1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23
24 #include "base/arena_bit_vector.h"
25 #include "base/arena_containers.h"
26 #include "base/arena_object.h"
27 #include "base/array_ref.h"
28 #include "base/iteration_range.h"
29 #include "base/stl_util.h"
30 #include "base/transform_array_ref.h"
31 #include "dex_file.h"
32 #include "dex_file_types.h"
33 #include "deoptimization_kind.h"
34 #include "entrypoints/quick/quick_entrypoints_enum.h"
35 #include "handle.h"
36 #include "handle_scope.h"
37 #include "invoke_type.h"
38 #include "intrinsics_enum.h"
39 #include "locations.h"
40 #include "method_reference.h"
41 #include "mirror/class.h"
42 #include "offsets.h"
43 #include "primitive.h"
44 #include "utils/intrusive_forward_list.h"
45
46 namespace art {
47
48 class GraphChecker;
49 class HBasicBlock;
50 class HConstructorFence;
51 class HCurrentMethod;
52 class HDoubleConstant;
53 class HEnvironment;
54 class HFloatConstant;
55 class HGraphBuilder;
56 class HGraphVisitor;
57 class HInstruction;
58 class HIntConstant;
59 class HInvoke;
60 class HLongConstant;
61 class HNullConstant;
62 class HParameterValue;
63 class HPhi;
64 class HSuspendCheck;
65 class HTryBoundary;
66 class LiveInterval;
67 class LocationSummary;
68 class SlowPathCode;
69 class SsaBuilder;
70
71 namespace mirror {
72 class DexCache;
73 } // namespace mirror
74
75 static const int kDefaultNumberOfBlocks = 8;
76 static const int kDefaultNumberOfSuccessors = 2;
77 static const int kDefaultNumberOfPredecessors = 2;
78 static const int kDefaultNumberOfExceptionalPredecessors = 0;
79 static const int kDefaultNumberOfDominatedBlocks = 1;
80 static const int kDefaultNumberOfBackEdges = 1;
81
82 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
83 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
84 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
85 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
86
87 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
88 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
89
90 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
91
92 static constexpr uint32_t kNoDexPc = -1;
93
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)94 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
95 // For the purposes of the compiler, the dex files must actually be the same object
96 // if we want to safely treat them as the same. This is especially important for JIT
97 // as custom class loaders can open the same underlying file (or memory) multiple
98 // times and provide different class resolution but no two class loaders should ever
99 // use the same DexFile object - doing so is an unsupported hack that can lead to
100 // all sorts of weird failures.
101 return &lhs == &rhs;
102 }
103
104 enum IfCondition {
105 // All types.
106 kCondEQ, // ==
107 kCondNE, // !=
108 // Signed integers and floating-point numbers.
109 kCondLT, // <
110 kCondLE, // <=
111 kCondGT, // >
112 kCondGE, // >=
113 // Unsigned integers.
114 kCondB, // <
115 kCondBE, // <=
116 kCondA, // >
117 kCondAE, // >=
118 // First and last aliases.
119 kCondFirst = kCondEQ,
120 kCondLast = kCondAE,
121 };
122
123 enum GraphAnalysisResult {
124 kAnalysisSkipped,
125 kAnalysisInvalidBytecode,
126 kAnalysisFailThrowCatchLoop,
127 kAnalysisFailAmbiguousArrayOp,
128 kAnalysisSuccess,
129 };
130
131 template <typename T>
MakeUnsigned(T x)132 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
133 return static_cast<typename std::make_unsigned<T>::type>(x);
134 }
135
136 class HInstructionList : public ValueObject {
137 public:
HInstructionList()138 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
139
140 void AddInstruction(HInstruction* instruction);
141 void RemoveInstruction(HInstruction* instruction);
142
143 // Insert `instruction` before/after an existing instruction `cursor`.
144 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
145 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
146
147 // Return true if this list contains `instruction`.
148 bool Contains(HInstruction* instruction) const;
149
150 // Return true if `instruction1` is found before `instruction2` in
151 // this instruction list and false otherwise. Abort if none
152 // of these instructions is found.
153 bool FoundBefore(const HInstruction* instruction1,
154 const HInstruction* instruction2) const;
155
IsEmpty()156 bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()157 void Clear() { first_instruction_ = last_instruction_ = nullptr; }
158
159 // Update the block of all instructions to be `block`.
160 void SetBlockOfInstructions(HBasicBlock* block) const;
161
162 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
163 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
164 void Add(const HInstructionList& instruction_list);
165
166 // Return the number of instructions in the list. This is an expensive operation.
167 size_t CountSize() const;
168
169 private:
170 HInstruction* first_instruction_;
171 HInstruction* last_instruction_;
172
173 friend class HBasicBlock;
174 friend class HGraph;
175 friend class HInstruction;
176 friend class HInstructionIterator;
177 friend class HInstructionIteratorHandleChanges;
178 friend class HBackwardInstructionIterator;
179
180 DISALLOW_COPY_AND_ASSIGN(HInstructionList);
181 };
182
183 class ReferenceTypeInfo : ValueObject {
184 public:
185 typedef Handle<mirror::Class> TypeHandle;
186
187 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
188
Create(TypeHandle type_handle)189 static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
190 return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
191 }
192
CreateUnchecked(TypeHandle type_handle,bool is_exact)193 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
194 return ReferenceTypeInfo(type_handle, is_exact);
195 }
196
CreateInvalid()197 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
198
IsValidHandle(TypeHandle handle)199 static bool IsValidHandle(TypeHandle handle) {
200 return handle.GetReference() != nullptr;
201 }
202
IsValid()203 bool IsValid() const {
204 return IsValidHandle(type_handle_);
205 }
206
IsExact()207 bool IsExact() const { return is_exact_; }
208
IsObjectClass()209 bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
210 DCHECK(IsValid());
211 return GetTypeHandle()->IsObjectClass();
212 }
213
IsStringClass()214 bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
215 DCHECK(IsValid());
216 return GetTypeHandle()->IsStringClass();
217 }
218
IsObjectArray()219 bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
220 DCHECK(IsValid());
221 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
222 }
223
IsInterface()224 bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
225 DCHECK(IsValid());
226 return GetTypeHandle()->IsInterface();
227 }
228
IsArrayClass()229 bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
230 DCHECK(IsValid());
231 return GetTypeHandle()->IsArrayClass();
232 }
233
IsPrimitiveArrayClass()234 bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
235 DCHECK(IsValid());
236 return GetTypeHandle()->IsPrimitiveArray();
237 }
238
IsNonPrimitiveArrayClass()239 bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
240 DCHECK(IsValid());
241 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
242 }
243
CanArrayHold(ReferenceTypeInfo rti)244 bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
245 DCHECK(IsValid());
246 if (!IsExact()) return false;
247 if (!IsArrayClass()) return false;
248 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
249 }
250
CanArrayHoldValuesOf(ReferenceTypeInfo rti)251 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
252 DCHECK(IsValid());
253 if (!IsExact()) return false;
254 if (!IsArrayClass()) return false;
255 if (!rti.IsArrayClass()) return false;
256 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
257 rti.GetTypeHandle()->GetComponentType());
258 }
259
GetTypeHandle()260 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
261
IsSupertypeOf(ReferenceTypeInfo rti)262 bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
263 DCHECK(IsValid());
264 DCHECK(rti.IsValid());
265 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
266 }
267
IsStrictSupertypeOf(ReferenceTypeInfo rti)268 bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
269 DCHECK(IsValid());
270 DCHECK(rti.IsValid());
271 return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
272 GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
273 }
274
275 // Returns true if the type information provide the same amount of details.
276 // Note that it does not mean that the instructions have the same actual type
277 // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)278 bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
279 if (!IsValid() && !rti.IsValid()) {
280 // Invalid types are equal.
281 return true;
282 }
283 if (!IsValid() || !rti.IsValid()) {
284 // One is valid, the other not.
285 return false;
286 }
287 return IsExact() == rti.IsExact()
288 && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
289 }
290
291 private:
ReferenceTypeInfo()292 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)293 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
294 : type_handle_(type_handle), is_exact_(is_exact) { }
295
296 // The class of the object.
297 TypeHandle type_handle_;
298 // Whether or not the type is exact or a superclass of the actual type.
299 // Whether or not we have any information about this type.
300 bool is_exact_;
301 };
302
303 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
304
305 // Control-flow graph of a method. Contains a list of basic blocks.
306 class HGraph : public ArenaObject<kArenaAllocGraph> {
307 public:
308 HGraph(ArenaAllocator* arena,
309 const DexFile& dex_file,
310 uint32_t method_idx,
311 InstructionSet instruction_set,
312 InvokeType invoke_type = kInvalidInvokeType,
313 bool debuggable = false,
314 bool osr = false,
315 int start_instruction_id = 0)
arena_(arena)316 : arena_(arena),
317 blocks_(arena->Adapter(kArenaAllocBlockList)),
318 reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
319 linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
320 entry_block_(nullptr),
321 exit_block_(nullptr),
322 maximum_number_of_out_vregs_(0),
323 number_of_vregs_(0),
324 number_of_in_vregs_(0),
325 temporaries_vreg_slots_(0),
326 has_bounds_checks_(false),
327 has_try_catch_(false),
328 has_simd_(false),
329 has_loops_(false),
330 has_irreducible_loops_(false),
331 debuggable_(debuggable),
332 current_instruction_id_(start_instruction_id),
333 dex_file_(dex_file),
334 method_idx_(method_idx),
335 invoke_type_(invoke_type),
336 in_ssa_form_(false),
337 number_of_cha_guards_(0),
338 instruction_set_(instruction_set),
339 cached_null_constant_(nullptr),
340 cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
341 cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
342 cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
343 cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
344 cached_current_method_(nullptr),
345 art_method_(nullptr),
346 inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
347 osr_(osr),
348 cha_single_implementation_list_(arena->Adapter(kArenaAllocCHA)) {
349 blocks_.reserve(kDefaultNumberOfBlocks);
350 }
351
352 // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
353 void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
354
GetArena()355 ArenaAllocator* GetArena() const { return arena_; }
GetBlocks()356 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
357
IsInSsaForm()358 bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()359 void SetInSsaForm() { in_ssa_form_ = true; }
360
GetEntryBlock()361 HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()362 HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()363 bool HasExitBlock() const { return exit_block_ != nullptr; }
364
SetEntryBlock(HBasicBlock * block)365 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)366 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
367
368 void AddBlock(HBasicBlock* block);
369
370 void ComputeDominanceInformation();
371 void ClearDominanceInformation();
372 void ClearLoopInformation();
373 void FindBackEdges(ArenaBitVector* visited);
374 GraphAnalysisResult BuildDominatorTree();
375 void SimplifyCFG();
376 void SimplifyCatchBlocks();
377
378 // Analyze all natural loops in this graph. Returns a code specifying that it
379 // was successful or the reason for failure. The method will fail if a loop
380 // is a throw-catch loop, i.e. the header is a catch block.
381 GraphAnalysisResult AnalyzeLoops() const;
382
383 // Iterate over blocks to compute try block membership. Needs reverse post
384 // order and loop information.
385 void ComputeTryBlockInformation();
386
387 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
388 // Returns the instruction to replace the invoke expression or null if the
389 // invoke is for a void method. Note that the caller is responsible for replacing
390 // and removing the invoke instruction.
391 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
392
393 // Update the loop and try membership of `block`, which was spawned from `reference`.
394 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
395 // should be the new back edge.
396 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
397 HBasicBlock* reference,
398 bool replace_if_back_edge);
399
400 // Need to add a couple of blocks to test if the loop body is entered and
401 // put deoptimization instructions, etc.
402 void TransformLoopHeaderForBCE(HBasicBlock* header);
403
404 // Adds a new loop directly after the loop with the given header and exit.
405 // Returns the new preheader.
406 HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
407 HBasicBlock* body,
408 HBasicBlock* exit);
409
410 // Removes `block` from the graph. Assumes `block` has been disconnected from
411 // other blocks and has no instructions or phis.
412 void DeleteDeadEmptyBlock(HBasicBlock* block);
413
414 // Splits the edge between `block` and `successor` while preserving the
415 // indices in the predecessor/successor lists. If there are multiple edges
416 // between the blocks, the lowest indices are used.
417 // Returns the new block which is empty and has the same dex pc as `successor`.
418 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
419
420 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
421 void SimplifyLoop(HBasicBlock* header);
422
GetNextInstructionId()423 int32_t GetNextInstructionId() {
424 CHECK_NE(current_instruction_id_, INT32_MAX);
425 return current_instruction_id_++;
426 }
427
GetCurrentInstructionId()428 int32_t GetCurrentInstructionId() const {
429 return current_instruction_id_;
430 }
431
SetCurrentInstructionId(int32_t id)432 void SetCurrentInstructionId(int32_t id) {
433 CHECK_GE(id, current_instruction_id_);
434 current_instruction_id_ = id;
435 }
436
GetMaximumNumberOfOutVRegs()437 uint16_t GetMaximumNumberOfOutVRegs() const {
438 return maximum_number_of_out_vregs_;
439 }
440
SetMaximumNumberOfOutVRegs(uint16_t new_value)441 void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
442 maximum_number_of_out_vregs_ = new_value;
443 }
444
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)445 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
446 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
447 }
448
UpdateTemporariesVRegSlots(size_t slots)449 void UpdateTemporariesVRegSlots(size_t slots) {
450 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
451 }
452
GetTemporariesVRegSlots()453 size_t GetTemporariesVRegSlots() const {
454 DCHECK(!in_ssa_form_);
455 return temporaries_vreg_slots_;
456 }
457
SetNumberOfVRegs(uint16_t number_of_vregs)458 void SetNumberOfVRegs(uint16_t number_of_vregs) {
459 number_of_vregs_ = number_of_vregs;
460 }
461
GetNumberOfVRegs()462 uint16_t GetNumberOfVRegs() const {
463 return number_of_vregs_;
464 }
465
SetNumberOfInVRegs(uint16_t value)466 void SetNumberOfInVRegs(uint16_t value) {
467 number_of_in_vregs_ = value;
468 }
469
GetNumberOfInVRegs()470 uint16_t GetNumberOfInVRegs() const {
471 return number_of_in_vregs_;
472 }
473
GetNumberOfLocalVRegs()474 uint16_t GetNumberOfLocalVRegs() const {
475 DCHECK(!in_ssa_form_);
476 return number_of_vregs_ - number_of_in_vregs_;
477 }
478
GetReversePostOrder()479 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
480 return reverse_post_order_;
481 }
482
GetReversePostOrderSkipEntryBlock()483 ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() {
484 DCHECK(GetReversePostOrder()[0] == entry_block_);
485 return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
486 }
487
GetPostOrder()488 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
489 return ReverseRange(GetReversePostOrder());
490 }
491
GetLinearOrder()492 const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
493 return linear_order_;
494 }
495
GetLinearPostOrder()496 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
497 return ReverseRange(GetLinearOrder());
498 }
499
HasBoundsChecks()500 bool HasBoundsChecks() const {
501 return has_bounds_checks_;
502 }
503
SetHasBoundsChecks(bool value)504 void SetHasBoundsChecks(bool value) {
505 has_bounds_checks_ = value;
506 }
507
IsDebuggable()508 bool IsDebuggable() const { return debuggable_; }
509
510 // Returns a constant of the given type and value. If it does not exist
511 // already, it is created and inserted into the graph. This method is only for
512 // integral types.
513 HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
514
515 // TODO: This is problematic for the consistency of reference type propagation
516 // because it can be created anytime after the pass and thus it will be left
517 // with an invalid type.
518 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
519
520 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
521 return CreateConstant(value, &cached_int_constants_, dex_pc);
522 }
523 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
524 return CreateConstant(value, &cached_long_constants_, dex_pc);
525 }
526 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
527 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
528 }
529 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
530 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
531 }
532
533 HCurrentMethod* GetCurrentMethod();
534
GetDexFile()535 const DexFile& GetDexFile() const {
536 return dex_file_;
537 }
538
GetMethodIdx()539 uint32_t GetMethodIdx() const {
540 return method_idx_;
541 }
542
543 // Get the method name (without the signature), e.g. "<init>"
544 const char* GetMethodName() const;
545
546 // Get the pretty method name (class + name + optionally signature).
547 std::string PrettyMethod(bool with_signature = true) const;
548
GetInvokeType()549 InvokeType GetInvokeType() const {
550 return invoke_type_;
551 }
552
GetInstructionSet()553 InstructionSet GetInstructionSet() const {
554 return instruction_set_;
555 }
556
IsCompilingOsr()557 bool IsCompilingOsr() const { return osr_; }
558
GetCHASingleImplementationList()559 ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
560 return cha_single_implementation_list_;
561 }
562
AddCHASingleImplementationDependency(ArtMethod * method)563 void AddCHASingleImplementationDependency(ArtMethod* method) {
564 cha_single_implementation_list_.insert(method);
565 }
566
HasShouldDeoptimizeFlag()567 bool HasShouldDeoptimizeFlag() const {
568 return number_of_cha_guards_ != 0;
569 }
570
HasTryCatch()571 bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)572 void SetHasTryCatch(bool value) { has_try_catch_ = value; }
573
HasSIMD()574 bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)575 void SetHasSIMD(bool value) { has_simd_ = value; }
576
HasLoops()577 bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)578 void SetHasLoops(bool value) { has_loops_ = value; }
579
HasIrreducibleLoops()580 bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)581 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
582
GetArtMethod()583 ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)584 void SetArtMethod(ArtMethod* method) { art_method_ = method; }
585
586 // Returns an instruction with the opposite Boolean value from 'cond'.
587 // The instruction has been inserted into the graph, either as a constant, or
588 // before cursor.
589 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
590
GetInexactObjectRti()591 ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
592
GetNumberOfCHAGuards()593 uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)594 void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()595 void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
596
597 private:
598 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
599 void RemoveDeadBlocks(const ArenaBitVector& visited);
600
601 template <class InstructionType, typename ValueType>
602 InstructionType* CreateConstant(ValueType value,
603 ArenaSafeMap<ValueType, InstructionType*>* cache,
604 uint32_t dex_pc = kNoDexPc) {
605 // Try to find an existing constant of the given value.
606 InstructionType* constant = nullptr;
607 auto cached_constant = cache->find(value);
608 if (cached_constant != cache->end()) {
609 constant = cached_constant->second;
610 }
611
612 // If not found or previously deleted, create and cache a new instruction.
613 // Don't bother reviving a previously deleted instruction, for simplicity.
614 if (constant == nullptr || constant->GetBlock() == nullptr) {
615 constant = new (arena_) InstructionType(value, dex_pc);
616 cache->Overwrite(value, constant);
617 InsertConstant(constant);
618 }
619 return constant;
620 }
621
622 void InsertConstant(HConstant* instruction);
623
624 // Cache a float constant into the graph. This method should only be
625 // called by the SsaBuilder when creating "equivalent" instructions.
626 void CacheFloatConstant(HFloatConstant* constant);
627
628 // See CacheFloatConstant comment.
629 void CacheDoubleConstant(HDoubleConstant* constant);
630
631 ArenaAllocator* const arena_;
632
633 // List of blocks in insertion order.
634 ArenaVector<HBasicBlock*> blocks_;
635
636 // List of blocks to perform a reverse post order tree traversal.
637 ArenaVector<HBasicBlock*> reverse_post_order_;
638
639 // List of blocks to perform a linear order tree traversal. Unlike the reverse
640 // post order, this order is not incrementally kept up-to-date.
641 ArenaVector<HBasicBlock*> linear_order_;
642
643 HBasicBlock* entry_block_;
644 HBasicBlock* exit_block_;
645
646 // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
647 uint16_t maximum_number_of_out_vregs_;
648
649 // The number of virtual registers in this method. Contains the parameters.
650 uint16_t number_of_vregs_;
651
652 // The number of virtual registers used by parameters of this method.
653 uint16_t number_of_in_vregs_;
654
655 // Number of vreg size slots that the temporaries use (used in baseline compiler).
656 size_t temporaries_vreg_slots_;
657
658 // Flag whether there are bounds checks in the graph. We can skip
659 // BCE if it's false. It's only best effort to keep it up to date in
660 // the presence of code elimination so there might be false positives.
661 bool has_bounds_checks_;
662
663 // Flag whether there are try/catch blocks in the graph. We will skip
664 // try/catch-related passes if it's false. It's only best effort to keep
665 // it up to date in the presence of code elimination so there might be
666 // false positives.
667 bool has_try_catch_;
668
669 // Flag whether SIMD instructions appear in the graph. If true, the
670 // code generators may have to be more careful spilling the wider
671 // contents of SIMD registers.
672 bool has_simd_;
673
674 // Flag whether there are any loops in the graph. We can skip loop
675 // optimization if it's false. It's only best effort to keep it up
676 // to date in the presence of code elimination so there might be false
677 // positives.
678 bool has_loops_;
679
680 // Flag whether there are any irreducible loops in the graph. It's only
681 // best effort to keep it up to date in the presence of code elimination
682 // so there might be false positives.
683 bool has_irreducible_loops_;
684
685 // Indicates whether the graph should be compiled in a way that
686 // ensures full debuggability. If false, we can apply more
687 // aggressive optimizations that may limit the level of debugging.
688 const bool debuggable_;
689
690 // The current id to assign to a newly added instruction. See HInstruction.id_.
691 int32_t current_instruction_id_;
692
693 // The dex file from which the method is from.
694 const DexFile& dex_file_;
695
696 // The method index in the dex file.
697 const uint32_t method_idx_;
698
699 // If inlined, this encodes how the callee is being invoked.
700 const InvokeType invoke_type_;
701
702 // Whether the graph has been transformed to SSA form. Only used
703 // in debug mode to ensure we are not using properties only valid
704 // for non-SSA form (like the number of temporaries).
705 bool in_ssa_form_;
706
707 // Number of CHA guards in the graph. Used to short-circuit the
708 // CHA guard optimization pass when there is no CHA guard left.
709 uint32_t number_of_cha_guards_;
710
711 const InstructionSet instruction_set_;
712
713 // Cached constants.
714 HNullConstant* cached_null_constant_;
715 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
716 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
717 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
718 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
719
720 HCurrentMethod* cached_current_method_;
721
722 // The ArtMethod this graph is for. Note that for AOT, it may be null,
723 // for example for methods whose declaring class could not be resolved
724 // (such as when the superclass could not be found).
725 ArtMethod* art_method_;
726
727 // Keep the RTI of inexact Object to avoid having to pass stack handle
728 // collection pointer to passes which may create NullConstant.
729 ReferenceTypeInfo inexact_object_rti_;
730
731 // Whether we are compiling this graph for on stack replacement: this will
732 // make all loops seen as irreducible and emit special stack maps to mark
733 // compiled code entries which the interpreter can directly jump to.
734 const bool osr_;
735
736 // List of methods that are assumed to have single implementation.
737 ArenaSet<ArtMethod*> cha_single_implementation_list_;
738
739 friend class SsaBuilder; // For caching constants.
740 friend class SsaLivenessAnalysis; // For the linear order.
741 friend class HInliner; // For the reverse post order.
742 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
743 DISALLOW_COPY_AND_ASSIGN(HGraph);
744 };
745
746 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
747 public:
HLoopInformation(HBasicBlock * header,HGraph * graph)748 HLoopInformation(HBasicBlock* header, HGraph* graph)
749 : header_(header),
750 suspend_check_(nullptr),
751 irreducible_(false),
752 contains_irreducible_loop_(false),
753 back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
754 // Make bit vector growable, as the number of blocks may change.
755 blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) {
756 back_edges_.reserve(kDefaultNumberOfBackEdges);
757 }
758
IsIrreducible()759 bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()760 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
761
762 void Dump(std::ostream& os);
763
GetHeader()764 HBasicBlock* GetHeader() const {
765 return header_;
766 }
767
SetHeader(HBasicBlock * block)768 void SetHeader(HBasicBlock* block) {
769 header_ = block;
770 }
771
GetSuspendCheck()772 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)773 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()774 bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
775
AddBackEdge(HBasicBlock * back_edge)776 void AddBackEdge(HBasicBlock* back_edge) {
777 back_edges_.push_back(back_edge);
778 }
779
RemoveBackEdge(HBasicBlock * back_edge)780 void RemoveBackEdge(HBasicBlock* back_edge) {
781 RemoveElement(back_edges_, back_edge);
782 }
783
IsBackEdge(const HBasicBlock & block)784 bool IsBackEdge(const HBasicBlock& block) const {
785 return ContainsElement(back_edges_, &block);
786 }
787
NumberOfBackEdges()788 size_t NumberOfBackEdges() const {
789 return back_edges_.size();
790 }
791
792 HBasicBlock* GetPreHeader() const;
793
GetBackEdges()794 const ArenaVector<HBasicBlock*>& GetBackEdges() const {
795 return back_edges_;
796 }
797
798 // Returns the lifetime position of the back edge that has the
799 // greatest lifetime position.
800 size_t GetLifetimeEnd() const;
801
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)802 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
803 ReplaceElement(back_edges_, existing, new_back_edge);
804 }
805
806 // Finds blocks that are part of this loop.
807 void Populate();
808
809 // Returns whether this loop information contains `block`.
810 // Note that this loop information *must* be populated before entering this function.
811 bool Contains(const HBasicBlock& block) const;
812
813 // Returns whether this loop information is an inner loop of `other`.
814 // Note that `other` *must* be populated before entering this function.
815 bool IsIn(const HLoopInformation& other) const;
816
817 // Returns true if instruction is not defined within this loop.
818 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
819
GetBlocks()820 const ArenaBitVector& GetBlocks() const { return blocks_; }
821
822 void Add(HBasicBlock* block);
823 void Remove(HBasicBlock* block);
824
ClearAllBlocks()825 void ClearAllBlocks() {
826 blocks_.ClearAllBits();
827 }
828
829 bool HasBackEdgeNotDominatedByHeader() const;
830
IsPopulated()831 bool IsPopulated() const {
832 return blocks_.GetHighestBitSet() != -1;
833 }
834
835 bool DominatesAllBackEdges(HBasicBlock* block);
836
837 bool HasExitEdge() const;
838
839 private:
840 // Internal recursive implementation of `Populate`.
