1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/execution.h"
6
7 #include "src/bootstrapper.h"
8 #include "src/codegen.h"
9 #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
10 #include "src/debug/debug.h"
11 #include "src/isolate-inl.h"
12 #include "src/messages.h"
13 #include "src/runtime-profiler.h"
14 #include "src/vm-state-inl.h"
15
16 namespace v8 {
17 namespace internal {
18
StackGuard()19 StackGuard::StackGuard()
20 : isolate_(NULL) {
21 }
22
23
set_interrupt_limits(const ExecutionAccess & lock)24 void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) {
25 DCHECK(isolate_ != NULL);
26 thread_local_.set_jslimit(kInterruptLimit);
27 thread_local_.set_climit(kInterruptLimit);
28 isolate_->heap()->SetStackLimits();
29 }
30
31
reset_limits(const ExecutionAccess & lock)32 void StackGuard::reset_limits(const ExecutionAccess& lock) {
33 DCHECK(isolate_ != NULL);
34 thread_local_.set_jslimit(thread_local_.real_jslimit_);
35 thread_local_.set_climit(thread_local_.real_climit_);
36 isolate_->heap()->SetStackLimits();
37 }
38
39
PrintDeserializedCodeInfo(Handle<JSFunction> function)40 static void PrintDeserializedCodeInfo(Handle<JSFunction> function) {
41 if (function->code() == function->shared()->code() &&
42 function->shared()->deserialized()) {
43 PrintF("[Running deserialized script");
44 Object* script = function->shared()->script();
45 if (script->IsScript()) {
46 Object* name = Script::cast(script)->name();
47 if (name->IsString()) {
48 PrintF(": %s", String::cast(name)->ToCString().get());
49 }
50 }
51 PrintF("]\n");
52 }
53 }
54
55
56 namespace {
57
Invoke(Isolate * isolate,bool is_construct,Handle<Object> target,Handle<Object> receiver,int argc,Handle<Object> args[],Handle<Object> new_target,Execution::MessageHandling message_handling)58 MUST_USE_RESULT MaybeHandle<Object> Invoke(
59 Isolate* isolate, bool is_construct, Handle<Object> target,
60 Handle<Object> receiver, int argc, Handle<Object> args[],
61 Handle<Object> new_target, Execution::MessageHandling message_handling) {
62 DCHECK(!receiver->IsJSGlobalObject());
63
64 #ifdef USE_SIMULATOR
65 // Simulators use separate stacks for C++ and JS. JS stack overflow checks
66 // are performed whenever a JS function is called. However, it can be the case
67 // that the C++ stack grows faster than the JS stack, resulting in an overflow
68 // there. Add a check here to make that less likely.
69 StackLimitCheck check(isolate);
70 if (check.HasOverflowed()) {
71 isolate->StackOverflow();
72 if (message_handling == Execution::MessageHandling::kReport) {
73 isolate->ReportPendingMessages();
74 }
75 return MaybeHandle<Object>();
76 }
77 #endif
78
79 // api callbacks can be called directly.
80 if (target->IsJSFunction()) {
81 Handle<JSFunction> function = Handle<JSFunction>::cast(target);
82 if ((!is_construct || function->IsConstructor()) &&
83 function->shared()->IsApiFunction()) {
84 SaveContext save(isolate);
85 isolate->set_context(function->context());
86 DCHECK(function->context()->global_object()->IsJSGlobalObject());
87 if (is_construct) receiver = isolate->factory()->the_hole_value();
88 auto value = Builtins::InvokeApiFunction(
89 isolate, is_construct, function, receiver, argc, args,
90 Handle<HeapObject>::cast(new_target));
91 bool has_exception = value.is_null();
92 DCHECK(has_exception == isolate->has_pending_exception());
93 if (has_exception) {
94 if (message_handling == Execution::MessageHandling::kReport) {
95 isolate->ReportPendingMessages();
96 }
97 return MaybeHandle<Object>();
98 } else {
99 isolate->clear_pending_message();
100 }
101 return value;
102 }
103 }
104
105 // Entering JavaScript.
