1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/instruction-selector.h"
6
7 #include <limits>
8
9 #include "src/base/adapters.h"
10 #include "src/compiler/compiler-source-position-table.h"
11 #include "src/compiler/instruction-selector-impl.h"
12 #include "src/compiler/node-matchers.h"
13 #include "src/compiler/pipeline.h"
14 #include "src/compiler/schedule.h"
15 #include "src/compiler/state-values-utils.h"
16 #include "src/deoptimizer.h"
17 #include "src/objects-inl.h"
18
19 namespace v8 {
20 namespace internal {
21 namespace compiler {
22
InstructionSelector(Zone * zone,size_t node_count,Linkage * linkage,InstructionSequence * sequence,Schedule * schedule,SourcePositionTable * source_positions,Frame * frame,SourcePositionMode source_position_mode,Features features,EnableScheduling enable_scheduling,EnableSerialization enable_serialization)23 InstructionSelector::InstructionSelector(
24 Zone* zone, size_t node_count, Linkage* linkage,
25 InstructionSequence* sequence, Schedule* schedule,
26 SourcePositionTable* source_positions, Frame* frame,
27 SourcePositionMode source_position_mode, Features features,
28 EnableScheduling enable_scheduling,
29 EnableSerialization enable_serialization)
30 : zone_(zone),
31 linkage_(linkage),
32 sequence_(sequence),
33 source_positions_(source_positions),
34 source_position_mode_(source_position_mode),
35 features_(features),
36 schedule_(schedule),
37 current_block_(nullptr),
38 instructions_(zone),
39 defined_(node_count, false, zone),
40 used_(node_count, false, zone),
41 effect_level_(node_count, 0, zone),
42 virtual_registers_(node_count,
43 InstructionOperand::kInvalidVirtualRegister, zone),
44 virtual_register_rename_(zone),
45 scheduler_(nullptr),
46 enable_scheduling_(enable_scheduling),
47 enable_serialization_(enable_serialization),
48 frame_(frame),
49 instruction_selection_failed_(false) {
50 instructions_.reserve(node_count);
51 }
52
SelectInstructions()53 bool InstructionSelector::SelectInstructions() {
54 // Mark the inputs of all phis in loop headers as used.
55 BasicBlockVector* blocks = schedule()->rpo_order();
56 for (auto const block : *blocks) {
57 if (!block->IsLoopHeader()) continue;
58 DCHECK_LE(2u, block->PredecessorCount());
59 for (Node* const phi : *block) {
60 if (phi->opcode() != IrOpcode::kPhi) continue;
61
62 // Mark all inputs as used.
63 for (Node* const input : phi->inputs()) {
64 MarkAsUsed(input);
65 }
66 }
67 }
68
69 // Visit each basic block in post order.
70 for (auto i = blocks->rbegin(); i != blocks->rend(); ++i) {
71 VisitBlock(*i);
72 if (instruction_selection_failed()) return false;
73 }
74
75 // Schedule the selected instructions.
76 if (UseInstructionScheduling()) {
77 scheduler_ = new (zone()) InstructionScheduler(zone(), sequence());
78 }
79
80 for (auto const block : *blocks) {
81 InstructionBlock* instruction_block =
82 sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
83 for (size_t i = 0; i < instruction_block->phis().size(); i++) {
84 UpdateRenamesInPhi(instruction_block->PhiAt(i));
85 }
86 size_t end = instruction_block->code_end();
87 size_t start = instruction_block->code_start();
88 DCHECK_LE(end, start);
89 StartBlock(RpoNumber::FromInt(block->rpo_number()));
90 while (start-- > end) {
91 UpdateRenames(instructions_[start]);
92 AddInstruction(instructions_[start]);
93 }
94 EndBlock(RpoNumber::FromInt(block->rpo_number()));
95 }
96 #if DEBUG
97 sequence()->ValidateSSA();
98 #endif
99 return true;
100 }
101
StartBlock(RpoNumber rpo)102 void InstructionSelector::StartBlock(RpoNumber rpo) {
103 if (UseInstructionScheduling()) {
104 DCHECK_NOT_NULL(scheduler_);
105 scheduler_->StartBlock(rpo);
106 } else {
107 sequence()->StartBlock(rpo);
108 }
109 }
110
111
EndBlock(RpoNumber rpo)112 void InstructionSelector::EndBlock(RpoNumber rpo) {
113 if (UseInstructionScheduling()) {
114 DCHECK_NOT_NULL(scheduler_);
115 scheduler_->EndBlock(rpo);
116 } else {
117 sequence()->EndBlock(rpo);
118 }
119 }
120
121
AddInstruction(Instruction * instr)122 void InstructionSelector::AddInstruction(Instruction* instr) {
123 if (UseInstructionScheduling()) {
124 DCHECK_NOT_NULL(scheduler_);
125 scheduler_->AddInstruction(instr);
126 } else {
127 sequence()->AddInstruction(instr);
128 }
129 }
130
Emit(InstructionCode opcode,InstructionOperand output,size_t temp_count,InstructionOperand * temps)131 Instruction* InstructionSelector::Emit(InstructionCode opcode,
132 InstructionOperand output,
133 size_t temp_count,
134 InstructionOperand* temps) {
135 size_t output_count = output.IsInvalid() ? 0 : 1;
136 return Emit(opcode, output_count, &output, 0, nullptr, temp_count, temps);
137 }
138
139
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,size_t temp_count,InstructionOperand * temps)140 Instruction* InstructionSelector::Emit(InstructionCode opcode,
141 InstructionOperand output,
142 InstructionOperand a, size_t temp_count,
143 InstructionOperand* temps) {
144 size_t output_count = output.IsInvalid() ? 0 : 1;
145 return Emit(opcode, output_count, &output, 1, &a, temp_count, temps);
146 }
147
148
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,size_t temp_count,InstructionOperand * temps)149 Instruction* InstructionSelector::Emit(InstructionCode opcode,
150 InstructionOperand output,
151 InstructionOperand a,
152 InstructionOperand b, size_t temp_count,
153 InstructionOperand* temps) {
154 size_t output_count = output.IsInvalid() ? 0 : 1;
155 InstructionOperand inputs[] = {a, b};
156 size_t input_count = arraysize(inputs);
157 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
158 temps);
159 }
160
161
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,size_t temp_count,InstructionOperand * temps)162 Instruction* InstructionSelector::Emit(InstructionCode opcode,
163 InstructionOperand output,
164 InstructionOperand a,
165 InstructionOperand b,
166 InstructionOperand c, size_t temp_count,
167 InstructionOperand* temps) {
168 size_t output_count = output.IsInvalid() ? 0 : 1;
169 InstructionOperand inputs[] = {a, b, c};
170 size_t input_count = arraysize(inputs);
171 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
172 temps);
173 }
174
175
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,size_t temp_count,InstructionOperand * temps)176 Instruction* InstructionSelector::Emit(
177 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
178 InstructionOperand b, InstructionOperand c, InstructionOperand d,
179 size_t temp_count, InstructionOperand* temps) {
180 size_t output_count = output.IsInvalid() ? 0 : 1;
181 InstructionOperand inputs[] = {a, b, c, d};
182 size_t input_count = arraysize(inputs);
183 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
184 temps);
185 }
186
187
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,InstructionOperand e,size_t temp_count,InstructionOperand * temps)188 Instruction* InstructionSelector::Emit(
189 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
190 InstructionOperand b, InstructionOperand c, InstructionOperand d,
191 InstructionOperand e, size_t temp_count, InstructionOperand* temps) {
192 size_t output_count = output.IsInvalid() ? 0 : 1;
193 InstructionOperand inputs[] = {a, b, c, d, e};
194 size_t input_count = arraysize(inputs);
195 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
196 temps);
197 }
198
199
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,InstructionOperand e,InstructionOperand f,size_t temp_count,InstructionOperand * temps)200 Instruction* InstructionSelector::Emit(
201 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
202 InstructionOperand b, InstructionOperand c, InstructionOperand d,
203 InstructionOperand e, InstructionOperand f, size_t temp_count,
204 InstructionOperand* temps) {
205 size_t output_count = output.IsInvalid() ? 0 : 1;
206 InstructionOperand inputs[] = {a, b, c, d, e, f};
207 size_t input_count = arraysize(inputs);
208 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
209 temps);
210 }
211
212
Emit(InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,size_t temp_count,InstructionOperand * temps)213 Instruction* InstructionSelector::Emit(
214 InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
215 size_t input_count, InstructionOperand* inputs, size_t temp_count,
216 InstructionOperand* temps) {
217 if (output_count >= Instruction::kMaxOutputCount ||
218 input_count >= Instruction::kMaxInputCount ||
219 temp_count >= Instruction::kMaxTempCount) {
220 set_instruction_selection_failed();
221 return nullptr;
222 }
223
224 Instruction* instr =
225 Instruction::New(instruction_zone(), opcode, output_count, outputs,
226 input_count, inputs, temp_count, temps);
227 return Emit(instr);
228 }
229
230
Emit(Instruction * instr)231 Instruction* InstructionSelector::Emit(Instruction* instr) {
232 instructions_.push_back(instr);
233 return instr;
234 }
235
236
CanCover(Node * user,Node * node) const237 bool InstructionSelector::CanCover(Node* user, Node* node) const {
238 // 1. Both {user} and {node} must be in the same basic block.
239 if (schedule()->block(node) != schedule()->block(user)) {
240 return false;
241 }
242 // 2. Pure {node}s must be owned by the {user}.
243 if (node->op()->HasProperty(Operator::kPure)) {
244 return node->OwnedBy(user);
245 }
246 // 3. Impure {node}s must match the effect level of {user}.
247 if (GetEffectLevel(node) != GetEffectLevel(user)) {
248 return false;
249 }
250 // 4. Only {node} must have value edges pointing to {user}.
251 for (Edge const edge : node->use_edges()) {
252 if (edge.from() != user && NodeProperties::IsValueEdge(edge)) {
253 return false;
254 }
255 }
256 return true;
257 }
258
IsOnlyUserOfNodeInSameBlock(Node * user,Node * node) const259 bool InstructionSelector::IsOnlyUserOfNodeInSameBlock(Node* user,
260 Node* node) const {
261 BasicBlock* bb_user = schedule()->block(user);
262 BasicBlock* bb_node = schedule()->block(node);
263 if (bb_user != bb_node) return false;
264 for (Edge const edge : node->use_edges()) {
265 Node* from = edge.from();
266 if ((from != user) && (schedule()->block(from) == bb_user)) {
267 return false;
268 }
269 }
270 return true;
271 }
272
UpdateRenames(Instruction * instruction)273 void InstructionSelector::UpdateRenames(Instruction* instruction) {
274 for (size_t i = 0; i < instruction->InputCount(); i++) {
275 TryRename(instruction->InputAt(i));
276 }
277 }
278
UpdateRenamesInPhi(PhiInstruction * phi)279 void InstructionSelector::UpdateRenamesInPhi(PhiInstruction* phi) {
280 for (size_t i = 0; i < phi->operands().size(); i++) {
281 int vreg = phi->operands()[i];
282 int renamed = GetRename(vreg);
283 if (vreg != renamed) {
284 phi->RenameInput(i, renamed);
285 }
286 }
287 }
288
GetRename(int virtual_register)289 int InstructionSelector::GetRename(int virtual_register) {
290 int rename = virtual_register;
291 while (true) {
292 if (static_cast<size_t>(rename) >= virtual_register_rename_.size()) break;
293 int next = virtual_register_rename_[rename];
294 if (next == InstructionOperand::kInvalidVirtualRegister) {
295 break;
296 }
297 rename = next;
298 }
299 return rename;
300 }
301
TryRename(InstructionOperand * op)302 void InstructionSelector::TryRename(InstructionOperand* op) {
303 if (!op->IsUnallocated()) return;
304 int vreg = UnallocatedOperand::cast(op)->virtual_register();
305 int rename = GetRename(vreg);
306 if (rename != vreg) {
307 UnallocatedOperand::cast(op)->set_virtual_register(rename);
308 }
309 }
310
SetRename(const Node * node,const Node * rename)311 void InstructionSelector::SetRename(const Node* node, const Node* rename) {
312 int vreg = GetVirtualRegister(node);
313 if (static_cast<size_t>(vreg) >= virtual_register_rename_.size()) {
314 int invalid = InstructionOperand::kInvalidVirtualRegister;
315 virtual_register_rename_.resize(vreg + 1, invalid);
316 }
317 virtual_register_rename_[vreg] = GetVirtualRegister(rename);
318 }
319
GetVirtualRegister(const Node * node)320 int InstructionSelector::GetVirtualRegister(const Node* node) {
321 DCHECK_NOT_NULL(node);
322 size_t const id = node->id();
323 DCHECK_LT(id, virtual_registers_.size());
324 int virtual_register = virtual_registers_[id];
325 if (virtual_register == InstructionOperand::kInvalidVirtualRegister) {
326 virtual_register = sequence()->NextVirtualRegister();
327 virtual_registers_[id] = virtual_register;
328 }
329 return virtual_register;
330 }
331
332
GetVirtualRegistersForTesting() const333 const std::map<NodeId, int> InstructionSelector::GetVirtualRegistersForTesting()
334 const {
335 std::map<NodeId, int> virtual_registers;
336 for (size_t n = 0; n < virtual_registers_.size(); ++n) {
337 if (virtual_registers_[n] != InstructionOperand::kInvalidVirtualRegister) {
338 NodeId const id = static_cast<NodeId>(n);
339 virtual_registers.insert(std::make_pair(id, virtual_registers_[n]));
340 }
341 }
342 return virtual_registers;
343 }
344
345
IsDefined(Node * node) const346 bool InstructionSelector::IsDefined(Node* node) const {
347 DCHECK_NOT_NULL(node);
348 size_t const id = node->id();
349 DCHECK_LT(id, defined_.size());
350 return defined_[id];
351 }
352
353
MarkAsDefined(Node * node)354 void InstructionSelector::MarkAsDefined(Node* node) {
355 DCHECK_NOT_NULL(node);
356 size_t const id = node->id();
357 DCHECK_LT(id, defined_.size());
358 defined_[id] = true;
359 }
360
361
IsUsed(Node * node) const362 bool InstructionSelector::IsUsed(Node* node) const {
363 DCHECK_NOT_NULL(node);
364 // TODO(bmeurer): This is a terrible monster hack, but we have to make sure
365 // that the Retain is actually emitted, otherwise the GC will mess up.
366 if (node->opcode() == IrOpcode::kRetain) return true;
367 if (!node->op()->HasProperty(Operator::kEliminatable)) return true;
368 size_t const id = node->id();
369 DCHECK_LT(id, used_.size());
370 return used_[id];
371 }
372
373
MarkAsUsed(Node * node)374 void InstructionSelector::MarkAsUsed(Node* node) {
375 DCHECK_NOT_NULL(node);
376 size_t const id = node->id();
377 DCHECK_LT(id, used_.size());
378 used_[id] = true;
379 }
380
GetEffectLevel(Node * node) const381 int InstructionSelector::GetEffectLevel(Node* node) const {
382 DCHECK_NOT_NULL(node);
383 size_t const id = node->id();
384 DCHECK_LT(id, effect_level_.size());
385 return effect_level_[id];
386 }
387
SetEffectLevel(Node * node,int effect_level)388 void InstructionSelector::SetEffectLevel(Node* node, int effect_level) {
389 DCHECK_NOT_NULL(node);
390 size_t const id = node->id();
391 DCHECK_LT(id, effect_level_.size());
392 effect_level_[id] = effect_level;
393 }
394
CanAddressRelativeToRootsRegister() const395 bool InstructionSelector::CanAddressRelativeToRootsRegister() const {
396 return enable_serialization_ == kDisableSerialization &&
397 CanUseRootsRegister();
398 }
399
CanUseRootsRegister() const400 bool InstructionSelector::CanUseRootsRegister() const {
401 return linkage()->GetIncomingDescriptor()->flags() &
402 CallDescriptor::kCanUseRoots;
403 }
404
MarkAsRepresentation(MachineRepresentation rep,const InstructionOperand & op)405 void InstructionSelector::MarkAsRepresentation(MachineRepresentation rep,
406 const InstructionOperand& op) {
407 UnallocatedOperand unalloc = UnallocatedOperand::cast(op);
408 sequence()->MarkAsRepresentation(rep, unalloc.virtual_register());
409 }
410
411
MarkAsRepresentation(MachineRepresentation rep,Node * node)412 void InstructionSelector::MarkAsRepresentation(MachineRepresentation rep,
413 Node* node) {
414 sequence()->MarkAsRepresentation(rep, GetVirtualRegister(node));
415 }
416
417 namespace {
418
OperandForDeopt(Isolate * isolate,OperandGenerator * g,Node * input,FrameStateInputKind kind,MachineRepresentation rep)419 InstructionOperand OperandForDeopt(Isolate* isolate, OperandGenerator* g,
420 Node* input, FrameStateInputKind kind,
421 MachineRepresentation rep) {
422 if (rep == MachineRepresentation::kNone) {
423 return g->TempImmediate(FrameStateDescriptor::kImpossibleValue);
424 }
425
426 switch (input->opcode()) {
427 case IrOpcode::kInt32Constant:
428 case IrOpcode::kInt64Constant:
429 case IrOpcode::kNumberConstant:
430 case IrOpcode::kFloat32Constant:
431 case IrOpcode::kFloat64Constant:
432 return g->UseImmediate(input);
433 case IrOpcode::kHeapConstant: {
434 if (!CanBeTaggedPointer(rep)) {
435 // If we have inconsistent static and dynamic types, e.g. if we
436 // smi-check a string, we can get here with a heap object that
437 // says it is a smi. In that case, we return an invalid instruction
438 // operand, which will be interpreted as an optimized-out value.