841 void PopulateRecursive(HBasicBlock* block);
842 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
843
844 HBasicBlock* header_;
845 HSuspendCheck* suspend_check_;
846 bool irreducible_;
847 bool contains_irreducible_loop_;
848 ArenaVector<HBasicBlock*> back_edges_;
849 ArenaBitVector blocks_;
850
851 DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
852 };
853
854 // Stores try/catch information for basic blocks.
855 // Note that HGraph is constructed so that catch blocks cannot simultaneously
856 // be try blocks.
857 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
858 public:
859 // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)860 explicit TryCatchInformation(const HTryBoundary& try_entry)
861 : try_entry_(&try_entry),
862 catch_dex_file_(nullptr),
863 catch_type_index_(DexFile::kDexNoIndex16) {
864 DCHECK(try_entry_ != nullptr);
865 }
866
867 // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)868 TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
869 : try_entry_(nullptr),
870 catch_dex_file_(&dex_file),
871 catch_type_index_(catch_type_index) {}
872
IsTryBlock()873 bool IsTryBlock() const { return try_entry_ != nullptr; }
874
GetTryEntry()875 const HTryBoundary& GetTryEntry() const {
876 DCHECK(IsTryBlock());
877 return *try_entry_;
878 }
879
IsCatchBlock()880 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
881
IsCatchAllTypeIndex()882 bool IsCatchAllTypeIndex() const {
883 DCHECK(IsCatchBlock());
884 return !catch_type_index_.IsValid();
885 }
886
GetCatchTypeIndex()887 dex::TypeIndex GetCatchTypeIndex() const {
888 DCHECK(IsCatchBlock());
889 return catch_type_index_;
890 }
891
GetCatchDexFile()892 const DexFile& GetCatchDexFile() const {
893 DCHECK(IsCatchBlock());
894 return *catch_dex_file_;
895 }
896
897 private:
898 // One of possibly several TryBoundary instructions entering the block's try.
899 // Only set for try blocks.
900 const HTryBoundary* try_entry_;
901
902 // Exception type information. Only set for catch blocks.
903 const DexFile* catch_dex_file_;
904 const dex::TypeIndex catch_type_index_;
905 };
906
907 static constexpr size_t kNoLifetime = -1;
908 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
909
910 // A block in a method. Contains the list of instructions represented
911 // as a double linked list. Each block knows its predecessors and
912 // successors.
913
914 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
915 public:
916 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)917 : graph_(graph),
918 predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
919 successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
920 loop_information_(nullptr),
921 dominator_(nullptr),
922 dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
923 block_id_(kInvalidBlockId),
924 dex_pc_(dex_pc),
925 lifetime_start_(kNoLifetime),
926 lifetime_end_(kNoLifetime),
927 try_catch_information_(nullptr) {
928 predecessors_.reserve(kDefaultNumberOfPredecessors);
929 successors_.reserve(kDefaultNumberOfSuccessors);
930 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
931 }
932
GetPredecessors()933 const ArenaVector<HBasicBlock*>& GetPredecessors() const {
934 return predecessors_;
935 }
936
GetSuccessors()937 const ArenaVector<HBasicBlock*>& GetSuccessors() const {
938 return successors_;
939 }
940
941 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
942 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
943
944 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
945 return ContainsElement(successors_, block, start_from);
946 }
947
GetDominatedBlocks()948 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
949 return dominated_blocks_;
950 }
951
IsEntryBlock()952 bool IsEntryBlock() const {
953 return graph_->GetEntryBlock() == this;
954 }
955
IsExitBlock()956 bool IsExitBlock() const {
957 return graph_->GetExitBlock() == this;
958 }
959
960 bool IsSingleGoto() const;
961 bool IsSingleTryBoundary() const;
962
963 // Returns true if this block emits nothing but a jump.
IsSingleJump()964 bool IsSingleJump() const {
965 HLoopInformation* loop_info = GetLoopInformation();
966 return (IsSingleGoto() || IsSingleTryBoundary())
967 // Back edges generate a suspend check.
968 && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
969 }
970
AddBackEdge(HBasicBlock * back_edge)971 void AddBackEdge(HBasicBlock* back_edge) {
972 if (loop_information_ == nullptr) {
973 loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
974 }
975 DCHECK_EQ(loop_information_->GetHeader(), this);
976 loop_information_->AddBackEdge(back_edge);
977 }
978
GetGraph()979 HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)980 void SetGraph(HGraph* graph) { graph_ = graph; }
981
GetBlockId()982 uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)983 void SetBlockId(int id) { block_id_ = id; }
GetDexPc()984 uint32_t GetDexPc() const { return dex_pc_; }
985
GetDominator()986 HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)987 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)988 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
989
RemoveDominatedBlock(HBasicBlock * block)990 void RemoveDominatedBlock(HBasicBlock* block) {
991 RemoveElement(dominated_blocks_, block);
992 }
993
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)994 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
995 ReplaceElement(dominated_blocks_, existing, new_block);
996 }
997
998 void ClearDominanceInformation();
999
NumberOfBackEdges()1000 int NumberOfBackEdges() const {
1001 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1002 }
1003
GetFirstInstruction()1004 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1005 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1006 const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1007 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1008 HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1009 const HInstructionList& GetPhis() const { return phis_; }
1010
1011 HInstruction* GetFirstInstructionDisregardMoves() const;
1012
AddSuccessor(HBasicBlock * block)1013 void AddSuccessor(HBasicBlock* block) {
1014 successors_.push_back(block);
1015 block->predecessors_.push_back(this);
1016 }
1017
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1018 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1019 size_t successor_index = GetSuccessorIndexOf(existing);
1020 existing->RemovePredecessor(this);
1021 new_block->predecessors_.push_back(this);
1022 successors_[successor_index] = new_block;
1023 }
1024
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1025 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1026 size_t predecessor_index = GetPredecessorIndexOf(existing);
1027 existing->RemoveSuccessor(this);
1028 new_block->successors_.push_back(this);
1029 predecessors_[predecessor_index] = new_block;
1030 }
1031
1032 // Insert `this` between `predecessor` and `successor. This method
1033 // preserves the indicies, and will update the first edge found between
1034 // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1035 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1036 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1037 size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1038 successor->predecessors_[predecessor_index] = this;
1039 predecessor->successors_[successor_index] = this;
1040 successors_.push_back(successor);
1041 predecessors_.push_back(predecessor);
1042 }
1043
RemovePredecessor(HBasicBlock * block)1044 void RemovePredecessor(HBasicBlock* block) {
1045 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1046 }
1047
RemoveSuccessor(HBasicBlock * block)1048 void RemoveSuccessor(HBasicBlock* block) {
1049 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1050 }
1051
ClearAllPredecessors()1052 void ClearAllPredecessors() {
1053 predecessors_.clear();
1054 }
1055
AddPredecessor(HBasicBlock * block)1056 void AddPredecessor(HBasicBlock* block) {
1057 predecessors_.push_back(block);
1058 block->successors_.push_back(this);
1059 }
1060
SwapPredecessors()1061 void SwapPredecessors() {
1062 DCHECK_EQ(predecessors_.size(), 2u);
1063 std::swap(predecessors_[0], predecessors_[1]);
1064 }
1065
SwapSuccessors()1066 void SwapSuccessors() {
1067 DCHECK_EQ(successors_.size(), 2u);
1068 std::swap(successors_[0], successors_[1]);
1069 }
1070
GetPredecessorIndexOf(HBasicBlock * predecessor)1071 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1072 return IndexOfElement(predecessors_, predecessor);
1073 }
1074
GetSuccessorIndexOf(HBasicBlock * successor)1075 size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1076 return IndexOfElement(successors_, successor);
1077 }
1078
GetSinglePredecessor()1079 HBasicBlock* GetSinglePredecessor() const {
1080 DCHECK_EQ(GetPredecessors().size(), 1u);
1081 return GetPredecessors()[0];
1082 }
1083
GetSingleSuccessor()1084 HBasicBlock* GetSingleSuccessor() const {
1085 DCHECK_EQ(GetSuccessors().size(), 1u);
1086 return GetSuccessors()[0];
1087 }
1088
1089 // Returns whether the first occurrence of `predecessor` in the list of
1090 // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1091 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1092 DCHECK_EQ(GetPredecessors()[idx], predecessor);
1093 return GetPredecessorIndexOf(predecessor) == idx;
1094 }
1095
1096 // Create a new block between this block and its predecessors. The new block
1097 // is added to the graph, all predecessor edges are relinked to it and an edge
1098 // is created to `this`. Returns the new empty block. Reverse post order or
1099 // loop and try/catch information are not updated.
1100 HBasicBlock* CreateImmediateDominator();
1101
1102 // Split the block into two blocks just before `cursor`. Returns the newly
1103 // created, latter block. Note that this method will add the block to the
1104 // graph, create a Goto at the end of the former block and will create an edge
1105 // between the blocks. It will not, however, update the reverse post order or
1106 // loop and try/catch information.
1107 HBasicBlock* SplitBefore(HInstruction* cursor);
1108
1109 // Split the block into two blocks just before `cursor`. Returns the newly
1110 // created block. Note that this method just updates raw block information,
1111 // like predecessors, successors, dominators, and instruction list. It does not
1112 // update the graph, reverse post order, loop information, nor make sure the
1113 // blocks are consistent (for example ending with a control flow instruction).
1114 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1115
1116 // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1117 HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1118
1119 // Merge `other` at the end of `this`. Successors and dominated blocks of
1120 // `other` are changed to be successors and dominated blocks of `this`. Note
1121 // that this method does not update the graph, reverse post order, loop
1122 // information, nor make sure the blocks are consistent (for example ending
1123 // with a control flow instruction).
1124 void MergeWithInlined(HBasicBlock* other);
1125
1126 // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1127 // of `this` are moved to `other`.
1128 // Note that this method does not update the graph, reverse post order, loop
1129 // information, nor make sure the blocks are consistent (for example ending
1130 // with a control flow instruction).
1131 void ReplaceWith(HBasicBlock* other);
1132
1133 // Merges the instructions of `other` at the end of `this`.
1134 void MergeInstructionsWith(HBasicBlock* other);
1135
1136 // Merge `other` at the end of `this`. This method updates loops, reverse post
1137 // order, links to predecessors, successors, dominators and deletes the block
1138 // from the graph. The two blocks must be successive, i.e. `this` the only
1139 // predecessor of `other` and vice versa.
1140 void MergeWith(HBasicBlock* other);
1141
1142 // Disconnects `this` from all its predecessors, successors and dominator,
1143 // removes it from all loops it is included in and eventually from the graph.
1144 // The block must not dominate any other block. Predecessors and successors
1145 // are safely updated.
1146 void DisconnectAndDelete();
1147
1148 void AddInstruction(HInstruction* instruction);
1149 // Insert `instruction` before/after an existing instruction `cursor`.
1150 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1151 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1152 // Replace instruction `initial` with `replacement` within this block.
1153 void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1154 HInstruction* replacement);
1155 void AddPhi(HPhi* phi);
1156 void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1157 // RemoveInstruction and RemovePhi delete a given instruction from the respective
1158 // instruction list. With 'ensure_safety' set to true, it verifies that the
1159 // instruction is not in use and removes it from the use lists of its inputs.
1160 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1161 void RemovePhi(HPhi* phi, bool ensure_safety = true);
1162 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1163
IsLoopHeader()1164 bool IsLoopHeader() const {
1165 return IsInLoop() && (loop_information_->GetHeader() == this);
1166 }
1167
IsLoopPreHeaderFirstPredecessor()1168 bool IsLoopPreHeaderFirstPredecessor() const {
1169 DCHECK(IsLoopHeader());
1170 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1171 }
1172
IsFirstPredecessorBackEdge()1173 bool IsFirstPredecessorBackEdge() const {
1174 DCHECK(IsLoopHeader());
1175 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1176 }
1177
GetLoopInformation()1178 HLoopInformation* GetLoopInformation() const {
1179 return loop_information_;
1180 }
1181
1182 // Set the loop_information_ on this block. Overrides the current
1183 // loop_information if it is an outer loop of the passed loop information.
1184 // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1185 void SetInLoop(HLoopInformation* info) {
1186 if (IsLoopHeader()) {
1187 // Nothing to do. This just means `info` is an outer loop.
1188 } else if (!IsInLoop()) {
1189 loop_information_ = info;
1190 } else if (loop_information_->Contains(*info->GetHeader())) {
1191 // Block is currently part of an outer loop. Make it part of this inner loop.
1192 // Note that a non loop header having a loop information means this loop information
1193 // has already been populated
1194 loop_information_ = info;
1195 } else {
1196 // Block is part of an inner loop. Do not update the loop information.
1197 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1198 // at this point, because this method is being called while populating `info`.
1199 }
1200 }
1201
1202 // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1203 void SetLoopInformation(HLoopInformation* info) {
1204 loop_information_ = info;
1205 }
1206
IsInLoop()1207 bool IsInLoop() const { return loop_information_ != nullptr; }
1208
GetTryCatchInformation()1209 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1210
SetTryCatchInformation(TryCatchInformation * try_catch_information)1211 void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1212 try_catch_information_ = try_catch_information;
1213 }
1214
IsTryBlock()1215 bool IsTryBlock() const {
1216 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1217 }
1218
IsCatchBlock()1219 bool IsCatchBlock() const {
1220 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1221 }
1222
1223 // Returns the try entry that this block's successors should have. They will
1224 // be in the same try, unless the block ends in a try boundary. In that case,
1225 // the appropriate try entry will be returned.
1226 const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1227
1228 bool HasThrowingInstructions() const;
1229
1230 // Returns whether this block dominates the blocked passed as parameter.
1231 bool Dominates(HBasicBlock* block) const;
1232
GetLifetimeStart()1233 size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1234 size_t GetLifetimeEnd() const { return lifetime_end_; }
1235
SetLifetimeStart(size_t start)1236 void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1237 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1238
1239 bool EndsWithControlFlowInstruction() const;
1240 bool EndsWithIf() const;
1241 bool EndsWithTryBoundary() const;
1242 bool HasSinglePhi() const;
1243
1244 private:
1245 HGraph* graph_;
1246 ArenaVector<HBasicBlock*> predecessors_;
1247 ArenaVector<HBasicBlock*> successors_;
1248 HInstructionList instructions_;
1249 HInstructionList phis_;
1250 HLoopInformation* loop_information_;
1251 HBasicBlock* dominator_;
1252 ArenaVector<HBasicBlock*> dominated_blocks_;
1253 uint32_t block_id_;
1254 // The dex program counter of the first instruction of this block.
1255 const uint32_t dex_pc_;
1256 size_t lifetime_start_;
1257 size_t lifetime_end_;
1258 TryCatchInformation* try_catch_information_;
1259
1260 friend class HGraph;
1261 friend class HInstruction;
1262
1263 DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1264 };
1265
1266 // Iterates over the LoopInformation of all loops which contain 'block'
1267 // from the innermost to the outermost.
1268 class HLoopInformationOutwardIterator : public ValueObject {
1269 public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1270 explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1271 : current_(block.GetLoopInformation()) {}
1272
Done()1273 bool Done() const { return current_ == nullptr; }
1274
Advance()1275 void Advance() {
1276 DCHECK(!Done());
1277 current_ = current_->GetPreHeader()->GetLoopInformation();
1278 }
1279
Current()1280 HLoopInformation* Current() const {
1281 DCHECK(!Done());
1282 return current_;
1283 }
1284
1285 private:
1286 HLoopInformation* current_;
1287
1288 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1289 };
1290
1291 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1292 M(Above, Condition) \
1293 M(AboveOrEqual, Condition) \
1294 M(Add, BinaryOperation) \
1295 M(And, BinaryOperation) \
1296 M(ArrayGet, Instruction) \
1297 M(ArrayLength, Instruction) \
1298 M(ArraySet, Instruction) \
1299 M(Below, Condition) \
1300 M(BelowOrEqual, Condition) \
1301 M(BooleanNot, UnaryOperation) \
1302 M(BoundsCheck, Instruction) \
1303 M(BoundType, Instruction) \
1304 M(CheckCast, Instruction) \
1305 M(ClassTableGet, Instruction) \
1306 M(ClearException, Instruction) \
1307 M(ClinitCheck, Instruction) \
1308 M(Compare, BinaryOperation) \
1309 M(ConstructorFence, Instruction) \
1310 M(CurrentMethod, Instruction) \
1311 M(ShouldDeoptimizeFlag, Instruction) \
1312 M(Deoptimize, Instruction) \
1313 M(Div, BinaryOperation) \
1314 M(DivZeroCheck, Instruction) \
1315 M(DoubleConstant, Constant) \
1316 M(Equal, Condition) \
1317 M(Exit, Instruction) \
1318 M(FloatConstant, Constant) \
1319 M(Goto, Instruction) \
1320 M(GreaterThan, Condition) \
1321 M(GreaterThanOrEqual, Condition) \
1322 M(If, Instruction) \
1323 M(InstanceFieldGet, Instruction) \
1324 M(InstanceFieldSet, Instruction) \
1325 M(InstanceOf, Instruction) \
1326 M(IntConstant, Constant) \
1327 M(InvokeUnresolved, Invoke) \
1328 M(InvokeInterface, Invoke) \
1329 M(InvokeStaticOrDirect, Invoke) \
1330 M(InvokeVirtual, Invoke) \
1331 M(InvokePolymorphic, Invoke) \
1332 M(LessThan, Condition) \
1333 M(LessThanOrEqual, Condition) \
1334 M(LoadClass, Instruction) \
1335 M(LoadException, Instruction) \
1336 M(LoadString, Instruction) \
1337 M(LongConstant, Constant) \
1338 M(MemoryBarrier, Instruction) \
1339 M(MonitorOperation, Instruction) \
1340 M(Mul, BinaryOperation) \
1341 M(NativeDebugInfo, Instruction) \
1342 M(Neg, UnaryOperation) \
1343 M(NewArray, Instruction) \
1344 M(NewInstance, Instruction) \
1345 M(Not, UnaryOperation) \
1346 M(NotEqual, Condition) \
1347 M(NullConstant, Instruction) \
1348 M(NullCheck, Instruction) \
1349 M(Or, BinaryOperation) \
1350 M(PackedSwitch, Instruction) \
1351 M(ParallelMove, Instruction) \
1352 M(ParameterValue, Instruction) \
1353 M(Phi, Instruction) \
1354 M(Rem, BinaryOperation) \
1355 M(Return, Instruction) \
1356 M(ReturnVoid, Instruction) \
1357 M(Ror, BinaryOperation) \
1358 M(Shl, BinaryOperation) \
1359 M(Shr, BinaryOperation) \
1360 M(StaticFieldGet, Instruction) \
1361 M(StaticFieldSet, Instruction) \
1362 M(UnresolvedInstanceFieldGet, Instruction) \
1363 M(UnresolvedInstanceFieldSet, Instruction) \
1364 M(UnresolvedStaticFieldGet, Instruction) \
1365 M(UnresolvedStaticFieldSet, Instruction) \
1366 M(Select, Instruction) \
1367 M(Sub, BinaryOperation) \
1368 M(SuspendCheck, Instruction) \
1369 M(Throw, Instruction) \
1370 M(TryBoundary, Instruction) \
1371 M(TypeConversion, Instruction) \
1372 M(UShr, BinaryOperation) \
1373 M(Xor, BinaryOperation) \
1374 M(VecReplicateScalar, VecUnaryOperation) \
1375 M(VecSumReduce, VecUnaryOperation) \
1376 M(VecCnv, VecUnaryOperation) \
1377 M(VecNeg, VecUnaryOperation) \
1378 M(VecAbs, VecUnaryOperation) \
1379 M(VecNot, VecUnaryOperation) \
1380 M(VecAdd, VecBinaryOperation) \
1381 M(VecHalvingAdd, VecBinaryOperation) \
1382 M(VecSub, VecBinaryOperation) \
1383 M(VecMul, VecBinaryOperation) \
1384 M(VecDiv, VecBinaryOperation) \
1385 M(VecMin, VecBinaryOperation) \
1386 M(VecMax, VecBinaryOperation) \
1387 M(VecAnd, VecBinaryOperation) \
1388 M(VecAndNot, VecBinaryOperation) \
1389 M(VecOr, VecBinaryOperation) \
1390 M(VecXor, VecBinaryOperation) \
1391 M(VecShl, VecBinaryOperation) \
1392 M(VecShr, VecBinaryOperation) \
1393 M(VecUShr, VecBinaryOperation) \
1394 M(VecSetScalars, VecOperation) \
1395 M(VecMultiplyAccumulate, VecOperation) \
1396 M(VecLoad, VecMemoryOperation) \
1397 M(VecStore, VecMemoryOperation) \
1398
1399 /*
1400 * Instructions, shared across several (not all) architectures.
1401 */
1402 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1403 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1404 #else
1405 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1406 M(BitwiseNegatedRight, Instruction) \
1407 M(DataProcWithShifterOp, Instruction) \
1408 M(MultiplyAccumulate, Instruction) \
1409 M(IntermediateAddress, Instruction) \
1410 M(IntermediateAddressIndex, Instruction)
1411 #endif
1412
1413 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1414
1415 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1416
1417 #ifndef ART_ENABLE_CODEGEN_mips
1418 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
1419 #else
1420 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \
1421 M(MipsComputeBaseMethodAddress, Instruction) \
1422 M(MipsPackedSwitch, Instruction)
1423 #endif
1424
1425 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
1426
1427 #ifndef ART_ENABLE_CODEGEN_x86
1428 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1429 #else
1430 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1431 M(X86ComputeBaseMethodAddress, Instruction) \
1432 M(X86LoadFromConstantTable, Instruction) \
1433 M(X86FPNeg, Instruction) \
1434 M(X86PackedSwitch, Instruction)
1435 #endif
1436
1437 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1438
1439 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \
1440 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1441 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1442 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
1443 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
1444 FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \
1445 FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \
1446 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1447 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1448
1449 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
1450 M(Condition, BinaryOperation) \
1451 M(Constant, Instruction) \
1452 M(UnaryOperation, Instruction) \
1453 M(BinaryOperation, Instruction) \
1454 M(Invoke, Instruction) \
1455 M(VecOperation, Instruction) \
1456 M(VecUnaryOperation, VecOperation) \
1457 M(VecBinaryOperation, VecOperation) \
1458 M(VecMemoryOperation, VecOperation)
1459
1460 #define FOR_EACH_INSTRUCTION(M) \
1461 FOR_EACH_CONCRETE_INSTRUCTION(M) \
1462 FOR_EACH_ABSTRACT_INSTRUCTION(M)
1463
1464 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1465 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1466 #undef FORWARD_DECLARATION
1467
1468 #define DECLARE_INSTRUCTION(type) \
1469 InstructionKind GetKindInternal() const OVERRIDE { return k##type; } \
1470 const char* DebugName() const OVERRIDE { return #type; } \
1471 bool InstructionTypeEquals(const HInstruction* other) const OVERRIDE { \
1472 return other->Is##type(); \
1473 } \
1474 void Accept(HGraphVisitor* visitor) OVERRIDE
1475
1476 #define DECLARE_ABSTRACT_INSTRUCTION(type) \
1477 bool Is##type() const { return As##type() != nullptr; } \
1478 const H##type* As##type() const { return this; } \
1479 H##type* As##type() { return this; }
1480
1481 template <typename T>
1482 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1483 public IntrusiveForwardListNode<HUseListNode<T>> {
1484 public:
1485 // Get the instruction which has this use as one of the inputs.
1486 T GetUser() const { return user_; }
1487 // Get the position of the input record that this use corresponds to.
1488 size_t GetIndex() const { return index_; }
1489 // Set the position of the input record that this use corresponds to.
1490 void SetIndex(size_t index) { index_ = index; }
1491
1492 private:
1493 HUseListNode(T user, size_t index)
1494 : user_(user), index_(index) {}
1495
1496 T const user_;
1497 size_t index_;
1498
1499 friend class HInstruction;
1500
1501 DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1502 };
1503
1504 template <typename T>
1505 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1506
1507 // This class is used by HEnvironment and HInstruction classes to record the
1508 // instructions they use and pointers to the corresponding HUseListNodes kept
1509 // by the used instructions.
1510 template <typename T>
1511 class HUserRecord : public ValueObject {
1512 public:
HUserRecord()1513 HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1514 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1515
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1516 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1517 : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1518 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1519 : instruction_(instruction), before_use_node_(before_use_node) {
1520 DCHECK(instruction_ != nullptr);
1521 }
1522
GetInstruction()1523 HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1524 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1525 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1526
1527 private:
1528 // Instruction used by the user.
1529 HInstruction* instruction_;
1530
1531 // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1532 typename HUseList<T>::iterator before_use_node_;
1533 };
1534
1535 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1536 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1537 // HInstruction* values even though the underlying container has HUserRecord<>s.
1538 struct HInputExtractor {
operatorHInputExtractor1539 HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1540 return record.GetInstruction();
1541 }
operatorHInputExtractor1542 const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1543 return record.GetInstruction();
1544 }
1545 };
1546
1547 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1548 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1549
1550 /**
1551 * Side-effects representation.
1552 *
1553 * For write/read dependences on fields/arrays, the dependence analysis uses
1554 * type disambiguation (e.g. a float field write cannot modify the value of an
1555 * integer field read) and the access type (e.g. a reference array write cannot
1556 * modify the value of a reference field read [although it may modify the
1557 * reference fetch prior to reading the field, which is represented by its own
1558 * write/read dependence]). The analysis makes conservative points-to
1559 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1560 * the same, and any reference read depends on any reference read without
1561 * further regard of its type).
1562 *
1563 * The internal representation uses 38-bit and is described in the table below.
1564 * The first line indicates the side effect, and for field/array accesses the
1565 * second line indicates the type of the access (in the order of the
1566 * Primitive::Type enum).
1567 * The two numbered lines below indicate the bit position in the bitfield (read
1568 * vertically).
1569 *
1570 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
1571 * +-------------+---------+---------+--------------+---------+---------+
1572 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
1573 * | 3 |333333322|222222221| 1 |111111110|000000000|
1574 * | 7 |654321098|765432109| 8 |765432109|876543210|
1575 *
1576 * Note that, to ease the implementation, 'changes' bits are least significant
1577 * bits, while 'dependency' bits are most significant bits.
