopBB);
1972 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1973 "arrayctor.cur");
1974 cur->addIncoming(arrayBegin, entryBB);
1975
1976 // Inside the loop body, emit the constructor call on the array element.
1977
1978 // The alignment of the base, adjusted by the size of a single element,
1979 // provides a conservative estimate of the alignment of every element.
1980 // (This assumes we never start tracking offsetted alignments.)
1981 //
1982 // Note that these are complete objects and so we don't need to
1983 // use the non-virtual size or alignment.
1984 QualType type = getContext().getTypeDeclType(ctor->getParent());
1985 CharUnits eltAlignment =
1986 arrayBase.getAlignment()
1987 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1988 Address curAddr = Address(cur, eltAlignment);
1989
1990 // Zero initialize the storage, if requested.
1991 if (zeroInitialize)
1992 EmitNullInitialization(curAddr, type);
1993
1994 // C++ [class.temporary]p4:
1995 // There are two contexts in which temporaries are destroyed at a different
1996 // point than the end of the full-expression. The first context is when a
1997 // default constructor is called to initialize an element of an array.
1998 // If the constructor has one or more default arguments, the destruction of
1999 // every temporary created in a default argument expression is sequenced
2000 // before the construction of the next array element, if any.
2001
2002 {
2003 RunCleanupsScope Scope(*this);
2004
2005 // Evaluate the constructor and its arguments in a regular
2006 // partial-destroy cleanup.
2007 if (getLangOpts().Exceptions &&
2008 !ctor->getParent()->hasTrivialDestructor()) {
2009 Destroyer *destroyer = destroyCXXObject;
2010 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2011 *destroyer);
2012 }
2013
2014 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2015 /*Delegating=*/false, curAddr, E);
2016 }
2017
2018 // Go to the next element.
2019 llvm::Value *next =
2020 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2021 "arrayctor.next");
2022 cur->addIncoming(next, Builder.GetInsertBlock());
2023
2024 // Check whether that's the end of the loop.
2025 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2026 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2027 Builder.CreateCondBr(done, contBB, loopBB);
2028
2029 // Patch the earlier check to skip over the loop.
2030 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2031
2032 EmitBlock(contBB);
2033 }
2034
destroyCXXObject(CodeGenFunction & CGF,Address addr,QualType type)2035 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2036 Address addr,
2037 QualType type) {
2038 const RecordType *rtype = type->castAs<RecordType>();
2039 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2040 const CXXDestructorDecl *dtor = record->getDestructor();
2041 assert(!dtor->isTrivial());
2042 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2043 /*Delegating=*/false, addr);
2044 }
2045
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,Address This,const CXXConstructExpr * E)2046 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2047 CXXCtorType Type,
2048 bool ForVirtualBase,
2049 bool Delegating, Address This,
2050 const CXXConstructExpr *E) {
2051 CallArgList Args;
2052
2053 // Push the this ptr.
2054 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2055
2056 // If this is a trivial constructor, emit a memcpy now before we lose
2057 // the alignment information on the argument.
2058 // FIXME: It would be better to preserve alignment information into CallArg.
2059 if (isMemcpyEquivalentSpecialMember(D)) {
2060 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2061
2062 const Expr *Arg = E->getArg(0);
2063 QualType SrcTy = Arg->getType();
2064 Address Src = EmitLValue(Arg).getAddress();
2065 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2066 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2067 return;
2068 }
2069
2070 // Add the rest of the user-supplied arguments.
2071 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2072 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2073
2074 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
2075 }
2076
canEmitDelegateCallArgs(CodeGenFunction & CGF,const CXXConstructorDecl * Ctor,CXXCtorType Type,CallArgList & Args)2077 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2078 const CXXConstructorDecl *Ctor,
2079 CXXCtorType Type, CallArgList &Args) {
2080 // We can't forward a variadic call.
2081 if (Ctor->isVariadic())
2082 return false;
2083
2084 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2085 // If the parameters are callee-cleanup, it's not safe to forward.
2086 for (auto *P : Ctor->parameters())
2087 if (P->getType().isDestructedType())
2088 return false;
2089
2090 // Likewise if they're inalloca.