439
440 // TODO(jarin) Ideally, we should turn the current instruction
441 // into an abort (we should never execute it).
442 return InstructionOperand();
443 }
444
445 Handle<HeapObject> constant = OpParameter<Handle<HeapObject>>(input);
446 Heap::RootListIndex root_index;
447 if (isolate->heap()->IsRootHandle(constant, &root_index) &&
448 root_index == Heap::kOptimizedOutRootIndex) {
449 // For an optimized-out object we return an invalid instruction
450 // operand, so that we take the fast path for optimized-out values.
451 return InstructionOperand();
452 }
453
454 return g->UseImmediate(input);
455 }
456 case IrOpcode::kArgumentsObjectState:
457 case IrOpcode::kObjectState:
458 case IrOpcode::kTypedObjectState:
459 UNREACHABLE();
460 break;
461 default:
462 switch (kind) {
463 case FrameStateInputKind::kStackSlot:
464 return g->UseUniqueSlot(input);
465 case FrameStateInputKind::kAny:
466 // Currently deopts "wrap" other operations, so the deopt's inputs
467 // are potentially needed untill the end of the deoptimising code.
468 return g->UseAnyAtEnd(input);
469 }
470 }
471 UNREACHABLE();
472 return InstructionOperand();
473 }
474
475 } // namespace
476
477 class StateObjectDeduplicator {
478 public:
StateObjectDeduplicator(Zone * zone)479 explicit StateObjectDeduplicator(Zone* zone) : objects_(zone) {}
480 static const size_t kNotDuplicated = SIZE_MAX;
481
GetObjectId(Node * node)482 size_t GetObjectId(Node* node) {
483 for (size_t i = 0; i < objects_.size(); ++i) {
484 if (objects_[i] == node) {
485 return i;
486 }
487 }
488 return kNotDuplicated;
489 }
490
InsertObject(Node * node)491 size_t InsertObject(Node* node) {
492 size_t id = objects_.size();
493 objects_.push_back(node);
494 return id;
495 }
496
497 private:
498 ZoneVector<Node*> objects_;
499 };
500
501 // Returns the number of instruction operands added to inputs.
AddOperandToStateValueDescriptor(StateValueList * values,InstructionOperandVector * inputs,OperandGenerator * g,StateObjectDeduplicator * deduplicator,Node * input,MachineType type,FrameStateInputKind kind,Zone * zone)502 size_t InstructionSelector::AddOperandToStateValueDescriptor(
503 StateValueList* values, InstructionOperandVector* inputs,
504 OperandGenerator* g, StateObjectDeduplicator* deduplicator, Node* input,
505 MachineType type, FrameStateInputKind kind, Zone* zone) {
506 if (input == nullptr) {
507 values->PushOptimizedOut();
508 return 0;
509 }
510
511 switch (input->opcode()) {
512 case IrOpcode::kArgumentsObjectState: {
513 values->PushArguments();
514 return 0;
515 }
516 case IrOpcode::kObjectState: {
517 UNREACHABLE();
518 return 0;
519 }
520 case IrOpcode::kTypedObjectState: {
521 size_t id = deduplicator->GetObjectId(input);
522 if (id == StateObjectDeduplicator::kNotDuplicated) {
523 size_t entries = 0;
524 id = deduplicator->InsertObject(input);
525 StateValueList* nested = values->PushRecursiveField(zone, id);
526 int const input_count = input->op()->ValueInputCount();
527 ZoneVector<MachineType> const* types = MachineTypesOf(input->op());
528 for (int i = 0; i < input_count; ++i) {
529 entries += AddOperandToStateValueDescriptor(
530 nested, inputs, g, deduplicator, input->InputAt(i), types->at(i),
531 kind, zone);
532 }
533 return entries;
534 } else {
535 // Crankshaft counts duplicate objects for the running id, so we have
536 // to push the input again.
537 deduplicator->InsertObject(input);
538 values->PushDuplicate(id);
539 return 0;
540 }
541 }
542 default: {
543 InstructionOperand op =
544 OperandForDeopt(isolate(), g, input, kind, type.representation());
545 if (op.kind() == InstructionOperand::INVALID) {
546 // Invalid operand means the value is impossible or optimized-out.
547 values->PushOptimizedOut();
548 return 0;
549 } else {
550 inputs->push_back(op);
551 values->PushPlain(type);
552 return 1;
553 }
554 }
555 }
556 }
557
558
559 // Returns the number of instruction operands added to inputs.
AddInputsToFrameStateDescriptor(FrameStateDescriptor * descriptor,Node * state,OperandGenerator * g,StateObjectDeduplicator * deduplicator,InstructionOperandVector * inputs,FrameStateInputKind kind,Zone * zone)560 size_t InstructionSelector::AddInputsToFrameStateDescriptor(
561 FrameStateDescriptor* descriptor, Node* state, OperandGenerator* g,
562 StateObjectDeduplicator* deduplicator, InstructionOperandVector* inputs,
563 FrameStateInputKind kind, Zone* zone) {
564 DCHECK_EQ(IrOpcode::kFrameState, state->op()->opcode());
565
566 size_t entries = 0;
567 size_t initial_size = inputs->size();
568 USE(initial_size); // initial_size is only used for debug.
569
570 if (descriptor->outer_state()) {
571 entries += AddInputsToFrameStateDescriptor(
572 descriptor->outer_state(), state->InputAt(kFrameStateOuterStateInput),
573 g, deduplicator, inputs, kind, zone);
574 }
575
576 Node* parameters = state->InputAt(kFrameStateParametersInput);
577 Node* locals = state->InputAt(kFrameStateLocalsInput);
578 Node* stack = state->InputAt(kFrameStateStackInput);
579 Node* context = state->InputAt(kFrameStateContextInput);
580 Node* function = state->InputAt(kFrameStateFunctionInput);
581
582 DCHECK_EQ(descriptor->parameters_count(),
583 StateValuesAccess(parameters).size());
584 DCHECK_EQ(descriptor->locals_count(), StateValuesAccess(locals).size());
585 DCHECK_EQ(descriptor->stack_count(), StateValuesAccess(stack).size());
586
587 StateValueList* values_descriptor = descriptor->GetStateValueDescriptors();
588
589 DCHECK_EQ(values_descriptor->size(), 0u);
590 values_descriptor->ReserveSize(
591 descriptor->GetSize(OutputFrameStateCombine::Ignore()));
592
593 entries += AddOperandToStateValueDescriptor(
594 values_descriptor, inputs, g, deduplicator, function,
595 MachineType::AnyTagged(), FrameStateInputKind::kStackSlot, zone);
596 for (StateValuesAccess::TypedNode input_node :
597 StateValuesAccess(parameters)) {
598 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
599 deduplicator, input_node.node,
600 input_node.type, kind, zone);
601 }
602 if (descriptor->HasContext()) {
603 entries += AddOperandToStateValueDescriptor(
604 values_descriptor, inputs, g, deduplicator, context,
605 MachineType::AnyTagged(), FrameStateInputKind::kStackSlot, zone);
606 }
607 for (StateValuesAccess::TypedNode input_node : StateValuesAccess(locals)) {
608 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
609 deduplicator, input_node.node,
610 input_node.type, kind, zone);
611 }
612 for (StateValuesAccess::TypedNode input_node : StateValuesAccess(stack)) {
613 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
614 deduplicator, input_node.node,
615 input_node.type, kind, zone);
616 }
617 DCHECK_EQ(initial_size + entries, inputs->size());
618 return entries;
619 }
620
621
622 // An internal helper class for generating the operands to calls.
623 // TODO(bmeurer): Get rid of the CallBuffer business and make
624 // InstructionSelector::VisitCall platform independent instead.
625 struct CallBuffer {
CallBufferv8::internal::compiler::CallBuffer626 CallBuffer(Zone* zone, const CallDescriptor* descriptor,
627 FrameStateDescriptor* frame_state)
628 : descriptor(descriptor),
629 frame_state_descriptor(frame_state),
630 output_nodes(zone),
631 outputs(zone),
632 instruction_args(zone),
633 pushed_nodes(zone) {
634 output_nodes.reserve(descriptor->ReturnCount());
635 outputs.reserve(descriptor->ReturnCount());
636 pushed_nodes.reserve(input_count());
637 instruction_args.reserve(input_count() + frame_state_value_count());
638 }
639
640
641 const CallDescriptor* descriptor;
642 FrameStateDescriptor* frame_state_descriptor;
643 NodeVector output_nodes;
644 InstructionOperandVector outputs;
645 InstructionOperandVector instruction_args;
646 ZoneVector<PushParameter> pushed_nodes;
647
input_countv8::internal::compiler::CallBuffer648 size_t input_count() const { return descriptor->InputCount(); }
649
frame_state_countv8::internal::compiler::CallBuffer650 size_t frame_state_count() const { return descriptor->FrameStateCount(); }
651
frame_state_value_countv8::internal::compiler::CallBuffer652 size_t frame_state_value_count() const {
653 return (frame_state_descriptor == nullptr)
654 ? 0
655 : (frame_state_descriptor->GetTotalSize() +
656 1); // Include deopt id.
657 }
658 };
659
660
661 // TODO(bmeurer): Get rid of the CallBuffer business and make
662 // InstructionSelector::VisitCall platform independent instead.
InitializeCallBuffer(Node * call,CallBuffer * buffer,CallBufferFlags flags,int stack_param_delta)663 void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
664 CallBufferFlags flags,
665 int stack_param_delta) {
666 OperandGenerator g(this);
667 DCHECK_LE(call->op()->ValueOutputCount(),
668 static_cast<int>(buffer->descriptor->ReturnCount()));
669 DCHECK_EQ(
670 call->op()->ValueInputCount(),
671 static_cast<int>(buffer->input_count() + buffer->frame_state_count()));
672
673 if (buffer->descriptor->ReturnCount() > 0) {
674 // Collect the projections that represent multiple outputs from this call.
675 if (buffer->descriptor->ReturnCount() == 1) {
676 buffer->output_nodes.push_back(call);
677 } else {
678 buffer->output_nodes.resize(buffer->descriptor->ReturnCount(), nullptr);
679 for (auto use : call->uses()) {
680 if (use->opcode() != IrOpcode::kProjection) continue;
681 size_t const index = ProjectionIndexOf(use->op());
682 DCHECK_LT(index, buffer->output_nodes.size());
683 DCHECK(!buffer->output_nodes[index]);
684 buffer->output_nodes[index] = use;
685 }
686 }
687
688 // Filter out the outputs that aren't live because no projection uses them.
689 size_t outputs_needed_by_framestate =
690 buffer->frame_state_descriptor == nullptr
691 ? 0
692 : buffer->frame_state_descriptor->state_combine()
693 .ConsumedOutputCount();
694 for (size_t i = 0; i < buffer->output_nodes.size(); i++) {
695 bool output_is_live = buffer->output_nodes[i] != nullptr ||
696 i < outputs_needed_by_framestate;
697 if (output_is_live) {
698 MachineRepresentation rep =
699 buffer->descriptor->GetReturnType(static_cast<int>(i))
700 .representation();
701 LinkageLocation location =
702 buffer->descriptor->GetReturnLocation(static_cast<int>(i));
703
704 Node* output = buffer->output_nodes[i];
705 InstructionOperand op = output == nullptr
706 ? g.TempLocation(location)
707 : g.DefineAsLocation(output, location);
708 MarkAsRepresentation(rep, op);
709
710 buffer->outputs.push_back(op);
711 }
712 }
713 }
714
715 // The first argument is always the callee code.
716 Node* callee = call->InputAt(0);
717 bool call_code_immediate = (flags & kCallCodeImmediate) != 0;
718 bool call_address_immediate = (flags & kCallAddressImmediate) != 0;
719 switch (buffer->descriptor->kind()) {
720 case CallDescriptor::kCallCodeObject:
721 buffer->instruction_args.push_back(
722 (call_code_immediate && callee->opcode() == IrOpcode::kHeapConstant)
723 ? g.UseImmediate(callee)
724 : g.UseRegister(callee));
725 break;
726 case CallDescriptor::kCallAddress:
727 buffer->instruction_args.push_back(
728 (call_address_immediate &&
729 callee->opcode() == IrOpcode::kExternalConstant)
730 ? g.UseImmediate(callee)
731 : g.UseRegister(callee));
732 break;
733 case CallDescriptor::kCallJSFunction:
734 buffer->instruction_args.push_back(
735 g.UseLocation(callee, buffer->descriptor->GetInputLocation(0)));
736 break;
737 }
738 DCHECK_EQ(1u, buffer->instruction_args.size());
739
740 // If the call needs a frame state, we insert the state information as
741 // follows (n is the number of value inputs to the frame state):
742 // arg 1 : deoptimization id.
743 // arg 2 - arg (n + 1) : value inputs to the frame state.
744 size_t frame_state_entries = 0;
745 USE(frame_state_entries); // frame_state_entries is only used for debug.
746 if (buffer->frame_state_descriptor != nullptr) {
747 Node* frame_state =
748 call->InputAt(static_cast<int>(buffer->descriptor->InputCount()));
749
750 // If it was a syntactic tail call we need to drop the current frame and
751 // all the frames on top of it that are either an arguments adaptor frame
752 // or a tail caller frame.
753 if (buffer->descriptor->SupportsTailCalls()) {
754 frame_state = NodeProperties::GetFrameStateInput(frame_state);
755 buffer->frame_state_descriptor =
756 buffer->frame_state_descriptor->outer_state();
757 while (buffer->frame_state_descriptor != nullptr &&
758 (buffer->frame_state_descriptor->type() ==
759 FrameStateType::kArgumentsAdaptor ||
760 buffer->frame_state_descriptor->type() ==
761 FrameStateType::kTailCallerFunction)) {
762 frame_state = NodeProperties::GetFrameStateInput(frame_state);
763 buffer->frame_state_descriptor =
764 buffer->frame_state_descriptor->outer_state();
765 }
766 }
767
768 int const state_id = sequence()->AddDeoptimizationEntry(
769 buffer->frame_state_descriptor, DeoptimizeKind::kEager,
770 DeoptimizeReason::kNoReason);
771 buffer->instruction_args.push_back(g.TempImmediate(state_id));
772
773 StateObjectDeduplicator deduplicator(instruction_zone());
774
775 frame_state_entries =
776 1 + AddInputsToFrameStateDescriptor(
777 buffer->frame_state_descriptor, frame_state, &g, &deduplicator,
778 &buffer->instruction_args, FrameStateInputKind::kStackSlot,
779 instruction_zone());
780
781 DCHECK_EQ(1 + frame_state_entries, buffer->instruction_args.size());
782 }
783
784 size_t input_count = static_cast<size_t>(buffer->input_count());
785
786 // Split the arguments into pushed_nodes and instruction_args. Pushed
787 // arguments require an explicit push instruction before the call and do
788 // not appear as arguments to the call. Everything else ends up
789 // as an InstructionOperand argument to the call.