1578 */
1579 class SideEffects : public ValueObject {
1580 public:
SideEffects()1581 SideEffects() : flags_(0) {}
1582
None()1583 static SideEffects None() {
1584 return SideEffects(0);
1585 }
1586
All()1587 static SideEffects All() {
1588 return SideEffects(kAllChangeBits | kAllDependOnBits);
1589 }
1590
AllChanges()1591 static SideEffects AllChanges() {
1592 return SideEffects(kAllChangeBits);
1593 }
1594
AllDependencies()1595 static SideEffects AllDependencies() {
1596 return SideEffects(kAllDependOnBits);
1597 }
1598
AllExceptGCDependency()1599 static SideEffects AllExceptGCDependency() {
1600 return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1601 }
1602
AllWritesAndReads()1603 static SideEffects AllWritesAndReads() {
1604 return SideEffects(kAllWrites | kAllReads);
1605 }
1606
AllWrites()1607 static SideEffects AllWrites() {
1608 return SideEffects(kAllWrites);
1609 }
1610
AllReads()1611 static SideEffects AllReads() {
1612 return SideEffects(kAllReads);
1613 }
1614
FieldWriteOfType(Primitive::Type type,bool is_volatile)1615 static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
1616 return is_volatile
1617 ? AllWritesAndReads()
1618 : SideEffects(TypeFlag(type, kFieldWriteOffset));
1619 }
1620
ArrayWriteOfType(Primitive::Type type)1621 static SideEffects ArrayWriteOfType(Primitive::Type type) {
1622 return SideEffects(TypeFlag(type, kArrayWriteOffset));
1623 }
1624
FieldReadOfType(Primitive::Type type,bool is_volatile)1625 static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
1626 return is_volatile
1627 ? AllWritesAndReads()
1628 : SideEffects(TypeFlag(type, kFieldReadOffset));
1629 }
1630
ArrayReadOfType(Primitive::Type type)1631 static SideEffects ArrayReadOfType(Primitive::Type type) {
1632 return SideEffects(TypeFlag(type, kArrayReadOffset));
1633 }
1634
CanTriggerGC()1635 static SideEffects CanTriggerGC() {
1636 return SideEffects(1ULL << kCanTriggerGCBit);
1637 }
1638
DependsOnGC()1639 static SideEffects DependsOnGC() {
1640 return SideEffects(1ULL << kDependsOnGCBit);
1641 }
1642
1643 // Combines the side-effects of this and the other.
Union(SideEffects other)1644 SideEffects Union(SideEffects other) const {
1645 return SideEffects(flags_ | other.flags_);
1646 }
1647
Exclusion(SideEffects other)1648 SideEffects Exclusion(SideEffects other) const {
1649 return SideEffects(flags_ & ~other.flags_);
1650 }
1651
Add(SideEffects other)1652 void Add(SideEffects other) {
1653 flags_ |= other.flags_;
1654 }
1655
Includes(SideEffects other)1656 bool Includes(SideEffects other) const {
1657 return (other.flags_ & flags_) == other.flags_;
1658 }
1659
HasSideEffects()1660 bool HasSideEffects() const {
1661 return (flags_ & kAllChangeBits);
1662 }
1663
HasDependencies()1664 bool HasDependencies() const {
1665 return (flags_ & kAllDependOnBits);
1666 }
1667
1668 // Returns true if there are no side effects or dependencies.
DoesNothing()1669 bool DoesNothing() const {
1670 return flags_ == 0;
1671 }
1672
1673 // Returns true if something is written.
DoesAnyWrite()1674 bool DoesAnyWrite() const {
1675 return (flags_ & kAllWrites);
1676 }
1677
1678 // Returns true if something is read.
DoesAnyRead()1679 bool DoesAnyRead() const {
1680 return (flags_ & kAllReads);
1681 }
1682
1683 // Returns true if potentially everything is written and read
1684 // (every type and every kind of access).
DoesAllReadWrite()1685 bool DoesAllReadWrite() const {
1686 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1687 }
1688
DoesAll()1689 bool DoesAll() const {
1690 return flags_ == (kAllChangeBits | kAllDependOnBits);
1691 }
1692
1693 // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1694 bool MayDependOn(SideEffects other) const {
1695 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1696 return (other.flags_ & depends_on_flags);
1697 }
1698
1699 // Returns string representation of flags (for debugging only).
1700 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1701 std::string ToString() const {
1702 std::string flags = "|";
1703 for (int s = kLastBit; s >= 0; s--) {
1704 bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1705 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1706 // This is a bit for the GC side effect.
1707 if (current_bit_is_set) {
1708 flags += "GC";
1709 }
1710 flags += "|";
1711 } else {
1712 // This is a bit for the array/field analysis.
1713 // The underscore character stands for the 'can trigger GC' bit.
1714 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1715 if (current_bit_is_set) {
1716 flags += kDebug[s];
1717 }
1718 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1719 (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1720 flags += "|";
1721 }
1722 }
1723 }
1724 return flags;
1725 }
1726
Equals(const SideEffects & other)1727 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1728
1729 private:
1730 static constexpr int kFieldArrayAnalysisBits = 9;
1731
1732 static constexpr int kFieldWriteOffset = 0;
1733 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1734 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1735 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1736
1737 static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1738
1739 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1740 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1741 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1742 static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1743
1744 static constexpr int kLastBit = kDependsOnGCBit;
1745 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1746
1747 // Aliases.
1748
1749 static_assert(kChangeBits == kDependOnBits,
1750 "the 'change' bits should match the 'depend on' bits.");
1751
1752 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1753 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1754 static constexpr uint64_t kAllWrites =
1755 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1756 static constexpr uint64_t kAllReads =
1757 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1758
1759 // Translates type to bit flag.
TypeFlag(Primitive::Type type,int offset)1760 static uint64_t TypeFlag(Primitive::Type type, int offset) {
1761 CHECK_NE(type, Primitive::kPrimVoid);
1762 const uint64_t one = 1;
1763 const int shift = type; // 0-based consecutive enum
1764 DCHECK_LE(kFieldWriteOffset, shift);
1765 DCHECK_LT(shift, kArrayWriteOffset);
1766 return one << (type + offset);
1767 }
1768
1769 // Private constructor on direct flags value.
SideEffects(uint64_t flags)1770 explicit SideEffects(uint64_t flags) : flags_(flags) {}
1771
1772 uint64_t flags_;
1773 };
1774
1775 // A HEnvironment object contains the values of virtual registers at a given location.
1776 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1777 public:
HEnvironment(ArenaAllocator * arena,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1778 ALWAYS_INLINE HEnvironment(ArenaAllocator* arena,
1779 size_t number_of_vregs,
1780 ArtMethod* method,
1781 uint32_t dex_pc,
1782 HInstruction* holder)
1783 : vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
1784 locations_(arena->Adapter(kArenaAllocEnvironmentLocations)),
1785 parent_(nullptr),
1786 method_(method),
1787 dex_pc_(dex_pc),
1788 holder_(holder) {
1789 }
1790
HEnvironment(ArenaAllocator * arena,const HEnvironment & to_copy,HInstruction * holder)1791 ALWAYS_INLINE HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
1792 : HEnvironment(arena,
1793 to_copy.Size(),
1794 to_copy.GetMethod(),
1795 to_copy.GetDexPc(),
1796 holder) {}
1797
AllocateLocations()1798 void AllocateLocations() {
1799 DCHECK(locations_.empty());
1800 locations_.resize(vregs_.size());
1801 }
1802
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)1803 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
1804 if (parent_ != nullptr) {
1805 parent_->SetAndCopyParentChain(allocator, parent);
1806 } else {
1807 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
1808 parent_->CopyFrom(parent);
1809 if (parent->GetParent() != nullptr) {
1810 parent_->SetAndCopyParentChain(allocator, parent->GetParent());
1811 }
1812 }
1813 }
1814
1815 void CopyFrom(const ArenaVector<HInstruction*>& locals);
1816 void CopyFrom(HEnvironment* environment);
1817
1818 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
1819 // input to the loop phi instead. This is for inserting instructions that
1820 // require an environment (like HDeoptimization) in the loop pre-header.
1821 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
1822
SetRawEnvAt(size_t index,HInstruction * instruction)1823 void SetRawEnvAt(size_t index, HInstruction* instruction) {
1824 vregs_[index] = HUserRecord<HEnvironment*>(instruction);
1825 }
1826
GetInstructionAt(size_t index)1827 HInstruction* GetInstructionAt(size_t index) const {
1828 return vregs_[index].GetInstruction();
1829 }
1830
1831 void RemoveAsUserOfInput(size_t index) const;
1832
Size()1833 size_t Size() const { return vregs_.size(); }
1834
GetParent()1835 HEnvironment* GetParent() const { return parent_; }
1836
SetLocationAt(size_t index,Location location)1837 void SetLocationAt(size_t index, Location location) {
1838 locations_[index] = location;
1839 }
1840
GetLocationAt(size_t index)1841 Location GetLocationAt(size_t index) const {
1842 return locations_[index];
1843 }
1844
GetDexPc()1845 uint32_t GetDexPc() const {
1846 return dex_pc_;
1847 }
1848
GetMethod()1849 ArtMethod* GetMethod() const {
1850 return method_;
1851 }
1852
GetHolder()1853 HInstruction* GetHolder() const {
1854 return holder_;
1855 }
1856
1857
IsFromInlinedInvoke()1858 bool IsFromInlinedInvoke() const {
1859 return GetParent() != nullptr;
1860 }
1861
1862 private:
1863 ArenaVector<HUserRecord<HEnvironment*>> vregs_;
1864 ArenaVector<Location> locations_;
1865 HEnvironment* parent_;
1866 ArtMethod* method_;
1867 const uint32_t dex_pc_;
1868
1869 // The instruction that holds this environment.
1870 HInstruction* const holder_;
1871
1872 friend class HInstruction;
1873
1874 DISALLOW_COPY_AND_ASSIGN(HEnvironment);
1875 };
1876
1877 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
1878 public:
HInstruction(SideEffects side_effects,uint32_t dex_pc)1879 HInstruction(SideEffects side_effects, uint32_t dex_pc)
1880 : previous_(nullptr),
1881 next_(nullptr),
1882 block_(nullptr),
1883 dex_pc_(dex_pc),
1884 id_(-1),
1885 ssa_index_(-1),
1886 packed_fields_(0u),
1887 environment_(nullptr),
1888 locations_(nullptr),
1889 live_interval_(nullptr),
1890 lifetime_position_(kNoLifetime),
1891 side_effects_(side_effects),
1892 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
1893 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
1894 }
1895
~HInstruction()1896 virtual ~HInstruction() {}
1897
1898 #define DECLARE_KIND(type, super) k##type,
1899 enum InstructionKind {
1900 FOR_EACH_INSTRUCTION(DECLARE_KIND)
1901 };
1902 #undef DECLARE_KIND
1903
GetNext()1904 HInstruction* GetNext() const { return next_; }
GetPrevious()1905 HInstruction* GetPrevious() const { return previous_; }
1906
1907 HInstruction* GetNextDisregardingMoves() const;
1908 HInstruction* GetPreviousDisregardingMoves() const;
1909
GetBlock()1910 HBasicBlock* GetBlock() const { return block_; }
GetArena()1911 ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
SetBlock(HBasicBlock * block)1912 void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()1913 bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()1914 bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()1915 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()1916 bool IsIrreducibleLoopHeaderPhi() const {
1917 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
1918 }
1919
1920 virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
1921
GetInputRecords()1922 ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
1923 // One virtual method is enough, just const_cast<> and then re-add the const.
1924 return ArrayRef<const HUserRecord<HInstruction*>>(
1925 const_cast<HInstruction*>(this)->GetInputRecords());
1926 }
1927
GetInputs()1928 HInputsRef GetInputs() {
1929 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
1930 }
1931
GetInputs()1932 HConstInputsRef GetInputs() const {
1933 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
1934 }
1935
InputCount()1936 size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)1937 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
1938
HasInput(HInstruction * input)1939 bool HasInput(HInstruction* input) const {
1940 for (const HInstruction* i : GetInputs()) {
1941 if (i == input) {
1942 return true;
1943 }
1944 }
1945 return false;
1946 }
1947
SetRawInputAt(size_t index,HInstruction * input)1948 void SetRawInputAt(size_t index, HInstruction* input) {
1949 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
1950 }
1951
1952 virtual void Accept(HGraphVisitor* visitor) = 0;
1953 virtual const char* DebugName() const = 0;
1954
GetType()1955 virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
1956
NeedsEnvironment()1957 virtual bool NeedsEnvironment() const { return false; }
1958
GetDexPc()1959 uint32_t GetDexPc() const { return dex_pc_; }
1960
IsControlFlow()1961 virtual bool IsControlFlow() const { return false; }
1962
1963 // Can the instruction throw?
1964 // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
1965 // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()1966 virtual bool CanThrow() const { return false; }
CanThrowIntoCatchBlock()1967 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
1968
HasSideEffects()1969 bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()1970 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
1971
1972 // Does not apply for all instructions, but having this at top level greatly
1973 // simplifies the null check elimination.
1974 // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()1975 virtual bool CanBeNull() const {
1976 DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
1977 return true;
1978 }
1979
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)1980 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
1981 return false;
1982 }
1983
IsActualObject()1984 virtual bool IsActualObject() const {
1985 return GetType() == Primitive::kPrimNot;
1986 }
1987
1988 void SetReferenceTypeInfo(ReferenceTypeInfo rti);
1989
GetReferenceTypeInfo()1990 ReferenceTypeInfo GetReferenceTypeInfo() const {
1991 DCHECK_EQ(GetType(), Primitive::kPrimNot);
1992 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
1993 GetPackedFlag<kFlagReferenceTypeIsExact>());
1994 }
1995
AddUseAt(HInstruction * user,size_t index)1996 void AddUseAt(HInstruction* user, size_t index) {
1997 DCHECK(user != nullptr);
1998 // Note: fixup_end remains valid across push_front().
1999 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2000 HUseListNode<HInstruction*>* new_node =
2001 new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index);
2002 uses_.push_front(*new_node);
2003 FixUpUserRecordsAfterUseInsertion(fixup_end);
2004 }
2005
AddEnvUseAt(HEnvironment * user,size_t index)2006 void AddEnvUseAt(HEnvironment* user, size_t index) {
2007 DCHECK(user != nullptr);
2008 // Note: env_fixup_end remains valid across push_front().
2009 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2010 HUseListNode<HEnvironment*>* new_node =
2011 new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index);
2012 env_uses_.push_front(*new_node);
2013 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2014 }
2015
RemoveAsUserOfInput(size_t input)2016 void RemoveAsUserOfInput(size_t input) {
2017 HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2018 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2019 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2020 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2021 }
2022
RemoveAsUserOfAllInputs()2023 void RemoveAsUserOfAllInputs() {
2024 for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2025 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2026 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2027 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2028 }
2029 }
2030
GetUses()2031 const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2032 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2033
HasUses()2034 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2035 bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2036 bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2037 bool HasOnlyOneNonEnvironmentUse() const {
2038 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2039 }
2040
IsRemovable()2041 bool IsRemovable() const {
2042 return
2043 !DoesAnyWrite() &&
2044 !CanThrow() &&
2045 !IsSuspendCheck() &&
2046 !IsControlFlow() &&
2047 !IsNativeDebugInfo() &&
2048 !IsParameterValue() &&
2049 // If we added an explicit barrier then we should keep it.
2050 !IsMemoryBarrier() &&
2051 !IsConstructorFence();
2052 }
2053
IsDeadAndRemovable()2054 bool IsDeadAndRemovable() const {
2055 return IsRemovable() && !HasUses();
2056 }
2057
2058 // Does this instruction strictly dominate `other_instruction`?
2059 // Returns false if this instruction and `other_instruction` are the same.
2060 // Aborts if this instruction and `other_instruction` are both phis.
2061 bool StrictlyDominates(HInstruction* other_instruction) const;
2062
GetId()2063 int GetId() const { return id_; }
SetId(int id)2064 void SetId(int id) { id_ = id; }
2065
GetSsaIndex()2066 int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2067 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2068 bool HasSsaIndex() const { return ssa_index_ != -1; }
2069
HasEnvironment()2070 bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2071 HEnvironment* GetEnvironment() const { return environment_; }
2072 // Set the `environment_` field. Raw because this method does not
2073 // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2074 void SetRawEnvironment(HEnvironment* environment) {
2075 DCHECK(environment_ == nullptr);
2076 DCHECK_EQ(environment->GetHolder(), this);
2077 environment_ = environment;
2078 }
2079
InsertRawEnvironment(HEnvironment * environment)2080 void InsertRawEnvironment(HEnvironment* environment) {
2081 DCHECK(environment_ != nullptr);
2082 DCHECK_EQ(environment->GetHolder(), this);
2083 DCHECK(environment->GetParent() == nullptr);
2084 environment->parent_ = environment_;
2085 environment_ = environment;
2086 }
2087
2088 void RemoveEnvironment();
2089
2090 // Set the environment of this instruction, copying it from `environment`. While
2091 // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2092 void CopyEnvironmentFrom(HEnvironment* environment) {
2093 DCHECK(environment_ == nullptr);
2094 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
2095 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2096 environment_->CopyFrom(environment);
2097 if (environment->GetParent() != nullptr) {
2098 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2099 }
2100 }
2101
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2102 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2103 HBasicBlock* block) {
2104 DCHECK(environment_ == nullptr);
2105 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
2106 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2107 environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2108 if (environment->GetParent() != nullptr) {
2109 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2110 }
2111 }
2112
2113 // Returns the number of entries in the environment. Typically, that is the
2114 // number of dex registers in a method. It could be more in case of inlining.
2115 size_t EnvironmentSize() const;
2116
GetLocations()2117 LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2118 void SetLocations(LocationSummary* locations) { locations_ = locations; }
2119
2120 void ReplaceWith(HInstruction* instruction);
2121 void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2122 void ReplaceInput(HInstruction* replacement, size_t index);
2123
2124 // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2125 // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2126 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2127 ReplaceWith(other);
2128 other->ReplaceInput(this, use_index);
2129 }
2130
2131 // Move `this` instruction before `cursor`
2132 void MoveBefore(HInstruction* cursor, bool do_checks = true);
2133
2134 // Move `this` before its first user and out of any loops. If there is no
2135 // out-of-loop user that dominates all other users, move the instruction
2136 // to the end of the out-of-loop common dominator of the user's blocks.
2137 //
2138 // This can be used only on non-throwing instructions with no side effects that
2139 // have at least one use but no environment uses.
2140 void MoveBeforeFirstUserAndOutOfLoops();
2141
2142 #define INSTRUCTION_TYPE_CHECK(type, super) \
2143 bool Is##type() const; \
2144 const H##type* As##type() const; \
2145 H##type* As##type();
2146
2147 FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2148 #undef INSTRUCTION_TYPE_CHECK
2149
2150 #define INSTRUCTION_TYPE_CHECK(type, super) \
2151 bool Is##type() const { return (As##type() != nullptr); } \
2152 virtual const H##type* As##type() const { return nullptr; } \
2153 virtual H##type* As##type() { return nullptr; }
FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)2154 FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2155 #undef INSTRUCTION_TYPE_CHECK
2156
2157 // Returns whether the instruction can be moved within the graph.
2158 // TODO: this method is used by LICM and GVN with possibly different
2159 // meanings? split and rename?
2160 virtual bool CanBeMoved() const { return false; }
2161
2162 // Returns whether the two instructions are of the same kind.
InstructionTypeEquals(const HInstruction * other ATTRIBUTE_UNUSED)2163 virtual bool InstructionTypeEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2164 return false;
2165 }
2166
2167 // Returns whether any data encoded in the two instructions is equal.
2168 // This method does not look at the inputs. Both instructions must be
2169 // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2170 virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2171 return false;
2172 }
2173
2174 // Returns whether two instructions are equal, that is:
2175 // 1) They have the same type and contain the same data (InstructionDataEquals).
2176 // 2) Their inputs are identical.
2177 bool Equals(const HInstruction* other) const;
2178
2179 // TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
2180 // is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
2181 // the virtual function because the __attribute__((__pure__)) doesn't really
2182 // apply the strong requirement for virtual functions, preventing optimizations.
2183 InstructionKind GetKind() const PURE;
2184 virtual InstructionKind GetKindInternal() const = 0;
2185
ComputeHashCode()2186 virtual size_t ComputeHashCode() const {
2187 size_t result = GetKind();
2188 for (const HInstruction* input : GetInputs()) {
2189 result = (result * 31) + input->GetId();
2190 }
2191 return result;
2192 }
2193
GetSideEffects()2194 SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2195 void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2196 void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2197
GetLifetimePosition()2198 size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2199 void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2200 LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2201 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2202 bool HasLiveInterval() const { return live_interval_ != nullptr; }
2203
IsSuspendCheckEntry()2204 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2205
2206 // Returns whether the code generation of the instruction will require to have access
2207 // to the current method. Such instructions are:
2208 // (1): Instructions that require an environment, as calling the runtime requires
2209 // to walk the stack and have the current method stored at a specific stack address.
2210 // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2211 // to access the dex cache.
NeedsCurrentMethod()2212 bool NeedsCurrentMethod() const {
2213 return NeedsEnvironment() || IsCurrentMethod();
2214 }
2215
2216 // Returns whether the code generation of the instruction will require to have access
2217 // to the dex cache of the current method's declaring class via the current method.
NeedsDexCacheOfDeclaringClass()2218 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2219
2220 // Does this instruction have any use in an environment before
2221 // control flow hits 'other'?
2222 bool HasAnyEnvironmentUseBefore(HInstruction* other);
2223
2224 // Remove all references to environment uses of this instruction.
2225 // The caller must ensure that this is safe to do.
2226 void RemoveEnvironmentUsers();
2227
IsEmittedAtUseSite()2228 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2229 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2230
2231 protected:
2232 // If set, the machine code for this instruction is assumed to be generated by
2233 // its users. Used by liveness analysis to compute use positions accordingly.
2234 static constexpr size_t kFlagEmittedAtUseSite = 0u;
2235 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2236 static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1;
2237 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2238
InputRecordAt(size_t i)2239 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2240 return GetInputRecords()[i];
2241 }
2242
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2243 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2244 ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2245 input_records[index] = input;
2246 }
2247
GetPackedFields()2248 uint32_t GetPackedFields() const {
2249 return packed_fields_;
2250 }
2251
2252 template <size_t flag>
GetPackedFlag()2253 bool GetPackedFlag() const {
2254 return (packed_fields_ & (1u << flag)) != 0u;
2255 }
2256
2257 template <size_t flag>
2258 void SetPackedFlag(bool value = true) {
2259 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2260 }
2261
2262 template <typename BitFieldType>
GetPackedField()2263 typename BitFieldType::value_type GetPackedField() const {
2264 return BitFieldType::Decode(packed_fields_);
2265 }
2266
2267 template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2268 void SetPackedField(typename BitFieldType::value_type value) {
2269 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2270 packed_fields_ = BitFieldType::Update(value, packed_fields_);
2271 }
2272
2273 private:
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2274 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2275 auto before_use_node = uses_.before_begin();
2276 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2277 HInstruction* user = use_node->GetUser();
2278 size_t input_index = use_node->GetIndex();
2279 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2280 before_use_node = use_node;
2281 }
2282 }
2283
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2284 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2285 auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2286 if (next != uses_.end()) {
2287 HInstruction* next_user = next->GetUser();
2288 size_t next_index = next->GetIndex();
2289 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2290 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2291 }
2292 }
2293
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2294 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2295 auto before_env_use_node = env_uses_.before_begin();
2296 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2297 HEnvironment* user = env_use_node->GetUser();
2298 size_t input_index = env_use_node->GetIndex();
2299 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2300 before_env_use_node = env_use_node;
2301 }
2302 }
2303
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2304 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2305 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2306 if (next != env_uses_.end()) {
2307 HEnvironment* next_user = next->GetUser();
2308 size_t next_index = next->GetIndex();
2309 DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2310 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2311 }
2312 }
2313
2314 HInstruction* previous_;
2315 HInstruction* next_;
2316 HBasicBlock* block_;
2317 const uint32_t dex_pc_;
2318
2319 // An instruction gets an id when it is added to the graph.
2320 // It reflects creation order. A negative id means the instruction
2321 // has not been added to the graph.
2322 int id_;
2323
2324 // When doing liveness analysis, instructions that have uses get an SSA index.
2325 int ssa_index_;
2326
2327 // Packed fields.
2328 uint32_t packed_fields_;
2329
2330 // List of instructions that have this instruction as input.
2331 HUseList<HInstruction*> uses_;
2332
2333 // List of environments that contain this instruction.
2334 HUseList<HEnvironment*> env_uses_;
2335
2336 // The environment associated with this instruction. Not null if the instruction
2337 // might jump out of the method.
2338 HEnvironment* environment_;
2339
2340 // Set by the code generator.
2341 LocationSummary* locations_;
2342
2343 // Set by the liveness analysis.
2344 LiveInterval* live_interval_;
2345
2346 // Set by the liveness analysis, this is the position in a linear
2347 // order of blocks where this instruction's live interval start.
2348 size_t lifetime_position_;
2349
2350 SideEffects side_effects_;
2351
2352 // The reference handle part of the reference type info.
2353 // The IsExact() flag is stored in packed fields.
2354 // TODO: for primitive types this should be marked as invalid.
2355 ReferenceTypeInfo::TypeHandle reference_type_handle_;
2356
2357 friend class GraphChecker;
2358 friend class HBasicBlock;
2359 friend class HEnvironment;
2360 friend class HGraph;
2361 friend class HInstructionList;
2362
2363 DISALLOW_COPY_AND_ASSIGN(HInstruction);
2364 };
2365 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
2366
2367 // Iterates over the instructions, while preserving the next instruction
2368 // in case the current instruction gets removed from the list by the user
2369 // of this iterator.
2370 class HInstructionIterator : public ValueObject {
2371 public:
HInstructionIterator(const HInstructionList & instructions)2372 explicit HInstructionIterator(const HInstructionList& instructions)
2373 : instruction_(instructions.first_instruction_) {
2374 next_ = Done() ? nullptr : instruction_->GetNext();
2375 }
2376
Done()2377 bool Done() const { return instruction_ == nullptr; }
Current()2378 HInstruction* Current() const { return instruction_; }
Advance()2379 void Advance() {
2380 instruction_ = next_;
2381 next_ = Done() ? nullptr : instruction_->GetNext();
2382 }
2383
2384 private:
2385 HInstruction* instruction_;
2386 HInstruction* next_;
2387
2388 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2389 };
2390
2391 // Iterates over the instructions without saving the next instruction,
2392 // therefore handling changes in the graph potentially made by the user
2393 // of this iterator.