106 VMState<JS> state(isolate);
107 CHECK(AllowJavascriptExecution::IsAllowed(isolate));
108 if (!ThrowOnJavascriptExecution::IsAllowed(isolate)) {
109 isolate->ThrowIllegalOperation();
110 if (message_handling == Execution::MessageHandling::kReport) {
111 isolate->ReportPendingMessages();
112 }
113 return MaybeHandle<Object>();
114 }
115
116 // Placeholder for return value.
117 Object* value = NULL;
118
119 typedef Object* (*JSEntryFunction)(Object* new_target, Object* target,
120 Object* receiver, int argc,
121 Object*** args);
122
123 Handle<Code> code = is_construct
124 ? isolate->factory()->js_construct_entry_code()
125 : isolate->factory()->js_entry_code();
126
127 {
128 // Save and restore context around invocation and block the
129 // allocation of handles without explicit handle scopes.
130 SaveContext save(isolate);
131 SealHandleScope shs(isolate);
132 JSEntryFunction stub_entry = FUNCTION_CAST<JSEntryFunction>(code->entry());
133
134 if (FLAG_clear_exceptions_on_js_entry) isolate->clear_pending_exception();
135
136 // Call the function through the right JS entry stub.
137 Object* orig_func = *new_target;
138 Object* func = *target;
139 Object* recv = *receiver;
140 Object*** argv = reinterpret_cast<Object***>(args);
141 if (FLAG_profile_deserialization && target->IsJSFunction()) {
142 PrintDeserializedCodeInfo(Handle<JSFunction>::cast(target));
143 }
144 RuntimeCallTimerScope timer(isolate, &RuntimeCallStats::JS_Execution);
145 value = CALL_GENERATED_CODE(isolate, stub_entry, orig_func, func, recv,
146 argc, argv);
147 }
148
149 #ifdef VERIFY_HEAP
150 if (FLAG_verify_heap) {
151 value->ObjectVerify();
152 }
153 #endif
154
155 // Update the pending exception flag and return the value.
156 bool has_exception = value->IsException(isolate);
157 DCHECK(has_exception == isolate->has_pending_exception());
158 if (has_exception) {
159 if (message_handling == Execution::MessageHandling::kReport) {
160 isolate->ReportPendingMessages();
161 }
162 return MaybeHandle<Object>();
163 } else {
164 isolate->clear_pending_message();
165 }
166
167 return Handle<Object>(value, isolate);
168 }
169
CallInternal(Isolate * isolate,Handle<Object> callable,Handle<Object> receiver,int argc,Handle<Object> argv[],Execution::MessageHandling message_handling)170 MaybeHandle<Object> CallInternal(Isolate* isolate, Handle<Object> callable,
171 Handle<Object> receiver, int argc,
172 Handle<Object> argv[],
173 Execution::MessageHandling message_handling) {
174 // Convert calls on global objects to be calls on the global
175 // receiver instead to avoid having a 'this' pointer which refers
176 // directly to a global object.
177 if (receiver->IsJSGlobalObject()) {
178 receiver =
179 handle(Handle<JSGlobalObject>::cast(receiver)->global_proxy(), isolate);
180 }
181 return Invoke(isolate, false, callable, receiver, argc, argv,
182 isolate->factory()->undefined_value(), message_handling);
183 }
184
185 } // namespace
186
187 // static
Call(Isolate * isolate,Handle<Object> callable,Handle<Object> receiver,int argc,Handle<Object> argv[])188 MaybeHandle<Object> Execution::Call(Isolate* isolate, Handle<Object> callable,
189 Handle<Object> receiver, int argc,
190 Handle<Object> argv[]) {
191 return CallInternal(isolate, callable, receiver, argc, argv,
192 MessageHandling::kReport);
193 }
194
195
196 // static
New(Handle<JSFunction> constructor,int argc,Handle<Object> argv[])197 MaybeHandle<Object> Execution::New(Handle<JSFunction> constructor, int argc,
198 Handle<Object> argv[]) {
199 return New(constructor->GetIsolate(), constructor, constructor, argc, argv);
200 }
201
202
203 // static
New(Isolate * isolate,Handle<Object> constructor,Handle<Object> new_target,int argc,Handle<Object> argv[])204 MaybeHandle<Object> Execution::New(Isolate* isolate, Handle<Object> constructor,