790 auto iter(call->inputs().begin());
791 size_t pushed_count = 0;
792 bool call_tail = (flags & kCallTail) != 0;
793 for (size_t index = 0; index < input_count; ++iter, ++index) {
794 DCHECK(iter != call->inputs().end());
795 DCHECK((*iter)->op()->opcode() != IrOpcode::kFrameState);
796 if (index == 0) continue; // The first argument (callee) is already done.
797
798 LinkageLocation location = buffer->descriptor->GetInputLocation(index);
799 if (call_tail) {
800 location = LinkageLocation::ConvertToTailCallerLocation(
801 location, stack_param_delta);
802 }
803 InstructionOperand op = g.UseLocation(*iter, location);
804 if (UnallocatedOperand::cast(op).HasFixedSlotPolicy() && !call_tail) {
805 int stack_index = -UnallocatedOperand::cast(op).fixed_slot_index() - 1;
806 if (static_cast<size_t>(stack_index) >= buffer->pushed_nodes.size()) {
807 buffer->pushed_nodes.resize(stack_index + 1);
808 }
809 PushParameter parameter(*iter, buffer->descriptor->GetInputType(index));
810 buffer->pushed_nodes[stack_index] = parameter;
811 pushed_count++;
812 } else {
813 buffer->instruction_args.push_back(op);
814 }
815 }
816 DCHECK_EQ(input_count, buffer->instruction_args.size() + pushed_count -
817 frame_state_entries);
818 if (V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK && call_tail &&
819 stack_param_delta != 0) {
820 // For tail calls that change the size of their parameter list and keep
821 // their return address on the stack, move the return address to just above
822 // the parameters.
823 LinkageLocation saved_return_location =
824 LinkageLocation::ForSavedCallerReturnAddress();
825 InstructionOperand return_address =
826 g.UsePointerLocation(LinkageLocation::ConvertToTailCallerLocation(
827 saved_return_location, stack_param_delta),
828 saved_return_location);
829 buffer->instruction_args.push_back(return_address);
830 }
831 }
832
IsSourcePositionUsed(Node * node)833 bool InstructionSelector::IsSourcePositionUsed(Node* node) {
834 return (source_position_mode_ == kAllSourcePositions ||
835 node->opcode() == IrOpcode::kCall ||
836 node->opcode() == IrOpcode::kTrapIf ||
837 node->opcode() == IrOpcode::kTrapUnless);
838 }
839
VisitBlock(BasicBlock * block)840 void InstructionSelector::VisitBlock(BasicBlock* block) {
841 DCHECK(!current_block_);
842 current_block_ = block;
843 auto current_num_instructions = [&] {
844 DCHECK_GE(kMaxInt, instructions_.size());
845 return static_cast<int>(instructions_.size());
846 };
847 int current_block_end = current_num_instructions();
848
849 int effect_level = 0;
850 for (Node* const node : *block) {
851 SetEffectLevel(node, effect_level);
852 if (node->opcode() == IrOpcode::kStore ||
853 node->opcode() == IrOpcode::kUnalignedStore ||
854 node->opcode() == IrOpcode::kCheckedStore ||
855 node->opcode() == IrOpcode::kCall ||
856 node->opcode() == IrOpcode::kProtectedLoad ||
857 node->opcode() == IrOpcode::kProtectedStore) {
858 ++effect_level;
859 }
860 }
861
862 // We visit the control first, then the nodes in the block, so the block's
863 // control input should be on the same effect level as the last node.
864 if (block->control_input() != nullptr) {
865 SetEffectLevel(block->control_input(), effect_level);
866 }
867
868 auto FinishEmittedInstructions = [&](Node* node, int instruction_start) {
869 if (instruction_selection_failed()) return false;
870 if (current_num_instructions() == instruction_start) return true;
871 std::reverse(instructions_.begin() + instruction_start,
872 instructions_.end());
873 if (!node) return true;
874 SourcePosition source_position = source_positions_->GetSourcePosition(node);
875 if (source_position.IsKnown() && IsSourcePositionUsed(node)) {
876 sequence()->SetSourcePosition(instructions_[instruction_start],
877 source_position);
878 }
879 return true;
880 };
881
882 // Generate code for the block control "top down", but schedule the code
883 // "bottom up".
884 VisitControl(block);
885 if (!FinishEmittedInstructions(block->control_input(), current_block_end))
886 return;
887
888 // Visit code in reverse control flow order, because architecture-specific
889 // matching may cover more than one node at a time.
890 for (auto node : base::Reversed(*block)) {
891 // Skip nodes that are unused or already defined.
892 if (!IsUsed(node) || IsDefined(node)) continue;
893 // Generate code for this node "top down", but schedule the code "bottom
894 // up".
895 int current_node_end = current_num_instructions();
896 VisitNode(node);
897 if (!FinishEmittedInstructions(node, current_node_end)) return;
898 }
899
900 // We're done with the block.
901 InstructionBlock* instruction_block =
902 sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
903 instruction_block->set_code_start(static_cast<int>(instructions_.size()));
904 instruction_block->set_code_end(current_block_end);
905
906 current_block_ = nullptr;
907 }
908
909
VisitControl(BasicBlock * block)910 void InstructionSelector::VisitControl(BasicBlock* block) {
911 #ifdef DEBUG
912 // SSA deconstruction requires targets of branches not to have phis.
913 // Edge split form guarantees this property, but is more strict.
914 if (block->SuccessorCount() > 1) {
915 for (BasicBlock* const successor : block->successors()) {
916 for (Node* const node : *successor) {
917 // If this CHECK fails, you might have specified merged variables
918 // for a label with only one predecessor.
919 CHECK(!IrOpcode::IsPhiOpcode(node->opcode()));
920 }
921 }
922 }
923 #endif
924
925 Node* input = block->control_input();
926 switch (block->control()) {
927 case BasicBlock::kGoto:
928 return VisitGoto(block->SuccessorAt(0));
929 case BasicBlock::kCall: {
930 DCHECK_EQ(IrOpcode::kCall, input->opcode());
931 BasicBlock* success = block->SuccessorAt(0);
932 BasicBlock* exception = block->SuccessorAt(1);
933 return VisitCall(input, exception), VisitGoto(success);
934 }
935 case BasicBlock::kTailCall: {
936 DCHECK_EQ(IrOpcode::kTailCall, input->opcode());
937 return VisitTailCall(input);
938 }
939 case BasicBlock::kBranch: {
940 DCHECK_EQ(IrOpcode::kBranch, input->opcode());
941 BasicBlock* tbranch = block->SuccessorAt(0);
942 BasicBlock* fbranch = block->SuccessorAt(1);
943 if (tbranch == fbranch) return VisitGoto(tbranch);
944 return VisitBranch(input, tbranch, fbranch);
945 }
946 case BasicBlock::kSwitch: {
947 DCHECK_EQ(IrOpcode::kSwitch, input->opcode());
948 SwitchInfo sw;
949 // Last successor must be Default.
950 sw.default_branch = block->successors().back();
951 DCHECK_EQ(IrOpcode::kIfDefault, sw.default_branch->front()->opcode());
952 // All other successors must be cases.
953 sw.case_count = block->SuccessorCount() - 1;
954 sw.case_branches = &block->successors().front();
955 // Determine case values and their min/max.
956 sw.case_values = zone()->NewArray<int32_t>(sw.case_count);
957 sw.min_value = std::numeric_limits<int32_t>::max();
958 sw.max_value = std::numeric_limits<int32_t>::min();
959 for (size_t index = 0; index < sw.case_count; ++index) {
960 BasicBlock* branch = sw.case_branches[index];
961 int32_t value = OpParameter<int32_t>(branch->front()->op());
962 sw.case_values[index] = value;
963 if (sw.min_value > value) sw.min_value = value;
964 if (sw.max_value < value) sw.max_value = value;
965 }
966 DCHECK_LE(sw.min_value, sw.max_value);
967 // Note that {value_range} can be 0 if {min_value} is -2^31 and
968 // {max_value}
969 // is 2^31-1, so don't assume that it's non-zero below.
970 sw.value_range = 1u + bit_cast<uint32_t>(sw.max_value) -
971 bit_cast<uint32_t>(sw.min_value);
972 return VisitSwitch(input, sw);
973 }
974 case BasicBlock::kReturn: {
975 DCHECK_EQ(IrOpcode::kReturn, input->opcode());
976 return VisitReturn(input);
977 }
978 case BasicBlock::kDeoptimize: {
979 DeoptimizeParameters p = DeoptimizeParametersOf(input->op());
980 Node* value = input->InputAt(0);
981 return VisitDeoptimize(p.kind(), p.reason(), value);
982 }
983 case BasicBlock::kThrow:
984 DCHECK_EQ(IrOpcode::kThrow, input->opcode());
985 return VisitThrow(input->InputAt(0));
986 case BasicBlock::kNone: {
987 // Exit block doesn't have control.
988 DCHECK_NULL(input);
989 break;
990 }
991 default:
992 UNREACHABLE();
993 break;
994 }
995 }
996
MarkPairProjectionsAsWord32(Node * node)997 void InstructionSelector::MarkPairProjectionsAsWord32(Node* node) {
998 Node* projection0 = NodeProperties::FindProjection(node, 0);
999 if (projection0) {
1000 MarkAsWord32(projection0);
1001 }
1002 Node* projection1 = NodeProperties::FindProjection(node, 1);
1003 if (projection1) {
1004 MarkAsWord32(projection1);
1005 }
1006 }
1007
VisitNode(Node * node)1008 void InstructionSelector::VisitNode(Node* node) {
1009 DCHECK_NOT_NULL(schedule()->block(node)); // should only use scheduled nodes.
1010 switch (node->opcode()) {
1011 case IrOpcode::kStart:
1012 case IrOpcode::kLoop:
1013 case IrOpcode::kEnd:
1014 case IrOpcode::kBranch:
1015 case IrOpcode::kIfTrue:
1016 case IrOpcode::kIfFalse:
1017 case IrOpcode::kIfSuccess:
1018 case IrOpcode::kSwitch:
1019 case IrOpcode::kIfValue:
1020 case IrOpcode::kIfDefault:
1021 case IrOpcode::kEffectPhi:
1022 case IrOpcode::kMerge:
1023 case IrOpcode::kTerminate:
1024 case IrOpcode::kBeginRegion:
1025 // No code needed for these graph artifacts.
1026 return;
1027 case IrOpcode::kIfException:
1028 return MarkAsReference(node), VisitIfException(node);
1029 case IrOpcode::kFinishRegion:
1030 return MarkAsReference(node), VisitFinishRegion(node);
1031 case IrOpcode::kParameter: {
1032 MachineType type =
1033 linkage()->GetParameterType(ParameterIndexOf(node->op()));
1034 MarkAsRepresentation(type.representation(), node);
1035 return VisitParameter(node);
1036 }
1037 case IrOpcode::kOsrValue:
1038 return MarkAsReference(node), VisitOsrValue(node);
1039 case IrOpcode::kPhi: {
1040 MachineRepresentation rep = PhiRepresentationOf(node->op());
1041 if (rep == MachineRepresentation::kNone) return;
1042 MarkAsRepresentation(rep, node);
1043 return VisitPhi(node);
1044 }
1045 case IrOpcode::kProjection:
1046 return VisitProjection(node);
1047 case IrOpcode::kInt32Constant:
1048 case IrOpcode::kInt64Constant:
1049 case IrOpcode::kExternalConstant:
1050 case IrOpcode::kRelocatableInt32Constant:
1051 case IrOpcode::kRelocatableInt64Constant:
1052 return VisitConstant(node);
1053 case IrOpcode::kFloat32Constant:
1054 return MarkAsFloat32(node), VisitConstant(node);
1055 case IrOpcode::kFloat64Constant:
1056 return MarkAsFloat64(node), VisitConstant(node);
1057 case IrOpcode::kHeapConstant:
1058 return MarkAsReference(node), VisitConstant(node);
1059 case IrOpcode::kNumberConstant: {
1060 double value = OpParameter<double>(node);
1061 if (!IsSmiDouble(value)) MarkAsReference(node);
1062 return VisitConstant(node);
1063 }
1064 case IrOpcode::kCall:
1065 return VisitCall(node);
1066 case IrOpcode::kDeoptimizeIf:
1067 return VisitDeoptimizeIf(node);
1068 case IrOpcode::kDeoptimizeUnless:
1069 return VisitDeoptimizeUnless(node);
1070 case IrOpcode::kTrapIf:
1071 return VisitTrapIf(node, static_cast<Runtime::FunctionId>(
1072 OpParameter<int32_t>(node->op())));
1073 case IrOpcode::kTrapUnless:
1074 return VisitTrapUnless(node, static_cast<Runtime::FunctionId>(
1075 OpParameter<int32_t>(node->op())));
1076 case IrOpcode::kFrameState:
1077 case IrOpcode::kStateValues:
1078 case IrOpcode::kObjectState:
1079 return;
1080 case IrOpcode::kDebugBreak:
1081 VisitDebugBreak(node);
1082 return;
1083 case IrOpcode::kComment:
1084 VisitComment(node);
1085 return;
1086 case IrOpcode::kRetain:
1087 VisitRetain(node);
1088 return;
1089 case IrOpcode::kLoad: {
1090 LoadRepresentation type = LoadRepresentationOf(node->op());
1091 MarkAsRepresentation(type.representation(), node);
1092 return VisitLoad(node);
1093 }
1094 case IrOpcode::kStore:
1095 return VisitStore(node);
1096 case IrOpcode::kProtectedStore:
1097 return VisitProtectedStore(node);
1098 case IrOpcode::kWord32And:
1099 return MarkAsWord32(node), VisitWord32And(node);
1100 case IrOpcode::kWord32Or:
1101 return MarkAsWord32(node), VisitWord32Or(node);
1102 case IrOpcode::kWord32Xor:
1103 return MarkAsWord32(node), VisitWord32Xor(node);
1104 case IrOpcode::kWord32Shl:
1105 return MarkAsWord32(node), VisitWord32Shl(node);