2091 const CGFunctionInfo &Info =
2092 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0);
2093 if (Info.usesInAlloca())
2094 return false;
2095 }
2096
2097 // Anything else should be OK.
2098 return true;
2099 }
2100
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,Address This,CallArgList & Args)2101 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2102 CXXCtorType Type,
2103 bool ForVirtualBase,
2104 bool Delegating,
2105 Address This,
2106 CallArgList &Args) {
2107 const CXXRecordDecl *ClassDecl = D->getParent();
2108
2109 // C++11 [class.mfct.non-static]p2:
2110 // If a non-static member function of a class X is called for an object that
2111 // is not of type X, or of a type derived from X, the behavior is undefined.
2112 // FIXME: Provide a source location here.
2113 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2114 This.getPointer(), getContext().getRecordType(ClassDecl));
2115
2116 if (D->isTrivial() && D->isDefaultConstructor()) {
2117 assert(Args.size() == 1 && "trivial default ctor with args");
2118 return;
2119 }
2120
2121 // If this is a trivial constructor, just emit what's needed. If this is a
2122 // union copy constructor, we must emit a memcpy, because the AST does not
2123 // model that copy.
2124 if (isMemcpyEquivalentSpecialMember(D)) {
2125 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2126
2127 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2128 Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
2129 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2130 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2131 return;
2132 }
2133
2134 // Check whether we can actually emit the constructor before trying to do so.
2135 if (auto Inherited = D->getInheritedConstructor()) {
2136 if (getTypes().inheritingCtorHasParams(Inherited, Type) &&
2137 !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2138 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2139 Delegating, Args);
2140 return;
2141 }
2142 }
2143
2144 // Insert any ABI-specific implicit constructor arguments.
2145 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2146 *this, D, Type, ForVirtualBase, Delegating, Args);
2147
2148 // Emit the call.
2149 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2150 const CGFunctionInfo &Info =
2151 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2152 EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2153
2154 // Generate vtable assumptions if we're constructing a complete object
2155 // with a vtable. We don't do this for base subobjects for two reasons:
2156 // first, it's incorrect for classes with virtual bases, and second, we're
2157 // about to overwrite the vptrs anyway.
2158 // We also have to make sure if we can refer to vtable:
2159 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2160 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2161 // sure that definition of vtable is not hidden,
2162 // then we are always safe to refer to it.
2163 // FIXME: It looks like InstCombine is very inefficient on dealing with
2164 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2165 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2166 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2167 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2168 CGM.getCodeGenOpts().StrictVTablePointers)
2169 EmitVTableAssumptionLoads(ClassDecl, This);
2170 }
2171
EmitInheritedCXXConstructorCall(const CXXConstructorDecl * D,bool ForVirtualBase,Address This,bool InheritedFromVBase,const CXXInheritedCtorInitExpr * E)2172 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2173 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2174 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2175 CallArgList Args;
2176 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
2177 /*NeedsCopy=*/false);
2178
2179 // Forward the parameters.
2180 if (InheritedFromVBase &&
2181 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2182 // Nothing to do; this construction is not responsible for constructing
2183 // the base class containing the inherited constructor.
2184 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2185 // have constructor variants?
2186 Args.push_back(ThisArg);
2187 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2188 // The inheriting constructor was inlined; just inject its arguments.
2189 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2190 "wrong number of parameters for inherited constructor call");
2191 Args = CXXInheritedCtorInitExprArgs;
2192 Args[0] = ThisArg;
2193 } else {
2194 // The inheriting constructor was not inlined. Emit delegating arguments.
2195 Args.push_back(ThisArg);
2196 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2197 assert(OuterCtor->getNumParams() == D->getNumParams());
2198 assert(!OuterCtor->isVariadic() && "should have been inlined");
2199
2200 for (const auto *Param : OuterCtor->parameters()) {
2201 assert(getContext().hasSameUnqualifiedType(
2202 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2203 Param->getType()));
2204 EmitDelegateCallArg(Args, Param, E->getLocation());
2205
2206 // Forward __attribute__(pass_object_size).