2394 class HInstructionIteratorHandleChanges : public ValueObject {
2395 public:
HInstructionIteratorHandleChanges(const HInstructionList & instructions)2396 explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2397 : instruction_(instructions.first_instruction_) {
2398 }
2399
Done()2400 bool Done() const { return instruction_ == nullptr; }
Current()2401 HInstruction* Current() const { return instruction_; }
Advance()2402 void Advance() {
2403 instruction_ = instruction_->GetNext();
2404 }
2405
2406 private:
2407 HInstruction* instruction_;
2408
2409 DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
2410 };
2411
2412
2413 class HBackwardInstructionIterator : public ValueObject {
2414 public:
HBackwardInstructionIterator(const HInstructionList & instructions)2415 explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2416 : instruction_(instructions.last_instruction_) {
2417 next_ = Done() ? nullptr : instruction_->GetPrevious();
2418 }
2419
Done()2420 bool Done() const { return instruction_ == nullptr; }
Current()2421 HInstruction* Current() const { return instruction_; }
Advance()2422 void Advance() {
2423 instruction_ = next_;
2424 next_ = Done() ? nullptr : instruction_->GetPrevious();
2425 }
2426
2427 private:
2428 HInstruction* instruction_;
2429 HInstruction* next_;
2430
2431 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2432 };
2433
2434 class HVariableInputSizeInstruction : public HInstruction {
2435 public:
2436 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2437 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
2438 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2439 }
2440
2441 void AddInput(HInstruction* input);
2442 void InsertInputAt(size_t index, HInstruction* input);
2443 void RemoveInputAt(size_t index);
2444
2445 // Removes all the inputs.
2446 // Also removes this instructions from each input's use list
2447 // (for non-environment uses only).
2448 void RemoveAllInputs();
2449
2450 protected:
HVariableInputSizeInstruction(SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * arena,size_t number_of_inputs,ArenaAllocKind kind)2451 HVariableInputSizeInstruction(SideEffects side_effects,
2452 uint32_t dex_pc,
2453 ArenaAllocator* arena,
2454 size_t number_of_inputs,
2455 ArenaAllocKind kind)
2456 : HInstruction(side_effects, dex_pc),
2457 inputs_(number_of_inputs, arena->Adapter(kind)) {}
2458
2459 ArenaVector<HUserRecord<HInstruction*>> inputs_;
2460
2461 private:
2462 DISALLOW_COPY_AND_ASSIGN(HVariableInputSizeInstruction);
2463 };
2464
2465 template<size_t N>
2466 class HTemplateInstruction: public HInstruction {
2467 public:
2468 HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
HInstruction(side_effects,dex_pc)2469 : HInstruction(side_effects, dex_pc), inputs_() {}
~HTemplateInstruction()2470 virtual ~HTemplateInstruction() {}
2471
2472 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2473 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
2474 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2475 }
2476
2477 private:
2478 std::array<HUserRecord<HInstruction*>, N> inputs_;
2479
2480 friend class SsaBuilder;
2481 };
2482
2483 // HTemplateInstruction specialization for N=0.
2484 template<>
2485 class HTemplateInstruction<0>: public HInstruction {
2486 public:
2487 explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
HInstruction(side_effects,dex_pc)2488 : HInstruction(side_effects, dex_pc) {}
2489
~HTemplateInstruction()2490 virtual ~HTemplateInstruction() {}
2491
2492 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2493 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
2494 return ArrayRef<HUserRecord<HInstruction*>>();
2495 }
2496
2497 private:
2498 friend class SsaBuilder;
2499 };
2500
2501 template<intptr_t N>
2502 class HExpression : public HTemplateInstruction<N> {
2503 public:
2504 HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
2505 : HTemplateInstruction<N>(side_effects, dex_pc) {
2506 this->template SetPackedField<TypeField>(type);
2507 }
~HExpression()2508 virtual ~HExpression() {}
2509
GetType()2510 Primitive::Type GetType() const OVERRIDE {
2511 return TypeField::Decode(this->GetPackedFields());
2512 }
2513
2514 protected:
2515 static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2516 static constexpr size_t kFieldTypeSize =
2517 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2518 static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize;
2519 static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits,
2520 "Too many packed fields.");
2521 using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2522 };
2523
2524 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2525 // instruction that branches to the exit block.
2526 class HReturnVoid FINAL : public HTemplateInstruction<0> {
2527 public:
2528 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2529 : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2530
IsControlFlow()2531 bool IsControlFlow() const OVERRIDE { return true; }
2532
2533 DECLARE_INSTRUCTION(ReturnVoid);
2534
2535 private:
2536 DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
2537 };
2538
2539 // Represents dex's RETURN opcodes. A HReturn is a control flow
2540 // instruction that branches to the exit block.
2541 class HReturn FINAL : public HTemplateInstruction<1> {
2542 public:
2543 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2544 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2545 SetRawInputAt(0, value);
2546 }
2547
IsControlFlow()2548 bool IsControlFlow() const OVERRIDE { return true; }
2549
2550 DECLARE_INSTRUCTION(Return);
2551
2552 private:
2553 DISALLOW_COPY_AND_ASSIGN(HReturn);
2554 };
2555
2556 class HPhi FINAL : public HVariableInputSizeInstruction {
2557 public:
2558 HPhi(ArenaAllocator* arena,
2559 uint32_t reg_number,
2560 size_t number_of_inputs,
2561 Primitive::Type type,
2562 uint32_t dex_pc = kNoDexPc)
HVariableInputSizeInstruction(SideEffects::None (),dex_pc,arena,number_of_inputs,kArenaAllocPhiInputs)2563 : HVariableInputSizeInstruction(
2564 SideEffects::None(),
2565 dex_pc,
2566 arena,
2567 number_of_inputs,
2568 kArenaAllocPhiInputs),
2569 reg_number_(reg_number) {
2570 SetPackedField<TypeField>(ToPhiType(type));
2571 DCHECK_NE(GetType(), Primitive::kPrimVoid);
2572 // Phis are constructed live and marked dead if conflicting or unused.
2573 // Individual steps of SsaBuilder should assume that if a phi has been
2574 // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2575 SetPackedFlag<kFlagIsLive>(true);
2576 SetPackedFlag<kFlagCanBeNull>(true);
2577 }
2578
2579 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(Primitive::Type type)2580 static Primitive::Type ToPhiType(Primitive::Type type) {
2581 return Primitive::PrimitiveKind(type);
2582 }
2583
IsCatchPhi()2584 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2585
GetType()2586 Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); }
SetType(Primitive::Type new_type)2587 void SetType(Primitive::Type new_type) {
2588 // Make sure that only valid type changes occur. The following are allowed:
2589 // (1) int -> float/ref (primitive type propagation),
2590 // (2) long -> double (primitive type propagation).
2591 DCHECK(GetType() == new_type ||
2592 (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
2593 (GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
2594 (GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
2595 SetPackedField<TypeField>(new_type);
2596 }
2597
CanBeNull()2598 bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)2599 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2600
GetRegNumber()2601 uint32_t GetRegNumber() const { return reg_number_; }
2602
SetDead()2603 void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
SetLive()2604 void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
IsDead()2605 bool IsDead() const { return !IsLive(); }
IsLive()2606 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2607
IsVRegEquivalentOf(const HInstruction * other)2608 bool IsVRegEquivalentOf(const HInstruction* other) const {
2609 return other != nullptr
2610 && other->IsPhi()
2611 && other->AsPhi()->GetBlock() == GetBlock()
2612 && other->AsPhi()->GetRegNumber() == GetRegNumber();
2613 }
2614
HasEquivalentPhi()2615 bool HasEquivalentPhi() const {
2616 if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2617 return true;
2618 }
2619 if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2620 return true;
2621 }
2622 return false;
2623 }
2624
2625 // Returns the next equivalent phi (starting from the current one) or null if there is none.
2626 // An equivalent phi is a phi having the same dex register and type.
2627 // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()2628 HPhi* GetNextEquivalentPhiWithSameType() {
2629 HInstruction* next = GetNext();
2630 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2631 if (next->GetType() == GetType()) {
2632 return next->AsPhi();
2633 }
2634 next = next->GetNext();
2635 }
2636 return nullptr;
2637 }
2638
2639 DECLARE_INSTRUCTION(Phi);
2640
2641 private:
2642 static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
2643 static constexpr size_t kFieldTypeSize =
2644 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
2645 static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize;
2646 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2647 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2648 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2649 using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
2650
2651 const uint32_t reg_number_;
2652
2653 DISALLOW_COPY_AND_ASSIGN(HPhi);
2654 };
2655
2656 // The exit instruction is the only instruction of the exit block.
2657 // Instructions aborting the method (HThrow and HReturn) must branch to the
2658 // exit block.
2659 class HExit FINAL : public HTemplateInstruction<0> {
2660 public:
HTemplateInstruction(SideEffects::None (),dex_pc)2661 explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2662
IsControlFlow()2663 bool IsControlFlow() const OVERRIDE { return true; }
2664
2665 DECLARE_INSTRUCTION(Exit);
2666
2667 private:
2668 DISALLOW_COPY_AND_ASSIGN(HExit);
2669 };
2670
2671 // Jumps from one block to another.
2672 class HGoto FINAL : public HTemplateInstruction<0> {
2673 public:
HTemplateInstruction(SideEffects::None (),dex_pc)2674 explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
2675
IsControlFlow()2676 bool IsControlFlow() const OVERRIDE { return true; }
2677
GetSuccessor()2678 HBasicBlock* GetSuccessor() const {
2679 return GetBlock()->GetSingleSuccessor();
2680 }
2681
2682 DECLARE_INSTRUCTION(Goto);
2683
2684 private:
2685 DISALLOW_COPY_AND_ASSIGN(HGoto);
2686 };
2687
2688 class HConstant : public HExpression<0> {
2689 public:
2690 explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(type,SideEffects::None (),dex_pc)2691 : HExpression(type, SideEffects::None(), dex_pc) {}
2692
CanBeMoved()2693 bool CanBeMoved() const OVERRIDE { return true; }
2694
2695 // Is this constant -1 in the arithmetic sense?
IsMinusOne()2696 virtual bool IsMinusOne() const { return false; }
2697 // Is this constant 0 in the arithmetic sense?
IsArithmeticZero()2698 virtual bool IsArithmeticZero() const { return false; }
2699 // Is this constant a 0-bit pattern?
IsZeroBitPattern()2700 virtual bool IsZeroBitPattern() const { return false; }
2701 // Is this constant 1 in the arithmetic sense?
IsOne()2702 virtual bool IsOne() const { return false; }
2703
2704 virtual uint64_t GetValueAsUint64() const = 0;
2705
2706 DECLARE_ABSTRACT_INSTRUCTION(Constant);
2707
2708 private:
2709 DISALLOW_COPY_AND_ASSIGN(HConstant);
2710 };
2711
2712 class HNullConstant FINAL : public HConstant {
2713 public:
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2714 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
2715 return true;
2716 }
2717
GetValueAsUint64()2718 uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
2719
ComputeHashCode()2720 size_t ComputeHashCode() const OVERRIDE { return 0; }
2721
2722 // The null constant representation is a 0-bit pattern.
IsZeroBitPattern()2723 virtual bool IsZeroBitPattern() const { return true; }
2724
2725 DECLARE_INSTRUCTION(NullConstant);
2726
2727 private:
HConstant(Primitive::kPrimNot,dex_pc)2728 explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
2729
2730 friend class HGraph;
2731 DISALLOW_COPY_AND_ASSIGN(HNullConstant);
2732 };
2733
2734 // Constants of the type int. Those can be from Dex instructions, or
2735 // synthesized (for example with the if-eqz instruction).
2736 class HIntConstant FINAL : public HConstant {
2737 public:
GetValue()2738 int32_t GetValue() const { return value_; }
2739
GetValueAsUint64()2740 uint64_t GetValueAsUint64() const OVERRIDE {
2741 return static_cast<uint64_t>(static_cast<uint32_t>(value_));
2742 }
2743
InstructionDataEquals(const HInstruction * other)2744 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2745 DCHECK(other->IsIntConstant()) << other->DebugName();
2746 return other->AsIntConstant()->value_ == value_;
2747 }
2748
ComputeHashCode()2749 size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
2750
IsMinusOne()2751 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsArithmeticZero()2752 bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
IsZeroBitPattern()2753 bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
IsOne()2754 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2755
2756 // Integer constants are used to encode Boolean values as well,
2757 // where 1 means true and 0 means false.
IsTrue()2758 bool IsTrue() const { return GetValue() == 1; }
IsFalse()2759 bool IsFalse() const { return GetValue() == 0; }
2760
2761 DECLARE_INSTRUCTION(IntConstant);
2762
2763 private:
2764 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimInt,dex_pc)2765 : HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
2766 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimInt,dex_pc)2767 : HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
2768
2769 const int32_t value_;
2770
2771 friend class HGraph;
2772 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
2773 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
2774 DISALLOW_COPY_AND_ASSIGN(HIntConstant);
2775 };
2776
2777 class HLongConstant FINAL : public HConstant {
2778 public:
GetValue()2779 int64_t GetValue() const { return value_; }
2780
GetValueAsUint64()2781 uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
2782
InstructionDataEquals(const HInstruction * other)2783 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2784 DCHECK(other->IsLongConstant()) << other->DebugName();
2785 return other->AsLongConstant()->value_ == value_;
2786 }
2787
ComputeHashCode()2788 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2789
IsMinusOne()2790 bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
IsArithmeticZero()2791 bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
IsZeroBitPattern()2792 bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
IsOne()2793 bool IsOne() const OVERRIDE { return GetValue() == 1; }
2794
2795 DECLARE_INSTRUCTION(LongConstant);
2796
2797 private:
2798 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimLong,dex_pc)2799 : HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
2800
2801 const int64_t value_;
2802
2803 friend class HGraph;
2804 DISALLOW_COPY_AND_ASSIGN(HLongConstant);
2805 };
2806
2807 class HFloatConstant FINAL : public HConstant {
2808 public:
GetValue()2809 float GetValue() const { return value_; }
2810
GetValueAsUint64()2811 uint64_t GetValueAsUint64() const OVERRIDE {
2812 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
2813 }
2814
InstructionDataEquals(const HInstruction * other)2815 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2816 DCHECK(other->IsFloatConstant()) << other->DebugName();
2817 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
2818 }
2819
ComputeHashCode()2820 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2821
IsMinusOne()2822 bool IsMinusOne() const OVERRIDE {
2823 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
2824 }
IsArithmeticZero()2825 bool IsArithmeticZero() const OVERRIDE {
2826 return std::fpclassify(value_) == FP_ZERO;
2827 }
IsArithmeticPositiveZero()2828 bool IsArithmeticPositiveZero() const {
2829 return IsArithmeticZero() && !std::signbit(value_);
2830 }
IsArithmeticNegativeZero()2831 bool IsArithmeticNegativeZero() const {
2832 return IsArithmeticZero() && std::signbit(value_);
2833 }
IsZeroBitPattern()2834 bool IsZeroBitPattern() const OVERRIDE {
2835 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
2836 }
IsOne()2837 bool IsOne() const OVERRIDE {
2838 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
2839 }
IsNaN()2840 bool IsNaN() const {
2841 return std::isnan(value_);
2842 }
2843
2844 DECLARE_INSTRUCTION(FloatConstant);
2845
2846 private:
2847 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimFloat,dex_pc)2848 : HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
2849 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimFloat,dex_pc)2850 : HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
2851
2852 const float value_;
2853
2854 // Only the SsaBuilder and HGraph can create floating-point constants.
2855 friend class SsaBuilder;
2856 friend class HGraph;
2857 DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
2858 };
2859
2860 class HDoubleConstant FINAL : public HConstant {
2861 public:
GetValue()2862 double GetValue() const { return value_; }
2863
GetValueAsUint64()2864 uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
2865
InstructionDataEquals(const HInstruction * other)2866 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
2867 DCHECK(other->IsDoubleConstant()) << other->DebugName();
2868 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
2869 }
2870
ComputeHashCode()2871 size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
2872
IsMinusOne()2873 bool IsMinusOne() const OVERRIDE {
2874 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
2875 }
IsArithmeticZero()2876 bool IsArithmeticZero() const OVERRIDE {
2877 return std::fpclassify(value_) == FP_ZERO;
2878 }
IsArithmeticPositiveZero()2879 bool IsArithmeticPositiveZero() const {
2880 return IsArithmeticZero() && !std::signbit(value_);
2881 }
IsArithmeticNegativeZero()2882 bool IsArithmeticNegativeZero() const {
2883 return IsArithmeticZero() && std::signbit(value_);
2884 }
IsZeroBitPattern()2885 bool IsZeroBitPattern() const OVERRIDE {
2886 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
2887 }
IsOne()2888 bool IsOne() const OVERRIDE {
2889 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
2890 }
IsNaN()2891 bool IsNaN() const {
2892 return std::isnan(value_);
2893 }
2894
2895 DECLARE_INSTRUCTION(DoubleConstant);
2896
2897 private:
2898 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimDouble,dex_pc)2899 : HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
2900 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(Primitive::kPrimDouble,dex_pc)2901 : HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
2902
2903 const double value_;
2904
2905 // Only the SsaBuilder and HGraph can create floating-point constants.
2906 friend class SsaBuilder;
2907 friend class HGraph;
2908 DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
2909 };
2910
2911 // Conditional branch. A block ending with an HIf instruction must have
2912 // two successors.
2913 class HIf FINAL : public HTemplateInstruction<1> {
2914 public:
2915 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2916 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2917 SetRawInputAt(0, input);
2918 }
2919
IsControlFlow()2920 bool IsControlFlow() const OVERRIDE { return true; }
2921
IfTrueSuccessor()2922 HBasicBlock* IfTrueSuccessor() const {
2923 return GetBlock()->GetSuccessors()[0];
2924 }
2925
IfFalseSuccessor()2926 HBasicBlock* IfFalseSuccessor() const {
2927 return GetBlock()->GetSuccessors()[1];
2928 }
2929
2930 DECLARE_INSTRUCTION(If);
2931
2932 private:
2933 DISALLOW_COPY_AND_ASSIGN(HIf);
2934 };
2935
2936
2937 // Abstract instruction which marks the beginning and/or end of a try block and
2938 // links it to the respective exception handlers. Behaves the same as a Goto in
2939 // non-exceptional control flow.
2940 // Normal-flow successor is stored at index zero, exception handlers under
2941 // higher indices in no particular order.
2942 class HTryBoundary FINAL : public HTemplateInstruction<0> {
2943 public:
2944 enum class BoundaryKind {
2945 kEntry,
2946 kExit,
2947 kLast = kExit
2948 };
2949
2950 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)2951 : HTemplateInstruction(SideEffects::None(), dex_pc) {
2952 SetPackedField<BoundaryKindField>(kind);
2953 }
2954
IsControlFlow()2955 bool IsControlFlow() const OVERRIDE { return true; }
2956
2957 // Returns the block's non-exceptional successor (index zero).
GetNormalFlowSuccessor()2958 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
2959
GetExceptionHandlers()2960 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
2961 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
2962 }
2963
2964 // Returns whether `handler` is among its exception handlers (non-zero index
2965 // successors).
HasExceptionHandler(const HBasicBlock & handler)2966 bool HasExceptionHandler(const HBasicBlock& handler) const {
2967 DCHECK(handler.IsCatchBlock());
2968 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
2969 }
2970
2971 // If not present already, adds `handler` to its block's list of exception
2972 // handlers.
AddExceptionHandler(HBasicBlock * handler)2973 void AddExceptionHandler(HBasicBlock* handler) {
2974 if (!HasExceptionHandler(*handler)) {
2975 GetBlock()->AddSuccessor(handler);
2976 }
2977 }
2978
GetBoundaryKind()2979 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
IsEntry()2980 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
2981
2982 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
2983
2984 DECLARE_INSTRUCTION(TryBoundary);
2985
2986 private:
2987 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
2988 static constexpr size_t kFieldBoundaryKindSize =
2989 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
2990 static constexpr size_t kNumberOfTryBoundaryPackedBits =
2991 kFieldBoundaryKind + kFieldBoundaryKindSize;
2992 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
2993 "Too many packed fields.");
2994 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
2995
2996 DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
2997 };
2998
2999 // Deoptimize to interpreter, upon checking a condition.
3000 class HDeoptimize FINAL : public HVariableInputSizeInstruction {
3001 public:
3002 // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3003 // across.
HDeoptimize(ArenaAllocator * arena,HInstruction * cond,DeoptimizationKind kind,uint32_t dex_pc)3004 HDeoptimize(ArenaAllocator* arena, HInstruction* cond, DeoptimizationKind kind, uint32_t dex_pc)
3005 : HVariableInputSizeInstruction(
3006 SideEffects::All(),
3007 dex_pc,
3008 arena,
3009 /* number_of_inputs */ 1,
3010 kArenaAllocMisc) {
3011 SetPackedFlag<kFieldCanBeMoved>(false);
3012 SetPackedField<DeoptimizeKindField>(kind);
3013 SetRawInputAt(0, cond);
3014 }
3015
3016 // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3017 // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3018 // instead of `guard`.
3019 // We set CanTriggerGC to prevent any intermediate address to be live
3020 // at the point of the `HDeoptimize`.
HDeoptimize(ArenaAllocator * arena,HInstruction * cond,HInstruction * guard,DeoptimizationKind kind,uint32_t dex_pc)3021 HDeoptimize(ArenaAllocator* arena,
3022 HInstruction* cond,
3023 HInstruction* guard,
3024 DeoptimizationKind kind,
3025 uint32_t dex_pc)
3026 : HVariableInputSizeInstruction(
3027 SideEffects::CanTriggerGC(),
3028 dex_pc,
3029 arena,
3030 /* number_of_inputs */ 2,
3031 kArenaAllocMisc) {
3032 SetPackedFlag<kFieldCanBeMoved>(true);
3033 SetPackedField<DeoptimizeKindField>(kind);
3034 SetRawInputAt(0, cond);
3035 SetRawInputAt(1, guard);
3036 }
3037
CanBeMoved()3038 bool CanBeMoved() const OVERRIDE { return GetPackedFlag<kFieldCanBeMoved>(); }
3039
InstructionDataEquals(const HInstruction * other)3040 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3041 return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3042 }
3043
NeedsEnvironment()3044 bool NeedsEnvironment() const OVERRIDE { return true; }
3045
CanThrow()3046 bool CanThrow() const OVERRIDE { return true; }
3047
GetDeoptimizationKind()3048 DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3049
GetType()3050 Primitive::Type GetType() const OVERRIDE {
3051 return GuardsAnInput() ? GuardedInput()->GetType() : Primitive::kPrimVoid;
3052 }
3053
GuardsAnInput()3054 bool GuardsAnInput() const {
3055 return InputCount() == 2;
3056 }
3057
GuardedInput()3058 HInstruction* GuardedInput() const {
3059 DCHECK(GuardsAnInput());
3060 return InputAt(1);
3061 }
3062
RemoveGuard()3063 void RemoveGuard() {
3064 RemoveInputAt(1);
3065 }
3066
3067 DECLARE_INSTRUCTION(Deoptimize);
3068
3069 private:
3070 static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3071 static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3072 static constexpr size_t kFieldDeoptimizeKindSize =
3073 MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3074 static constexpr size_t kNumberOfDeoptimizePackedBits =
3075 kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3076 static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3077 "Too many packed fields.");
3078 using DeoptimizeKindField =
3079 BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3080
3081 DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
3082 };
3083
3084 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3085 // The compiled code checks this flag value in a guard before devirtualized call and
3086 // if it's true, starts to do deoptimization.
3087 // It has a 4-byte slot on stack.
3088 // TODO: allocate a register for this flag.
3089 class HShouldDeoptimizeFlag FINAL : public HVariableInputSizeInstruction {
3090 public:
3091 // CHA guards are only optimized in a separate pass and it has no side effects
3092 // with regard to other passes.
HShouldDeoptimizeFlag(ArenaAllocator * arena,uint32_t dex_pc)3093 HShouldDeoptimizeFlag(ArenaAllocator* arena, uint32_t dex_pc)
3094 : HVariableInputSizeInstruction(SideEffects::None(), dex_pc, arena, 0, kArenaAllocCHA) {
3095 }
3096
GetType()3097 Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimInt; }
3098
3099 // We do all CHA guard elimination/motion in a single pass, after which there is no
3100 // further guard elimination/motion since a guard might have been used for justification
3101 // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3102 // to avoid other optimizations trying to move it.
CanBeMoved()3103 bool CanBeMoved() const OVERRIDE { return false; }
3104
3105 DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3106
3107 private:
3108 DISALLOW_COPY_AND_ASSIGN(HShouldDeoptimizeFlag);
3109 };
3110
3111 // Represents the ArtMethod that was passed as a first argument to
3112 // the method. It is used by instructions that depend on it, like
3113 // instructions that work with the dex cache.
3114 class HCurrentMethod FINAL : public HExpression<0> {
3115 public:
3116 explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(type,SideEffects::None (),dex_pc)3117 : HExpression(type, SideEffects::None(), dex_pc) {}
3118
3119 DECLARE_INSTRUCTION(CurrentMethod);
3120
3121 private:
3122 DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
3123 };
3124
3125 // Fetches an ArtMethod from the virtual table or the interface method table
3126 // of a class.
3127 class HClassTableGet FINAL : public HExpression<1> {
3128 public:
3129 enum class TableKind {
3130 kVTable,
3131 kIMTable,
3132 kLast = kIMTable
3133 };
HClassTableGet(HInstruction * cls,Primitive::Type type,TableKind kind,size_t index,uint32_t dex_pc)3134 HClassTableGet(HInstruction* cls,
3135 Primitive::Type type,
3136 TableKind kind,
3137 size_t index,
3138 uint32_t dex_pc)
3139 : HExpression(type, SideEffects::None(), dex_pc),
3140 index_(index) {
3141 SetPackedField<TableKindField>(kind);
3142 SetRawInputAt(0, cls);
3143 }
3144
CanBeMoved()3145 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other)3146 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3147 return other->AsClassTableGet()->GetIndex() == index_ &&
3148 other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3149 }
3150
GetTableKind()3151 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
GetIndex()3152 size_t GetIndex() const { return index_; }
3153
3154 DECLARE_INSTRUCTION(ClassTableGet);
3155
3156 private:
3157 static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits;
3158 static constexpr size_t kFieldTableKindSize =
3159 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3160 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3161 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3162 "Too many packed fields.");
3163 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3164
3165 // The index of the ArtMethod in the table.