1106 case IrOpcode::kWord32Shr:
1107 return MarkAsWord32(node), VisitWord32Shr(node);
1108 case IrOpcode::kWord32Sar:
1109 return MarkAsWord32(node), VisitWord32Sar(node);
1110 case IrOpcode::kWord32Ror:
1111 return MarkAsWord32(node), VisitWord32Ror(node);
1112 case IrOpcode::kWord32Equal:
1113 return VisitWord32Equal(node);
1114 case IrOpcode::kWord32Clz:
1115 return MarkAsWord32(node), VisitWord32Clz(node);
1116 case IrOpcode::kWord32Ctz:
1117 return MarkAsWord32(node), VisitWord32Ctz(node);
1118 case IrOpcode::kWord32ReverseBits:
1119 return MarkAsWord32(node), VisitWord32ReverseBits(node);
1120 case IrOpcode::kWord32ReverseBytes:
1121 return MarkAsWord32(node), VisitWord32ReverseBytes(node);
1122 case IrOpcode::kWord32Popcnt:
1123 return MarkAsWord32(node), VisitWord32Popcnt(node);
1124 case IrOpcode::kWord64Popcnt:
1125 return MarkAsWord32(node), VisitWord64Popcnt(node);
1126 case IrOpcode::kWord64And:
1127 return MarkAsWord64(node), VisitWord64And(node);
1128 case IrOpcode::kWord64Or:
1129 return MarkAsWord64(node), VisitWord64Or(node);
1130 case IrOpcode::kWord64Xor:
1131 return MarkAsWord64(node), VisitWord64Xor(node);
1132 case IrOpcode::kWord64Shl:
1133 return MarkAsWord64(node), VisitWord64Shl(node);
1134 case IrOpcode::kWord64Shr:
1135 return MarkAsWord64(node), VisitWord64Shr(node);
1136 case IrOpcode::kWord64Sar:
1137 return MarkAsWord64(node), VisitWord64Sar(node);
1138 case IrOpcode::kWord64Ror:
1139 return MarkAsWord64(node), VisitWord64Ror(node);
1140 case IrOpcode::kWord64Clz:
1141 return MarkAsWord64(node), VisitWord64Clz(node);
1142 case IrOpcode::kWord64Ctz:
1143 return MarkAsWord64(node), VisitWord64Ctz(node);
1144 case IrOpcode::kWord64ReverseBits:
1145 return MarkAsWord64(node), VisitWord64ReverseBits(node);
1146 case IrOpcode::kWord64ReverseBytes:
1147 return MarkAsWord64(node), VisitWord64ReverseBytes(node);
1148 case IrOpcode::kWord64Equal:
1149 return VisitWord64Equal(node);
1150 case IrOpcode::kInt32Add:
1151 return MarkAsWord32(node), VisitInt32Add(node);
1152 case IrOpcode::kInt32AddWithOverflow:
1153 return MarkAsWord32(node), VisitInt32AddWithOverflow(node);
1154 case IrOpcode::kInt32Sub:
1155 return MarkAsWord32(node), VisitInt32Sub(node);
1156 case IrOpcode::kInt32SubWithOverflow:
1157 return VisitInt32SubWithOverflow(node);
1158 case IrOpcode::kInt32Mul:
1159 return MarkAsWord32(node), VisitInt32Mul(node);
1160 case IrOpcode::kInt32MulWithOverflow:
1161 return MarkAsWord32(node), VisitInt32MulWithOverflow(node);
1162 case IrOpcode::kInt32MulHigh:
1163 return VisitInt32MulHigh(node);
1164 case IrOpcode::kInt32Div:
1165 return MarkAsWord32(node), VisitInt32Div(node);
1166 case IrOpcode::kInt32Mod:
1167 return MarkAsWord32(node), VisitInt32Mod(node);
1168 case IrOpcode::kInt32LessThan:
1169 return VisitInt32LessThan(node);
1170 case IrOpcode::kInt32LessThanOrEqual:
1171 return VisitInt32LessThanOrEqual(node);
1172 case IrOpcode::kUint32Div:
1173 return MarkAsWord32(node), VisitUint32Div(node);
1174 case IrOpcode::kUint32LessThan:
1175 return VisitUint32LessThan(node);
1176 case IrOpcode::kUint32LessThanOrEqual:
1177 return VisitUint32LessThanOrEqual(node);
1178 case IrOpcode::kUint32Mod:
1179 return MarkAsWord32(node), VisitUint32Mod(node);
1180 case IrOpcode::kUint32MulHigh:
1181 return VisitUint32MulHigh(node);
1182 case IrOpcode::kInt64Add:
1183 return MarkAsWord64(node), VisitInt64Add(node);
1184 case IrOpcode::kInt64AddWithOverflow:
1185 return MarkAsWord64(node), VisitInt64AddWithOverflow(node);
1186 case IrOpcode::kInt64Sub:
1187 return MarkAsWord64(node), VisitInt64Sub(node);
1188 case IrOpcode::kInt64SubWithOverflow:
1189 return MarkAsWord64(node), VisitInt64SubWithOverflow(node);
1190 case IrOpcode::kInt64Mul:
1191 return MarkAsWord64(node), VisitInt64Mul(node);
1192 case IrOpcode::kInt64Div:
1193 return MarkAsWord64(node), VisitInt64Div(node);
1194 case IrOpcode::kInt64Mod:
1195 return MarkAsWord64(node), VisitInt64Mod(node);
1196 case IrOpcode::kInt64LessThan:
1197 return VisitInt64LessThan(node);
1198 case IrOpcode::kInt64LessThanOrEqual:
1199 return VisitInt64LessThanOrEqual(node);
1200 case IrOpcode::kUint64Div:
1201 return MarkAsWord64(node), VisitUint64Div(node);
1202 case IrOpcode::kUint64LessThan:
1203 return VisitUint64LessThan(node);
1204 case IrOpcode::kUint64LessThanOrEqual:
1205 return VisitUint64LessThanOrEqual(node);
1206 case IrOpcode::kUint64Mod:
1207 return MarkAsWord64(node), VisitUint64Mod(node);
1208 case IrOpcode::kBitcastTaggedToWord:
1209 return MarkAsRepresentation(MachineType::PointerRepresentation(), node),
1210 VisitBitcastTaggedToWord(node);
1211 case IrOpcode::kBitcastWordToTagged:
1212 return MarkAsReference(node), VisitBitcastWordToTagged(node);
1213 case IrOpcode::kBitcastWordToTaggedSigned:
1214 return MarkAsRepresentation(MachineRepresentation::kTaggedSigned, node),
1215 EmitIdentity(node);
1216 case IrOpcode::kChangeFloat32ToFloat64:
1217 return MarkAsFloat64(node), VisitChangeFloat32ToFloat64(node);
1218 case IrOpcode::kChangeInt32ToFloat64:
1219 return MarkAsFloat64(node), VisitChangeInt32ToFloat64(node);
1220 case IrOpcode::kChangeUint32ToFloat64:
1221 return MarkAsFloat64(node), VisitChangeUint32ToFloat64(node);
1222 case IrOpcode::kChangeFloat64ToInt32:
1223 return MarkAsWord32(node), VisitChangeFloat64ToInt32(node);
1224 case IrOpcode::kChangeFloat64ToUint32:
1225 return MarkAsWord32(node), VisitChangeFloat64ToUint32(node);
1226 case IrOpcode::kFloat64SilenceNaN:
1227 MarkAsFloat64(node);
1228 if (CanProduceSignalingNaN(node->InputAt(0))) {
1229 return VisitFloat64SilenceNaN(node);
1230 } else {
1231 return EmitIdentity(node);
1232 }
1233 case IrOpcode::kTruncateFloat64ToUint32:
1234 return MarkAsWord32(node), VisitTruncateFloat64ToUint32(node);
1235 case IrOpcode::kTruncateFloat32ToInt32:
1236 return MarkAsWord32(node), VisitTruncateFloat32ToInt32(node);
1237 case IrOpcode::kTruncateFloat32ToUint32:
1238 return MarkAsWord32(node), VisitTruncateFloat32ToUint32(node);
1239 case IrOpcode::kTryTruncateFloat32ToInt64:
1240 return MarkAsWord64(node), VisitTryTruncateFloat32ToInt64(node);
1241 case IrOpcode::kTryTruncateFloat64ToInt64:
1242 return MarkAsWord64(node), VisitTryTruncateFloat64ToInt64(node);
1243 case IrOpcode::kTryTruncateFloat32ToUint64:
1244 return MarkAsWord64(node), VisitTryTruncateFloat32ToUint64(node);
1245 case IrOpcode::kTryTruncateFloat64ToUint64:
1246 return MarkAsWord64(node), VisitTryTruncateFloat64ToUint64(node);
1247 case IrOpcode::kChangeInt32ToInt64:
1248 return MarkAsWord64(node), VisitChangeInt32ToInt64(node);
1249 case IrOpcode::kChangeUint32ToUint64:
1250 return MarkAsWord64(node), VisitChangeUint32ToUint64(node);
1251 case IrOpcode::kTruncateFloat64ToFloat32:
1252 return MarkAsFloat32(node), VisitTruncateFloat64ToFloat32(node);
1253 case IrOpcode::kTruncateFloat64ToWord32:
1254 return MarkAsWord32(node), VisitTruncateFloat64ToWord32(node);
1255 case IrOpcode::kTruncateInt64ToInt32:
1256 return MarkAsWord32(node), VisitTruncateInt64ToInt32(node);
1257 case IrOpcode::kRoundFloat64ToInt32:
1258 return MarkAsWord32(node), VisitRoundFloat64ToInt32(node);
1259 case IrOpcode::kRoundInt64ToFloat32:
1260 return MarkAsFloat32(node), VisitRoundInt64ToFloat32(node);
1261 case IrOpcode::kRoundInt32ToFloat32:
1262 return MarkAsFloat32(node), VisitRoundInt32ToFloat32(node);
1263 case IrOpcode::kRoundInt64ToFloat64:
1264 return MarkAsFloat64(node), VisitRoundInt64ToFloat64(node);
1265 case IrOpcode::kBitcastFloat32ToInt32:
1266 return MarkAsWord32(node), VisitBitcastFloat32ToInt32(node);
1267 case IrOpcode::kRoundUint32ToFloat32:
1268 return MarkAsFloat32(node), VisitRoundUint32ToFloat32(node);
1269 case IrOpcode::kRoundUint64ToFloat32:
1270 return MarkAsFloat64(node), VisitRoundUint64ToFloat32(node);
1271 case IrOpcode::kRoundUint64ToFloat64:
1272 return MarkAsFloat64(node), VisitRoundUint64ToFloat64(node);
1273 case IrOpcode::kBitcastFloat64ToInt64:
1274 return MarkAsWord64(node), VisitBitcastFloat64ToInt64(node);
1275 case IrOpcode::kBitcastInt32ToFloat32:
1276 return MarkAsFloat32(node), VisitBitcastInt32ToFloat32(node);
1277 case IrOpcode::kBitcastInt64ToFloat64:
1278 return MarkAsFloat64(node), VisitBitcastInt64ToFloat64(node);
1279 case IrOpcode::kFloat32Add:
1280 return MarkAsFloat32(node), VisitFloat32Add(node);
1281 case IrOpcode::kFloat32Sub:
1282 return MarkAsFloat32(node), VisitFloat32Sub(node);
1283 case IrOpcode::kFloat32Neg:
1284 return MarkAsFloat32(node), VisitFloat32Neg(node);
1285 case IrOpcode::kFloat32Mul:
1286 return MarkAsFloat32(node), VisitFloat32Mul(node);
1287 case IrOpcode::kFloat32Div:
1288 return MarkAsFloat32(node), VisitFloat32Div(node);
1289 case IrOpcode::kFloat32Abs:
1290 return MarkAsFloat32(node), VisitFloat32Abs(node);
1291 case IrOpcode::kFloat32Sqrt:
1292 return MarkAsFloat32(node), VisitFloat32Sqrt(node);
1293 case IrOpcode::kFloat32Equal:
1294 return VisitFloat32Equal(node);
1295 case IrOpcode::kFloat32LessThan:
1296 return VisitFloat32LessThan(node);
1297 case IrOpcode::kFloat32LessThanOrEqual:
1298 return VisitFloat32LessThanOrEqual(node);
1299 case IrOpcode::kFloat32Max:
1300 return MarkAsFloat32(node), VisitFloat32Max(node);
1301 case IrOpcode::kFloat32Min:
1302 return MarkAsFloat32(node), VisitFloat32Min(node);
1303 case IrOpcode::kFloat64Add:
1304 return MarkAsFloat64(node), VisitFloat64Add(node);
1305 case IrOpcode::kFloat64Sub:
1306 return MarkAsFloat64(node), VisitFloat64Sub(node);
1307 case IrOpcode::kFloat64Neg:
1308 return MarkAsFloat64(node), VisitFloat64Neg(node);
1309 case IrOpcode::kFloat64Mul:
1310 return MarkAsFloat64(node), VisitFloat64Mul(node);
1311 case IrOpcode::kFloat64Div:
1312 return MarkAsFloat64(node), VisitFloat64Div(node);
1313 case IrOpcode::kFloat64Mod:
1314 return MarkAsFloat64(node), VisitFloat64Mod(node);
1315 case IrOpcode::kFloat64Min:
1316 return MarkAsFloat64(node), VisitFloat64Min(node);
1317 case IrOpcode::kFloat64Max:
1318 return MarkAsFloat64(node), VisitFloat64Max(node);
1319 case IrOpcode::kFloat64Abs:
1320 return MarkAsFloat64(node), VisitFloat64Abs(node);
1321 case IrOpcode::kFloat64Acos:
1322 return MarkAsFloat64(node), VisitFloat64Acos(node);
1323 case IrOpcode::kFloat64Acosh:
1324 return MarkAsFloat64(node), VisitFloat64Acosh(node);
1325 case IrOpcode::kFloat64Asin:
1326 return MarkAsFloat64(node), VisitFloat64Asin(node);
1327 case IrOpcode::kFloat64Asinh:
1328 return MarkAsFloat64(node), VisitFloat64Asinh(node);
1329 case IrOpcode::kFloat64Atan:
1330 return MarkAsFloat64(node), VisitFloat64Atan(node);
1331 case IrOpcode::kFloat64Atanh:
1332 return MarkAsFloat64(node), VisitFloat64Atanh(node);
1333 case IrOpcode::kFloat64Atan2:
1334 return MarkAsFloat64(node), VisitFloat64Atan2(node);
1335 case IrOpcode::kFloat64Cbrt:
1336 return MarkAsFloat64(node), VisitFloat64Cbrt(node);
1337 case IrOpcode::kFloat64Cos:
1338 return MarkAsFloat64(node), VisitFloat64Cos(node);
1339 case IrOpcode::kFloat64Cosh:
1340 return MarkAsFloat64(node), VisitFloat64Cosh(node);
1341 case IrOpcode::kFloat64Exp:
1342 return MarkAsFloat64(node), VisitFloat64Exp(node);
1343 case IrOpcode::kFloat64Expm1:
1344 return MarkAsFloat64(node), VisitFloat64Expm1(node);
1345 case IrOpcode::kFloat64Log:
1346 return MarkAsFloat64(node), VisitFloat64Log(node);
1347 case IrOpcode::kFloat64Log1p:
1348 return MarkAsFloat64(node), VisitFloat64Log1p(node);
1349 case IrOpcode::kFloat64Log10:
1350 return MarkAsFloat64(node), VisitFloat64Log10(node);
1351 case IrOpcode::kFloat64Log2:
1352 return MarkAsFloat64(node), VisitFloat64Log2(node);
1353 case IrOpcode::kFloat64Pow:
1354 return MarkAsFloat64(node), VisitFloat64Pow(node);
1355 case IrOpcode::kFloat64Sin:
1356 return MarkAsFloat64(node), VisitFloat64Sin(node);
1357 case IrOpcode::kFloat64Sinh:
1358 return MarkAsFloat64(node), VisitFloat64Sinh(node);
1359 case IrOpcode::kFloat64Sqrt:
1360 return MarkAsFloat64(node), VisitFloat64Sqrt(node);
1361 case IrOpcode::kFloat64Tan:
1362 return MarkAsFloat64(node), VisitFloat64Tan(node);
1363 case IrOpcode::kFloat64Tanh:
1364 return MarkAsFloat64(node), VisitFloat64Tanh(node);
1365 case IrOpcode::kFloat64Equal:
1366 return VisitFloat64Equal(node);
1367 case IrOpcode::kFloat64LessThan:
1368 return VisitFloat64LessThan(node);
1369 case IrOpcode::kFloat64LessThanOrEqual:
1370 return VisitFloat64LessThanOrEqual(node);
1371 case IrOpcode::kFloat32RoundDown:
1372 return MarkAsFloat32(node), VisitFloat32RoundDown(node);
1373 case IrOpcode::kFloat64RoundDown:
1374 return MarkAsFloat64(node), VisitFloat64RoundDown(node);
1375 case IrOpcode::kFloat32RoundUp:
1376 return MarkAsFloat32(node), VisitFloat32RoundUp(node);
1377 case IrOpcode::kFloat64RoundUp:
1378 return MarkAsFloat64(node), VisitFloat64RoundUp(node);
1379 case IrOpcode::kFloat32RoundTruncate:
1380 return MarkAsFloat32(node), VisitFloat32RoundTruncate(node);
1381 case IrOpcode::kFloat64RoundTruncate:
1382 return MarkAsFloat64(node), VisitFloat64RoundTruncate(node);
1383 case IrOpcode::kFloat64RoundTiesAway:
1384 return MarkAsFloat64(node), VisitFloat64RoundTiesAway(node);
1385 case IrOpcode::kFloat32RoundTiesEven:
1386 return MarkAsFloat32(node), VisitFloat32RoundTiesEven(node);
1387 case IrOpcode::kFloat64RoundTiesEven:
1388 return MarkAsFloat64(node), VisitFloat64RoundTiesEven(node);
1389 case IrOpcode::kFloat64ExtractLowWord32:
1390 return MarkAsWord32(node), VisitFloat64ExtractLowWord32(node);
1391 case IrOpcode::kFloat64ExtractHighWord32:
1392 return MarkAsWord32(node), VisitFloat64ExtractHighWord32(node);
1393 case IrOpcode::kFloat64InsertLowWord32:
1394 return MarkAsFloat64(node), VisitFloat64InsertLowWord32(node);
1395 case IrOpcode::kFloat64InsertHighWord32:
1396 return MarkAsFloat64(node), VisitFloat64InsertHighWord32(node);
1397 case IrOpcode::kStackSlot:
1398 return VisitStackSlot(node);
1399 case IrOpcode::kLoadStackPointer:
1400 return VisitLoadStackPointer(node);
1401 case IrOpcode::kLoadFramePointer:
1402 return VisitLoadFramePointer(node);
1403 case IrOpcode::kLoadParentFramePointer:
1404 return VisitLoadParentFramePointer(node);
1405 case IrOpcode::kUnalignedLoad: {
1406 UnalignedLoadRepresentation type =
1407 UnalignedLoadRepresentationOf(node->op());
1408 MarkAsRepresentation(type.representation(), node);
1409 return VisitUnalignedLoad(node);
1410 }
1411 case IrOpcode::kUnalignedStore:
1412 return VisitUnalignedStore(node);
1413 case IrOpcode::kCheckedLoad: {
1414 MachineRepresentation rep =
1415 CheckedLoadRepresentationOf(node->op()).representation();
1416 MarkAsRepresentation(rep, node);
1417 return VisitCheckedLoad(node);
1418 }
1419 case IrOpcode::kCheckedStore:
1420 return VisitCheckedStore(node);
1421 case IrOpcode::kInt32PairAdd:
1422 MarkAsWord32(node);
1423 MarkPairProjectionsAsWord32(node);
1424 return VisitInt32PairAdd(node);
1425 case IrOpcode::kInt32PairSub:
1426 MarkAsWord32(node);
1427 MarkPairProjectionsAsWord32(node);
1428 return VisitInt32PairSub(node);
1429 case IrOpcode::kInt32PairMul:
1430 MarkAsWord32(node);
1431 MarkPairProjectionsAsWord32(node);
1432 return VisitInt32PairMul(node);
1433 case IrOpcode::kWord32PairShl:
1434 MarkAsWord32(node);
1435 MarkPairProjectionsAsWord32(node);
1436 return VisitWord32PairShl(node);
1437 case IrOpcode::kWord32PairShr:
1438 MarkAsWord32(node);
1439 MarkPairProjectionsAsWord32(node);
1440 return VisitWord32PairShr(node);
1441 case IrOpcode::kWord32PairSar:
1442 MarkAsWord32(node);
1443 MarkPairProjectionsAsWord32(node);
1444 return VisitWord32PairSar(node);
1445 case IrOpcode::kAtomicLoad: {
1446 LoadRepresentation type = LoadRepresentationOf(node->op());
1447 MarkAsRepresentation(type.representation(), node);
1448 return VisitAtomicLoad(node);
1449 }
1450 case IrOpcode::kAtomicStore:
1451 return VisitAtomicStore(node);
1452 case IrOpcode::kProtectedLoad: {
1453 LoadRepresentation type = LoadRepresentationOf(node->op());
1454 MarkAsRepresentation(type.representation(), node);
1455 return VisitProtectedLoad(node);
1456 }
1457 case IrOpcode::kUnsafePointerAdd:
1458 MarkAsRepresentation(MachineType::PointerRepresentation(), node);
1459 return VisitUnsafePointerAdd(node);
1460 case IrOpcode::kCreateFloat32x4:
1461 return MarkAsSimd128(node), VisitCreateFloat32x4(node);
1462 case IrOpcode::kFloat32x4ExtractLane:
1463 return MarkAsFloat32(node), VisitFloat32x4ExtractLane(node);
1464 case IrOpcode::kFloat32x4ReplaceLane:
1465 return MarkAsSimd128(node), VisitFloat32x4ReplaceLane(node);
1466 case IrOpcode::kFloat32x4FromInt32x4:
1467 return MarkAsSimd128(node), VisitFloat32x4FromInt32x4(node);
1468 case IrOpcode::kFloat32x4FromUint32x4:
1469 return MarkAsSimd128(node), VisitFloat32x4FromUint32x4(node);
1470 case IrOpcode::kFloat32x4Abs:
1471 return MarkAsSimd128(node), VisitFloat32x4Abs(node);
1472 case IrOpcode::kFloat32x4Neg:
1473 return MarkAsSimd128(node), VisitFloat32x4Neg(node);
1474 case IrOpcode::kFloat32x4Add:
1475 return MarkAsSimd128(node), VisitFloat32x4Add(node);
1476 case IrOpcode::kFloat32x4Sub:
1477 return MarkAsSimd128(node), VisitFloat32x4Sub(node);
1478 case IrOpcode::kFloat32x4Equal:
1479 return MarkAsSimd1x4(node), VisitFloat32x4Equal(node);
1480 case IrOpcode::kFloat32x4NotEqual:
1481 return MarkAsSimd1x4(node), VisitFloat32x4NotEqual(node);
1482 case IrOpcode::kCreateInt32x4:
1483 return MarkAsSimd128(node), VisitCreateInt32x4(node);
1484 case IrOpcode::kInt32x4ExtractLane:
1485 return MarkAsWord32(node), VisitInt32x4ExtractLane(node);
1486 case IrOpcode::kInt32x4ReplaceLane:
1487 return MarkAsSimd128(node), VisitInt32x4ReplaceLane(node);
1488 case IrOpcode::kInt32x4FromFloat32x4:
1489 return MarkAsSimd128(node), VisitInt32x4FromFloat32x4(node);
1490 case IrOpcode::kUint32x4FromFloat32x4:
1491 return MarkAsSimd128(node), VisitUint32x4FromFloat32x4(node);
1492 case IrOpcode::kInt32x4Neg:
1493 return MarkAsSimd128(node), VisitInt32x4Neg(node);
1494 case IrOpcode::kInt32x4ShiftLeftByScalar:
1495 return MarkAsSimd128(node), VisitInt32x4ShiftLeftByScalar(node);
1496 case IrOpcode::kInt32x4ShiftRightByScalar:
1497 return MarkAsSimd128(node), VisitInt32x4ShiftRightByScalar(node);
1498 case IrOpcode::kInt32x4Add:
1499 return MarkAsSimd128(node), VisitInt32x4Add(node);
1500 case IrOpcode::kInt32x4Sub:
1501 return MarkAsSimd128(node), VisitInt32x4Sub(node);
1502 case IrOpcode::kInt32x4Mul:
1503 return MarkAsSimd128(node), VisitInt32x4Mul(node);
1504 case IrOpcode::kInt32x4Min:
1505 return MarkAsSimd128(node), VisitInt32x4Min(node);
1506 case IrOpcode::kInt32x4Max:
1507 return MarkAsSimd128(node), VisitInt32x4Max(node);
1508 case IrOpcode::kInt32x4Equal:
1509 return MarkAsSimd1x4(node), VisitInt32x4Equal(node);
1510 case IrOpcode::kInt32x4NotEqual:
1511 return MarkAsSimd1x4(node), VisitInt32x4NotEqual(node);
1512 case IrOpcode::kInt32x4GreaterThan:
1513 return MarkAsSimd1x4(node), VisitInt32x4GreaterThan(node);
1514 case IrOpcode::kInt32x4GreaterThanOrEqual:
1515 return MarkAsSimd1x4(node), VisitInt32x4GreaterThanOrEqual(node);
1516 case IrOpcode::kUint32x4ShiftRightByScalar:
1517 return MarkAsSimd128(node), VisitUint32x4ShiftRightByScalar(node);
1518 case IrOpcode::kUint32x4Min:
1519 return MarkAsSimd128(node), VisitUint32x4Min(node);
1520 case IrOpcode::kUint32x4Max:
1521 return MarkAsSimd128(node), VisitUint32x4Max(node);
1522 case IrOpcode::kUint32x4GreaterThan:
1523 return MarkAsSimd1x4(node), VisitUint32x4GreaterThan(node);
1524 case IrOpcode::kUint32x4GreaterThanOrEqual:
1525 return MarkAsSimd1x4(node), VisitUint32x4GreaterThanOrEqual(node);
1526 case IrOpcode::kCreateInt16x8:
1527 return MarkAsSimd128(node), VisitCreateInt16x8(node);
1528 case IrOpcode::kInt16x8ExtractLane:
1529 return MarkAsWord32(node), VisitInt16x8ExtractLane(node);
1530 case IrOpcode::kInt16x8ReplaceLane:
1531 return MarkAsSimd128(node), VisitInt16x8ReplaceLane(node);
1532 case IrOpcode::kInt16x8Neg:
1533 return MarkAsSimd128(node), VisitInt16x8Neg(node);
1534 case IrOpcode::kInt16x8ShiftLeftByScalar:
1535 return MarkAsSimd128(node), VisitInt16x8ShiftLeftByScalar(node);
1536 case IrOpcode::kInt16x8ShiftRightByScalar:
1537 return MarkAsSimd128(node), VisitInt16x8ShiftRightByScalar(node);
1538 case IrOpcode::kInt16x8Add:
1539 return MarkAsSimd128(node), VisitInt16x8Add(node);
1540 case IrOpcode::kInt16x8AddSaturate:
1541 return MarkAsSimd128(node), VisitInt16x8AddSaturate(node);
1542 case IrOpcode::kInt16x8Sub:
1543 return MarkAsSimd128(node), VisitInt16x8Sub(node);
1544 case IrOpcode::kInt16x8SubSaturate:
1545 return MarkAsSimd128(node), VisitInt16x8SubSaturate(node);
1546 case IrOpcode::kInt16x8Mul:
1547 return MarkAsSimd128(node), VisitInt16x8Mul(node);
1548 case IrOpcode::kInt16x8Min:
1549 return MarkAsSimd128(node), VisitInt16x8Min(node);
1550 case IrOpcode::kInt16x8Max:
1551 return MarkAsSimd128(node), VisitInt16x8Max(node);
1552 case IrOpcode::kInt16x8Equal:
1553 return MarkAsSimd1x8(node), VisitInt16x8Equal(node);
1554 case IrOpcode::kInt16x8NotEqual:
1555 return MarkAsSimd1x8(node), VisitInt16x8NotEqual(node);
1556 case IrOpcode::kInt16x8GreaterThan:
1557 return MarkAsSimd1x8(node), VisitInt16x8GreaterThan(node);
1558 case IrOpcode::kInt16x8GreaterThanOrEqual:
1559 return MarkAsSimd1x8(node), VisitInt16x8GreaterThanOrEqual(node);
1560 case IrOpcode::kUint16x8ShiftRightByScalar:
1561 return MarkAsSimd128(node), VisitUint16x8ShiftRightByScalar(node);
1562 case IrOpcode::kUint16x8AddSaturate:
1563 return MarkAsSimd128(node), VisitUint16x8AddSaturate(node);
1564 case IrOpcode::kUint16x8SubSaturate:
1565 return MarkAsSimd128(node), VisitUint16x8SubSaturate(node);
1566 case IrOpcode::kUint16x8Min:
1567 return MarkAsSimd128(node), VisitUint16x8Min(node);
1568 case IrOpcode::kUint16x8Max:
1569 return MarkAsSimd128(node), VisitUint16x8Max(node);
1570 case IrOpcode::kUint16x8GreaterThan:
1571 return MarkAsSimd1x8(node), VisitUint16x8GreaterThan(node);
1572 case IrOpcode::kUint16x8GreaterThanOrEqual:
1573 return MarkAsSimd1x8(node), VisitUint16x8GreaterThanOrEqual(node);
1574 case IrOpcode::kCreateInt8x16:
1575 return MarkAsSimd128(node), VisitCreateInt8x16(node);
1576 case IrOpcode::kInt8x16ExtractLane:
1577 return MarkAsWord32(node), VisitInt8x16ExtractLane(node);
1578 case IrOpcode::kInt8x16ReplaceLane:
1579 return MarkAsSimd128(node), VisitInt8x16ReplaceLane(node);
1580 case IrOpcode::kInt8x16Neg:
1581 return MarkAsSimd128(node), VisitInt8x16Neg(node);
1582 case IrOpcode::kInt8x16ShiftLeftByScalar:
1583 return MarkAsSimd128(node), VisitInt8x16ShiftLeftByScalar(node);
1584 case IrOpcode::kInt8x16ShiftRightByScalar:
1585 return MarkAsSimd128(node), VisitInt8x16ShiftRightByScalar(node);
1586 case IrOpcode::kInt8x16Add:
1587 return MarkAsSimd128(node), VisitInt8x16Add(node);
1588 case IrOpcode::kInt8x16AddSaturate:
1589 return MarkAsSimd128(node), VisitInt8x16AddSaturate(node);
1590 case IrOpcode::kInt8x16Sub:
1591 return MarkAsSimd128(node), VisitInt8x16Sub(node);
1592 case IrOpcode::kInt8x16SubSaturate:
1593 return MarkAsSimd128(node), VisitInt8x16SubSaturate(node);
1594 case IrOpcode::kInt8x16Mul:
1595 return MarkAsSimd128(node), VisitInt8x16Mul(node);
1596 case IrOpcode::kInt8x16Min:
1597 return MarkAsSimd128(node), VisitInt8x16Min(node);
1598 case IrOpcode::kInt8x16Max:
1599 return MarkAsSimd128(node), VisitInt8x16Max(node);
1600 case IrOpcode::kInt8x16Equal:
1601 return MarkAsSimd1x16(node), VisitInt8x16Equal(node);
1602 case IrOpcode::kInt8x16NotEqual:
1603 return MarkAsSimd1x16(node), VisitInt8x16NotEqual(node);
1604 case IrOpcode::kInt8x16GreaterThan:
1605 return MarkAsSimd1x16(node), VisitInt8x16GreaterThan(node);
1606 case IrOpcode::kInt8x16GreaterThanOrEqual:
1607 return MarkAsSimd1x16(node), VisitInt8x16GreaterThanOrEqual(node);
1608 case IrOpcode::kUint8x16ShiftRightByScalar:
1609 return MarkAsSimd128(node), VisitUint8x16ShiftRightByScalar(node);
1610 case IrOpcode::kUint8x16AddSaturate:
1611 return MarkAsSimd128(node), VisitUint8x16AddSaturate(node);
1612 case IrOpcode::kUint8x16SubSaturate:
1613 return MarkAsSimd128(node), VisitUint8x16SubSaturate(node);
1614 case IrOpcode::kUint8x16Min:
1615 return MarkAsSimd128(node), VisitUint8x16Min(node);
1616 case IrOpcode::kUint8x16Max:
1617 return MarkAsSimd128(node), VisitUint8x16Max(node);
1618 case IrOpcode::kUint8x16GreaterThan:
1619 return MarkAsSimd1x16(node), VisitUint8x16GreaterThan(node);
1620 case IrOpcode::kUint8x16GreaterThanOrEqual:
1621 return MarkAsSimd1x16(node), VisitUint16x8GreaterThanOrEqual(node);
1622 case IrOpcode::kSimd128And:
1623 return MarkAsSimd128(node), VisitSimd128And(node);
1624 case IrOpcode::kSimd128Or:
1625 return MarkAsSimd128(node), VisitSimd128Or(node);
1626 case IrOpcode::kSimd128Xor:
1627 return MarkAsSimd128(node), VisitSimd128Xor(node);
1628 case IrOpcode::kSimd128Not:
1629 return MarkAsSimd128(node), VisitSimd128Not(node);
1630 case IrOpcode::kSimd32x4Select:
1631 return MarkAsSimd128(node), VisitSimd32x4Select(node);
1632 case IrOpcode::kSimd16x8Select:
1633 return MarkAsSimd128(node), VisitSimd16x8Select(node);
1634 case IrOpcode::kSimd8x16Select:
1635 return MarkAsSimd128(node), VisitSimd8x16Select(node);
1636 default:
1637 V8_Fatal(__FILE__, __LINE__, "Unexpected operator #%d:%s @ node #%d",
1638 node->opcode(), node->op()->mnemonic(), node->id());
1639 break;
1640 }
1641 }
1642
VisitLoadStackPointer(Node * node)1643 void InstructionSelector::VisitLoadStackPointer(Node* node) {
1644 OperandGenerator g(this);
1645 Emit(kArchStackPointer, g.DefineAsRegister(node));
1646 }
1647
VisitLoadFramePointer(Node * node)1648 void InstructionSelector::VisitLoadFramePointer(Node* node) {
1649 OperandGenerator g(this);
1650 Emit(kArchFramePointer, g.DefineAsRegister(node));
1651 }
1652
VisitLoadParentFramePointer(Node * node)1653 void InstructionSelector::VisitLoadParentFramePointer(Node* node) {
1654 OperandGenerator g(this);
1655 Emit(kArchParentFramePointer, g.DefineAsRegister(node));
1656 }
1657
VisitFloat64Acos(Node * node)1658 void InstructionSelector::VisitFloat64Acos(Node* node) {
1659 VisitFloat64Ieee754Unop(node, kIeee754Float64Acos);
1660 }
1661
VisitFloat64Acosh(Node * node)1662 void InstructionSelector::VisitFloat64Acosh(Node* node) {
1663 VisitFloat64Ieee754Unop(node, kIeee754Float64Acosh);
1664 }
1665
VisitFloat64Asin(Node * node)1666 void InstructionSelector::VisitFloat64Asin(Node* node) {
1667 VisitFloat64Ieee754Unop(node, kIeee754Float64Asin);
1668 }
1669
VisitFloat64Asinh(Node * node)1670 void InstructionSelector::VisitFloat64Asinh(Node* node) {
1671 VisitFloat64Ieee754Unop(node, kIeee754Float64Asinh);
1672 }
1673
VisitFloat64Atan(Node * node)1674 void InstructionSelector::VisitFloat64Atan(Node* node) {
1675 VisitFloat64Ieee754Unop(node, kIeee754Float64Atan);
1676 }
1677
VisitFloat64Atanh(Node * node)1678 void InstructionSelector::VisitFloat64Atanh(Node* node) {
1679 VisitFloat64Ieee754Unop(node, kIeee754Float64Atanh);
1680 }
1681
VisitFloat64Atan2(Node * node)1682 void InstructionSelector::VisitFloat64Atan2(Node* node) {
1683 VisitFloat64Ieee754Binop(node, kIeee754Float64Atan2);
1684 }
1685
VisitFloat64Cbrt(Node * node)1686 void InstructionSelector::VisitFloat64Cbrt(Node* node) {
1687 VisitFloat64Ieee754Unop(node, kIeee754Float64Cbrt);
1688 }
1689
VisitFloat64Cos(Node * node)1690 void InstructionSelector::VisitFloat64Cos(Node* node) {
1691 VisitFloat64Ieee754Unop(node, kIeee754Float64Cos);
1692 }
1693
VisitFloat64Cosh(Node * node)1694 void InstructionSelector::VisitFloat64Cosh(Node* node) {
1695 VisitFloat64Ieee754Unop(node, kIeee754Float64Cosh);
1696 }
1697
VisitFloat64Exp(Node * node)1698 void InstructionSelector::VisitFloat64Exp(Node* node) {
1699 VisitFloat64Ieee754Unop(node, kIeee754Float64Exp);
1700 }
1701
VisitFloat64Expm1(Node * node)1702 void InstructionSelector::VisitFloat64Expm1(Node* node) {
1703 VisitFloat64Ieee754Unop(node, kIeee754Float64Expm1);
1704 }
1705
VisitFloat64Log(Node * node)1706 void InstructionSelector::VisitFloat64Log(Node* node) {
1707 VisitFloat64Ieee754Unop(node, kIeee754Float64Log);
1708 }
1709
VisitFloat64Log1p(Node * node)1710 void InstructionSelector::VisitFloat64Log1p(Node* node) {
1711 VisitFloat64Ieee754Unop(node, kIeee754Float64Log1p);
1712 }
1713
VisitFloat64Log2(Node * node)1714 void InstructionSelector::VisitFloat64Log2(Node* node) {
1715 VisitFloat64Ieee754Unop(node, kIeee754Float64Log2);
1716 }
1717
VisitFloat64Log10(Node * node)1718 void InstructionSelector::VisitFloat64Log10(Node* node) {
1719 VisitFloat64Ieee754Unop(node, kIeee754Float64Log10);
1720 }
1721
VisitFloat64Pow(Node * node)1722 void InstructionSelector::VisitFloat64Pow(Node* node) {
1723 VisitFloat64Ieee754Binop(node, kIeee754Float64Pow);
1724 }
1725
VisitFloat64Sin(Node * node)1726 void InstructionSelector::VisitFloat64Sin(Node* node) {
1727 VisitFloat64Ieee754Unop(node, kIeee754Float64Sin);
1728 }
1729
VisitFloat64Sinh(Node * node)1730 void InstructionSelector::VisitFloat64Sinh(Node* node) {
1731 VisitFloat64Ieee754Unop(node, kIeee754Float64Sinh);
1732 }
1733
VisitFloat64Tan(Node * node)1734 void InstructionSelector::VisitFloat64Tan(Node* node) {
1735 VisitFloat64Ieee754Unop(node, kIeee754Float64Tan);
1736 }
1737
VisitFloat64Tanh(Node * node)1738 void InstructionSelector::VisitFloat64Tanh(Node* node) {
1739 VisitFloat64Ieee754Unop(node, kIeee754Float64Tanh);
1740 }
1741
EmitTableSwitch(const SwitchInfo & sw,InstructionOperand & index_operand)1742 void InstructionSelector::EmitTableSwitch(const SwitchInfo& sw,
1743 InstructionOperand& index_operand) {
1744 OperandGenerator g(this);
1745 size_t input_count = 2 + sw.value_range;
1746 auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
1747 inputs[0] = index_operand;
1748 InstructionOperand default_operand = g.Label(sw.default_branch);
1749 std::fill(&inputs[1], &inputs[input_count], default_operand);
1750 for (size_t index = 0; index < sw.case_count; ++index) {
1751 size_t value = sw.case_values[index] - sw.min_value;
1752 BasicBlock* branch = sw.case_branches[index];
1753 DCHECK_LE(0u, value);
1754 DCHECK_LT(value + 2, input_count);
1755 inputs[value + 2] = g.Label(branch);
1756 }
1757 Emit(kArchTableSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
1758 }
1759
1760
EmitLookupSwitch(const SwitchInfo & sw,InstructionOperand & value_operand)1761 void InstructionSelector::EmitLookupSwitch(const SwitchInfo& sw,
1762 InstructionOperand& value_operand) {
1763 OperandGenerator g(this);
1764 size_t input_count = 2 + sw.case_count * 2;
1765 auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
1766 inputs[0] = value_operand;
1767 inputs[1] = g.Label(sw.default_branch);
1768 for (size_t index = 0; index < sw.case_count; ++index) {
1769 int32_t value = sw.case_values[index];
1770 BasicBlock* branch = sw.case_branches[index];
1771 inputs[index * 2 + 2 + 0] = g.TempImmediate(value);
1772 inputs[index * 2 + 2 + 1] = g.Label(branch);
1773 }
1774 Emit(kArchLookupSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
1775 }
1776
VisitStackSlot(Node * node)1777 void InstructionSelector::VisitStackSlot(Node* node) {
1778 int size = StackSlotSizeOf(node->op());
1779 int slot = frame_->AllocateSpillSlot(size);
1780 OperandGenerator g(this);
1781
1782 Emit(kArchStackSlot, g.DefineAsRegister(node),
1783 sequence()->AddImmediate(Constant(slot)), 0, nullptr);
1784 }
1785
VisitBitcastTaggedToWord(Node * node)1786 void InstructionSelector::VisitBitcastTaggedToWord(Node* node) {
1787 EmitIdentity(node);
1788 }
1789
VisitBitcastWordToTagged(Node * node)1790 void InstructionSelector::VisitBitcastWordToTagged(Node* node) {
1791 OperandGenerator g(this);
1792 Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(node->InputAt(0)));
1793 }
1794
1795 // 32 bit targets do not implement the following instructions.
1796 #if V8_TARGET_ARCH_32_BIT
1797
VisitWord64And(Node * node)1798 void InstructionSelector::VisitWord64And(Node* node) { UNIMPLEMENTED(); }
1799
1800
VisitWord64Or(Node * node)1801 void InstructionSelector::VisitWord64Or(Node* node) { UNIMPLEMENTED(); }
1802
1803
VisitWord64Xor(Node * node)1804 void InstructionSelector::VisitWord64Xor(Node* node) { UNIMPLEMENTED(); }
1805
1806
VisitWord64Shl(Node * node)1807 void InstructionSelector::VisitWord64Shl(Node* node) { UNIMPLEMENTED(); }
1808
1809
VisitWord64Shr(Node * node)1810 void InstructionSelector::VisitWord64Shr(Node* node) { UNIMPLEMENTED(); }
1811
1812
VisitWord64Sar(Node * node)1813 void InstructionSelector::VisitWord64Sar(Node* node) { UNIMPLEMENTED(); }
1814
1815
VisitWord64Ror(Node * node)1816 void InstructionSelector::VisitWord64Ror(Node* node) { UNIMPLEMENTED(); }
1817
1818
VisitWord64Clz(Node * node)1819 void InstructionSelector::VisitWord64Clz(Node* node) { UNIMPLEMENTED(); }
1820
1821
VisitWord64Ctz(Node * node)1822 void InstructionSelector::VisitWord64Ctz(Node* node) { UNIMPLEMENTED(); }
1823
1824
VisitWord64ReverseBits(Node * node)1825 void InstructionSelector::VisitWord64ReverseBits(Node* node) {
1826 UNIMPLEMENTED();
1827 }
1828
1829
VisitWord64Popcnt(Node * node)1830 void InstructionSelector::VisitWord64Popcnt(Node* node) { UNIMPLEMENTED(); }
1831
1832
VisitWord64Equal(Node * node)1833 void InstructionSelector::VisitWord64Equal(Node* node) { UNIMPLEMENTED(); }
1834
1835
VisitInt64Add(Node * node)1836 void InstructionSelector::VisitInt64Add(Node* node) { UNIMPLEMENTED(); }
1837
1838
VisitInt64AddWithOverflow(Node * node)1839 void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
1840 UNIMPLEMENTED();
1841 }
1842
1843
VisitInt64Sub(Node * node)1844 void InstructionSelector::VisitInt64Sub(Node* node) { UNIMPLEMENTED(); }
1845
1846
VisitInt64SubWithOverflow(Node * node)1847 void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
1848 UNIMPLEMENTED();
1849 }
1850
VisitInt64Mul(Node * node)1851 void InstructionSelector::VisitInt64Mul(Node* node) { UNIMPLEMENTED(); }
1852
1853
VisitInt64Div(Node * node)1854 void InstructionSelector::VisitInt64Div(Node* node) { UNIMPLEMENTED(); }
1855
1856
VisitInt64LessThan(Node * node)1857 void InstructionSelector::VisitInt64LessThan(Node* node) { UNIMPLEMENTED(); }
1858
1859
VisitInt64LessThanOrEqual(Node * node)1860 void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
1861 UNIMPLEMENTED();
1862 }
1863
1864
VisitUint64Div(Node * node)1865 void InstructionSelector::VisitUint64Div(Node* node) { UNIMPLEMENTED(); }
1866
1867
VisitInt64Mod(Node * node)1868 void InstructionSelector::VisitInt64Mod(Node* node) { UNIMPLEMENTED(); }
1869
1870
VisitUint64LessThan(Node * node)1871 void InstructionSelector::VisitUint64LessThan(Node* node) { UNIMPLEMENTED(); }
1872
1873
VisitUint64LessThanOrEqual(Node * node)1874 void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
1875 UNIMPLEMENTED();
1876 }
1877
1878
VisitUint64Mod(Node * node)1879 void InstructionSelector::VisitUint64Mod(Node* node) { UNIMPLEMENTED(); }
1880
1881
VisitChangeInt32ToInt64(Node * node)1882 void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
1883 UNIMPLEMENTED();
1884 }
1885
1886
VisitChangeUint32ToUint64(Node * node)1887 void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
1888 UNIMPLEMENTED();
1889 }
1890
1891
VisitTryTruncateFloat32ToInt64(Node * node)1892 void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
1893 UNIMPLEMENTED();
1894 }
1895
1896
VisitTryTruncateFloat64ToInt64(Node * node)1897 void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
1898 UNIMPLEMENTED();
1899 }
1900
1901
VisitTryTruncateFloat32ToUint64(Node * node)1902 void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
1903 UNIMPLEMENTED();
1904 }
1905
1906
VisitTryTruncateFloat64ToUint64(Node * node)1907 void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
1908 UNIMPLEMENTED();
1909 }
1910
1911
VisitTruncateInt64ToInt32(Node * node)1912 void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
1913 UNIMPLEMENTED();
1914 }
1915
1916
VisitRoundInt64ToFloat32(Node * node)1917 void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
1918 UNIMPLEMENTED();
1919 }
1920
1921
VisitRoundInt64ToFloat64(Node * node)1922 void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
1923 UNIMPLEMENTED();
1924 }
1925
1926
VisitRoundUint64ToFloat32(Node * node)1927 void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
1928 UNIMPLEMENTED();
1929 }
1930
1931
VisitRoundUint64ToFloat64(Node * node)1932 void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
1933 UNIMPLEMENTED();
1934 }
1935
VisitBitcastFloat64ToInt64(Node * node)1936 void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
1937 UNIMPLEMENTED();
1938 }
1939
1940
VisitBitcastInt64ToFloat64(Node * node)1941 void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
1942 UNIMPLEMENTED();
1943 }
1944 #endif // V8_TARGET_ARCH_32_BIT
1945
1946 // 64 bit targets do not implement the following instructions.
