1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39
40 #define DEBUG_TYPE "loop-simplify"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Constants.h"
43 #include "llvm/Instructions.h"
44 #include "llvm/IntrinsicInst.h"
45 #include "llvm/Function.h"
46 #include "llvm/LLVMContext.h"
47 #include "llvm/Type.h"
48 #include "llvm/Analysis/AliasAnalysis.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/InstructionSimplify.h"
51 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/Analysis/ScalarEvolution.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Support/CFG.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/ADT/SetOperations.h"
58 #include "llvm/ADT/SetVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 using namespace llvm;
62
63 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64 STATISTIC(NumNested , "Number of nested loops split out");
65
66 namespace {
67 struct LoopSimplify : public LoopPass {
68 static char ID; // Pass identification, replacement for typeid
LoopSimplify__anon3b1638a20111::LoopSimplify69 LoopSimplify() : LoopPass(ID) {
70 initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71 }
72
73 // AA - If we have an alias analysis object to update, this is it, otherwise
74 // this is null.
75 AliasAnalysis *AA;
76 LoopInfo *LI;
77 DominatorTree *DT;
78 ScalarEvolution *SE;
79 Loop *L;
80 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
getAnalysisUsage__anon3b1638a20111::LoopSimplify82 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83 // We need loop information to identify the loops...
84 AU.addRequired<DominatorTree>();
85 AU.addPreserved<DominatorTree>();
86
87 AU.addRequired<LoopInfo>();
88 AU.addPreserved<LoopInfo>();
89
90 AU.addPreserved<AliasAnalysis>();
91 AU.addPreserved<ScalarEvolution>();
92 AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
93 }
94
95 /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
96 void verifyAnalysis() const;
97
98 private:
99 bool ProcessLoop(Loop *L, LPPassManager &LPM);
100 BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
101 BasicBlock *InsertPreheaderForLoop(Loop *L);
102 Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM);
103 BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
104 void PlaceSplitBlockCarefully(BasicBlock *NewBB,
105 SmallVectorImpl<BasicBlock*> &SplitPreds,
106 Loop *L);
107 };
108 }
109
110 char LoopSimplify::ID = 0;
111 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
112 "Canonicalize natural loops", true, false)
113 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
115 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
116 "Canonicalize natural loops", true, false)
117
118 // Publicly exposed interface to pass...
119 char &llvm::LoopSimplifyID = LoopSimplify::ID;
createLoopSimplifyPass()120 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
121
122 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
123 /// it in any convenient order) inserting preheaders...
124 ///
runOnLoop(Loop * l,LPPassManager & LPM)125 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
126 L = l;
127 bool Changed = false;
128 LI = &getAnalysis<LoopInfo>();
129 AA = getAnalysisIfAvailable<AliasAnalysis>();
130 DT = &getAnalysis<DominatorTree>();
131 SE = getAnalysisIfAvailable<ScalarEvolution>();
132
133 Changed |= ProcessLoop(L, LPM);
134
135 return Changed;
136 }
137
138 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
139 /// all loops have preheaders.
140 ///
ProcessLoop(Loop * L,LPPassManager & LPM)141 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
142 bool Changed = false;
143 ReprocessLoop:
144
145 // Check to see that no blocks (other than the header) in this loop have
146 // predecessors that are not in the loop. This is not valid for natural
147 // loops, but can occur if the blocks are unreachable. Since they are
148 // unreachable we can just shamelessly delete those CFG edges!
149 for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
150 BB != E; ++BB) {
151 if (*BB == L->getHeader()) continue;
152
153 SmallPtrSet<BasicBlock*, 4> BadPreds;
154 for (pred_iterator PI = pred_begin(*BB),
155 PE = pred_end(*BB); PI != PE; ++PI) {
156 BasicBlock *P = *PI;
157 if (!L->contains(P))
158 BadPreds.insert(P);
159 }
160
161 // Delete each unique out-of-loop (and thus dead) predecessor.
162 for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
163 E = BadPreds.end(); I != E; ++I) {
164
165 DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
166 << (*I)->getName() << "\n");
167
168 // Inform each successor of each dead pred.
169 for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
170 (*SI)->removePredecessor(*I);
171 // Zap the dead pred's terminator and replace it with unreachable.
172 TerminatorInst *TI = (*I)->getTerminator();
173 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
174 (*I)->getTerminator()->eraseFromParent();
175 new UnreachableInst((*I)->getContext(), *I);
176 Changed = true;
177 }
178 }
179
180 // If there are exiting blocks with branches on undef, resolve the undef in
181 // the direction which will exit the loop. This will help simplify loop
182 // trip count computations.
183 SmallVector<BasicBlock*, 8> ExitingBlocks;
184 L->getExitingBlocks(ExitingBlocks);
185 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
186 E = ExitingBlocks.end(); I != E; ++I)
187 if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
188 if (BI->isConditional()) {
189 if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
190
191 DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
192 << (*I)->getName() << "\n");
193
194 BI->setCondition(ConstantInt::get(Cond->getType(),
195 !L->contains(BI->getSuccessor(0))));
196 Changed = true;
197 }
198 }
199
200 // Does the loop already have a preheader? If so, don't insert one.