3166 const size_t index_;
3167
3168 DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
3169 };
3170
3171 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3172 // have one successor for each entry in the switch table, and the final successor
3173 // will be the block containing the next Dex opcode.
3174 class HPackedSwitch FINAL : public HTemplateInstruction<1> {
3175 public:
3176 HPackedSwitch(int32_t start_value,
3177 uint32_t num_entries,
3178 HInstruction* input,
3179 uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::None (),dex_pc)3180 : HTemplateInstruction(SideEffects::None(), dex_pc),
3181 start_value_(start_value),
3182 num_entries_(num_entries) {
3183 SetRawInputAt(0, input);
3184 }
3185
IsControlFlow()3186 bool IsControlFlow() const OVERRIDE { return true; }
3187
GetStartValue()3188 int32_t GetStartValue() const { return start_value_; }
3189
GetNumEntries()3190 uint32_t GetNumEntries() const { return num_entries_; }
3191
GetDefaultBlock()3192 HBasicBlock* GetDefaultBlock() const {
3193 // Last entry is the default block.
3194 return GetBlock()->GetSuccessors()[num_entries_];
3195 }
3196 DECLARE_INSTRUCTION(PackedSwitch);
3197
3198 private:
3199 const int32_t start_value_;
3200 const uint32_t num_entries_;
3201
3202 DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
3203 };
3204
3205 class HUnaryOperation : public HExpression<1> {
3206 public:
3207 HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(result_type,SideEffects::None (),dex_pc)3208 : HExpression(result_type, SideEffects::None(), dex_pc) {
3209 SetRawInputAt(0, input);
3210 }
3211
GetInput()3212 HInstruction* GetInput() const { return InputAt(0); }
GetResultType()3213 Primitive::Type GetResultType() const { return GetType(); }
3214
CanBeMoved()3215 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3216 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3217 return true;
3218 }
3219
3220 // Try to statically evaluate `this` and return a HConstant
3221 // containing the result of this evaluation. If `this` cannot
3222 // be evaluated as a constant, return null.
3223 HConstant* TryStaticEvaluation() const;
3224
3225 // Apply this operation to `x`.
3226 virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3227 virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3228 virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3229 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3230
3231 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3232
3233 private:
3234 DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
3235 };
3236
3237 class HBinaryOperation : public HExpression<2> {
3238 public:
3239 HBinaryOperation(Primitive::Type result_type,
3240 HInstruction* left,
3241 HInstruction* right,
3242 SideEffects side_effects = SideEffects::None(),
3243 uint32_t dex_pc = kNoDexPc)
HExpression(result_type,side_effects,dex_pc)3244 : HExpression(result_type, side_effects, dex_pc) {
3245 SetRawInputAt(0, left);
3246 SetRawInputAt(1, right);
3247 }
3248
GetLeft()3249 HInstruction* GetLeft() const { return InputAt(0); }
GetRight()3250 HInstruction* GetRight() const { return InputAt(1); }
GetResultType()3251 Primitive::Type GetResultType() const { return GetType(); }
3252
IsCommutative()3253 virtual bool IsCommutative() const { return false; }
3254
3255 // Put constant on the right.
3256 // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()3257 bool OrderInputsWithConstantOnTheRight() {
3258 HInstruction* left = InputAt(0);
3259 HInstruction* right = InputAt(1);
3260 if (left->IsConstant() && !right->IsConstant()) {
3261 ReplaceInput(right, 0);
3262 ReplaceInput(left, 1);
3263 return true;
3264 }
3265 return false;
3266 }
3267
3268 // Order inputs by instruction id, but favor constant on the right side.
3269 // This helps GVN for commutative ops.
OrderInputs()3270 void OrderInputs() {
3271 DCHECK(IsCommutative());
3272 HInstruction* left = InputAt(0);
3273 HInstruction* right = InputAt(1);
3274 if (left == right || (!left->IsConstant() && right->IsConstant())) {
3275 return;
3276 }
3277 if (OrderInputsWithConstantOnTheRight()) {
3278 return;
3279 }
3280 // Order according to instruction id.
3281 if (left->GetId() > right->GetId()) {
3282 ReplaceInput(right, 0);
3283 ReplaceInput(left, 1);
3284 }
3285 }
3286
CanBeMoved()3287 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3288 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
3289 return true;
3290 }
3291
3292 // Try to statically evaluate `this` and return a HConstant
3293 // containing the result of this evaluation. If `this` cannot
3294 // be evaluated as a constant, return null.
3295 HConstant* TryStaticEvaluation() const;
3296
3297 // Apply this operation to `x` and `y`.
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3298 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3299 HNullConstant* y ATTRIBUTE_UNUSED) const {
3300 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3301 UNREACHABLE();
3302 }
3303 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3304 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3305 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3306 HIntConstant* y ATTRIBUTE_UNUSED) const {
3307 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3308 UNREACHABLE();
3309 }
3310 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3311 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3312
3313 // Returns an input that can legally be used as the right input and is
3314 // constant, or null.
3315 HConstant* GetConstantRight() const;
3316
3317 // If `GetConstantRight()` returns one of the input, this returns the other
3318 // one. Otherwise it returns null.
3319 HInstruction* GetLeastConstantLeft() const;
3320
3321 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3322
3323 private:
3324 DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
3325 };
3326
3327 // The comparison bias applies for floating point operations and indicates how NaN
3328 // comparisons are treated:
3329 enum class ComparisonBias {
3330 kNoBias, // bias is not applicable (i.e. for long operation)
3331 kGtBias, // return 1 for NaN comparisons
3332 kLtBias, // return -1 for NaN comparisons
3333 kLast = kLtBias
3334 };
3335
3336 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
3337
3338 class HCondition : public HBinaryOperation {
3339 public:
3340 HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HBinaryOperation(Primitive::kPrimBoolean,first,second,SideEffects::None (),dex_pc)3341 : HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) {
3342 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3343 }
3344
3345 // For code generation purposes, returns whether this instruction is just before
3346 // `instruction`, and disregard moves in between.
3347 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3348
3349 DECLARE_ABSTRACT_INSTRUCTION(Condition);
3350
3351 virtual IfCondition GetCondition() const = 0;
3352
3353 virtual IfCondition GetOppositeCondition() const = 0;
3354
IsGtBias()3355 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
IsLtBias()3356 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3357
GetBias()3358 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
SetBias(ComparisonBias bias)3359 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3360
InstructionDataEquals(const HInstruction * other)3361 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3362 return GetPackedFields() == other->AsCondition()->GetPackedFields();
3363 }
3364
IsFPConditionTrueIfNaN()3365 bool IsFPConditionTrueIfNaN() const {
3366 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3367 IfCondition if_cond = GetCondition();
3368 if (if_cond == kCondNE) {
3369 return true;
3370 } else if (if_cond == kCondEQ) {
3371 return false;
3372 }
3373 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3374 }
3375
IsFPConditionFalseIfNaN()3376 bool IsFPConditionFalseIfNaN() const {
3377 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3378 IfCondition if_cond = GetCondition();
3379 if (if_cond == kCondEQ) {
3380 return true;
3381 } else if (if_cond == kCondNE) {
3382 return false;
3383 }
3384 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3385 }
3386
3387 protected:
3388 // Needed if we merge a HCompare into a HCondition.
3389 static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3390 static constexpr size_t kFieldComparisonBiasSize =
3391 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3392 static constexpr size_t kNumberOfConditionPackedBits =
3393 kFieldComparisonBias + kFieldComparisonBiasSize;
3394 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3395 using ComparisonBiasField =
3396 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3397
3398 template <typename T>
Compare(T x,T y)3399 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3400
3401 template <typename T>
CompareFP(T x,T y)3402 int32_t CompareFP(T x, T y) const {
3403 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3404 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3405 // Handle the bias.
3406 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3407 }
3408
3409 // Return an integer constant containing the result of a condition evaluated at compile time.
MakeConstantCondition(bool value,uint32_t dex_pc)3410 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3411 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3412 }
3413
3414 private:
3415 DISALLOW_COPY_AND_ASSIGN(HCondition);
3416 };
3417
3418 // Instruction to check if two inputs are equal to each other.
3419 class HEqual FINAL : public HCondition {
3420 public:
3421 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3422 : HCondition(first, second, dex_pc) {}
3423
IsCommutative()3424 bool IsCommutative() const OVERRIDE { return true; }
3425
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3426 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3427 HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3428 return MakeConstantCondition(true, GetDexPc());
3429 }
Evaluate(HIntConstant * x,HIntConstant * y)3430 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3431 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3432 }
3433 // In the following Evaluate methods, a HCompare instruction has
3434 // been merged into this HEqual instruction; evaluate it as
3435 // `Compare(x, y) == 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3436 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3437 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3438 GetDexPc());
3439 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3440 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3441 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3442 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3443 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3444 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3445 }
3446
3447 DECLARE_INSTRUCTION(Equal);
3448
GetCondition()3449 IfCondition GetCondition() const OVERRIDE {
3450 return kCondEQ;
3451 }
3452
GetOppositeCondition()3453 IfCondition GetOppositeCondition() const OVERRIDE {
3454 return kCondNE;
3455 }
3456
3457 private:
Compute(T x,T y)3458 template <typename T> static bool Compute(T x, T y) { return x == y; }
3459
3460 DISALLOW_COPY_AND_ASSIGN(HEqual);
3461 };
3462
3463 class HNotEqual FINAL : public HCondition {
3464 public:
3465 HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3466 : HCondition(first, second, dex_pc) {}
3467
IsCommutative()3468 bool IsCommutative() const OVERRIDE { return true; }
3469
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3470 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3471 HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3472 return MakeConstantCondition(false, GetDexPc());
3473 }
Evaluate(HIntConstant * x,HIntConstant * y)3474 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3475 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3476 }
3477 // In the following Evaluate methods, a HCompare instruction has
3478 // been merged into this HNotEqual instruction; evaluate it as
3479 // `Compare(x, y) != 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3480 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3481 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3482 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3483 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3484 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3485 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3486 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3487 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3488 }
3489
3490 DECLARE_INSTRUCTION(NotEqual);
3491
GetCondition()3492 IfCondition GetCondition() const OVERRIDE {
3493 return kCondNE;
3494 }
3495
GetOppositeCondition()3496 IfCondition GetOppositeCondition() const OVERRIDE {
3497 return kCondEQ;
3498 }
3499
3500 private:
Compute(T x,T y)3501 template <typename T> static bool Compute(T x, T y) { return x != y; }
3502
3503 DISALLOW_COPY_AND_ASSIGN(HNotEqual);
3504 };
3505
3506 class HLessThan FINAL : public HCondition {
3507 public:
3508 HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3509 : HCondition(first, second, dex_pc) {}
3510
Evaluate(HIntConstant * x,HIntConstant * y)3511 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3512 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3513 }
3514 // In the following Evaluate methods, a HCompare instruction has
3515 // been merged into this HLessThan instruction; evaluate it as
3516 // `Compare(x, y) < 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3517 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3518 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3519 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3520 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3521 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3522 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3523 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3524 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3525 }
3526
3527 DECLARE_INSTRUCTION(LessThan);
3528
GetCondition()3529 IfCondition GetCondition() const OVERRIDE {
3530 return kCondLT;
3531 }
3532
GetOppositeCondition()3533 IfCondition GetOppositeCondition() const OVERRIDE {
3534 return kCondGE;
3535 }
3536
3537 private:
Compute(T x,T y)3538 template <typename T> static bool Compute(T x, T y) { return x < y; }
3539
3540 DISALLOW_COPY_AND_ASSIGN(HLessThan);
3541 };
3542
3543 class HLessThanOrEqual FINAL : public HCondition {
3544 public:
3545 HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3546 : HCondition(first, second, dex_pc) {}
3547
Evaluate(HIntConstant * x,HIntConstant * y)3548 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3549 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3550 }
3551 // In the following Evaluate methods, a HCompare instruction has
3552 // been merged into this HLessThanOrEqual instruction; evaluate it as
3553 // `Compare(x, y) <= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3554 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3555 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3556 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3557 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3558 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3559 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3560 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3561 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3562 }
3563
3564 DECLARE_INSTRUCTION(LessThanOrEqual);
3565
GetCondition()3566 IfCondition GetCondition() const OVERRIDE {
3567 return kCondLE;
3568 }
3569
GetOppositeCondition()3570 IfCondition GetOppositeCondition() const OVERRIDE {
3571 return kCondGT;
3572 }
3573
3574 private:
Compute(T x,T y)3575 template <typename T> static bool Compute(T x, T y) { return x <= y; }
3576
3577 DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
3578 };
3579
3580 class HGreaterThan FINAL : public HCondition {
3581 public:
3582 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3583 : HCondition(first, second, dex_pc) {}
3584
Evaluate(HIntConstant * x,HIntConstant * y)3585 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3586 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3587 }
3588 // In the following Evaluate methods, a HCompare instruction has
3589 // been merged into this HGreaterThan instruction; evaluate it as
3590 // `Compare(x, y) > 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3591 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3592 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3593 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3594 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3595 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3596 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3597 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3598 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3599 }
3600
3601 DECLARE_INSTRUCTION(GreaterThan);
3602
GetCondition()3603 IfCondition GetCondition() const OVERRIDE {
3604 return kCondGT;
3605 }
3606
GetOppositeCondition()3607 IfCondition GetOppositeCondition() const OVERRIDE {
3608 return kCondLE;
3609 }
3610
3611 private:
Compute(T x,T y)3612 template <typename T> static bool Compute(T x, T y) { return x > y; }
3613
3614 DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
3615 };
3616
3617 class HGreaterThanOrEqual FINAL : public HCondition {
3618 public:
3619 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3620 : HCondition(first, second, dex_pc) {}
3621
Evaluate(HIntConstant * x,HIntConstant * y)3622 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3623 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3624 }
3625 // In the following Evaluate methods, a HCompare instruction has
3626 // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3627 // `Compare(x, y) >= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3628 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3629 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3630 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3631 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3632 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3633 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3634 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3635 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3636 }
3637
3638 DECLARE_INSTRUCTION(GreaterThanOrEqual);
3639
GetCondition()3640 IfCondition GetCondition() const OVERRIDE {
3641 return kCondGE;
3642 }
3643
GetOppositeCondition()3644 IfCondition GetOppositeCondition() const OVERRIDE {
3645 return kCondLT;
3646 }
3647
3648 private:
Compute(T x,T y)3649 template <typename T> static bool Compute(T x, T y) { return x >= y; }
3650
3651 DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
3652 };
3653
3654 class HBelow FINAL : public HCondition {
3655 public:
3656 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3657 : HCondition(first, second, dex_pc) {}
3658
Evaluate(HIntConstant * x,HIntConstant * y)3659 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3660 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3661 }
Evaluate(HLongConstant * x,HLongConstant * y)3662 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3663 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3664 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3665 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3666 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3667 LOG(FATAL) << DebugName() << " is not defined for float values";
3668 UNREACHABLE();
3669 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3670 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3671 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3672 LOG(FATAL) << DebugName() << " is not defined for double values";
3673 UNREACHABLE();
3674 }
3675
3676 DECLARE_INSTRUCTION(Below);
3677
GetCondition()3678 IfCondition GetCondition() const OVERRIDE {
3679 return kCondB;
3680 }
3681
GetOppositeCondition()3682 IfCondition GetOppositeCondition() const OVERRIDE {
3683 return kCondAE;
3684 }
3685
3686 private:
Compute(T x,T y)3687 template <typename T> static bool Compute(T x, T y) {
3688 return MakeUnsigned(x) < MakeUnsigned(y);
3689 }
3690
3691 DISALLOW_COPY_AND_ASSIGN(HBelow);
3692 };
3693
3694 class HBelowOrEqual FINAL : public HCondition {
3695 public:
3696 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3697 : HCondition(first, second, dex_pc) {}
3698
Evaluate(HIntConstant * x,HIntConstant * y)3699 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3700 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3701 }
Evaluate(HLongConstant * x,HLongConstant * y)3702 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3703 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3704 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3705 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3706 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3707 LOG(FATAL) << DebugName() << " is not defined for float values";
3708 UNREACHABLE();
3709 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3710 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3711 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3712 LOG(FATAL) << DebugName() << " is not defined for double values";
3713 UNREACHABLE();
3714 }
3715
3716 DECLARE_INSTRUCTION(BelowOrEqual);
3717
GetCondition()3718 IfCondition GetCondition() const OVERRIDE {
3719 return kCondBE;
3720 }
3721
GetOppositeCondition()3722 IfCondition GetOppositeCondition() const OVERRIDE {
3723 return kCondA;
3724 }
3725
3726 private:
Compute(T x,T y)3727 template <typename T> static bool Compute(T x, T y) {
3728 return MakeUnsigned(x) <= MakeUnsigned(y);
3729 }
3730
3731 DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
3732 };
3733
3734 class HAbove FINAL : public HCondition {
3735 public:
3736 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3737 : HCondition(first, second, dex_pc) {}
3738
Evaluate(HIntConstant * x,HIntConstant * y)3739 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3740 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3741 }
Evaluate(HLongConstant * x,HLongConstant * y)3742 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3743 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3744 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3745 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3746 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3747 LOG(FATAL) << DebugName() << " is not defined for float values";
3748 UNREACHABLE();
3749 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3750 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3751 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3752 LOG(FATAL) << DebugName() << " is not defined for double values";
3753 UNREACHABLE();
3754 }
3755
3756 DECLARE_INSTRUCTION(Above);
3757
GetCondition()3758 IfCondition GetCondition() const OVERRIDE {
3759 return kCondA;
3760 }
3761
GetOppositeCondition()3762 IfCondition GetOppositeCondition() const OVERRIDE {
3763 return kCondBE;
3764 }
3765
3766 private:
Compute(T x,T y)3767 template <typename T> static bool Compute(T x, T y) {
3768 return MakeUnsigned(x) > MakeUnsigned(y);
3769 }
3770
3771 DISALLOW_COPY_AND_ASSIGN(HAbove);
3772 };
3773
3774 class HAboveOrEqual FINAL : public HCondition {
3775 public:
3776 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(first,second,dex_pc)3777 : HCondition(first, second, dex_pc) {}
3778
Evaluate(HIntConstant * x,HIntConstant * y)3779 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3780 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3781 }
Evaluate(HLongConstant * x,HLongConstant * y)3782 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3783 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3784 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)3785 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
3786 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3787 LOG(FATAL) << DebugName() << " is not defined for float values";
3788 UNREACHABLE();
3789 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)3790 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
3791 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
3792 LOG(FATAL) << DebugName() << " is not defined for double values";
3793 UNREACHABLE();
3794 }
3795
3796 DECLARE_INSTRUCTION(AboveOrEqual);
3797
GetCondition()3798 IfCondition GetCondition() const OVERRIDE {
3799 return kCondAE;
3800 }
3801
GetOppositeCondition()3802 IfCondition GetOppositeCondition() const OVERRIDE {
3803 return kCondB;
3804 }
3805
3806 private:
Compute(T x,T y)3807 template <typename T> static bool Compute(T x, T y) {
3808 return MakeUnsigned(x) >= MakeUnsigned(y);
3809 }
3810
3811 DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
3812 };
3813
3814 // Instruction to check how two inputs compare to each other.
3815 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
3816 class HCompare FINAL : public HBinaryOperation {
3817 public:
3818 // Note that `comparison_type` is the type of comparison performed
3819 // between the comparison's inputs, not the type of the instantiated
3820 // HCompare instruction (which is always Primitive::kPrimInt).
HCompare(Primitive::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)3821 HCompare(Primitive::Type comparison_type,
3822 HInstruction* first,
3823 HInstruction* second,
3824 ComparisonBias bias,
3825 uint32_t dex_pc)
3826 : HBinaryOperation(Primitive::kPrimInt,
3827 first,
3828 second,
3829 SideEffectsForArchRuntimeCalls(comparison_type),
3830 dex_pc) {
3831 SetPackedField<ComparisonBiasField>(bias);
3832 DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType()));
3833 DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType()));
3834 }
3835
3836 template <typename T>
Compute(T x,T y)3837 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3838
3839 template <typename T>
ComputeFP(T x,T y)3840 int32_t ComputeFP(T x, T y) const {
3841 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3842 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3843 // Handle the bias.
3844 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
3845 }
3846
Evaluate(HIntConstant * x,HIntConstant * y)3847 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
3848 // Note that there is no "cmp-int" Dex instruction so we shouldn't
3849 // reach this code path when processing a freshly built HIR
3850 // graph. However HCompare integer instructions can be synthesized
3851 // by the instruction simplifier to implement IntegerCompare and
3852 // IntegerSignum intrinsics, so we have to handle this case.
3853 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3854 }
Evaluate(HLongConstant * x,HLongConstant * y)3855 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
3856 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3857 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3858 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
3859 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3860 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3861 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
3862 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
3863 }
3864
InstructionDataEquals(const HInstruction * other)3865 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
3866 return GetPackedFields() == other->AsCompare()->GetPackedFields();
3867 }
3868
GetBias()3869 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
3870
3871 // Does this compare instruction have a "gt bias" (vs an "lt bias")?
3872 // Only meaningful for floating-point comparisons.
IsGtBias()3873 bool IsGtBias() const {
3874 DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3875 return GetBias() == ComparisonBias::kGtBias;
3876 }
3877
SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED)3878 static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) {
3879 // Comparisons do not require a runtime call in any back end.
3880 return SideEffects::None();
3881 }
3882
3883 DECLARE_INSTRUCTION(Compare);
3884
3885 protected:
3886 static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
3887 static constexpr size_t kFieldComparisonBiasSize =
3888 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3889 static constexpr size_t kNumberOfComparePackedBits =
3890 kFieldComparisonBias + kFieldComparisonBiasSize;
3891 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3892 using ComparisonBiasField =
3893 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3894
3895 // Return an integer constant containing the result of a comparison evaluated at compile time.
MakeConstantComparison(int32_t value,uint32_t dex_pc)3896 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
3897 DCHECK(value == -1 || value == 0 || value == 1) << value;
3898 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3899 }
3900
3901 private:
3902 DISALLOW_COPY_AND_ASSIGN(HCompare);
3903 };
3904
3905 class HNewInstance FINAL : public HExpression<1> {
3906 public:
HNewInstance(HInstruction * cls,uint32_t dex_pc,dex::TypeIndex type_index,const DexFile & dex_file,bool finalizable,QuickEntrypointEnum entrypoint)3907 HNewInstance(HInstruction* cls,
3908 uint32_t dex_pc,
3909 dex::TypeIndex type_index,
3910 const DexFile& dex_file,
3911 bool finalizable,
3912 QuickEntrypointEnum entrypoint)
3913 : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
3914 type_index_(type_index),
3915 dex_file_(dex_file),
3916 entrypoint_(entrypoint) {
3917 SetPackedFlag<kFlagFinalizable>(finalizable);
3918 SetRawInputAt(0, cls);
3919 }
3920
GetTypeIndex()3921 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()3922 const DexFile& GetDexFile() const { return dex_file_; }
3923
3924 // Calls runtime so needs an environment.
NeedsEnvironment()3925 bool NeedsEnvironment() const OVERRIDE { return true; }
3926
3927 // Can throw errors when out-of-memory or if it's not instantiable/accessible.
CanThrow()3928 bool CanThrow() const OVERRIDE { return true; }
3929
NeedsChecks()3930 bool NeedsChecks() const {
3931 return entrypoint_ == kQuickAllocObjectWithChecks;
3932 }
3933
IsFinalizable()3934 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
3935
CanBeNull()3936 bool CanBeNull() const OVERRIDE { return false; }
3937
GetEntrypoint()3938 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
3939
SetEntrypoint(QuickEntrypointEnum entrypoint)3940 void SetEntrypoint(QuickEntrypointEnum entrypoint) {
3941 entrypoint_ = entrypoint;
3942 }
3943
GetLoadClass()3944 HLoadClass* GetLoadClass() const {
3945 HInstruction* input = InputAt(0);
3946 if (input->IsClinitCheck()) {
3947 input = input->InputAt(0);
3948 }
3949 DCHECK(input->IsLoadClass());
3950 return input->AsLoadClass();
3951 }
3952
3953 bool IsStringAlloc() const;
3954
3955 DECLARE_INSTRUCTION(NewInstance);
3956
3957 private:
3958 static constexpr size_t kFlagFinalizable = kNumberOfExpressionPackedBits;
3959 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
3960 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
3961 "Too many packed fields.");
3962
3963 const dex::TypeIndex type_index_;
3964 const DexFile& dex_file_;
3965 QuickEntrypointEnum entrypoint_;
3966
3967 DISALLOW_COPY_AND_ASSIGN(HNewInstance);
3968 };
3969
3970 enum IntrinsicNeedsEnvironmentOrCache {
3971 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache.
3972 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache.
3973 };
3974
3975 enum IntrinsicSideEffects {
3976 kNoSideEffects, // Intrinsic does not have any heap memory side effects.
3977 kReadSideEffects, // Intrinsic may read heap memory.
3978 kWriteSideEffects, // Intrinsic may write heap memory.
3979 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
3980 };
3981
3982 enum IntrinsicExceptions {
3983 kNoThrow, // Intrinsic does not throw any exceptions.
3984 kCanThrow // Intrinsic may throw exceptions.
3985 };
3986
3987 class HInvoke : public HVariableInputSizeInstruction {
3988 public:
3989 bool NeedsEnvironment() const OVERRIDE;
3990
SetArgumentAt(size_t index,HInstruction * argument)3991 void SetArgumentAt(size_t index, HInstruction* argument) {
3992 SetRawInputAt(index, argument);
3993 }
3994
3995 // Return the number of arguments. This number can be lower than
3996 // the number of inputs returned by InputCount(), as some invoke
3997 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
3998 // inputs at the end of their list of inputs.