205 Handle<Object> new_target, int argc,
206 Handle<Object> argv[]) {
207 return Invoke(isolate, true, constructor,
208 isolate->factory()->undefined_value(), argc, argv, new_target,
209 MessageHandling::kReport);
210 }
211
TryCall(Isolate * isolate,Handle<Object> callable,Handle<Object> receiver,int argc,Handle<Object> args[],MessageHandling message_handling,MaybeHandle<Object> * exception_out)212 MaybeHandle<Object> Execution::TryCall(Isolate* isolate,
213 Handle<Object> callable,
214 Handle<Object> receiver, int argc,
215 Handle<Object> args[],
216 MessageHandling message_handling,
217 MaybeHandle<Object>* exception_out) {
218 bool is_termination = false;
219 MaybeHandle<Object> maybe_result;
220 if (exception_out != NULL) *exception_out = MaybeHandle<Object>();
221 DCHECK_IMPLIES(message_handling == MessageHandling::kKeepPending,
222 exception_out == nullptr);
223 // Enter a try-block while executing the JavaScript code. To avoid
224 // duplicate error printing it must be non-verbose. Also, to avoid
225 // creating message objects during stack overflow we shouldn't
226 // capture messages.
227 {
228 v8::TryCatch catcher(reinterpret_cast<v8::Isolate*>(isolate));
229 catcher.SetVerbose(false);
230 catcher.SetCaptureMessage(false);
231
232 maybe_result =
233 CallInternal(isolate, callable, receiver, argc, args, message_handling);
234
235 if (maybe_result.is_null()) {
236 DCHECK(isolate->has_pending_exception());
237 if (isolate->pending_exception() ==
238 isolate->heap()->termination_exception()) {
239 is_termination = true;
240 } else {
241 if (exception_out != nullptr) {
242 DCHECK(catcher.HasCaught());
243 DCHECK(isolate->external_caught_exception());
244 *exception_out = v8::Utils::OpenHandle(*catcher.Exception());
245 }
246 }
247 if (message_handling == MessageHandling::kReport) {
248 isolate->OptionalRescheduleException(true);
249 }
250 }
251 }
252
253 // Re-request terminate execution interrupt to trigger later.
254 if (is_termination) isolate->stack_guard()->RequestTerminateExecution();
255
256 return maybe_result;
257 }
258
259
SetStackLimit(uintptr_t limit)260 void StackGuard::SetStackLimit(uintptr_t limit) {
261 ExecutionAccess access(isolate_);
262 // If the current limits are special (e.g. due to a pending interrupt) then
263 // leave them alone.
264 uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit);
265 if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
266 thread_local_.set_jslimit(jslimit);
267 }
268 if (thread_local_.climit() == thread_local_.real_climit_) {
269 thread_local_.set_climit(limit);
270 }
271 thread_local_.real_climit_ = limit;
272 thread_local_.real_jslimit_ = jslimit;
273 }
274
275
AdjustStackLimitForSimulator()276 void StackGuard::AdjustStackLimitForSimulator() {
277 ExecutionAccess access(isolate_);
278 uintptr_t climit = thread_local_.real_climit_;
279 // If the current limits are special (e.g. due to a pending interrupt) then
280 // leave them alone.
281 uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, climit);
282 if (thread_local_.jslimit() == thread_local_.real_jslimit_) {
283 thread_local_.set_jslimit(jslimit);
284 isolate_->heap()->SetStackLimits();
285 }
286 }
287
288
EnableInterrupts()289 void StackGuard::EnableInterrupts() {
290 ExecutionAccess access(isolate_);
291 if (has_pending_interrupts(access)) {
292 set_interrupt_limits(access);
293 }
294 }
295
296
DisableInterrupts()297 void StackGuard::DisableInterrupts() {
298 ExecutionAccess access(isolate_);
299 reset_limits(access);
300 }
301
302
PushPostponeInterruptsScope(PostponeInterruptsScope * scope)303 void StackGuard::PushPostponeInterruptsScope(PostponeInterruptsScope* scope) {
304 ExecutionAccess access(isolate_);
305 // Intercept already requested interrupts.