2207 if (Param->hasAttr<PassObjectSizeAttr>()) {
2208 auto *POSParam = SizeArguments[Param];
2209 assert(POSParam && "missing pass_object_size value for forwarding");
2210 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2211 }
2212 }
2213 }
2214
2215 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2216 This, Args);
2217 }
2218
EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,bool ForVirtualBase,bool Delegating,CallArgList & Args)2219 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2220 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2221 bool Delegating, CallArgList &Args) {
2222 InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType));
2223
2224 // Save the arguments to be passed to the inherited constructor.
2225 CXXInheritedCtorInitExprArgs = Args;
2226
2227 FunctionArgList Params;
2228 QualType RetType = BuildFunctionArgList(CurGD, Params);
2229 FnRetTy = RetType;
2230
2231 // Insert any ABI-specific implicit constructor arguments.
2232 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2233 ForVirtualBase, Delegating, Args);
2234
2235 // Emit a simplified prolog. We only need to emit the implicit params.
2236 assert(Args.size() >= Params.size() && "too few arguments for call");
2237 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2238 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2239 const RValue &RV = Args[I].RV;
2240 assert(!RV.isComplex() && "complex indirect params not supported");
2241 ParamValue Val = RV.isScalar()
2242 ? ParamValue::forDirect(RV.getScalarVal())
2243 : ParamValue::forIndirect(RV.getAggregateAddress());
2244 EmitParmDecl(*Params[I], Val, I + 1);
2245 }
2246 }
2247
2248 // Create a return value slot if the ABI implementation wants one.
2249 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2250 // value instead.
2251 if (!RetType->isVoidType())
2252 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2253
2254 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2255 CXXThisValue = CXXABIThisValue;
2256
2257 // Directly emit the constructor initializers.
2258 EmitCtorPrologue(Ctor, CtorType, Params);
2259 }
2260
EmitVTableAssumptionLoad(const VPtr & Vptr,Address This)2261 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2262 llvm::Value *VTableGlobal =
2263 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2264 if (!VTableGlobal)
2265 return;
2266
2267 // We can just use the base offset in the complete class.
2268 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2269
2270 if (!NonVirtualOffset.isZero())
2271 This =
2272 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2273 Vptr.VTableClass, Vptr.NearestVBase);
2274
2275 llvm::Value *VPtrValue =
2276 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2277 llvm::Value *Cmp =
2278 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2279 Builder.CreateAssumption(Cmp);
2280 }
2281
EmitVTableAssumptionLoads(const CXXRecordDecl * ClassDecl,Address This)2282 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2283 Address This) {
2284 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2285 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2286 EmitVTableAssumptionLoad(Vptr, This);
2287 }
2288
2289 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,Address This,Address Src,const CXXConstructExpr * E)2290 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2291 Address This, Address Src,
2292 const CXXConstructExpr *E) {
2293 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2294
2295 CallArgList Args;
2296
2297 // Push the this ptr.
2298 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2299
2300 // Push the src ptr.
2301 QualType QT = *(FPT->param_type_begin());
2302 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2303 Src = Builder.CreateBitCast(Src, t);
2304 Args.add(RValue::get(Src.getPointer()), QT);
2305
2306 // Skip over first argument (Src).
2307 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2308 /*ParamsToSkip*/ 1);
2309
2310 EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2311 }
2312
2313 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)2314 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2315 CXXCtorType CtorType,
2316 const FunctionArgList &Args,
2317 SourceLocation Loc) {
2318 CallArgList DelegateArgs;
2319
2320 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2321 assert(I != E && "no parameters to constructor");
2322
2323 // this
2324 Address This = LoadCXXThisAddress();
2325 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2326 ++I;
2327
2328 // FIXME: The location of the VTT parameter in the parameter list is
2329 // specific to the Itanium ABI and shouldn't be hardcoded here.
2330 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2331 assert(I != E && "cannot skip vtt parameter, already done with args");
2332 assert((*I)->getType()->isPointerType() &&
2333 "skipping parameter not of vtt type");
2334 ++I;
2335 }
2336
2337 // Explicit arguments.