GetNumberOfArguments()3999 uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4000
GetType()4001 Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); }
4002
GetDexMethodIndex()4003 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4004
GetInvokeType()4005 InvokeType GetInvokeType() const {
4006 return GetPackedField<InvokeTypeField>();
4007 }
4008
GetIntrinsic()4009 Intrinsics GetIntrinsic() const {
4010 return intrinsic_;
4011 }
4012
4013 void SetIntrinsic(Intrinsics intrinsic,
4014 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
4015 IntrinsicSideEffects side_effects,
4016 IntrinsicExceptions exceptions);
4017
IsFromInlinedInvoke()4018 bool IsFromInlinedInvoke() const {
4019 return GetEnvironment()->IsFromInlinedInvoke();
4020 }
4021
SetCanThrow(bool can_throw)4022 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4023
CanThrow()4024 bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); }
4025
CanBeMoved()4026 bool CanBeMoved() const OVERRIDE { return IsIntrinsic() && !DoesAnyWrite(); }
4027
InstructionDataEquals(const HInstruction * other)4028 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
4029 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4030 }
4031
GetIntrinsicOptimizations()4032 uint32_t* GetIntrinsicOptimizations() {
4033 return &intrinsic_optimizations_;
4034 }
4035
GetIntrinsicOptimizations()4036 const uint32_t* GetIntrinsicOptimizations() const {
4037 return &intrinsic_optimizations_;
4038 }
4039
IsIntrinsic()4040 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4041
GetResolvedMethod()4042 ArtMethod* GetResolvedMethod() const { return resolved_method_; }
SetResolvedMethod(ArtMethod * method)4043 void SetResolvedMethod(ArtMethod* method) { resolved_method_ = method; }
4044
4045 DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4046
4047 protected:
4048 static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4049 static constexpr size_t kFieldInvokeTypeSize =
4050 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4051 static constexpr size_t kFieldReturnType =
4052 kFieldInvokeType + kFieldInvokeTypeSize;
4053 static constexpr size_t kFieldReturnTypeSize =
4054 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
4055 static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize;
4056 static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1;
4057 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4058 using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4059 using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>;
4060
HInvoke(ArenaAllocator * arena,uint32_t number_of_arguments,uint32_t number_of_other_inputs,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,InvokeType invoke_type)4061 HInvoke(ArenaAllocator* arena,
4062 uint32_t number_of_arguments,
4063 uint32_t number_of_other_inputs,
4064 Primitive::Type return_type,
4065 uint32_t dex_pc,
4066 uint32_t dex_method_index,
4067 ArtMethod* resolved_method,
4068 InvokeType invoke_type)
4069 : HVariableInputSizeInstruction(
4070 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
4071 dex_pc,
4072 arena,
4073 number_of_arguments + number_of_other_inputs,
4074 kArenaAllocInvokeInputs),
4075 number_of_arguments_(number_of_arguments),
4076 resolved_method_(resolved_method),
4077 dex_method_index_(dex_method_index),
4078 intrinsic_(Intrinsics::kNone),
4079 intrinsic_optimizations_(0) {
4080 SetPackedField<ReturnTypeField>(return_type);
4081 SetPackedField<InvokeTypeField>(invoke_type);
4082 SetPackedFlag<kFlagCanThrow>(true);
4083 }
4084
4085 uint32_t number_of_arguments_;
4086 ArtMethod* resolved_method_;
4087 const uint32_t dex_method_index_;
4088 Intrinsics intrinsic_;
4089
4090 // A magic word holding optimizations for intrinsics. See intrinsics.h.
4091 uint32_t intrinsic_optimizations_;
4092
4093 private:
4094 DISALLOW_COPY_AND_ASSIGN(HInvoke);
4095 };
4096
4097 class HInvokeUnresolved FINAL : public HInvoke {
4098 public:
HInvokeUnresolved(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)4099 HInvokeUnresolved(ArenaAllocator* arena,
4100 uint32_t number_of_arguments,
4101 Primitive::Type return_type,
4102 uint32_t dex_pc,
4103 uint32_t dex_method_index,
4104 InvokeType invoke_type)
4105 : HInvoke(arena,
4106 number_of_arguments,
4107 0u /* number_of_other_inputs */,
4108 return_type,
4109 dex_pc,
4110 dex_method_index,
4111 nullptr,
4112 invoke_type) {
4113 }
4114
4115 DECLARE_INSTRUCTION(InvokeUnresolved);
4116
4117 private:
4118 DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
4119 };
4120
4121 class HInvokePolymorphic FINAL : public HInvoke {
4122 public:
HInvokePolymorphic(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index)4123 HInvokePolymorphic(ArenaAllocator* arena,
4124 uint32_t number_of_arguments,
4125 Primitive::Type return_type,
4126 uint32_t dex_pc,
4127 uint32_t dex_method_index)
4128 : HInvoke(arena,
4129 number_of_arguments,
4130 0u /* number_of_other_inputs */,
4131 return_type,
4132 dex_pc,
4133 dex_method_index,
4134 nullptr,
4135 kVirtual) {}
4136
4137 DECLARE_INSTRUCTION(InvokePolymorphic);
4138
4139 private:
4140 DISALLOW_COPY_AND_ASSIGN(HInvokePolymorphic);
4141 };
4142
4143 class HInvokeStaticOrDirect FINAL : public HInvoke {
4144 public:
4145 // Requirements of this method call regarding the class
4146 // initialization (clinit) check of its declaring class.
4147 enum class ClinitCheckRequirement {
4148 kNone, // Class already initialized.
4149 kExplicit, // Static call having explicit clinit check as last input.
4150 kImplicit, // Static call implicitly requiring a clinit check.
4151 kLast = kImplicit
4152 };
4153
4154 // Determines how to load the target ArtMethod*.
4155 enum class MethodLoadKind {
4156 // Use a String init ArtMethod* loaded from Thread entrypoints.
4157 kStringInit,
4158
4159 // Use the method's own ArtMethod* loaded by the register allocator.
4160 kRecursive,
4161
4162 // Use PC-relative boot image ArtMethod* address that will be known at link time.
4163 // Used for boot image methods referenced by boot image code.
4164 kBootImageLinkTimePcRelative,
4165
4166 // Use ArtMethod* at a known address, embed the direct address in the code.
4167 // Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
4168 kDirectAddress,
4169
4170 // Load from an entry in the .bss section using a PC-relative load.
4171 // Used for classes outside boot image when .bss is accessible with a PC-relative load.
4172 kBssEntry,
4173
4174 // Make a runtime call to resolve and call the method. This is the last-resort-kind
4175 // used when other kinds are unimplemented on a particular architecture.
4176 kRuntimeCall,
4177 };
4178
4179 // Determines the location of the code pointer.
4180 enum class CodePtrLocation {
4181 // Recursive call, use local PC-relative call instruction.
4182 kCallSelf,
4183
4184 // Use code pointer from the ArtMethod*.
4185 // Used when we don't know the target code. This is also the last-resort-kind used when
4186 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4187 kCallArtMethod,
4188 };
4189
4190 struct DispatchInfo {
4191 MethodLoadKind method_load_kind;
4192 CodePtrLocation code_ptr_location;
4193 // The method load data holds
4194 // - thread entrypoint offset for kStringInit method if this is a string init invoke.
4195 // Note that there are multiple string init methods, each having its own offset.
4196 // - the method address for kDirectAddress
4197 uint64_t method_load_data;
4198 };
4199
HInvokeStaticOrDirect(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t method_index,ArtMethod * resolved_method,DispatchInfo dispatch_info,InvokeType invoke_type,MethodReference target_method,ClinitCheckRequirement clinit_check_requirement)4200 HInvokeStaticOrDirect(ArenaAllocator* arena,
4201 uint32_t number_of_arguments,
4202 Primitive::Type return_type,
4203 uint32_t dex_pc,
4204 uint32_t method_index,
4205 ArtMethod* resolved_method,
4206 DispatchInfo dispatch_info,
4207 InvokeType invoke_type,
4208 MethodReference target_method,
4209 ClinitCheckRequirement clinit_check_requirement)
4210 : HInvoke(arena,
4211 number_of_arguments,
4212 // There is potentially one extra argument for the HCurrentMethod node, and
4213 // potentially one other if the clinit check is explicit, and potentially
4214 // one other if the method is a string factory.
4215 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
4216 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4217 return_type,
4218 dex_pc,
4219 method_index,
4220 resolved_method,
4221 invoke_type),
4222 target_method_(target_method),
4223 dispatch_info_(dispatch_info) {
4224 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4225 }
4226
SetDispatchInfo(const DispatchInfo & dispatch_info)4227 void SetDispatchInfo(const DispatchInfo& dispatch_info) {
4228 bool had_current_method_input = HasCurrentMethodInput();
4229 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
4230
4231 // Using the current method is the default and once we find a better
4232 // method load kind, we should not go back to using the current method.
4233 DCHECK(had_current_method_input || !needs_current_method_input);
4234
4235 if (had_current_method_input && !needs_current_method_input) {
4236 DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4237 RemoveInputAt(GetSpecialInputIndex());
4238 }
4239 dispatch_info_ = dispatch_info;
4240 }
4241
GetDispatchInfo()4242 DispatchInfo GetDispatchInfo() const {
4243 return dispatch_info_;
4244 }
4245
AddSpecialInput(HInstruction * input)4246 void AddSpecialInput(HInstruction* input) {
4247 // We allow only one special input.
4248 DCHECK(!IsStringInit() && !HasCurrentMethodInput());
4249 DCHECK(InputCount() == GetSpecialInputIndex() ||
4250 (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
4251 InsertInputAt(GetSpecialInputIndex(), input);
4252 }
4253
4254 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()4255 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
4256 ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4257 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4258 DCHECK(!input_records.empty());
4259 DCHECK_GT(input_records.size(), GetNumberOfArguments());
4260 HInstruction* last_input = input_records.back().GetInstruction();
4261 // Note: `last_input` may be null during arguments setup.
4262 if (last_input != nullptr) {
4263 // `last_input` is the last input of a static invoke marked as having
4264 // an explicit clinit check. It must either be:
4265 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4266 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4267 DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4268 }
4269 }
4270 return input_records;
4271 }
4272
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)4273 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
4274 // We access the method via the dex cache so we can't do an implicit null check.
4275 // TODO: for intrinsics we can generate implicit null checks.
4276 return false;
4277 }
4278
CanBeNull()4279 bool CanBeNull() const OVERRIDE {
4280 return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit();
4281 }
4282
4283 // Get the index of the special input, if any.
4284 //
4285 // If the invoke HasCurrentMethodInput(), the "special input" is the current
4286 // method pointer; otherwise there may be one platform-specific special input,
4287 // such as PC-relative addressing base.
GetSpecialInputIndex()4288 uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
HasSpecialInput()4289 bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
4290
GetMethodLoadKind()4291 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
GetCodePtrLocation()4292 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
IsRecursive()4293 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4294 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
IsStringInit()4295 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
HasMethodAddress()4296 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
HasPcRelativeMethodLoadKind()4297 bool HasPcRelativeMethodLoadKind() const {
4298 return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
4299 GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4300 }
HasCurrentMethodInput()4301 bool HasCurrentMethodInput() const {
4302 // This function can be called only after the invoke has been fully initialized by the builder.
4303 if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
4304 DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4305 return true;
4306 } else {
4307 DCHECK(InputCount() == GetSpecialInputIndex() ||
4308 !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
4309 return false;
4310 }
4311 }
4312
GetStringInitEntryPoint()4313 QuickEntrypointEnum GetStringInitEntryPoint() const {
4314 DCHECK(IsStringInit());
4315 return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4316 }
4317
GetMethodAddress()4318 uint64_t GetMethodAddress() const {
4319 DCHECK(HasMethodAddress());
4320 return dispatch_info_.method_load_data;
4321 }
4322
4323 const DexFile& GetDexFileForPcRelativeDexCache() const;
4324
GetClinitCheckRequirement()4325 ClinitCheckRequirement GetClinitCheckRequirement() const {
4326 return GetPackedField<ClinitCheckRequirementField>();
4327 }
4328
4329 // Is this instruction a call to a static method?
IsStatic()4330 bool IsStatic() const {
4331 return GetInvokeType() == kStatic;
4332 }
4333
GetTargetMethod()4334 MethodReference GetTargetMethod() const {
4335 return target_method_;
4336 }
4337
4338 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4339 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4340 // instruction; only relevant for static calls with explicit clinit check.
RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4341 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4342 DCHECK(IsStaticWithExplicitClinitCheck());
4343 size_t last_input_index = inputs_.size() - 1u;
4344 HInstruction* last_input = inputs_.back().GetInstruction();
4345 DCHECK(last_input != nullptr);
4346 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4347 RemoveAsUserOfInput(last_input_index);
4348 inputs_.pop_back();
4349 SetPackedField<ClinitCheckRequirementField>(new_requirement);
4350 DCHECK(!IsStaticWithExplicitClinitCheck());
4351 }
4352
4353 // Is this a call to a static method whose declaring class has an
4354 // explicit initialization check in the graph?
IsStaticWithExplicitClinitCheck()4355 bool IsStaticWithExplicitClinitCheck() const {
4356 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4357 }
4358
4359 // Is this a call to a static method whose declaring class has an
4360 // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()4361 bool IsStaticWithImplicitClinitCheck() const {
4362 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4363 }
4364
4365 // Does this method load kind need the current method as an input?
NeedsCurrentMethodInput(MethodLoadKind kind)4366 static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
4367 return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall;
4368 }
4369
4370 DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4371
4372 private:
4373 static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
4374 static constexpr size_t kFieldClinitCheckRequirementSize =
4375 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4376 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4377 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4378 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4379 "Too many packed fields.");
4380 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4381 kFieldClinitCheckRequirement,
4382 kFieldClinitCheckRequirementSize>;
4383
4384 // Cached values of the resolved method, to avoid needing the mutator lock.
4385 MethodReference target_method_;
4386 DispatchInfo dispatch_info_;
4387
4388 DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
4389 };
4390 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4391 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4392
4393 class HInvokeVirtual FINAL : public HInvoke {
4394 public:
HInvokeVirtual(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t vtable_index)4395 HInvokeVirtual(ArenaAllocator* arena,
4396 uint32_t number_of_arguments,
4397 Primitive::Type return_type,
4398 uint32_t dex_pc,
4399 uint32_t dex_method_index,
4400 ArtMethod* resolved_method,
4401 uint32_t vtable_index)
4402 : HInvoke(arena,
4403 number_of_arguments,
4404 0u,
4405 return_type,
4406 dex_pc,
4407 dex_method_index,
4408 resolved_method,
4409 kVirtual),
4410 vtable_index_(vtable_index) {}
4411
CanBeNull()4412 bool CanBeNull() const OVERRIDE {
4413 switch (GetIntrinsic()) {
4414 case Intrinsics::kThreadCurrentThread:
4415 case Intrinsics::kStringBufferAppend:
4416 case Intrinsics::kStringBufferToString:
4417 case Intrinsics::kStringBuilderAppend:
4418 case Intrinsics::kStringBuilderToString:
4419 return false;
4420 default:
4421 return HInvoke::CanBeNull();
4422 }
4423 }
4424
CanDoImplicitNullCheckOn(HInstruction * obj)4425 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4426 // TODO: Add implicit null checks in intrinsics.
4427 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4428 }
4429
GetVTableIndex()4430 uint32_t GetVTableIndex() const { return vtable_index_; }
4431
4432 DECLARE_INSTRUCTION(InvokeVirtual);
4433
4434 private:
4435 // Cached value of the resolved method, to avoid needing the mutator lock.
4436 const uint32_t vtable_index_;
4437
4438 DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
4439 };
4440
4441 class HInvokeInterface FINAL : public HInvoke {
4442 public:
HInvokeInterface(ArenaAllocator * arena,uint32_t number_of_arguments,Primitive::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t imt_index)4443 HInvokeInterface(ArenaAllocator* arena,
4444 uint32_t number_of_arguments,
4445 Primitive::Type return_type,
4446 uint32_t dex_pc,
4447 uint32_t dex_method_index,
4448 ArtMethod* resolved_method,
4449 uint32_t imt_index)
4450 : HInvoke(arena,
4451 number_of_arguments,
4452 0u,
4453 return_type,
4454 dex_pc,
4455 dex_method_index,
4456 resolved_method,
4457 kInterface),
4458 imt_index_(imt_index) {}
4459
CanDoImplicitNullCheckOn(HInstruction * obj)4460 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
4461 // TODO: Add implicit null checks in intrinsics.
4462 return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
4463 }
4464
NeedsDexCacheOfDeclaringClass()4465 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
4466 // The assembly stub currently needs it.
4467 return true;
4468 }
4469
GetImtIndex()4470 uint32_t GetImtIndex() const { return imt_index_; }
GetDexMethodIndex()4471 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4472
4473 DECLARE_INSTRUCTION(InvokeInterface);
4474
4475 private:
4476 // Cached value of the resolved method, to avoid needing the mutator lock.
4477 const uint32_t imt_index_;
4478
4479 DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
4480 };
4481
4482 class HNeg FINAL : public HUnaryOperation {
4483 public:
4484 HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(result_type,input,dex_pc)4485 : HUnaryOperation(result_type, input, dex_pc) {
4486 DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType()));
4487 }
4488
Compute(T x)4489 template <typename T> static T Compute(T x) { return -x; }
4490
Evaluate(HIntConstant * x)4491 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
4492 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4493 }
Evaluate(HLongConstant * x)4494 HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
4495 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4496 }
Evaluate(HFloatConstant * x)4497 HConstant* Evaluate(HFloatConstant* x) const OVERRIDE {
4498 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4499 }
Evaluate(HDoubleConstant * x)4500 HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE {
4501 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4502 }
4503
4504 DECLARE_INSTRUCTION(Neg);
4505
4506 private:
4507 DISALLOW_COPY_AND_ASSIGN(HNeg);
4508 };
4509
4510 class HNewArray FINAL : public HExpression<2> {
4511 public:
HNewArray(HInstruction * cls,HInstruction * length,uint32_t dex_pc)4512 HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc)
4513 : HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc) {
4514 SetRawInputAt(0, cls);
4515 SetRawInputAt(1, length);
4516 }
4517
4518 // Calls runtime so needs an environment.
NeedsEnvironment()4519 bool NeedsEnvironment() const OVERRIDE { return true; }
4520
4521 // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()4522 bool CanThrow() const OVERRIDE { return true; }
4523
CanBeNull()4524 bool CanBeNull() const OVERRIDE { return false; }
4525
GetLoadClass()4526 HLoadClass* GetLoadClass() const {
4527 DCHECK(InputAt(0)->IsLoadClass());
4528 return InputAt(0)->AsLoadClass();
4529 }
4530
GetLength()4531 HInstruction* GetLength() const {
4532 return InputAt(1);
4533 }
4534
4535 DECLARE_INSTRUCTION(NewArray);
4536
4537 private:
4538 DISALLOW_COPY_AND_ASSIGN(HNewArray);
4539 };
4540
4541 class HAdd FINAL : public HBinaryOperation {
4542 public:
4543 HAdd(Primitive::Type result_type,
4544 HInstruction* left,
4545 HInstruction* right,
4546 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4547 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4548
IsCommutative()4549 bool IsCommutative() const OVERRIDE { return true; }
4550
Compute(T x,T y)4551 template <typename T> static T Compute(T x, T y) { return x + y; }
4552
Evaluate(HIntConstant * x,HIntConstant * y)4553 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4554 return GetBlock()->GetGraph()->GetIntConstant(
4555 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4556 }
Evaluate(HLongConstant * x,HLongConstant * y)4557 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4558 return GetBlock()->GetGraph()->GetLongConstant(
4559 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4560 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4561 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4562 return GetBlock()->GetGraph()->GetFloatConstant(
4563 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4564 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4565 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4566 return GetBlock()->GetGraph()->GetDoubleConstant(
4567 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4568 }
4569
4570 DECLARE_INSTRUCTION(Add);
4571
4572 private:
4573 DISALLOW_COPY_AND_ASSIGN(HAdd);
4574 };
4575
4576 class HSub FINAL : public HBinaryOperation {
4577 public:
4578 HSub(Primitive::Type result_type,
4579 HInstruction* left,
4580 HInstruction* right,
4581 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4582 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4583
Compute(T x,T y)4584 template <typename T> static T Compute(T x, T y) { return x - y; }
4585
Evaluate(HIntConstant * x,HIntConstant * y)4586 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4587 return GetBlock()->GetGraph()->GetIntConstant(
4588 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4589 }
Evaluate(HLongConstant * x,HLongConstant * y)4590 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4591 return GetBlock()->GetGraph()->GetLongConstant(
4592 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4593 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4594 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4595 return GetBlock()->GetGraph()->GetFloatConstant(
4596 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4597 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4598 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4599 return GetBlock()->GetGraph()->GetDoubleConstant(
4600 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4601 }
4602
4603 DECLARE_INSTRUCTION(Sub);
4604
4605 private:
4606 DISALLOW_COPY_AND_ASSIGN(HSub);
4607 };
4608
4609 class HMul FINAL : public HBinaryOperation {
4610 public:
4611 HMul(Primitive::Type result_type,
4612 HInstruction* left,
4613 HInstruction* right,
4614 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4615 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4616
IsCommutative()4617 bool IsCommutative() const OVERRIDE { return true; }
4618
Compute(T x,T y)4619 template <typename T> static T Compute(T x, T y) { return x * y; }
4620
Evaluate(HIntConstant * x,HIntConstant * y)4621 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4622 return GetBlock()->GetGraph()->GetIntConstant(
4623 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4624 }
Evaluate(HLongConstant * x,HLongConstant * y)4625 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4626 return GetBlock()->GetGraph()->GetLongConstant(
4627 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4628 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4629 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4630 return GetBlock()->GetGraph()->GetFloatConstant(
4631 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4632 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4633 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4634 return GetBlock()->GetGraph()->GetDoubleConstant(
4635 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4636 }
4637
4638 DECLARE_INSTRUCTION(Mul);
4639
4640 private:
4641 DISALLOW_COPY_AND_ASSIGN(HMul);
4642 };
4643
4644 class HDiv FINAL : public HBinaryOperation {
4645 public:
HDiv(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)4646 HDiv(Primitive::Type result_type,
4647 HInstruction* left,
4648 HInstruction* right,
4649 uint32_t dex_pc)
4650 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4651
4652 template <typename T>
ComputeIntegral(T x,T y)4653 T ComputeIntegral(T x, T y) const {
4654 DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4655 // Our graph structure ensures we never have 0 for `y` during
4656 // constant folding.
4657 DCHECK_NE(y, 0);
4658 // Special case -1 to avoid getting a SIGFPE on x86(_64).
4659 return (y == -1) ? -x : x / y;
4660 }
4661
4662 template <typename T>
ComputeFP(T x,T y)4663 T ComputeFP(T x, T y) const {
4664 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4665 return x / y;
4666 }
4667
Evaluate(HIntConstant * x,HIntConstant * y)4668 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4669 return GetBlock()->GetGraph()->GetIntConstant(
4670 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4671 }
Evaluate(HLongConstant * x,HLongConstant * y)4672 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4673 return GetBlock()->GetGraph()->GetLongConstant(
4674 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4675 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4676 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4677 return GetBlock()->GetGraph()->GetFloatConstant(
4678 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4679 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4680 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4681 return GetBlock()->GetGraph()->GetDoubleConstant(
4682 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4683 }
4684
4685 DECLARE_INSTRUCTION(Div);
4686
4687 private:
4688 DISALLOW_COPY_AND_ASSIGN(HDiv);
4689 };
4690
4691 class HRem FINAL : public HBinaryOperation {
4692 public:
HRem(Primitive::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)4693 HRem(Primitive::Type result_type,
4694 HInstruction* left,
4695 HInstruction* right,
4696 uint32_t dex_pc)
4697 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4698
4699 template <typename T>
ComputeIntegral(T x,T y)4700 T ComputeIntegral(T x, T y) const {
4701 DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
4702 // Our graph structure ensures we never have 0 for `y` during
4703 // constant folding.
4704 DCHECK_NE(y, 0);
4705 // Special case -1 to avoid getting a SIGFPE on x86(_64).
4706 return (y == -1) ? 0 : x % y;
4707 }
4708
4709 template <typename T>
ComputeFP(T x,T y)4710 T ComputeFP(T x, T y) const {
4711 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
4712 return std::fmod(x, y);
4713 }
4714
Evaluate(HIntConstant * x,HIntConstant * y)4715 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4716 return GetBlock()->GetGraph()->GetIntConstant(
4717 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4718 }
Evaluate(HLongConstant * x,HLongConstant * y)4719 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4720 return GetBlock()->GetGraph()->GetLongConstant(
4721 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
4722 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4723 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
4724 return GetBlock()->GetGraph()->GetFloatConstant(
4725 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4726 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4727 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
4728 return GetBlock()->GetGraph()->GetDoubleConstant(
4729 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4730 }
4731
4732 DECLARE_INSTRUCTION(Rem);
4733
4734 private:
4735 DISALLOW_COPY_AND_ASSIGN(HRem);
4736 };
4737
4738 class HDivZeroCheck FINAL : public HExpression<1> {
4739 public:
4740 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
4741 // constructor.