1947 #if V8_TARGET_ARCH_64_BIT
VisitInt32PairAdd(Node * node)1948 void InstructionSelector::VisitInt32PairAdd(Node* node) { UNIMPLEMENTED(); }
1949
VisitInt32PairSub(Node * node)1950 void InstructionSelector::VisitInt32PairSub(Node* node) { UNIMPLEMENTED(); }
1951
VisitInt32PairMul(Node * node)1952 void InstructionSelector::VisitInt32PairMul(Node* node) { UNIMPLEMENTED(); }
1953
VisitWord32PairShl(Node * node)1954 void InstructionSelector::VisitWord32PairShl(Node* node) { UNIMPLEMENTED(); }
1955
VisitWord32PairShr(Node * node)1956 void InstructionSelector::VisitWord32PairShr(Node* node) { UNIMPLEMENTED(); }
1957
VisitWord32PairSar(Node * node)1958 void InstructionSelector::VisitWord32PairSar(Node* node) { UNIMPLEMENTED(); }
1959 #endif // V8_TARGET_ARCH_64_BIT
1960
1961 #if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM
VisitCreateInt32x4(Node * node)1962 void InstructionSelector::VisitCreateInt32x4(Node* node) { UNIMPLEMENTED(); }
1963
VisitInt32x4ExtractLane(Node * node)1964 void InstructionSelector::VisitInt32x4ExtractLane(Node* node) {
1965 UNIMPLEMENTED();
1966 }
1967
VisitInt32x4ReplaceLane(Node * node)1968 void InstructionSelector::VisitInt32x4ReplaceLane(Node* node) {
1969 UNIMPLEMENTED();
1970 }
1971
VisitInt32x4Add(Node * node)1972 void InstructionSelector::VisitInt32x4Add(Node* node) { UNIMPLEMENTED(); }
1973
VisitInt32x4Sub(Node * node)1974 void InstructionSelector::VisitInt32x4Sub(Node* node) { UNIMPLEMENTED(); }
1975
1976 #endif // !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM
1977
1978 #if !V8_TARGET_ARCH_ARM
VisitCreateFloat32x4(Node * node)1979 void InstructionSelector::VisitCreateFloat32x4(Node* node) { UNIMPLEMENTED(); }
1980
VisitFloat32x4ExtractLane(Node * node)1981 void InstructionSelector::VisitFloat32x4ExtractLane(Node* node) {
1982 UNIMPLEMENTED();
1983 }
1984
VisitFloat32x4ReplaceLane(Node * node)1985 void InstructionSelector::VisitFloat32x4ReplaceLane(Node* node) {
1986 UNIMPLEMENTED();
1987 }
1988
VisitFloat32x4FromInt32x4(Node * node)1989 void InstructionSelector::VisitFloat32x4FromInt32x4(Node* node) {
1990 UNIMPLEMENTED();
1991 }
1992
VisitFloat32x4FromUint32x4(Node * node)1993 void InstructionSelector::VisitFloat32x4FromUint32x4(Node* node) {
1994 UNIMPLEMENTED();
1995 }
1996
VisitFloat32x4Abs(Node * node)1997 void InstructionSelector::VisitFloat32x4Abs(Node* node) { UNIMPLEMENTED(); }
1998
VisitFloat32x4Neg(Node * node)1999 void InstructionSelector::VisitFloat32x4Neg(Node* node) { UNIMPLEMENTED(); }
2000
VisitFloat32x4Add(Node * node)2001 void InstructionSelector::VisitFloat32x4Add(Node* node) { UNIMPLEMENTED(); }
2002
VisitFloat32x4Sub(Node * node)2003 void InstructionSelector::VisitFloat32x4Sub(Node* node) { UNIMPLEMENTED(); }
2004
VisitFloat32x4Equal(Node * node)2005 void InstructionSelector::VisitFloat32x4Equal(Node* node) { UNIMPLEMENTED(); }
2006
VisitFloat32x4NotEqual(Node * node)2007 void InstructionSelector::VisitFloat32x4NotEqual(Node* node) {
2008 UNIMPLEMENTED();
2009 }
2010
VisitInt32x4FromFloat32x4(Node * node)2011 void InstructionSelector::VisitInt32x4FromFloat32x4(Node* node) {
2012 UNIMPLEMENTED();
2013 }
2014
VisitUint32x4FromFloat32x4(Node * node)2015 void InstructionSelector::VisitUint32x4FromFloat32x4(Node* node) {
2016 UNIMPLEMENTED();
2017 }
2018
VisitInt32x4Neg(Node * node)2019 void InstructionSelector::VisitInt32x4Neg(Node* node) { UNIMPLEMENTED(); }
2020
VisitInt32x4ShiftLeftByScalar(Node * node)2021 void InstructionSelector::VisitInt32x4ShiftLeftByScalar(Node* node) {
2022 UNIMPLEMENTED();
2023 }
2024
VisitInt32x4ShiftRightByScalar(Node * node)2025 void InstructionSelector::VisitInt32x4ShiftRightByScalar(Node* node) {
2026 UNIMPLEMENTED();
2027 }
2028
VisitInt32x4Mul(Node * node)2029 void InstructionSelector::VisitInt32x4Mul(Node* node) { UNIMPLEMENTED(); }
2030
VisitInt32x4Max(Node * node)2031 void InstructionSelector::VisitInt32x4Max(Node* node) { UNIMPLEMENTED(); }
2032
VisitInt32x4Min(Node * node)2033 void InstructionSelector::VisitInt32x4Min(Node* node) { UNIMPLEMENTED(); }
2034
VisitInt32x4Equal(Node * node)2035 void InstructionSelector::VisitInt32x4Equal(Node* node) { UNIMPLEMENTED(); }
2036
VisitInt32x4NotEqual(Node * node)2037 void InstructionSelector::VisitInt32x4NotEqual(Node* node) { UNIMPLEMENTED(); }
2038
VisitInt32x4LessThan(Node * node)2039 void InstructionSelector::VisitInt32x4LessThan(Node* node) { UNIMPLEMENTED(); }
2040
VisitInt32x4LessThanOrEqual(Node * node)2041 void InstructionSelector::VisitInt32x4LessThanOrEqual(Node* node) {
2042 UNIMPLEMENTED();
2043 }
2044
VisitInt32x4GreaterThan(Node * node)2045 void InstructionSelector::VisitInt32x4GreaterThan(Node* node) {
2046 UNIMPLEMENTED();
2047 }
2048
VisitInt32x4GreaterThanOrEqual(Node * node)2049 void InstructionSelector::VisitInt32x4GreaterThanOrEqual(Node* node) {
2050 UNIMPLEMENTED();
2051 }
2052
VisitUint32x4ShiftRightByScalar(Node * node)2053 void InstructionSelector::VisitUint32x4ShiftRightByScalar(Node* node) {
2054 UNIMPLEMENTED();
2055 }
2056
VisitUint32x4Max(Node * node)2057 void InstructionSelector::VisitUint32x4Max(Node* node) { UNIMPLEMENTED(); }
2058
VisitUint32x4Min(Node * node)2059 void InstructionSelector::VisitUint32x4Min(Node* node) { UNIMPLEMENTED(); }
2060
VisitUint32x4GreaterThan(Node * node)2061 void InstructionSelector::VisitUint32x4GreaterThan(Node* node) {
2062 UNIMPLEMENTED();
2063 }
2064
VisitUint32x4GreaterThanOrEqual(Node * node)2065 void InstructionSelector::VisitUint32x4GreaterThanOrEqual(Node* node) {
2066 UNIMPLEMENTED();
2067 }
2068
VisitCreateInt16x8(Node * node)2069 void InstructionSelector::VisitCreateInt16x8(Node* node) { UNIMPLEMENTED(); }
2070
VisitInt16x8ExtractLane(Node * node)2071 void InstructionSelector::VisitInt16x8ExtractLane(Node* node) {
2072 UNIMPLEMENTED();
2073 }
2074
VisitInt16x8ReplaceLane(Node * node)2075 void InstructionSelector::VisitInt16x8ReplaceLane(Node* node) {
2076 UNIMPLEMENTED();
2077 }
2078
VisitInt16x8Neg(Node * node)2079 void InstructionSelector::VisitInt16x8Neg(Node* node) { UNIMPLEMENTED(); }
2080
VisitInt16x8ShiftLeftByScalar(Node * node)2081 void InstructionSelector::VisitInt16x8ShiftLeftByScalar(Node* node) {
2082 UNIMPLEMENTED();
2083 }
2084
VisitInt16x8ShiftRightByScalar(Node * node)2085 void InstructionSelector::VisitInt16x8ShiftRightByScalar(Node* node) {
2086 UNIMPLEMENTED();
2087 }
2088
VisitInt16x8Add(Node * node)2089 void InstructionSelector::VisitInt16x8Add(Node* node) { UNIMPLEMENTED(); }
2090
VisitInt16x8AddSaturate(Node * node)2091 void InstructionSelector::VisitInt16x8AddSaturate(Node* node) {
2092 UNIMPLEMENTED();
2093 }
2094
VisitInt16x8Sub(Node * node)2095 void InstructionSelector::VisitInt16x8Sub(Node* node) { UNIMPLEMENTED(); }
2096
VisitInt16x8SubSaturate(Node * node)2097 void InstructionSelector::VisitInt16x8SubSaturate(Node* node) {
2098 UNIMPLEMENTED();
2099 }
2100
VisitInt16x8Mul(Node * node)2101 void InstructionSelector::VisitInt16x8Mul(Node* node) { UNIMPLEMENTED(); }
2102
VisitInt16x8Max(Node * node)2103 void InstructionSelector::VisitInt16x8Max(Node* node) { UNIMPLEMENTED(); }
2104
VisitInt16x8Min(Node * node)2105 void InstructionSelector::VisitInt16x8Min(Node* node) { UNIMPLEMENTED(); }
2106
VisitInt16x8Equal(Node * node)2107 void InstructionSelector::VisitInt16x8Equal(Node* node) { UNIMPLEMENTED(); }
2108
VisitInt16x8NotEqual(Node * node)2109 void InstructionSelector::VisitInt16x8NotEqual(Node* node) { UNIMPLEMENTED(); }
2110
VisitInt16x8LessThan(Node * node)2111 void InstructionSelector::VisitInt16x8LessThan(Node* node) { UNIMPLEMENTED(); }
2112
VisitInt16x8LessThanOrEqual(Node * node)2113 void InstructionSelector::VisitInt16x8LessThanOrEqual(Node* node) {
2114 UNIMPLEMENTED();
2115 }
2116
VisitInt16x8GreaterThan(Node * node)2117 void InstructionSelector::VisitInt16x8GreaterThan(Node* node) {
2118 UNIMPLEMENTED();
2119 }
2120
VisitInt16x8GreaterThanOrEqual(Node * node)2121 void InstructionSelector::VisitInt16x8GreaterThanOrEqual(Node* node) {
2122 UNIMPLEMENTED();
2123 }
2124
VisitUint16x8ShiftRightByScalar(Node * node)2125 void InstructionSelector::VisitUint16x8ShiftRightByScalar(Node* node) {
2126 UNIMPLEMENTED();
2127 }
2128
VisitUint16x8AddSaturate(Node * node)2129 void InstructionSelector::VisitUint16x8AddSaturate(Node* node) {
2130 UNIMPLEMENTED();
2131 }
2132
VisitUint16x8SubSaturate(Node * node)2133 void InstructionSelector::VisitUint16x8SubSaturate(Node* node) {
2134 UNIMPLEMENTED();
2135 }
2136
VisitUint16x8Max(Node * node)2137 void InstructionSelector::VisitUint16x8Max(Node* node) { UNIMPLEMENTED(); }
2138
VisitUint16x8Min(Node * node)2139 void InstructionSelector::VisitUint16x8Min(Node* node) { UNIMPLEMENTED(); }
2140
VisitUint16x8GreaterThan(Node * node)2141 void InstructionSelector::VisitUint16x8GreaterThan(Node* node) {
2142 UNIMPLEMENTED();
2143 }
2144
VisitUint16x8GreaterThanOrEqual(Node * node)2145 void InstructionSelector::VisitUint16x8GreaterThanOrEqual(Node* node) {
2146 UNIMPLEMENTED();
2147 }
2148
VisitCreateInt8x16(Node * node)2149 void InstructionSelector::VisitCreateInt8x16(Node* node) { UNIMPLEMENTED(); }
2150
VisitInt8x16ExtractLane(Node * node)2151 void InstructionSelector::VisitInt8x16ExtractLane(Node* node) {
2152 UNIMPLEMENTED();
2153 }
2154
VisitInt8x16ReplaceLane(Node * node)2155 void InstructionSelector::VisitInt8x16ReplaceLane(Node* node) {
2156 UNIMPLEMENTED();
2157 }
2158
VisitInt8x16Neg(Node * node)2159 void InstructionSelector::VisitInt8x16Neg(Node* node) { UNIMPLEMENTED(); }
2160
VisitInt8x16ShiftLeftByScalar(Node * node)2161 void InstructionSelector::VisitInt8x16ShiftLeftByScalar(Node* node) {
2162 UNIMPLEMENTED();
2163 }
2164
VisitInt8x16ShiftRightByScalar(Node * node)2165 void InstructionSelector::VisitInt8x16ShiftRightByScalar(Node* node) {
2166 UNIMPLEMENTED();
2167 }
2168
VisitInt8x16Add(Node * node)2169 void InstructionSelector::VisitInt8x16Add(Node* node) { UNIMPLEMENTED(); }
2170
VisitInt8x16AddSaturate(Node * node)2171 void InstructionSelector::VisitInt8x16AddSaturate(Node* node) {
2172 UNIMPLEMENTED();
2173 }
2174
VisitInt8x16Sub(Node * node)2175 void InstructionSelector::VisitInt8x16Sub(Node* node) { UNIMPLEMENTED(); }
2176
VisitInt8x16SubSaturate(Node * node)2177 void InstructionSelector::VisitInt8x16SubSaturate(Node* node) {
2178 UNIMPLEMENTED();
2179 }
2180
VisitInt8x16Mul(Node * node)2181 void InstructionSelector::VisitInt8x16Mul(Node* node) { UNIMPLEMENTED(); }
2182
VisitInt8x16Max(Node * node)2183 void InstructionSelector::VisitInt8x16Max(Node* node) { UNIMPLEMENTED(); }
2184
VisitInt8x16Min(Node * node)2185 void InstructionSelector::VisitInt8x16Min(Node* node) { UNIMPLEMENTED(); }
2186
VisitInt8x16Equal(Node * node)2187 void InstructionSelector::VisitInt8x16Equal(Node* node) { UNIMPLEMENTED(); }
2188
VisitInt8x16NotEqual(Node * node)2189 void InstructionSelector::VisitInt8x16NotEqual(Node* node) { UNIMPLEMENTED(); }
2190
VisitInt8x16LessThan(Node * node)2191 void InstructionSelector::VisitInt8x16LessThan(Node* node) { UNIMPLEMENTED(); }
2192
VisitInt8x16LessThanOrEqual(Node * node)2193 void InstructionSelector::VisitInt8x16LessThanOrEqual(Node* node) {
2194 UNIMPLEMENTED();
2195 }
2196
VisitInt8x16GreaterThan(Node * node)2197 void InstructionSelector::VisitInt8x16GreaterThan(Node* node) {
2198 UNIMPLEMENTED();
2199 }
2200
VisitInt8x16GreaterThanOrEqual(Node * node)2201 void InstructionSelector::VisitInt8x16GreaterThanOrEqual(Node* node) {
2202 UNIMPLEMENTED();
2203 }
2204
VisitUint8x16ShiftRightByScalar(Node * node)2205 void InstructionSelector::VisitUint8x16ShiftRightByScalar(Node* node) {
2206 UNIMPLEMENTED();
2207 }
2208
VisitUint8x16AddSaturate(Node * node)2209 void InstructionSelector::VisitUint8x16AddSaturate(Node* node) {
2210 UNIMPLEMENTED();
2211 }
2212
VisitUint8x16SubSaturate(Node * node)2213 void InstructionSelector::VisitUint8x16SubSaturate(Node* node) {
2214 UNIMPLEMENTED();
2215 }
2216
VisitUint8x16Max(Node * node)2217 void InstructionSelector::VisitUint8x16Max(Node* node) { UNIMPLEMENTED(); }
2218
VisitUint8x16Min(Node * node)2219 void InstructionSelector::VisitUint8x16Min(Node* node) { UNIMPLEMENTED(); }
2220
VisitUint8x16GreaterThan(Node * node)2221 void InstructionSelector::VisitUint8x16GreaterThan(Node* node) {
2222 UNIMPLEMENTED();
2223 }
2224
VisitUint8x16GreaterThanOrEqual(Node * node)2225 void InstructionSelector::VisitUint8x16GreaterThanOrEqual(Node* node) {
2226 UNIMPLEMENTED();
2227 }
2228
VisitSimd128And(Node * node)2229 void InstructionSelector::VisitSimd128And(Node* node) { UNIMPLEMENTED(); }
2230
VisitSimd128Or(Node * node)2231 void InstructionSelector::VisitSimd128Or(Node* node) { UNIMPLEMENTED(); }
2232
VisitSimd128Xor(Node * node)2233 void InstructionSelector::VisitSimd128Xor(Node* node) { UNIMPLEMENTED(); }
2234
VisitSimd128Not(Node * node)2235 void InstructionSelector::VisitSimd128Not(Node* node) { UNIMPLEMENTED(); }
2236
VisitSimd32x4Select(Node * node)2237 void InstructionSelector::VisitSimd32x4Select(Node* node) { UNIMPLEMENTED(); }
2238
VisitSimd16x8Select(Node * node)2239 void InstructionSelector::VisitSimd16x8Select(Node* node) { UNIMPLEMENTED(); }
2240
VisitSimd8x16Select(Node * node)2241 void InstructionSelector::VisitSimd8x16Select(Node* node) { UNIMPLEMENTED(); }
2242 #endif // !V8_TARGET_ARCH_ARM
2243
VisitFinishRegion(Node * node)2244 void InstructionSelector::VisitFinishRegion(Node* node) { EmitIdentity(node); }
2245
VisitParameter(Node * node)2246 void InstructionSelector::VisitParameter(Node* node) {
2247 OperandGenerator g(this);
2248 int index = ParameterIndexOf(node->op());
2249 InstructionOperand op =
2250 linkage()->ParameterHasSecondaryLocation(index)
2251 ? g.DefineAsDualLocation(
2252 node, linkage()->GetParameterLocation(index),
2253 linkage()->GetParameterSecondaryLocation(index))
2254 : g.DefineAsLocation(node, linkage()->GetParameterLocation(index));
2255
2256 Emit(kArchNop, op);
2257 }
2258
2259 namespace {
ExceptionLocation()2260 LinkageLocation ExceptionLocation() {
2261 return LinkageLocation::ForRegister(kReturnRegister0.code(),
2262 MachineType::IntPtr());
2263 }
2264 }
2265
VisitIfException(Node * node)2266 void InstructionSelector::VisitIfException(Node* node) {
2267 OperandGenerator g(this);
2268 DCHECK_EQ(IrOpcode::kCall, node->InputAt(1)->opcode());
2269 Emit(kArchNop, g.DefineAsLocation(node, ExceptionLocation()));
2270 }
2271
2272
VisitOsrValue(Node * node)2273 void InstructionSelector::VisitOsrValue(Node* node) {
2274 OperandGenerator g(this);
2275 int index = OsrValueIndexOf(node->op());
2276 Emit(kArchNop,
2277 g.DefineAsLocation(node, linkage()->GetOsrValueLocation(index)));
2278 }
2279
2280
VisitPhi(Node * node)2281 void InstructionSelector::VisitPhi(Node* node) {
2282 const int input_count = node->op()->ValueInputCount();
2283 PhiInstruction* phi = new (instruction_zone())
2284 PhiInstruction(instruction_zone(), GetVirtualRegister(node),
2285 static_cast<size_t>(input_count));
2286 sequence()
2287 ->InstructionBlockAt(RpoNumber::FromInt(current_block_->rpo_number()))
2288 ->AddPhi(phi);
2289 for (int i = 0; i < input_count; ++i) {
2290 Node* const input = node->InputAt(i);
2291 MarkAsUsed(input);
2292 phi->SetInput(static_cast<size_t>(i), GetVirtualRegister(input));
2293 }
2294 }
2295
2296
VisitProjection(Node * node)2297 void InstructionSelector::VisitProjection(Node* node) {
2298 OperandGenerator g(this);
2299 Node* value = node->InputAt(0);
2300 switch (value->opcode()) {
2301 case IrOpcode::kInt32AddWithOverflow:
2302 case IrOpcode::kInt32SubWithOverflow:
2303 case IrOpcode::kInt32MulWithOverflow:
2304 case IrOpcode::kInt64AddWithOverflow:
2305 case IrOpcode::kInt64SubWithOverflow:
2306 case IrOpcode::kTryTruncateFloat32ToInt64:
2307 case IrOpcode::kTryTruncateFloat64ToInt64:
2308 case IrOpcode::kTryTruncateFloat32ToUint64:
2309 case IrOpcode::kTryTruncateFloat64ToUint64:
2310 case IrOpcode::kInt32PairAdd:
2311 case IrOpcode::kInt32PairSub:
2312 case IrOpcode::kInt32PairMul:
2313 case IrOpcode::kWord32PairShl:
2314 case IrOpcode::kWord32PairShr:
2315 case IrOpcode::kWord32PairSar:
2316 if (ProjectionIndexOf(node->op()) == 0u) {
2317 Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
2318 } else {
2319 DCHECK(ProjectionIndexOf(node->op()) == 1u);
2320 MarkAsUsed(value);
2321 }
2322 break;
2323 default:
2324 break;
2325 }
2326 }
2327
2328
VisitConstant(Node * node)2329 void InstructionSelector::VisitConstant(Node* node) {
2330 // We must emit a NOP here because every live range needs a defining
2331 // instruction in the register allocator.