2338 for (; I != E; ++I) {
2339 const VarDecl *param = *I;
2340 // FIXME: per-argument source location
2341 EmitDelegateCallArg(DelegateArgs, param, Loc);
2342 }
2343
2344 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2345 /*Delegating=*/true, This, DelegateArgs);
2346 }
2347
2348 namespace {
2349 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2350 const CXXDestructorDecl *Dtor;
2351 Address Addr;
2352 CXXDtorType Type;
2353
CallDelegatingCtorDtor__anonf0bc8c9f0511::CallDelegatingCtorDtor2354 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2355 CXXDtorType Type)
2356 : Dtor(D), Addr(Addr), Type(Type) {}
2357
Emit__anonf0bc8c9f0511::CallDelegatingCtorDtor2358 void Emit(CodeGenFunction &CGF, Flags flags) override {
2359 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2360 /*Delegating=*/true, Addr);
2361 }
2362 };
2363 } // end anonymous namespace
2364
2365 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)2366 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2367 const FunctionArgList &Args) {
2368 assert(Ctor->isDelegatingConstructor());
2369
2370 Address ThisPtr = LoadCXXThisAddress();
2371
2372 AggValueSlot AggSlot =
2373 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2374 AggValueSlot::IsDestructed,
2375 AggValueSlot::DoesNotNeedGCBarriers,
2376 AggValueSlot::IsNotAliased);
2377
2378 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2379
2380 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2381 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2382 CXXDtorType Type =
2383 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2384
2385 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2386 ClassDecl->getDestructor(),
2387 ThisPtr, Type);
2388 }
2389 }
2390
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This)2391 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2392 CXXDtorType Type,
2393 bool ForVirtualBase,
2394 bool Delegating,
2395 Address This) {
2396 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2397 Delegating, This);
2398 }
2399
2400 namespace {
2401 struct CallLocalDtor final : EHScopeStack::Cleanup {
2402 const CXXDestructorDecl *Dtor;
2403 Address Addr;
2404
CallLocalDtor__anonf0bc8c9f0611::CallLocalDtor2405 CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2406 : Dtor(D), Addr(Addr) {}
2407
Emit__anonf0bc8c9f0611::CallLocalDtor2408 void Emit(CodeGenFunction &CGF, Flags flags) override {
2409 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2410 /*ForVirtualBase=*/false,
2411 /*Delegating=*/false, Addr);
2412 }
2413 };
2414 } // end anonymous namespace
2415
PushDestructorCleanup(const CXXDestructorDecl * D,Address Addr)2416 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2417 Address Addr) {
2418 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2419 }
2420
PushDestructorCleanup(QualType T,Address Addr)2421 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2422 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2423 if (!ClassDecl) return;
2424 if (ClassDecl->hasTrivialDestructor()) return;
2425
2426 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2427 assert(D && D->isUsed() && "destructor not marked as used!");
2428 PushDestructorCleanup(D, Addr);
2429 }
2430
InitializeVTablePointer(const VPtr & Vptr)2431 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2432 // Compute the address point.
2433 llvm::Value *VTableAddressPoint =
2434 CGM.getCXXABI().getVTableAddressPointInStructor(
2435 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2436
2437 if (!VTableAddressPoint)
2438 return;
2439
2440 // Compute where to store the address point.
2441 llvm::Value *VirtualOffset = nullptr;
2442 CharUnits NonVirtualOffset = CharUnits::Zero();
2443
2444 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2445 // We need to use the virtual base offset offset because the virtual base
2446 // might have a different offset in the most derived class.
2447
2448 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2449 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2450 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2451 } else {
2452 // We can just use the base offset in the complete class.
2453 NonVirtualOffset = Vptr.Base.getBaseOffset();
2454 }
2455
2456 // Apply the offsets.
2457 Address VTableField = LoadCXXThisAddress();
2458
2459 if (!NonVirtualOffset.isZero() || VirtualOffset)
2460 VTableField = ApplyNonVirtualAndVirtualOffset(
2461 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2462 Vptr.NearestVBase);
2463
2464 // Finally, store the address point. Use the same LLVM types as the field to
2465 // support optimization.