306 int intercepted = thread_local_.interrupt_flags_ & scope->intercept_mask_;
307 scope->intercepted_flags_ = intercepted;
308 thread_local_.interrupt_flags_ &= ~intercepted;
309 if (!has_pending_interrupts(access)) reset_limits(access);
310 // Add scope to the chain.
311 scope->prev_ = thread_local_.postpone_interrupts_;
312 thread_local_.postpone_interrupts_ = scope;
313 }
314
315
PopPostponeInterruptsScope()316 void StackGuard::PopPostponeInterruptsScope() {
317 ExecutionAccess access(isolate_);
318 PostponeInterruptsScope* top = thread_local_.postpone_interrupts_;
319 // Make intercepted interrupts active.
320 DCHECK((thread_local_.interrupt_flags_ & top->intercept_mask_) == 0);
321 thread_local_.interrupt_flags_ |= top->intercepted_flags_;
322 if (has_pending_interrupts(access)) set_interrupt_limits(access);
323 // Remove scope from chain.
324 thread_local_.postpone_interrupts_ = top->prev_;
325 }
326
327
CheckInterrupt(InterruptFlag flag)328 bool StackGuard::CheckInterrupt(InterruptFlag flag) {
329 ExecutionAccess access(isolate_);
330 return thread_local_.interrupt_flags_ & flag;
331 }
332
333
RequestInterrupt(InterruptFlag flag)334 void StackGuard::RequestInterrupt(InterruptFlag flag) {
335 ExecutionAccess access(isolate_);
336 // Check the chain of PostponeInterruptsScopes for interception.
337 if (thread_local_.postpone_interrupts_ &&
338 thread_local_.postpone_interrupts_->Intercept(flag)) {
339 return;
340 }
341
342 // Not intercepted. Set as active interrupt flag.
343 thread_local_.interrupt_flags_ |= flag;
344 set_interrupt_limits(access);
345
346 // If this isolate is waiting in a futex, notify it to wake up.
347 isolate_->futex_wait_list_node()->NotifyWake();
348 }
349
350
ClearInterrupt(InterruptFlag flag)351 void StackGuard::ClearInterrupt(InterruptFlag flag) {
352 ExecutionAccess access(isolate_);
353 // Clear the interrupt flag from the chain of PostponeInterruptsScopes.
354 for (PostponeInterruptsScope* current = thread_local_.postpone_interrupts_;
355 current != NULL;
356 current = current->prev_) {
357 current->intercepted_flags_ &= ~flag;
358 }
359
360 // Clear the interrupt flag from the active interrupt flags.
361 thread_local_.interrupt_flags_ &= ~flag;
362 if (!has_pending_interrupts(access)) reset_limits(access);
363 }
364
365
CheckAndClearInterrupt(InterruptFlag flag)366 bool StackGuard::CheckAndClearInterrupt(InterruptFlag flag) {
367 ExecutionAccess access(isolate_);
368 bool result = (thread_local_.interrupt_flags_ & flag);
369 thread_local_.interrupt_flags_ &= ~flag;
370 if (!has_pending_interrupts(access)) reset_limits(access);
371 return result;
372 }
373
374
ArchiveStackGuard(char * to)375 char* StackGuard::ArchiveStackGuard(char* to) {
376 ExecutionAccess access(isolate_);
377 MemCopy(to, reinterpret_cast<char*>(&thread_local_), sizeof(ThreadLocal));
378 ThreadLocal blank;
379
380 // Set the stack limits using the old thread_local_.
381 // TODO(isolates): This was the old semantics of constructing a ThreadLocal
382 // (as the ctor called SetStackLimits, which looked at the
383 // current thread_local_ from StackGuard)-- but is this
384 // really what was intended?