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)4742 HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
4743 : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
4744 SetRawInputAt(0, value);
4745 }
4746
GetType()4747 Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
4748
CanBeMoved()4749 bool CanBeMoved() const OVERRIDE { return true; }
4750
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)4751 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
4752 return true;
4753 }
4754
NeedsEnvironment()4755 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()4756 bool CanThrow() const OVERRIDE { return true; }
4757
4758 DECLARE_INSTRUCTION(DivZeroCheck);
4759
4760 private:
4761 DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
4762 };
4763
4764 class HShl FINAL : public HBinaryOperation {
4765 public:
4766 HShl(Primitive::Type result_type,
4767 HInstruction* value,
4768 HInstruction* distance,
4769 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4770 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4771 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4772 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4773 }
4774
4775 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4776 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4777 return value << (distance & max_shift_distance);
4778 }
4779
Evaluate(HIntConstant * value,HIntConstant * distance)4780 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4781 return GetBlock()->GetGraph()->GetIntConstant(
4782 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4783 }
Evaluate(HLongConstant * value,HIntConstant * distance)4784 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4785 return GetBlock()->GetGraph()->GetLongConstant(
4786 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4787 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4788 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4789 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4790 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4791 UNREACHABLE();
4792 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4793 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4794 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4795 LOG(FATAL) << DebugName() << " is not defined for float values";
4796 UNREACHABLE();
4797 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4798 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4799 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4800 LOG(FATAL) << DebugName() << " is not defined for double values";
4801 UNREACHABLE();
4802 }
4803
4804 DECLARE_INSTRUCTION(Shl);
4805
4806 private:
4807 DISALLOW_COPY_AND_ASSIGN(HShl);
4808 };
4809
4810 class HShr FINAL : public HBinaryOperation {
4811 public:
4812 HShr(Primitive::Type result_type,
4813 HInstruction* value,
4814 HInstruction* distance,
4815 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4816 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4817 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4818 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4819 }
4820
4821 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4822 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4823 return value >> (distance & max_shift_distance);
4824 }
4825
Evaluate(HIntConstant * value,HIntConstant * distance)4826 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4827 return GetBlock()->GetGraph()->GetIntConstant(
4828 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4829 }
Evaluate(HLongConstant * value,HIntConstant * distance)4830 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4831 return GetBlock()->GetGraph()->GetLongConstant(
4832 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4833 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4834 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4835 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4836 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4837 UNREACHABLE();
4838 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4839 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4840 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4841 LOG(FATAL) << DebugName() << " is not defined for float values";
4842 UNREACHABLE();
4843 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4844 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4845 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4846 LOG(FATAL) << DebugName() << " is not defined for double values";
4847 UNREACHABLE();
4848 }
4849
4850 DECLARE_INSTRUCTION(Shr);
4851
4852 private:
4853 DISALLOW_COPY_AND_ASSIGN(HShr);
4854 };
4855
4856 class HUShr FINAL : public HBinaryOperation {
4857 public:
4858 HUShr(Primitive::Type result_type,
4859 HInstruction* value,
4860 HInstruction* distance,
4861 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,value,distance,SideEffects::None (),dex_pc)4862 : HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
4863 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
4864 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
4865 }
4866
4867 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)4868 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
4869 typedef typename std::make_unsigned<T>::type V;
4870 V ux = static_cast<V>(value);
4871 return static_cast<T>(ux >> (distance & max_shift_distance));
4872 }
4873
Evaluate(HIntConstant * value,HIntConstant * distance)4874 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
4875 return GetBlock()->GetGraph()->GetIntConstant(
4876 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
4877 }
Evaluate(HLongConstant * value,HIntConstant * distance)4878 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
4879 return GetBlock()->GetGraph()->GetLongConstant(
4880 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
4881 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)4882 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
4883 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4884 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
4885 UNREACHABLE();
4886 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)4887 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
4888 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4889 LOG(FATAL) << DebugName() << " is not defined for float values";
4890 UNREACHABLE();
4891 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)4892 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
4893 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
4894 LOG(FATAL) << DebugName() << " is not defined for double values";
4895 UNREACHABLE();
4896 }
4897
4898 DECLARE_INSTRUCTION(UShr);
4899
4900 private:
4901 DISALLOW_COPY_AND_ASSIGN(HUShr);
4902 };
4903
4904 class HAnd FINAL : public HBinaryOperation {
4905 public:
4906 HAnd(Primitive::Type result_type,
4907 HInstruction* left,
4908 HInstruction* right,
4909 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4910 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4911
IsCommutative()4912 bool IsCommutative() const OVERRIDE { return true; }
4913
Compute(T x,T y)4914 template <typename T> static T Compute(T x, T y) { return x & y; }
4915
Evaluate(HIntConstant * x,HIntConstant * y)4916 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4917 return GetBlock()->GetGraph()->GetIntConstant(
4918 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4919 }
Evaluate(HLongConstant * x,HLongConstant * y)4920 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4921 return GetBlock()->GetGraph()->GetLongConstant(
4922 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4923 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4924 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4925 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4926 LOG(FATAL) << DebugName() << " is not defined for float values";
4927 UNREACHABLE();
4928 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4929 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4930 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4931 LOG(FATAL) << DebugName() << " is not defined for double values";
4932 UNREACHABLE();
4933 }
4934
4935 DECLARE_INSTRUCTION(And);
4936
4937 private:
4938 DISALLOW_COPY_AND_ASSIGN(HAnd);
4939 };
4940
4941 class HOr FINAL : public HBinaryOperation {
4942 public:
4943 HOr(Primitive::Type result_type,
4944 HInstruction* left,
4945 HInstruction* right,
4946 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4947 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4948
IsCommutative()4949 bool IsCommutative() const OVERRIDE { return true; }
4950
Compute(T x,T y)4951 template <typename T> static T Compute(T x, T y) { return x | y; }
4952
Evaluate(HIntConstant * x,HIntConstant * y)4953 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4954 return GetBlock()->GetGraph()->GetIntConstant(
4955 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4956 }
Evaluate(HLongConstant * x,HLongConstant * y)4957 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4958 return GetBlock()->GetGraph()->GetLongConstant(
4959 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4960 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4961 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4962 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4963 LOG(FATAL) << DebugName() << " is not defined for float values";
4964 UNREACHABLE();
4965 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4966 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4967 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
4968 LOG(FATAL) << DebugName() << " is not defined for double values";
4969 UNREACHABLE();
4970 }
4971
4972 DECLARE_INSTRUCTION(Or);
4973
4974 private:
4975 DISALLOW_COPY_AND_ASSIGN(HOr);
4976 };
4977
4978 class HXor FINAL : public HBinaryOperation {
4979 public:
4980 HXor(Primitive::Type result_type,
4981 HInstruction* left,
4982 HInstruction* right,
4983 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(result_type,left,right,SideEffects::None (),dex_pc)4984 : HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
4985
IsCommutative()4986 bool IsCommutative() const OVERRIDE { return true; }
4987
Compute(T x,T y)4988 template <typename T> static T Compute(T x, T y) { return x ^ y; }
4989
Evaluate(HIntConstant * x,HIntConstant * y)4990 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
4991 return GetBlock()->GetGraph()->GetIntConstant(
4992 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4993 }
Evaluate(HLongConstant * x,HLongConstant * y)4994 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
4995 return GetBlock()->GetGraph()->GetLongConstant(
4996 Compute(x->GetValue(), y->GetValue()), GetDexPc());
4997 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4998 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4999 HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
5000 LOG(FATAL) << DebugName() << " is not defined for float values";
5001 UNREACHABLE();
5002 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5003 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5004 HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
5005 LOG(FATAL) << DebugName() << " is not defined for double values";
5006 UNREACHABLE();
5007 }
5008
5009 DECLARE_INSTRUCTION(Xor);
5010
5011 private:
5012 DISALLOW_COPY_AND_ASSIGN(HXor);
5013 };
5014
5015 class HRor FINAL : public HBinaryOperation {
5016 public:
HRor(Primitive::Type result_type,HInstruction * value,HInstruction * distance)5017 HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
5018 : HBinaryOperation(result_type, value, distance) {
5019 DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
5020 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
5021 }
5022
5023 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_value)5024 static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5025 typedef typename std::make_unsigned<T>::type V;
5026 V ux = static_cast<V>(value);
5027 if ((distance & max_shift_value) == 0) {
5028 return static_cast<T>(ux);
5029 } else {
5030 const V reg_bits = sizeof(T) * 8;
5031 return static_cast<T>(ux >> (distance & max_shift_value)) |
5032 (value << (reg_bits - (distance & max_shift_value)));
5033 }
5034 }
5035
Evaluate(HIntConstant * value,HIntConstant * distance)5036 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
5037 return GetBlock()->GetGraph()->GetIntConstant(
5038 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5039 }
Evaluate(HLongConstant * value,HIntConstant * distance)5040 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
5041 return GetBlock()->GetGraph()->GetLongConstant(
5042 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5043 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5044 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5045 HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
5046 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5047 UNREACHABLE();
5048 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5049 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5050 HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
5051 LOG(FATAL) << DebugName() << " is not defined for float values";
5052 UNREACHABLE();
5053 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5054 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5055 HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
5056 LOG(FATAL) << DebugName() << " is not defined for double values";
5057 UNREACHABLE();
5058 }
5059
5060 DECLARE_INSTRUCTION(Ror);
5061
5062 private:
5063 DISALLOW_COPY_AND_ASSIGN(HRor);
5064 };
5065
5066 // The value of a parameter in this method. Its location depends on
5067 // the calling convention.
5068 class HParameterValue FINAL : public HExpression<0> {
5069 public:
5070 HParameterValue(const DexFile& dex_file,
5071 dex::TypeIndex type_index,
5072 uint8_t index,
5073 Primitive::Type parameter_type,
5074 bool is_this = false)
HExpression(parameter_type,SideEffects::None (),kNoDexPc)5075 : HExpression(parameter_type, SideEffects::None(), kNoDexPc),
5076 dex_file_(dex_file),
5077 type_index_(type_index),
5078 index_(index) {
5079 SetPackedFlag<kFlagIsThis>(is_this);
5080 SetPackedFlag<kFlagCanBeNull>(!is_this);
5081 }
5082
GetDexFile()5083 const DexFile& GetDexFile() const { return dex_file_; }
GetTypeIndex()5084 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetIndex()5085 uint8_t GetIndex() const { return index_; }
IsThis()5086 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5087
CanBeNull()5088 bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)5089 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5090
5091 DECLARE_INSTRUCTION(ParameterValue);
5092
5093 private:
5094 // Whether or not the parameter value corresponds to 'this' argument.
5095 static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits;
5096 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5097 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5098 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5099 "Too many packed fields.");
5100
5101 const DexFile& dex_file_;
5102 const dex::TypeIndex type_index_;
5103 // The index of this parameter in the parameters list. Must be less
5104 // than HGraph::number_of_in_vregs_.
5105 const uint8_t index_;
5106
5107 DISALLOW_COPY_AND_ASSIGN(HParameterValue);
5108 };
5109
5110 class HNot FINAL : public HUnaryOperation {
5111 public:
5112 HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(result_type,input,dex_pc)5113 : HUnaryOperation(result_type, input, dex_pc) {}
5114
CanBeMoved()5115 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5116 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5117 return true;
5118 }
5119
Compute(T x)5120 template <typename T> static T Compute(T x) { return ~x; }
5121
Evaluate(HIntConstant * x)5122 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
5123 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5124 }
Evaluate(HLongConstant * x)5125 HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
5126 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5127 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5128 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
5129 LOG(FATAL) << DebugName() << " is not defined for float values";
5130 UNREACHABLE();
5131 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5132 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
5133 LOG(FATAL) << DebugName() << " is not defined for double values";
5134 UNREACHABLE();
5135 }
5136
5137 DECLARE_INSTRUCTION(Not);
5138
5139 private:
5140 DISALLOW_COPY_AND_ASSIGN(HNot);
5141 };
5142
5143 class HBooleanNot FINAL : public HUnaryOperation {
5144 public:
5145 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(Primitive::Type::kPrimBoolean,input,dex_pc)5146 : HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
5147
CanBeMoved()5148 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5149 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5150 return true;
5151 }
5152
Compute(T x)5153 template <typename T> static bool Compute(T x) {
5154 DCHECK(IsUint<1>(x)) << x;
5155 return !x;
5156 }
5157
Evaluate(HIntConstant * x)5158 HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
5159 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5160 }
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)5161 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
5162 LOG(FATAL) << DebugName() << " is not defined for long values";
5163 UNREACHABLE();
5164 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5165 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
5166 LOG(FATAL) << DebugName() << " is not defined for float values";
5167 UNREACHABLE();
5168 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5169 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
5170 LOG(FATAL) << DebugName() << " is not defined for double values";
5171 UNREACHABLE();
5172 }
5173
5174 DECLARE_INSTRUCTION(BooleanNot);
5175
5176 private:
5177 DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
5178 };
5179
5180 class HTypeConversion FINAL : public HExpression<1> {
5181 public:
5182 // Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(Primitive::Type result_type,HInstruction * input,uint32_t dex_pc)5183 HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
5184 : HExpression(result_type, SideEffects::None(), dex_pc) {
5185 SetRawInputAt(0, input);
5186 // Invariant: We should never generate a conversion to a Boolean value.
5187 DCHECK_NE(Primitive::kPrimBoolean, result_type);
5188 }
5189
GetInput()5190 HInstruction* GetInput() const { return InputAt(0); }
GetInputType()5191 Primitive::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()5192 Primitive::Type GetResultType() const { return GetType(); }
5193
CanBeMoved()5194 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5195 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5196 return true;
5197 }
5198
5199 // Try to statically evaluate the conversion and return a HConstant
5200 // containing the result. If the input cannot be converted, return nullptr.
5201 HConstant* TryStaticEvaluation() const;
5202
5203 DECLARE_INSTRUCTION(TypeConversion);
5204
5205 private:
5206 DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
5207 };
5208
5209 static constexpr uint32_t kNoRegNumber = -1;
5210
5211 class HNullCheck FINAL : public HExpression<1> {
5212 public:
5213 // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5214 // constructor.
HNullCheck(HInstruction * value,uint32_t dex_pc)5215 HNullCheck(HInstruction* value, uint32_t dex_pc)
5216 : HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
5217 SetRawInputAt(0, value);
5218 }
5219
CanBeMoved()5220 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5221 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5222 return true;
5223 }
5224
NeedsEnvironment()5225 bool NeedsEnvironment() const OVERRIDE { return true; }
5226
CanThrow()5227 bool CanThrow() const OVERRIDE { return true; }
5228
CanBeNull()5229 bool CanBeNull() const OVERRIDE { return false; }
5230
5231
5232 DECLARE_INSTRUCTION(NullCheck);
5233
5234 private:
5235 DISALLOW_COPY_AND_ASSIGN(HNullCheck);
5236 };
5237
5238 // Embeds an ArtField and all the information required by the compiler. We cache
5239 // that information to avoid requiring the mutator lock every time we need it.
5240 class FieldInfo : public ValueObject {
5241 public:
FieldInfo(ArtField * field,MemberOffset field_offset,Primitive::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file)5242 FieldInfo(ArtField* field,
5243 MemberOffset field_offset,
5244 Primitive::Type field_type,
5245 bool is_volatile,
5246 uint32_t index,
5247 uint16_t declaring_class_def_index,
5248 const DexFile& dex_file)
5249 : field_(field),
5250 field_offset_(field_offset),
5251 field_type_(field_type),
5252 is_volatile_(is_volatile),
5253 index_(index),
5254 declaring_class_def_index_(declaring_class_def_index),
5255 dex_file_(dex_file) {}
5256
GetField()5257 ArtField* GetField() const { return field_; }
GetFieldOffset()5258 MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()5259 Primitive::Type GetFieldType() const { return field_type_; }
GetFieldIndex()5260 uint32_t GetFieldIndex() const { return index_; }
GetDeclaringClassDefIndex()5261 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
GetDexFile()5262 const DexFile& GetDexFile() const { return dex_file_; }
IsVolatile()5263 bool IsVolatile() const { return is_volatile_; }
5264
5265 private:
5266 ArtField* const field_;
5267 const MemberOffset field_offset_;
5268 const Primitive::Type field_type_;
5269 const bool is_volatile_;
5270 const uint32_t index_;
5271 const uint16_t declaring_class_def_index_;
5272 const DexFile& dex_file_;
5273 };
5274
5275 class HInstanceFieldGet FINAL : public HExpression<1> {
5276 public:
HInstanceFieldGet(HInstruction * value,ArtField * field,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5277 HInstanceFieldGet(HInstruction* value,
5278 ArtField* field,
5279 Primitive::Type field_type,
5280 MemberOffset field_offset,
5281 bool is_volatile,
5282 uint32_t field_idx,
5283 uint16_t declaring_class_def_index,
5284 const DexFile& dex_file,
5285 uint32_t dex_pc)
5286 : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
5287 field_info_(field,
5288 field_offset,
5289 field_type,
5290 is_volatile,
5291 field_idx,
5292 declaring_class_def_index,
5293 dex_file) {
5294 SetRawInputAt(0, value);
5295 }
5296
CanBeMoved()5297 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
5298
InstructionDataEquals(const HInstruction * other)5299 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
5300 const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5301 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5302 }
5303
CanDoImplicitNullCheckOn(HInstruction * obj)5304 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5305 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5306 }
5307
ComputeHashCode()5308 size_t ComputeHashCode() const OVERRIDE {
5309 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5310 }
5311
GetFieldInfo()5312 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5313 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5314 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5315 bool IsVolatile() const { return field_info_.IsVolatile(); }
5316
5317 DECLARE_INSTRUCTION(InstanceFieldGet);
5318
5319 private:
5320 const FieldInfo field_info_;
5321
5322 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
5323 };
5324
5325 class HInstanceFieldSet FINAL : public HTemplateInstruction<2> {
5326 public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,ArtField * field,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5327 HInstanceFieldSet(HInstruction* object,
5328 HInstruction* value,
5329 ArtField* field,
5330 Primitive::Type field_type,
5331 MemberOffset field_offset,
5332 bool is_volatile,
5333 uint32_t field_idx,
5334 uint16_t declaring_class_def_index,
5335 const DexFile& dex_file,
5336 uint32_t dex_pc)
5337 : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
5338 field_info_(field,
5339 field_offset,
5340 field_type,
5341 is_volatile,
5342 field_idx,
5343 declaring_class_def_index,
5344 dex_file) {
5345 SetPackedFlag<kFlagValueCanBeNull>(true);
5346 SetRawInputAt(0, object);
5347 SetRawInputAt(1, value);
5348 }
5349
CanDoImplicitNullCheckOn(HInstruction * obj)5350 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5351 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5352 }
5353
GetFieldInfo()5354 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5355 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5356 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5357 bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()5358 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5359 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5360 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5361
5362 DECLARE_INSTRUCTION(InstanceFieldSet);
5363
5364 private:
5365 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
5366 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
5367 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
5368 "Too many packed fields.");
5369
5370 const FieldInfo field_info_;
5371
5372 DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
5373 };
5374
5375 class HArrayGet FINAL : public HExpression<2> {
5376 public:
5377 HArrayGet(HInstruction* array,
5378 HInstruction* index,
5379 Primitive::Type type,
5380 uint32_t dex_pc,
5381 bool is_string_char_at = false)
HExpression(type,SideEffects::ArrayReadOfType (type),dex_pc)5382 : HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) {
5383 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
5384 SetRawInputAt(0, array);
5385 SetRawInputAt(1, index);
5386 }
5387
CanBeMoved()5388 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5389 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5390 return true;
5391 }
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5392 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5393 // TODO: We can be smarter here.
5394 // Currently, unless the array is the result of NewArray, the array access is always
5395 // preceded by some form of null NullCheck necessary for the bounds check, usually
5396 // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
5397 // dynamic BCE. There are cases when these could be removed to produce better code.
5398 // If we ever add optimizations to do so we should allow an implicit check here
5399 // (as long as the address falls in the first page).
5400 //
5401 // As an example of such fancy optimization, we could eliminate BoundsCheck for
5402 // a = cond ? new int[1] : null;
5403 // a[0]; // The Phi does not need bounds check for either input.
5404 return false;
5405 }
5406
IsEquivalentOf(HArrayGet * other)5407 bool IsEquivalentOf(HArrayGet* other) const {
5408 bool result = (GetDexPc() == other->GetDexPc());
5409 if (kIsDebugBuild && result) {
5410 DCHECK_EQ(GetBlock(), other->GetBlock());
5411 DCHECK_EQ(GetArray(), other->GetArray());
5412 DCHECK_EQ(GetIndex(), other->GetIndex());
5413 if (Primitive::IsIntOrLongType(GetType())) {
5414 DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType();
5415 } else {
5416 DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
5417 DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType();
5418 }
5419 }
5420 return result;
5421 }
5422
IsStringCharAt()5423 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
5424
GetArray()5425 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5426 HInstruction* GetIndex() const { return InputAt(1); }
5427
5428 DECLARE_INSTRUCTION(ArrayGet);
5429
5430 private:
5431 // We treat a String as an array, creating the HArrayGet from String.charAt()
5432 // intrinsic in the instruction simplifier. We can always determine whether
5433 // a particular HArrayGet is actually a String.charAt() by looking at the type
5434 // of the input but that requires holding the mutator lock, so we prefer to use
5435 // a flag, so that code generators don't need to do the locking.
5436 static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits;
5437 static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
5438 static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5439 "Too many packed fields.");
5440
5441 DISALLOW_COPY_AND_ASSIGN(HArrayGet);
5442 };
5443
5444 class HArraySet FINAL : public HTemplateInstruction<3> {
5445 public:
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,Primitive::Type expected_component_type,uint32_t dex_pc)5446 HArraySet(HInstruction* array,
5447 HInstruction* index,
5448 HInstruction* value,
5449 Primitive::Type expected_component_type,
5450 uint32_t dex_pc)
5451 : HTemplateInstruction(SideEffects::None(), dex_pc) {
5452 SetPackedField<ExpectedComponentTypeField>(expected_component_type);
5453 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot);
5454 SetPackedFlag<kFlagValueCanBeNull>(true);
5455 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
5456 SetRawInputAt(0, array);
5457 SetRawInputAt(1, index);
5458 SetRawInputAt(2, value);
5459 // Make a best guess now, may be refined during SSA building.
5460 ComputeSideEffects();
5461 }
5462
NeedsEnvironment()5463 bool NeedsEnvironment() const OVERRIDE {
5464 // We call a runtime method to throw ArrayStoreException.
5465 return NeedsTypeCheck();
5466 }
5467
5468 // Can throw ArrayStoreException.
CanThrow()5469 bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); }
5470
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)5471 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
5472 // TODO: Same as for ArrayGet.
5473 return false;
5474 }
5475
ClearNeedsTypeCheck()5476 void ClearNeedsTypeCheck() {
5477 SetPackedFlag<kFlagNeedsTypeCheck>(false);
5478 }
5479
ClearValueCanBeNull()5480 void ClearValueCanBeNull() {
5481 SetPackedFlag<kFlagValueCanBeNull>(false);
5482 }
5483
SetStaticTypeOfArrayIsObjectArray()5484 void SetStaticTypeOfArrayIsObjectArray() {
5485 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
5486 }
5487
GetValueCanBeNull()5488 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
NeedsTypeCheck()5489 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
StaticTypeOfArrayIsObjectArray()5490 bool StaticTypeOfArrayIsObjectArray() const {
5491 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
5492 }
5493
GetArray()5494 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()5495 HInstruction* GetIndex() const { return InputAt(1); }
GetValue()5496 HInstruction* GetValue() const { return InputAt(2); }
5497
GetComponentType()5498 Primitive::Type GetComponentType() const {
5499 // The Dex format does not type floating point index operations. Since the
5500 // `expected_component_type_` is set during building and can therefore not
5501 // be correct, we also check what is the value type. If it is a floating
5502 // point type, we must use that type.
5503 Primitive::Type value_type = GetValue()->GetType();
5504 return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
5505 ? value_type
5506 : GetRawExpectedComponentType();
5507 }
5508
GetRawExpectedComponentType()5509 Primitive::Type GetRawExpectedComponentType() const {
5510 return GetPackedField<ExpectedComponentTypeField>();
5511 }
5512
ComputeSideEffects()5513 void ComputeSideEffects() {
5514 Primitive::Type type = GetComponentType();
5515 SetSideEffects(SideEffects::ArrayWriteOfType(type).Union(
5516 SideEffectsForArchRuntimeCalls(type)));
5517 }
5518
SideEffectsForArchRuntimeCalls(Primitive::Type value_type)5519 static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
5520 return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
5521 }
5522
5523 DECLARE_INSTRUCTION(ArraySet);
5524
5525 private:
5526 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
5527 static constexpr size_t kFieldExpectedComponentTypeSize =
5528 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
5529 static constexpr size_t kFlagNeedsTypeCheck =
5530 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
5531 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
5532 // Cached information for the reference_type_info_ so that codegen
5533 // does not need to inspect the static type.
5534 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
5535 static constexpr size_t kNumberOfArraySetPackedBits =
5536 kFlagStaticTypeOfArrayIsObjectArray + 1;
5537 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5538 using ExpectedComponentTypeField =
5539 BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
5540
5541 DISALLOW_COPY_AND_ASSIGN(HArraySet);
5542 };
5543
5544 class HArrayLength FINAL : public HExpression<1> {
5545 public:
5546 HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
HExpression(Primitive::kPrimInt,SideEffects::None (),dex_pc)5547 : HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
5548 SetPackedFlag<kFlagIsStringLength>(is_string_length);
5549 // Note that arrays do not change length, so the instruction does not
5550 // depend on any write.
5551 SetRawInputAt(0, array);
5552 }
5553
CanBeMoved()5554 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5555 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5556 return true;
5557 }
CanDoImplicitNullCheckOn(HInstruction * obj)5558 bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
5559 return obj == InputAt(0);
5560 }
5561
IsStringLength()5562 bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
5563
5564 DECLARE_INSTRUCTION(ArrayLength);
5565
5566 private:
5567 // We treat a String as an array, creating the HArrayLength from String.length()
5568 // or String.isEmpty() intrinsic in the instruction simplifier. We can always
5569 // determine whether a particular HArrayLength is actually a String.length() by
5570 // looking at the type of the input but that requires holding the mutator lock, so
5571 // we prefer to use a flag, so that code generators don't need to do the locking.
5572 static constexpr size_t kFlagIsStringLength = kNumberOfExpressionPackedBits;
5573 static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
5574 static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
5575 "Too many packed fields.");
5576
5577 DISALLOW_COPY_AND_ASSIGN(HArrayLength);
5578 };
5579
5580 class HBoundsCheck FINAL : public HExpression<2> {
5581 public:
5582 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
5583 // constructor.