2466 llvm::Type *VTablePtrTy =
2467 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2468 ->getPointerTo()
2469 ->getPointerTo();
2470 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2471 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2472
2473 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2474 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2475 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2476 CGM.getCodeGenOpts().StrictVTablePointers)
2477 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2478 }
2479
2480 CodeGenFunction::VPtrsVector
getVTablePointers(const CXXRecordDecl * VTableClass)2481 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2482 CodeGenFunction::VPtrsVector VPtrsResult;
2483 VisitedVirtualBasesSetTy VBases;
2484 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2485 /*NearestVBase=*/nullptr,
2486 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2487 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2488 VPtrsResult);
2489 return VPtrsResult;
2490 }
2491
getVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases,VPtrsVector & Vptrs)2492 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2493 const CXXRecordDecl *NearestVBase,
2494 CharUnits OffsetFromNearestVBase,
2495 bool BaseIsNonVirtualPrimaryBase,
2496 const CXXRecordDecl *VTableClass,
2497 VisitedVirtualBasesSetTy &VBases,
2498 VPtrsVector &Vptrs) {
2499 // If this base is a non-virtual primary base the address point has already
2500 // been set.
2501 if (!BaseIsNonVirtualPrimaryBase) {
2502 // Initialize the vtable pointer for this base.
2503 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2504 Vptrs.push_back(Vptr);
2505 }
2506
2507 const CXXRecordDecl *RD = Base.getBase();
2508
2509 // Traverse bases.
2510 for (const auto &I : RD->bases()) {
2511 CXXRecordDecl *BaseDecl
2512 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2513
2514 // Ignore classes without a vtable.
2515 if (!BaseDecl->isDynamicClass())
2516 continue;
2517
2518 CharUnits BaseOffset;
2519 CharUnits BaseOffsetFromNearestVBase;
2520 bool BaseDeclIsNonVirtualPrimaryBase;
2521
2522 if (I.isVirtual()) {
2523 // Check if we've visited this virtual base before.
2524 if (!VBases.insert(BaseDecl).second)
2525 continue;
2526
2527 const ASTRecordLayout &Layout =
2528 getContext().getASTRecordLayout(VTableClass);
2529
2530 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2531 BaseOffsetFromNearestVBase = CharUnits::Zero();
2532 BaseDeclIsNonVirtualPrimaryBase = false;
2533 } else {
2534 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2535
2536 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2537 BaseOffsetFromNearestVBase =
2538 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2539 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2540 }
2541
2542 getVTablePointers(
2543 BaseSubobject(BaseDecl, BaseOffset),
2544 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2545 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2546 }
2547 }
2548
InitializeVTablePointers(const CXXRecordDecl * RD)2549 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2550 // Ignore classes without a vtable.
2551 if (!RD->isDynamicClass())
2552 return;
2553
2554 // Initialize the vtable pointers for this class and all of its bases.
2555 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2556 for (const VPtr &Vptr : getVTablePointers(RD))
2557 InitializeVTablePointer(Vptr);
2558
2559 if (RD->getNumVBases())
2560 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2561 }
2562
GetVTablePtr(Address This,llvm::Type * VTableTy,const CXXRecordDecl * RD)2563 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2564 llvm::Type *VTableTy,
2565 const CXXRecordDecl *RD) {
2566 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2567 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2568 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2569
2570 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2571 CGM.getCodeGenOpts().StrictVTablePointers)
2572 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2573
2574 return VTable;
2575 }
2576
2577 // If a class has a single non-virtual base and does not introduce or override
2578 // virtual member functions or fields, it will have the same layout as its base.
2579 // This function returns the least derived such class.
2580 //
2581 // Casting an instance of a base class to such a derived class is technically
2582 // undefined behavior, but it is a relatively common hack for introducing member
2583 // functions on class instances with specific properties (e.g. llvm::Operator)
2584 // that works under most compilers and should not have security implications, so
2585 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2586 static const CXXRecordDecl *
LeastDerivedClassWithSameLayout(const CXXRecordDecl * RD)2587 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2588 if (!RD->field_empty())
2589 return RD;
2590
2591 if (RD->getNumVBases() != 0)
2592 return RD;
2593
2594 if (RD->getNumBases() != 1)
2595 return RD;
2596
2597 for (const CXXMethodDecl *MD : RD->methods()) {
2598 if (MD->isVirtual()) {
2599 // Virtual member functions are only ok if they are implicit destructors
2600 // because the implicit destructor will have the same semantics as the
2601 // base class's destructor if no fields are added.