2332 OperandGenerator g(this);
2333 Emit(kArchNop, g.DefineAsConstant(node));
2334 }
2335
2336
VisitCall(Node * node,BasicBlock * handler)2337 void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
2338 OperandGenerator g(this);
2339 const CallDescriptor* descriptor = CallDescriptorOf(node->op());
2340
2341 FrameStateDescriptor* frame_state_descriptor = nullptr;
2342 if (descriptor->NeedsFrameState()) {
2343 frame_state_descriptor = GetFrameStateDescriptor(
2344 node->InputAt(static_cast<int>(descriptor->InputCount())));
2345 }
2346
2347 CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
2348
2349 // Compute InstructionOperands for inputs and outputs.
2350 // TODO(turbofan): on some architectures it's probably better to use
2351 // the code object in a register if there are multiple uses of it.
2352 // Improve constant pool and the heuristics in the register allocator
2353 // for where to emit constants.
2354 CallBufferFlags call_buffer_flags(kCallCodeImmediate | kCallAddressImmediate);
2355 InitializeCallBuffer(node, &buffer, call_buffer_flags);
2356
2357 EmitPrepareArguments(&(buffer.pushed_nodes), descriptor, node);
2358
2359 // Pass label of exception handler block.
2360 CallDescriptor::Flags flags = descriptor->flags();
2361 if (handler) {
2362 DCHECK_EQ(IrOpcode::kIfException, handler->front()->opcode());
2363 flags |= CallDescriptor::kHasExceptionHandler;
2364 buffer.instruction_args.push_back(g.Label(handler));
2365 }
2366
2367 bool from_native_stack = linkage()->GetIncomingDescriptor()->UseNativeStack();
2368 bool to_native_stack = descriptor->UseNativeStack();
2369 if (from_native_stack != to_native_stack) {
2370 // (arm64 only) Mismatch in the use of stack pointers. One or the other
2371 // has to be restored manually by the code generator.
2372 flags |= to_native_stack ? CallDescriptor::kRestoreJSSP
2373 : CallDescriptor::kRestoreCSP;
2374 }
2375
2376 // Select the appropriate opcode based on the call type.
2377 InstructionCode opcode = kArchNop;
2378 switch (descriptor->kind()) {
2379 case CallDescriptor::kCallAddress:
2380 opcode =
2381 kArchCallCFunction |
2382 MiscField::encode(static_cast<int>(descriptor->ParameterCount()));
2383 break;
2384 case CallDescriptor::kCallCodeObject:
2385 opcode = kArchCallCodeObject | MiscField::encode(flags);
2386 break;
2387 case CallDescriptor::kCallJSFunction:
2388 opcode = kArchCallJSFunction | MiscField::encode(flags);
2389 break;
2390 }
2391
2392 // Emit the call instruction.
2393 size_t const output_count = buffer.outputs.size();
2394 auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
2395 Instruction* call_instr =
2396 Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
2397 &buffer.instruction_args.front());
2398 if (instruction_selection_failed()) return;
2399 call_instr->MarkAsCall();
2400 }
2401
2402
VisitTailCall(Node * node)2403 void InstructionSelector::VisitTailCall(Node* node) {
2404 OperandGenerator g(this);
2405 CallDescriptor const* descriptor = CallDescriptorOf(node->op());
2406 DCHECK_NE(0, descriptor->flags() & CallDescriptor::kSupportsTailCalls);
2407
2408 CallDescriptor* caller = linkage()->GetIncomingDescriptor();
2409 DCHECK(caller->CanTailCall(node));
2410 const CallDescriptor* callee = CallDescriptorOf(node->op());
2411 int stack_param_delta = callee->GetStackParameterDelta(caller);
2412 CallBuffer buffer(zone(), descriptor, nullptr);
2413
2414 // Compute InstructionOperands for inputs and outputs.
2415 CallBufferFlags flags(kCallCodeImmediate | kCallTail);
2416 if (IsTailCallAddressImmediate()) {
2417 flags |= kCallAddressImmediate;
2418 }
2419 InitializeCallBuffer(node, &buffer, flags, stack_param_delta);
2420
2421 // Select the appropriate opcode based on the call type.
2422 InstructionCode opcode;
2423 InstructionOperandVector temps(zone());
2424 if (linkage()->GetIncomingDescriptor()->IsJSFunctionCall()) {
2425 switch (descriptor->kind()) {
2426 case CallDescriptor::kCallCodeObject:
2427 opcode = kArchTailCallCodeObjectFromJSFunction;
2428 break;
2429 case CallDescriptor::kCallJSFunction:
2430 opcode = kArchTailCallJSFunctionFromJSFunction;
2431 break;
2432 default:
2433 UNREACHABLE();
2434 return;
2435 }
2436 int temps_count = GetTempsCountForTailCallFromJSFunction();
2437 for (int i = 0; i < temps_count; i++) {
2438 temps.push_back(g.TempRegister());
2439 }
2440 } else {
2441 switch (descriptor->kind()) {
2442 case CallDescriptor::kCallCodeObject:
2443 opcode = kArchTailCallCodeObject;
2444 break;
2445 case CallDescriptor::kCallAddress:
2446 opcode = kArchTailCallAddress;
2447 break;
2448 default:
2449 UNREACHABLE();
2450 return;
2451 }
2452 }
2453 opcode |= MiscField::encode(descriptor->flags());
2454
2455 Emit(kArchPrepareTailCall, g.NoOutput());
2456
2457 int first_unused_stack_slot =
2458 (V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK ? 1 : 0) +
2459 stack_param_delta;
2460 buffer.instruction_args.push_back(g.TempImmediate(first_unused_stack_slot));
2461
2462 // Emit the tailcall instruction.
2463 Emit(opcode, 0, nullptr, buffer.instruction_args.size(),
2464 &buffer.instruction_args.front(), temps.size(),
2465 temps.empty() ? nullptr : &temps.front());
2466 }
2467
2468
VisitGoto(BasicBlock * target)2469 void InstructionSelector::VisitGoto(BasicBlock* target) {
2470 // jump to the next block.
2471 OperandGenerator g(this);
2472 Emit(kArchJmp, g.NoOutput(), g.Label(target));
2473 }
2474
VisitReturn(Node * ret)2475 void InstructionSelector::VisitReturn(Node* ret) {
2476 OperandGenerator g(this);
2477 const int input_count = linkage()->GetIncomingDescriptor()->ReturnCount() == 0
2478 ? 1
2479 : ret->op()->ValueInputCount();
2480 DCHECK_GE(input_count, 1);
2481 auto value_locations = zone()->NewArray<InstructionOperand>(input_count);
2482 Node* pop_count = ret->InputAt(0);
2483 value_locations[0] = (pop_count->opcode() == IrOpcode::kInt32Constant ||
2484 pop_count->opcode() == IrOpcode::kInt64Constant)
2485 ? g.UseImmediate(pop_count)
2486 : g.UseRegister(pop_count);
2487 for (int i = 1; i < input_count; ++i) {
2488 value_locations[i] =
2489 g.UseLocation(ret->InputAt(i), linkage()->GetReturnLocation(i - 1));
2490 }
2491 Emit(kArchRet, 0, nullptr, input_count, value_locations);
2492 }
2493
EmitDeoptimize(InstructionCode opcode,InstructionOperand output,InstructionOperand a,DeoptimizeKind kind,DeoptimizeReason reason,Node * frame_state)2494 Instruction* InstructionSelector::EmitDeoptimize(
2495 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
2496 DeoptimizeKind kind, DeoptimizeReason reason, Node* frame_state) {
2497 size_t output_count = output.IsInvalid() ? 0 : 1;
2498 InstructionOperand inputs[] = {a};
2499 size_t input_count = arraysize(inputs);
2500 return EmitDeoptimize(opcode, output_count, &output, input_count, inputs,
2501 kind, reason, frame_state);
2502 }
2503
EmitDeoptimize(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,DeoptimizeKind kind,DeoptimizeReason reason,Node * frame_state)2504 Instruction* InstructionSelector::EmitDeoptimize(
2505 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
2506 InstructionOperand b, DeoptimizeKind kind, DeoptimizeReason reason,
2507 Node* frame_state) {
2508 size_t output_count = output.IsInvalid() ? 0 : 1;
2509 InstructionOperand inputs[] = {a, b};
2510 size_t input_count = arraysize(inputs);
2511 return EmitDeoptimize(opcode, output_count, &output, input_count, inputs,
2512 kind, reason, frame_state);
2513 }
2514
EmitDeoptimize(InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,DeoptimizeKind kind,DeoptimizeReason reason,Node * frame_state)2515 Instruction* InstructionSelector::EmitDeoptimize(
2516 InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
2517 size_t input_count, InstructionOperand* inputs, DeoptimizeKind kind,
2518 DeoptimizeReason reason, Node* frame_state) {
2519 OperandGenerator g(this);
2520 FrameStateDescriptor* const descriptor = GetFrameStateDescriptor(frame_state);
2521 InstructionOperandVector args(instruction_zone());
2522 args.reserve(input_count + 1 + descriptor->GetTotalSize());
2523 for (size_t i = 0; i < input_count; ++i) {
2524 args.push_back(inputs[i]);
2525 }
2526 opcode |= MiscField::encode(static_cast<int>(input_count));
2527 int const state_id =
2528 sequence()->AddDeoptimizationEntry(descriptor, kind, reason);
2529 args.push_back(g.TempImmediate(state_id));
2530 StateObjectDeduplicator deduplicator(instruction_zone());
2531 AddInputsToFrameStateDescriptor(descriptor, frame_state, &g, &deduplicator,
2532 &args, FrameStateInputKind::kAny,
2533 instruction_zone());
2534 return Emit(opcode, output_count, outputs, args.size(), &args.front(), 0,
2535 nullptr);
2536 }
2537
EmitIdentity(Node * node)2538 void InstructionSelector::EmitIdentity(Node* node) {
2539 OperandGenerator g(this);
2540 MarkAsUsed(node->InputAt(0));
2541 SetRename(node, node->InputAt(0));
2542 }
2543
VisitDeoptimize(DeoptimizeKind kind,DeoptimizeReason reason,Node * value)2544 void InstructionSelector::VisitDeoptimize(DeoptimizeKind kind,
2545 DeoptimizeReason reason,
2546 Node* value) {
2547 EmitDeoptimize(kArchDeoptimize, 0, nullptr, 0, nullptr, kind, reason, value);
2548 }
2549
2550
VisitThrow(Node * value)2551 void InstructionSelector::VisitThrow(Node* value) {
2552 OperandGenerator g(this);
2553 Emit(kArchThrowTerminator, g.NoOutput());
2554 }
2555
VisitDebugBreak(Node * node)2556 void InstructionSelector::VisitDebugBreak(Node* node) {
2557 OperandGenerator g(this);
2558 Emit(kArchDebugBreak, g.NoOutput());
2559 }
2560
VisitComment(Node * node)2561 void InstructionSelector::VisitComment(Node* node) {
2562 OperandGenerator g(this);
2563 InstructionOperand operand(g.UseImmediate(node));
2564 Emit(kArchComment, 0, nullptr, 1, &operand);
2565 }
2566
VisitUnsafePointerAdd(Node * node)2567 void InstructionSelector::VisitUnsafePointerAdd(Node* node) {
2568 #if V8_TARGET_ARCH_64_BIT
2569 VisitInt64Add(node);
2570 #else // V8_TARGET_ARCH_64_BIT
2571 VisitInt32Add(node);
2572 #endif // V8_TARGET_ARCH_64_BIT
2573 }
2574
VisitRetain(Node * node)2575 void InstructionSelector::VisitRetain(Node* node) {
2576 OperandGenerator g(this);
2577 Emit(kArchNop, g.NoOutput(), g.UseAny(node->InputAt(0)));
2578 }
2579
CanProduceSignalingNaN(Node * node)2580 bool InstructionSelector::CanProduceSignalingNaN(Node* node) {
2581 // TODO(jarin) Improve the heuristic here.
2582 if (node->opcode() == IrOpcode::kFloat64Add ||
2583 node->opcode() == IrOpcode::kFloat64Sub ||
2584 node->opcode() == IrOpcode::kFloat64Mul) {
2585 return false;
2586 }
2587 return true;
2588 }
2589
GetFrameStateDescriptor(Node * state)2590 FrameStateDescriptor* InstructionSelector::GetFrameStateDescriptor(
2591 Node* state) {
2592 DCHECK(state->opcode() == IrOpcode::kFrameState);
2593 DCHECK_EQ(kFrameStateInputCount, state->InputCount());
2594 FrameStateInfo state_info = OpParameter<FrameStateInfo>(state);
2595
2596 int parameters = static_cast<int>(
2597 StateValuesAccess(state->InputAt(kFrameStateParametersInput)).size());
2598 int locals = static_cast<int>(
2599 StateValuesAccess(state->InputAt(kFrameStateLocalsInput)).size());
2600 int stack = static_cast<int>(
2601 StateValuesAccess(state->InputAt(kFrameStateStackInput)).size());
2602
2603 DCHECK_EQ(parameters, state_info.parameter_count());
2604 DCHECK_EQ(locals, state_info.local_count());
2605
2606 FrameStateDescriptor* outer_state = nullptr;
2607 Node* outer_node = state->InputAt(kFrameStateOuterStateInput);
2608 if (outer_node->opcode() == IrOpcode::kFrameState) {
2609 outer_state = GetFrameStateDescriptor(outer_node);
2610 }
2611
2612 return new (instruction_zone()) FrameStateDescriptor(
2613 instruction_zone(), state_info.type(), state_info.bailout_id(),
2614 state_info.state_combine(), parameters, locals, stack,
2615 state_info.shared_info(), outer_state);
2616 }
2617
2618
2619 } // namespace compiler
2620 } // namespace internal
2621 } // namespace v8
2622