5584 HBoundsCheck(HInstruction* index,
5585 HInstruction* length,
5586 uint32_t dex_pc,
5587 bool string_char_at = false)
5588 : HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
5589 DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType()));
5590 SetPackedFlag<kFlagIsStringCharAt>(string_char_at);
5591 SetRawInputAt(0, index);
5592 SetRawInputAt(1, length);
5593 }
5594
CanBeMoved()5595 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5596 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
5597 return true;
5598 }
5599
NeedsEnvironment()5600 bool NeedsEnvironment() const OVERRIDE { return true; }
5601
CanThrow()5602 bool CanThrow() const OVERRIDE { return true; }
5603
IsStringCharAt()5604 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
5605
GetIndex()5606 HInstruction* GetIndex() const { return InputAt(0); }
5607
5608 DECLARE_INSTRUCTION(BoundsCheck);
5609
5610 private:
5611 static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits;
5612
5613 DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
5614 };
5615
5616 class HSuspendCheck FINAL : public HTemplateInstruction<0> {
5617 public:
5618 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::CanTriggerGC (),dex_pc)5619 : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
5620
NeedsEnvironment()5621 bool NeedsEnvironment() const OVERRIDE {
5622 return true;
5623 }
5624
SetSlowPath(SlowPathCode * slow_path)5625 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()5626 SlowPathCode* GetSlowPath() const { return slow_path_; }
5627
5628 DECLARE_INSTRUCTION(SuspendCheck);
5629
5630 private:
5631 // Only used for code generation, in order to share the same slow path between back edges
5632 // of a same loop.
5633 SlowPathCode* slow_path_;
5634
5635 DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
5636 };
5637
5638 // Pseudo-instruction which provides the native debugger with mapping information.
5639 // It ensures that we can generate line number and local variables at this point.
5640 class HNativeDebugInfo : public HTemplateInstruction<0> {
5641 public:
HNativeDebugInfo(uint32_t dex_pc)5642 explicit HNativeDebugInfo(uint32_t dex_pc)
5643 : HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
5644
NeedsEnvironment()5645 bool NeedsEnvironment() const OVERRIDE {
5646 return true;
5647 }
5648
5649 DECLARE_INSTRUCTION(NativeDebugInfo);
5650
5651 private:
5652 DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
5653 };
5654
5655 /**
5656 * Instruction to load a Class object.
5657 */
5658 class HLoadClass FINAL : public HInstruction {
5659 public:
5660 // Determines how to load the Class.
5661 enum class LoadKind {
5662 // We cannot load this class. See HSharpening::SharpenLoadClass.
5663 kInvalid = -1,
5664
5665 // Use the Class* from the method's own ArtMethod*.
5666 kReferrersClass,
5667
5668 // Use PC-relative boot image Class* address that will be known at link time.
5669 // Used for boot image classes referenced by boot image code.
5670 kBootImageLinkTimePcRelative,
5671
5672 // Use a known boot image Class* address, embedded in the code by the codegen.
5673 // Used for boot image classes referenced by apps in AOT- and JIT-compiled code.
5674 kBootImageAddress,
5675
5676 // Load from an entry in the .bss section using a PC-relative load.
5677 // Used for classes outside boot image when .bss is accessible with a PC-relative load.
5678 kBssEntry,
5679
5680 // Load from the root table associated with the JIT compiled method.
5681 kJitTableAddress,
5682
5683 // Load using a simple runtime call. This is the fall-back load kind when
5684 // the codegen is unable to use another appropriate kind.
5685 kRuntimeCall,
5686
5687 kLast = kRuntimeCall
5688 };
5689
HLoadClass(HCurrentMethod * current_method,dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check)5690 HLoadClass(HCurrentMethod* current_method,
5691 dex::TypeIndex type_index,
5692 const DexFile& dex_file,
5693 Handle<mirror::Class> klass,
5694 bool is_referrers_class,
5695 uint32_t dex_pc,
5696 bool needs_access_check)
5697 : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
5698 special_input_(HUserRecord<HInstruction*>(current_method)),
5699 type_index_(type_index),
5700 dex_file_(dex_file),
5701 klass_(klass),
5702 loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
5703 // Referrers class should not need access check. We never inline unverified
5704 // methods so we can't possibly end up in this situation.
5705 DCHECK(!is_referrers_class || !needs_access_check);
5706
5707 SetPackedField<LoadKindField>(
5708 is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
5709 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
5710 SetPackedFlag<kFlagIsInBootImage>(false);
5711 SetPackedFlag<kFlagGenerateClInitCheck>(false);
5712 }
5713
5714 void SetLoadKind(LoadKind load_kind);
5715
GetLoadKind()5716 LoadKind GetLoadKind() const {
5717 return GetPackedField<LoadKindField>();
5718 }
5719
CanBeMoved()5720 bool CanBeMoved() const OVERRIDE { return true; }
5721
5722 bool InstructionDataEquals(const HInstruction* other) const;
5723
ComputeHashCode()5724 size_t ComputeHashCode() const OVERRIDE { return type_index_.index_; }
5725
CanBeNull()5726 bool CanBeNull() const OVERRIDE { return false; }
5727
NeedsEnvironment()5728 bool NeedsEnvironment() const OVERRIDE {
5729 return CanCallRuntime();
5730 }
5731
SetMustGenerateClinitCheck(bool generate_clinit_check)5732 void SetMustGenerateClinitCheck(bool generate_clinit_check) {
5733 // The entrypoint the code generator is going to call does not do
5734 // clinit of the class.
5735 DCHECK(!NeedsAccessCheck());
5736 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
5737 }
5738
CanCallRuntime()5739 bool CanCallRuntime() const {
5740 return NeedsAccessCheck() ||
5741 MustGenerateClinitCheck() ||
5742 GetLoadKind() == LoadKind::kRuntimeCall ||
5743 GetLoadKind() == LoadKind::kBssEntry;
5744 }
5745
CanThrow()5746 bool CanThrow() const OVERRIDE {
5747 return NeedsAccessCheck() ||
5748 MustGenerateClinitCheck() ||
5749 // If the class is in the boot image, the lookup in the runtime call cannot throw.
5750 // This keeps CanThrow() consistent between non-PIC (using kBootImageAddress) and
5751 // PIC and subsequently avoids a DCE behavior dependency on the PIC option.
5752 ((GetLoadKind() == LoadKind::kRuntimeCall ||
5753 GetLoadKind() == LoadKind::kBssEntry) &&
5754 !IsInBootImage());
5755 }
5756
GetLoadedClassRTI()5757 ReferenceTypeInfo GetLoadedClassRTI() {
5758 return loaded_class_rti_;
5759 }
5760
SetLoadedClassRTI(ReferenceTypeInfo rti)5761 void SetLoadedClassRTI(ReferenceTypeInfo rti) {
5762 // Make sure we only set exact types (the loaded class should never be merged).
5763 DCHECK(rti.IsExact());
5764 loaded_class_rti_ = rti;
5765 }
5766
GetTypeIndex()5767 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()5768 const DexFile& GetDexFile() const { return dex_file_; }
5769
NeedsDexCacheOfDeclaringClass()5770 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
5771 return GetLoadKind() == LoadKind::kRuntimeCall;
5772 }
5773
SideEffectsForArchRuntimeCalls()5774 static SideEffects SideEffectsForArchRuntimeCalls() {
5775 return SideEffects::CanTriggerGC();
5776 }
5777
IsReferrersClass()5778 bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
NeedsAccessCheck()5779 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
IsInBootImage()5780 bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
MustGenerateClinitCheck()5781 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
5782
MarkInBootImage()5783 void MarkInBootImage() {
5784 SetPackedFlag<kFlagIsInBootImage>(true);
5785 }
5786
5787 void AddSpecialInput(HInstruction* special_input);
5788
5789 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()5790 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
5791 return ArrayRef<HUserRecord<HInstruction*>>(
5792 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
5793 }
5794
GetType()5795 Primitive::Type GetType() const OVERRIDE {
5796 return Primitive::kPrimNot;
5797 }
5798
GetClass()5799 Handle<mirror::Class> GetClass() const {
5800 return klass_;
5801 }
5802
5803 DECLARE_INSTRUCTION(LoadClass);
5804
5805 private:
5806 static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits;
5807 static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1;
5808 // Whether this instruction must generate the initialization check.
5809 // Used for code generation.
5810 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
5811 static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1;
5812 static constexpr size_t kFieldLoadKindSize =
5813 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5814 static constexpr size_t kNumberOfLoadClassPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5815 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
5816 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5817
HasTypeReference(LoadKind load_kind)5818 static bool HasTypeReference(LoadKind load_kind) {
5819 return load_kind == LoadKind::kReferrersClass ||
5820 load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5821 load_kind == LoadKind::kBssEntry ||
5822 load_kind == LoadKind::kRuntimeCall;
5823 }
5824
5825 void SetLoadKindInternal(LoadKind load_kind);
5826
5827 // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
5828 // For other load kinds it's empty or possibly some architecture-specific instruction
5829 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
5830 HUserRecord<HInstruction*> special_input_;
5831
5832 // A type index and dex file where the class can be accessed. The dex file can be:
5833 // - The compiling method's dex file if the class is defined there too.
5834 // - The compiling method's dex file if the class is referenced there.
5835 // - The dex file where the class is defined. When the load kind can only be
5836 // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
5837 const dex::TypeIndex type_index_;
5838 const DexFile& dex_file_;
5839
5840 Handle<mirror::Class> klass_;
5841
5842 ReferenceTypeInfo loaded_class_rti_;
5843
5844 DISALLOW_COPY_AND_ASSIGN(HLoadClass);
5845 };
5846 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
5847
5848 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
AddSpecialInput(HInstruction * special_input)5849 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
5850 // The special input is used for PC-relative loads on some architectures,
5851 // including literal pool loads, which are PC-relative too.
5852 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5853 GetLoadKind() == LoadKind::kBootImageAddress ||
5854 GetLoadKind() == LoadKind::kBssEntry) << GetLoadKind();
5855 DCHECK(special_input_.GetInstruction() == nullptr);
5856 special_input_ = HUserRecord<HInstruction*>(special_input);
5857 special_input->AddUseAt(this, 0);
5858 }
5859
5860 class HLoadString FINAL : public HInstruction {
5861 public:
5862 // Determines how to load the String.
5863 enum class LoadKind {
5864 // Use PC-relative boot image String* address that will be known at link time.
5865 // Used for boot image strings referenced by boot image code.
5866 kBootImageLinkTimePcRelative,
5867
5868 // Use a known boot image String* address, embedded in the code by the codegen.
5869 // Used for boot image strings referenced by apps in AOT- and JIT-compiled code.
5870 kBootImageAddress,
5871
5872 // Load from an entry in the .bss section using a PC-relative load.
5873 // Used for strings outside boot image when .bss is accessible with a PC-relative load.
5874 kBssEntry,
5875
5876 // Load from the root table associated with the JIT compiled method.
5877 kJitTableAddress,
5878
5879 // Load using a simple runtime call. This is the fall-back load kind when
5880 // the codegen is unable to use another appropriate kind.
5881 kRuntimeCall,
5882
5883 kLast = kRuntimeCall,
5884 };
5885
HLoadString(HCurrentMethod * current_method,dex::StringIndex string_index,const DexFile & dex_file,uint32_t dex_pc)5886 HLoadString(HCurrentMethod* current_method,
5887 dex::StringIndex string_index,
5888 const DexFile& dex_file,
5889 uint32_t dex_pc)
5890 : HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
5891 special_input_(HUserRecord<HInstruction*>(current_method)),
5892 string_index_(string_index),
5893 dex_file_(dex_file) {
5894 SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
5895 }
5896
5897 void SetLoadKind(LoadKind load_kind);
5898
GetLoadKind()5899 LoadKind GetLoadKind() const {
5900 return GetPackedField<LoadKindField>();
5901 }
5902
GetDexFile()5903 const DexFile& GetDexFile() const {
5904 return dex_file_;
5905 }
5906
GetStringIndex()5907 dex::StringIndex GetStringIndex() const {
5908 return string_index_;
5909 }
5910
GetString()5911 Handle<mirror::String> GetString() const {
5912 return string_;
5913 }
5914
SetString(Handle<mirror::String> str)5915 void SetString(Handle<mirror::String> str) {
5916 string_ = str;
5917 }
5918
CanBeMoved()5919 bool CanBeMoved() const OVERRIDE { return true; }
5920
5921 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE;
5922
ComputeHashCode()5923 size_t ComputeHashCode() const OVERRIDE { return string_index_.index_; }
5924
5925 // Will call the runtime if we need to load the string through
5926 // the dex cache and the string is not guaranteed to be there yet.
NeedsEnvironment()5927 bool NeedsEnvironment() const OVERRIDE {
5928 LoadKind load_kind = GetLoadKind();
5929 if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
5930 load_kind == LoadKind::kBootImageAddress ||
5931 load_kind == LoadKind::kJitTableAddress) {
5932 return false;
5933 }
5934 return true;
5935 }
5936
NeedsDexCacheOfDeclaringClass()5937 bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
5938 return GetLoadKind() == LoadKind::kRuntimeCall;
5939 }
5940
CanBeNull()5941 bool CanBeNull() const OVERRIDE { return false; }
CanThrow()5942 bool CanThrow() const OVERRIDE { return NeedsEnvironment(); }
5943
SideEffectsForArchRuntimeCalls()5944 static SideEffects SideEffectsForArchRuntimeCalls() {
5945 return SideEffects::CanTriggerGC();
5946 }
5947
5948 void AddSpecialInput(HInstruction* special_input);
5949
5950 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()5951 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
5952 return ArrayRef<HUserRecord<HInstruction*>>(
5953 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
5954 }
5955
GetType()5956 Primitive::Type GetType() const OVERRIDE {
5957 return Primitive::kPrimNot;
5958 }
5959
5960 DECLARE_INSTRUCTION(LoadString);
5961
5962 private:
5963 static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
5964 static constexpr size_t kFieldLoadKindSize =
5965 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
5966 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
5967 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5968 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
5969
5970 void SetLoadKindInternal(LoadKind load_kind);
5971
5972 // The special input is the HCurrentMethod for kRuntimeCall.
5973 // For other load kinds it's empty or possibly some architecture-specific instruction
5974 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
5975 HUserRecord<HInstruction*> special_input_;
5976
5977 dex::StringIndex string_index_;
5978 const DexFile& dex_file_;
5979
5980 Handle<mirror::String> string_;
5981
5982 DISALLOW_COPY_AND_ASSIGN(HLoadString);
5983 };
5984 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
5985
5986 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
AddSpecialInput(HInstruction * special_input)5987 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
5988 // The special input is used for PC-relative loads on some architectures,
5989 // including literal pool loads, which are PC-relative too.
5990 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
5991 GetLoadKind() == LoadKind::kBssEntry ||
5992 GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind();
5993 // HLoadString::GetInputRecords() returns an empty array at this point,
5994 // so use the GetInputRecords() from the base class to set the input record.
5995 DCHECK(special_input_.GetInstruction() == nullptr);
5996 special_input_ = HUserRecord<HInstruction*>(special_input);
5997 special_input->AddUseAt(this, 0);
5998 }
5999
6000 /**
6001 * Performs an initialization check on its Class object input.
6002 */
6003 class HClinitCheck FINAL : public HExpression<1> {
6004 public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)6005 HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
6006 : HExpression(
6007 Primitive::kPrimNot,
6008 SideEffects::AllChanges(), // Assume write/read on all fields/arrays.
6009 dex_pc) {
6010 SetRawInputAt(0, constant);
6011 }
6012
CanBeMoved()6013 bool CanBeMoved() const OVERRIDE { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6014 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6015 return true;
6016 }
6017
NeedsEnvironment()6018 bool NeedsEnvironment() const OVERRIDE {
6019 // May call runtime to initialize the class.
6020 return true;
6021 }
6022
CanThrow()6023 bool CanThrow() const OVERRIDE { return true; }
6024
GetLoadClass()6025 HLoadClass* GetLoadClass() const {
6026 DCHECK(InputAt(0)->IsLoadClass());
6027 return InputAt(0)->AsLoadClass();
6028 }
6029
6030 DECLARE_INSTRUCTION(ClinitCheck);
6031
6032 private:
6033 DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
6034 };
6035
6036 class HStaticFieldGet FINAL : public HExpression<1> {
6037 public:
HStaticFieldGet(HInstruction * cls,ArtField * field,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6038 HStaticFieldGet(HInstruction* cls,
6039 ArtField* field,
6040 Primitive::Type field_type,
6041 MemberOffset field_offset,
6042 bool is_volatile,
6043 uint32_t field_idx,
6044 uint16_t declaring_class_def_index,
6045 const DexFile& dex_file,
6046 uint32_t dex_pc)
6047 : HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
6048 field_info_(field,
6049 field_offset,
6050 field_type,
6051 is_volatile,
6052 field_idx,
6053 declaring_class_def_index,
6054 dex_file) {
6055 SetRawInputAt(0, cls);
6056 }
6057
6058
CanBeMoved()6059 bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
6060
InstructionDataEquals(const HInstruction * other)6061 bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
6062 const HStaticFieldGet* other_get = other->AsStaticFieldGet();
6063 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6064 }
6065
ComputeHashCode()6066 size_t ComputeHashCode() const OVERRIDE {
6067 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6068 }
6069
GetFieldInfo()6070 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6071 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()6072 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()6073 bool IsVolatile() const { return field_info_.IsVolatile(); }
6074
6075 DECLARE_INSTRUCTION(StaticFieldGet);
6076
6077 private:
6078 const FieldInfo field_info_;
6079
6080 DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
6081 };
6082
6083 class HStaticFieldSet FINAL : public HTemplateInstruction<2> {
6084 public:
HStaticFieldSet(HInstruction * cls,HInstruction * value,ArtField * field,Primitive::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6085 HStaticFieldSet(HInstruction* cls,
6086 HInstruction* value,
6087 ArtField* field,
6088 Primitive::Type field_type,
6089 MemberOffset field_offset,
6090 bool is_volatile,
6091 uint32_t field_idx,
6092 uint16_t declaring_class_def_index,
6093 const DexFile& dex_file,
6094 uint32_t dex_pc)
6095 : HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
6096 field_info_(field,
6097 field_offset,
6098 field_type,
6099 is_volatile,
6100 field_idx,
6101 declaring_class_def_index,
6102 dex_file) {
6103 SetPackedFlag<kFlagValueCanBeNull>(true);
6104 SetRawInputAt(0, cls);
6105 SetRawInputAt(1, value);
6106 }
6107
GetFieldInfo()6108 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6109 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()6110 Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()6111 bool IsVolatile() const { return field_info_.IsVolatile(); }
6112
GetValue()6113 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()6114 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()6115 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
6116
6117 DECLARE_INSTRUCTION(StaticFieldSet);
6118
6119 private:
6120 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6121 static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
6122 static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
6123 "Too many packed fields.");
6124
6125 const FieldInfo field_info_;
6126
6127 DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
6128 };
6129
6130 class HUnresolvedInstanceFieldGet FINAL : public HExpression<1> {
6131 public:
HUnresolvedInstanceFieldGet(HInstruction * obj,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)6132 HUnresolvedInstanceFieldGet(HInstruction* obj,
6133 Primitive::Type field_type,
6134 uint32_t field_index,
6135 uint32_t dex_pc)
6136 : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
6137 field_index_(field_index) {
6138 SetRawInputAt(0, obj);
6139 }
6140
NeedsEnvironment()6141 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()6142 bool CanThrow() const OVERRIDE { return true; }
6143
GetFieldType()6144 Primitive::Type GetFieldType() const { return GetType(); }
GetFieldIndex()6145 uint32_t GetFieldIndex() const { return field_index_; }
6146
6147 DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
6148
6149 private:
6150 const uint32_t field_index_;
6151
6152 DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
6153 };
6154
6155 class HUnresolvedInstanceFieldSet FINAL : public HTemplateInstruction<2> {
6156 public:
HUnresolvedInstanceFieldSet(HInstruction * obj,HInstruction * value,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)6157 HUnresolvedInstanceFieldSet(HInstruction* obj,
6158 HInstruction* value,
6159 Primitive::Type field_type,
6160 uint32_t field_index,
6161 uint32_t dex_pc)
6162 : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
6163 field_index_(field_index) {
6164 SetPackedField<FieldTypeField>(field_type);
6165 DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
6166 SetRawInputAt(0, obj);
6167 SetRawInputAt(1, value);
6168 }
6169
NeedsEnvironment()6170 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()6171 bool CanThrow() const OVERRIDE { return true; }
6172
GetFieldType()6173 Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()6174 uint32_t GetFieldIndex() const { return field_index_; }
6175
6176 DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
6177
6178 private:
6179 static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
6180 static constexpr size_t kFieldFieldTypeSize =
6181 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
6182 static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
6183 kFieldFieldType + kFieldFieldTypeSize;
6184 static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6185 "Too many packed fields.");
6186 using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
6187
6188 const uint32_t field_index_;
6189
6190 DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
6191 };
6192
6193 class HUnresolvedStaticFieldGet FINAL : public HExpression<0> {
6194 public:
HUnresolvedStaticFieldGet(Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)6195 HUnresolvedStaticFieldGet(Primitive::Type field_type,
6196 uint32_t field_index,
6197 uint32_t dex_pc)
6198 : HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
6199 field_index_(field_index) {
6200 }
6201
NeedsEnvironment()6202 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()6203 bool CanThrow() const OVERRIDE { return true; }
6204
GetFieldType()6205 Primitive::Type GetFieldType() const { return GetType(); }
GetFieldIndex()6206 uint32_t GetFieldIndex() const { return field_index_; }
6207
6208 DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
6209
6210 private:
6211 const uint32_t field_index_;
6212
6213 DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
6214 };
6215
6216 class HUnresolvedStaticFieldSet FINAL : public HTemplateInstruction<1> {
6217 public:
HUnresolvedStaticFieldSet(HInstruction * value,Primitive::Type field_type,uint32_t field_index,uint32_t dex_pc)6218 HUnresolvedStaticFieldSet(HInstruction* value,
6219 Primitive::Type field_type,
6220 uint32_t field_index,
6221 uint32_t dex_pc)
6222 : HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
6223 field_index_(field_index) {
6224 SetPackedField<FieldTypeField>(field_type);
6225 DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
6226 SetRawInputAt(0, value);
6227 }
6228
NeedsEnvironment()6229 bool NeedsEnvironment() const OVERRIDE { return true; }
CanThrow()6230 bool CanThrow() const OVERRIDE { return true; }
6231
GetFieldType()6232 Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
GetFieldIndex()6233 uint32_t GetFieldIndex() const { return field_index_; }
6234
6235 DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
6236
6237 private:
6238 static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
6239 static constexpr size_t kFieldFieldTypeSize =
6240 MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
6241 static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
6242 kFieldFieldType + kFieldFieldTypeSize;
6243 static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6244 "Too many packed fields.");
6245 using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
6246
6247 const uint32_t field_index_;
6248
6249 DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
6250 };
6251
6252 // Implement the move-exception DEX instruction.
6253 class HLoadException FINAL : public HExpression<0> {
6254 public:
6255 explicit HLoadException(uint32_t dex_pc = kNoDexPc)
HExpression(Primitive::kPrimNot,SideEffects::None (),dex_pc)6256 : HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
6257
CanBeNull()6258 bool CanBeNull() const OVERRIDE { return false; }
6259
6260 DECLARE_INSTRUCTION(LoadException);
6261
6262 private:
6263 DISALLOW_COPY_AND_ASSIGN(HLoadException);
6264 };
6265
6266 // Implicit part of move-exception which clears thread-local exception storage.
6267 // Must not be removed because the runtime expects the TLS to get cleared.
6268 class HClearException FINAL : public HTemplateInstruction<0> {
6269 public:
6270 explicit HClearException(uint32_t dex_pc = kNoDexPc)
HTemplateInstruction(SideEffects::AllWrites (),dex_pc)6271 : HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
6272
6273 DECLARE_INSTRUCTION(ClearException);
6274
6275 private:
6276 DISALLOW_COPY_AND_ASSIGN(HClearException);
6277 };
6278
6279 class HThrow FINAL : public HTemplateInstruction<1> {
6280 public:
HThrow(HInstruction * exception,uint32_t dex_pc)6281 HThrow(HInstruction* exception, uint32_t dex_pc)
6282 : HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
6283 SetRawInputAt(0, exception);
6284 }
6285
IsControlFlow()6286 bool IsControlFlow() const OVERRIDE { return true; }
6287
NeedsEnvironment()6288 bool NeedsEnvironment() const OVERRIDE { return true; }
6289
CanThrow()6290 bool CanThrow() const OVERRIDE { return true; }
6291
6292
6293 DECLARE_INSTRUCTION(Throw);
6294
6295 private:
6296 DISALLOW_COPY_AND_ASSIGN(HThrow);
6297 };
6298
6299 /**
6300 * Implementation strategies for the code generator of a HInstanceOf
6301 * or `HCheckCast`.
6302 */
6303 enum class TypeCheckKind {
6304 kUnresolvedCheck, // Check against an unresolved type.
6305 kExactCheck, // Can do a single class compare.
6306 kClassHierarchyCheck, // Can just walk the super class chain.
6307 kAbstractClassCheck, // Can just walk the super class chain, starting one up.
6308 kInterfaceCheck, // No optimization yet when checking against an interface.
6309 kArrayObjectCheck, // Can just check if the array is not primitive.
6310 kArrayCheck, // No optimization yet when checking against a generic array.
6311 kLast = kArrayCheck
6312 };
6313
6314 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
6315
6316 class HInstanceOf FINAL : public HExpression<2> {
6317 public:
HInstanceOf(HInstruction * object,HLoadClass * constant,TypeCheckKind check_kind,uint32_t dex_pc)6318 HInstanceOf(HInstruction* object,
6319 HLoadClass* constant,
6320 TypeCheckKind check_kind,
6321 uint32_t dex_pc)
6322 : HExpression(Primitive::kPrimBoolean,
6323 SideEffectsForArchRuntimeCalls(check_kind),
6324 dex_pc) {
6325 SetPackedField<TypeCheckKindField>(check_kind);
6326 SetPackedFlag<kFlagMustDoNullCheck>(true);
6327 SetRawInputAt(0, object);
6328 SetRawInputAt(1, constant);
6329 }
6330
CanBeMoved()6331 bool CanBeMoved() const OVERRIDE { return true; }
6332
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6333 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
6334 return true;
6335 }
6336
NeedsEnvironment()6337 bool NeedsEnvironment() const OVERRIDE {
6338 return CanCallRuntime(GetTypeCheckKind());
6339 }
6340
6341 // Used only in code generation.
MustDoNullCheck()6342 bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
ClearMustDoNullCheck()6343 void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
GetTypeCheckKind()6344