2602 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2603 continue;
2604 return RD;
2605 }
2606 }
2607
2608 return LeastDerivedClassWithSameLayout(
2609 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2610 }
2611
EmitTypeMetadataCodeForVCall(const CXXRecordDecl * RD,llvm::Value * VTable,SourceLocation Loc)2612 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2613 llvm::Value *VTable,
2614 SourceLocation Loc) {
2615 if (CGM.getCodeGenOpts().WholeProgramVTables &&
2616 CGM.HasHiddenLTOVisibility(RD)) {
2617 llvm::Metadata *MD =
2618 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2619 llvm::Value *TypeId =
2620 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2621
2622 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2623 llvm::Value *TypeTest =
2624 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2625 {CastedVTable, TypeId});
2626 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2627 }
2628
2629 if (SanOpts.has(SanitizerKind::CFIVCall))
2630 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2631 }
2632
EmitVTablePtrCheckForCall(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2633 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2634 llvm::Value *VTable,
2635 CFITypeCheckKind TCK,
2636 SourceLocation Loc) {
2637 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2638 RD = LeastDerivedClassWithSameLayout(RD);
2639
2640 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2641 }
2642
EmitVTablePtrCheckForCast(QualType T,llvm::Value * Derived,bool MayBeNull,CFITypeCheckKind TCK,SourceLocation Loc)2643 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2644 llvm::Value *Derived,
2645 bool MayBeNull,
2646 CFITypeCheckKind TCK,
2647 SourceLocation Loc) {
2648 if (!getLangOpts().CPlusPlus)
2649 return;
2650
2651 auto *ClassTy = T->getAs<RecordType>();
2652 if (!ClassTy)
2653 return;
2654
2655 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2656
2657 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2658 return;
2659
2660 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2661 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2662
2663 llvm::BasicBlock *ContBlock = nullptr;
2664
2665 if (MayBeNull) {
2666 llvm::Value *DerivedNotNull =
2667 Builder.CreateIsNotNull(Derived, "cast.nonnull");
2668
2669 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2670 ContBlock = createBasicBlock("cast.cont");
2671
2672 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2673
2674 EmitBlock(CheckBlock);
2675 }
2676
2677 llvm::Value *VTable =
2678 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2679
2680 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2681
2682 if (MayBeNull) {
2683 Builder.CreateBr(ContBlock);
2684 EmitBlock(ContBlock);
2685 }
2686 }
2687
EmitVTablePtrCheck(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2688 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2689 llvm::Value *VTable,
2690 CFITypeCheckKind TCK,
2691 SourceLocation Loc) {
2692 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2693 !CGM.HasHiddenLTOVisibility(RD))
2694 return;
2695
2696 std::string TypeName = RD->getQualifiedNameAsString();
2697 if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
2698 return;
2699
2700 SanitizerScope SanScope(this);
2701 llvm::SanitizerStatKind SSK;
2702 switch (TCK) {
2703 case CFITCK_VCall:
2704 SSK = llvm::SanStat_CFI_VCall;
2705 break;
2706 case CFITCK_NVCall:
2707 SSK = llvm::SanStat_CFI_NVCall;
2708 break;
2709 case CFITCK_DerivedCast:
2710 SSK = llvm::SanStat_CFI_DerivedCast;
2711 break;
2712 case CFITCK_UnrelatedCast:
2713 SSK = llvm::SanStat_CFI_UnrelatedCast;
2714 break;
2715 case CFITCK_ICall:
2716 llvm_unreachable("not expecting CFITCK_ICall");
2717 }
2718 EmitSanitizerStatReport(SSK);
2719
2720 llvm::Metadata *MD =
2721 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2722 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2723
2724 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2725 llvm::Value *TypeTest = Builder.CreateCall(
2726 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2727
2728 SanitizerMask M;
2729 switch (TCK) {
2730 case CFITCK_VCall:
2731 M = SanitizerKind::CFIVCall;
2732 break;
2733 case CFITCK_NVCall:
2734 M = SanitizerKind::CFINVCall;
2735 break;
2736 case CFITCK_DerivedCast:
2737 M = SanitizerKind::CFIDerivedCast;
2738 break;
2739 case CFITCK_UnrelatedCast:
2740 M = SanitizerKind::CFIUnrelatedCast;
2741 break;
2742 case CFITCK_ICall:
2743 llvm_unreachable("not expecting CFITCK_ICall");