385 isolate_->heap()->SetStackLimits();
386 thread_local_ = blank;
387
388 return to + sizeof(ThreadLocal);
389 }
390
391
RestoreStackGuard(char * from)392 char* StackGuard::RestoreStackGuard(char* from) {
393 ExecutionAccess access(isolate_);
394 MemCopy(reinterpret_cast<char*>(&thread_local_), from, sizeof(ThreadLocal));
395 isolate_->heap()->SetStackLimits();
396 return from + sizeof(ThreadLocal);
397 }
398
399
FreeThreadResources()400 void StackGuard::FreeThreadResources() {
401 Isolate::PerIsolateThreadData* per_thread =
402 isolate_->FindOrAllocatePerThreadDataForThisThread();
403 per_thread->set_stack_limit(thread_local_.real_climit_);
404 }
405
406
Clear()407 void StackGuard::ThreadLocal::Clear() {
408 real_jslimit_ = kIllegalLimit;
409 set_jslimit(kIllegalLimit);
410 real_climit_ = kIllegalLimit;
411 set_climit(kIllegalLimit);
412 postpone_interrupts_ = NULL;
413 interrupt_flags_ = 0;
414 }
415
416
Initialize(Isolate * isolate)417 bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) {
418 bool should_set_stack_limits = false;
419 if (real_climit_ == kIllegalLimit) {
420 const uintptr_t kLimitSize = FLAG_stack_size * KB;
421 DCHECK(GetCurrentStackPosition() > kLimitSize);
422 uintptr_t limit = GetCurrentStackPosition() - kLimitSize;
423 real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit);
424 set_jslimit(SimulatorStack::JsLimitFromCLimit(isolate, limit));
425 real_climit_ = limit;
426 set_climit(limit);
427 should_set_stack_limits = true;
428 }
429 postpone_interrupts_ = NULL;
430 interrupt_flags_ = 0;
431 return should_set_stack_limits;
432 }
433
434
ClearThread(const ExecutionAccess & lock)435 void StackGuard::ClearThread(const ExecutionAccess& lock) {
436 thread_local_.Clear();
437 isolate_->heap()->SetStackLimits();
438 }
439
440
InitThread(const ExecutionAccess & lock)441 void StackGuard::InitThread(const ExecutionAccess& lock) {
442 if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits();
443 Isolate::PerIsolateThreadData* per_thread =
444 isolate_->FindOrAllocatePerThreadDataForThisThread();
445 uintptr_t stored_limit = per_thread->stack_limit();
446 // You should hold the ExecutionAccess lock when you call this.
447 if (stored_limit != 0) {
448 SetStackLimit(stored_limit);
449 }
450 }
451
452
453 // --- C a l l s t o n a t i v e s ---
454
455
HandleGCInterrupt()456 void StackGuard::HandleGCInterrupt() {
457 if (CheckAndClearInterrupt(GC_REQUEST)) {
458 isolate_->heap()->HandleGCRequest();
459 }
460 }
461
462
HandleInterrupts()463 Object* StackGuard::HandleInterrupts() {
464 if (FLAG_verify_predictable) {
465 // Advance synthetic time by making a time request.
466 isolate_->heap()->MonotonicallyIncreasingTimeInMs();
467 }
468
469 if (CheckAndClearInterrupt(GC_REQUEST)) {
470 isolate_->heap()->HandleGCRequest();
471 }
472
473 if (CheckDebugBreak()) {
474 isolate_->debug()->HandleDebugBreak();
475 }
476
477 if (CheckAndClearInterrupt(TERMINATE_EXECUTION)) {
478 return isolate_->TerminateExecution();
479 }
480
481 if (CheckAndClearInterrupt(DEOPT_MARKED_ALLOCATION_SITES)) {
482 isolate_->heap()->DeoptMarkedAllocationSites();
483 }
484
485 if (CheckAndClearInterrupt(INSTALL_CODE)) {
486 DCHECK(isolate_->concurrent_recompilation_enabled());
487 isolate_->optimizing_compile_dispatcher()->InstallOptimizedFunctions();
488 }
489
490 if (CheckAndClearInterrupt(API_INTERRUPT)) {
491 // Callbacks must be invoked outside of ExecusionAccess lock.
492 isolate_->InvokeApiInterruptCallbacks();
493 }
494
495 isolate_->counters()->stack_interrupts()->Increment();
496 isolate_->counters()->runtime_profiler_ticks()->Increment();
497 isolate_->runtime_profiler()->MarkCandidatesForOptimization();
498
499 return isolate_->heap()->undefined_value();
500 }
501
502 } // namespace internal
503 } // namespace v8
504