2744 }
2745
2746 llvm::Constant *StaticData[] = {
2747 llvm::ConstantInt::get(Int8Ty, TCK),
2748 EmitCheckSourceLocation(Loc),
2749 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2750 };
2751
2752 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2753 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2754 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2755 return;
2756 }
2757
2758 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2759 EmitTrapCheck(TypeTest);
2760 return;
2761 }
2762
2763 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2764 CGM.getLLVMContext(),
2765 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2766 llvm::Value *ValidVtable = Builder.CreateCall(
2767 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2768 EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData,
2769 {CastedVTable, ValidVtable});
2770 }
2771
ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl * RD)2772 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2773 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2774 !SanOpts.has(SanitizerKind::CFIVCall) ||
2775 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2776 !CGM.HasHiddenLTOVisibility(RD))
2777 return false;
2778
2779 std::string TypeName = RD->getQualifiedNameAsString();
2780 return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
2781 }
2782
EmitVTableTypeCheckedLoad(const CXXRecordDecl * RD,llvm::Value * VTable,uint64_t VTableByteOffset)2783 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2784 const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2785 SanitizerScope SanScope(this);
2786
2787 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2788
2789 llvm::Metadata *MD =
2790 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2791 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2792
2793 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2794 llvm::Value *CheckedLoad = Builder.CreateCall(
2795 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2796 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2797 TypeId});
2798 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2799
2800 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2801 "cfi_check_fail", nullptr, nullptr);
2802
2803 return Builder.CreateBitCast(
2804 Builder.CreateExtractValue(CheckedLoad, 0),
2805 cast<llvm::PointerType>(VTable->getType())->getElementType());
2806 }
2807
2808 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2809 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)2810 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2811 while (true) {
2812 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2813 E = PE->getSubExpr();
2814 continue;
2815 }
2816
2817 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2818 if (CE->getCastKind() == CK_NoOp) {
2819 E = CE->getSubExpr();
2820 continue;
2821 }
2822 }
2823 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2824 if (UO->getOpcode() == UO_Extension) {
2825 E = UO->getSubExpr();
2826 continue;
2827 }
2828 }
2829 return E;
2830 }
2831 }
2832
2833 bool
CanDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2834 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2835 const CXXMethodDecl *MD) {
2836 // When building with -fapple-kext, all calls must go through the vtable since
2837 // the kernel linker can do runtime patching of vtables.
2838 if (getLangOpts().AppleKext)
2839 return false;
2840
2841 // If the most derived class is marked final, we know that no subclass can
2842 // override this member function and so we can devirtualize it. For example:
2843 //
2844 // struct A { virtual void f(); }
2845 // struct B final : A { };
2846 //
2847 // void f(B *b) {
2848 // b->f();
2849 // }
2850 //
2851 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2852 if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2853 return true;
2854
2855 // If the member function is marked 'final', we know that it can't be
2856 // overridden and can therefore devirtualize it.
2857 if (MD->hasAttr<FinalAttr>())
2858 return true;
2859
2860 // Similarly, if the class itself is marked 'final' it can't be overridden
2861 // and we can therefore devirtualize the member function call.
2862 if (MD->getParent()->hasAttr<FinalAttr>())
2863 return true;
2864
2865 Base = skipNoOpCastsAndParens(Base);
2866 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2867 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2868 // This is a record decl. We know the type and can devirtualize it.
2869 return VD->getType()->isRecordType();
2870 }
2871
2872 return false;
2873 }
2874
2875 // We can devirtualize calls on an object accessed by a class member access
2876 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2877 // a derived class object constructed in the same location.
2878 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2879 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2880 return VD->getType()->isRecordType();
2881
2882 // We can always devirtualize calls on temporary object expressions.
2883 if (isa<CXXConstructExpr>(Base))
2884 return true;
2885
2886 // And calls on bound temporaries.
2887 if (isa<CXXBindTemporaryExpr>(Base))
2888 return true;
2889
2890 // Check if this is a call expr that returns a record type.
2891 if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2892 return CE->getCallReturnType(getContext())->isRecordType();
2893
2894 // We can't devirtualize the call.
2895 return false;
2896 }
2897
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2898 void CodeGenFunction::EmitForwardingCallToLambda(
2899 const CXXMethodDecl *callOperator,
2900 CallArgList &callArgs) {
2901 // Get the address of the call operator.
2902 const CGFunctionInfo &calleeFnInfo =
2903 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2904 llvm::Value *callee =
2905 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2906 CGM.getTypes().GetFunctionType(calleeFnInfo));
2907
2908 // Prepare the return slot.
2909 const FunctionProtoType *FPT =
2910 callOperator->getType()->castAs<FunctionProtoType>();
2911 QualType resultType = FPT->getReturnType();
2912 ReturnValueSlot returnSlot;
2913 if (!resultType->isVoidType() &&
2914 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2915 !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2916 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2917
2918 // We don't need to separately arrange the call arguments because
2919 // the call can't be variadic anyway --- it's impossible to forward
2920 // variadic arguments.
2921
2922 // Now emit our call.
2923 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2924 callArgs, callOperator);
2925
2926 // If necessary, copy the returned value into the slot.
2927 if (!resultType->isVoidType() && returnSlot.isNull())
2928 EmitReturnOfRValue(RV, resultType);
2929 else
2930 EmitBranchThroughCleanup(ReturnBlock);
2931 }
2932
EmitLambdaBlockInvokeBody()2933 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2934 const BlockDecl *BD = BlockInfo->getBlockDecl();
2935 const VarDecl *variable = BD->capture_begin()->getVariable();
2936 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2937
2938 // Start building arguments for forwarding call
2939 CallArgList CallArgs;
2940
2941 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2942 Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2943 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2944
2945 // Add the rest of the parameters.
2946 for (auto param : BD->parameters())
2947 EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2948
2949 assert(!Lambda->isGenericLambda() &&
2950 "generic lambda interconversion to block not implemented");
2951 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2952 }
2953
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2954 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2955 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2956 // FIXME: Making this work correctly is nasty because it requires either
2957 // cloning the body of the call operator or making the call operator forward.
2958 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2959 return;
2960 }
2961
2962 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2963 }
2964
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2965 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2966 const CXXRecordDecl *Lambda = MD->getParent();
2967
2968 // Start building arguments for forwarding call
2969 CallArgList CallArgs;
2970
2971 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2972 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2973 CallArgs.add(RValue::get(ThisPtr), ThisType);
2974
2975 // Add the rest of the parameters.
2976 for (auto Param : MD->parameters())
2977 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2978
2979 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2980 // For a generic lambda, find the corresponding call operator specialization
2981 // to which the call to the static-invoker shall be forwarded.
2982 if (Lambda->isGenericLambda()) {
2983 assert(MD->isFunctionTemplateSpecialization());
2984 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2985 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2986 void *InsertPos = nullptr;
2987 FunctionDecl *CorrespondingCallOpSpecialization =
2988 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2989 assert(CorrespondingCallOpSpecialization);
2990 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2991 }
2992 EmitForwardingCallToLambda(CallOp, CallArgs);
2993 }
2994
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2995 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2996 if (MD->isVariadic()) {
2997 // FIXME: Making this work correctly is nasty because it requires either
2998 // cloning the body of the call operator or making the call operator forward.
2999 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3000 return;
3001 }
3002
3003 EmitLambdaDelegatingInvokeBody(MD);
3004 }
3005