201 BasicBlock *Preheader = L->getLoopPreheader();
202 if (!Preheader) {
203 Preheader = InsertPreheaderForLoop(L);
204 if (Preheader) {
205 ++NumInserted;
206 Changed = true;
207 }
208 }
209
210 // Next, check to make sure that all exit nodes of the loop only have
211 // predecessors that are inside of the loop. This check guarantees that the
212 // loop preheader/header will dominate the exit blocks. If the exit block has
213 // predecessors from outside of the loop, split the edge now.
214 SmallVector<BasicBlock*, 8> ExitBlocks;
215 L->getExitBlocks(ExitBlocks);
216
217 SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
218 ExitBlocks.end());
219 for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
220 E = ExitBlockSet.end(); I != E; ++I) {
221 BasicBlock *ExitBlock = *I;
222 for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
223 PI != PE; ++PI)
224 // Must be exactly this loop: no subloops, parent loops, or non-loop preds
225 // allowed.
226 if (!L->contains(*PI)) {
227 if (RewriteLoopExitBlock(L, ExitBlock)) {
228 ++NumInserted;
229 Changed = true;
230 }
231 break;
232 }
233 }
234
235 // If the header has more than two predecessors at this point (from the
236 // preheader and from multiple backedges), we must adjust the loop.
237 BasicBlock *LoopLatch = L->getLoopLatch();
238 if (!LoopLatch) {
239 // If this is really a nested loop, rip it out into a child loop. Don't do
240 // this for loops with a giant number of backedges, just factor them into a
241 // common backedge instead.
242 if (L->getNumBackEdges() < 8) {
243 if (SeparateNestedLoop(L, LPM)) {
244 ++NumNested;
245 // This is a big restructuring change, reprocess the whole loop.
246 Changed = true;
247 // GCC doesn't tail recursion eliminate this.
248 goto ReprocessLoop;
249 }
250 }
251
252 // If we either couldn't, or didn't want to, identify nesting of the loops,
253 // insert a new block that all backedges target, then make it jump to the
254 // loop header.
255 LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
256 if (LoopLatch) {
257 ++NumInserted;
258 Changed = true;
259 }
260 }
261
262 // Scan over the PHI nodes in the loop header. Since they now have only two
263 // incoming values (the loop is canonicalized), we may have simplified the PHI
264 // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
265 PHINode *PN;
266 for (BasicBlock::iterator I = L->getHeader()->begin();
267 (PN = dyn_cast<PHINode>(I++)); )
268 if (Value *V = SimplifyInstruction(PN, 0, DT)) {
269 if (AA) AA->deleteValue(PN);
270 if (SE) SE->forgetValue(PN);
271 PN->replaceAllUsesWith(V);
272 PN->eraseFromParent();
273 }
274
275 // If this loop has multiple exits and the exits all go to the same
276 // block, attempt to merge the exits. This helps several passes, such
277 // as LoopRotation, which do not support loops with multiple exits.
278 // SimplifyCFG also does this (and this code uses the same utility
279 // function), however this code is loop-aware, where SimplifyCFG is
280 // not. That gives it the advantage of being able to hoist
281 // loop-invariant instructions out of the way to open up more
282 // opportunities, and the disadvantage of having the responsibility
283 // to preserve dominator information.
284 bool UniqueExit = true;
285 if (!ExitBlocks.empty())
286 for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
287 if (ExitBlocks[i] != ExitBlocks[0]) {
288 UniqueExit = false;
289 break;
290 }
291 if (UniqueExit) {
292 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
293 BasicBlock *ExitingBlock = ExitingBlocks[i];
294 if (!ExitingBlock->getSinglePredecessor()) continue;
295 BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
296 if (!BI || !BI->isConditional()) continue;
297 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
298 if (!CI || CI->getParent() != ExitingBlock) continue;
299
300 // Attempt to hoist out all instructions except for the
301 // comparison and the branch.
302 bool AllInvariant = true;
303 for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
304 Instruction *Inst = I++;
305 // Skip debug info intrinsics.
306 if (isa<DbgInfoIntrinsic>(Inst))
307 continue;
308 if (Inst == CI)
309 continue;
310 if (!L->makeLoopInvariant(Inst, Changed,
311 Preheader ? Preheader->getTerminator() : 0)) {
312 AllInvariant = false;
313 break;
314 }
315 }
316 if (!AllInvariant) continue;
317
318 // The block has now been cleared of all instructions except for
319 // a comparison and a conditional branch. SimplifyCFG may be able
320 // to fold it now.
321 if (!FoldBranchToCommonDest(BI)) continue;
322
323 // Success. The block is now dead, so remove it from the loop,
324 // update the dominator tree and delete it.
325 DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
326 << ExitingBlock->getName() << "\n");
327
328 // If any reachable control flow within this loop has changed, notify
329 // ScalarEvolution. Currently assume the parent loop doesn't change
330 // (spliting edges doesn't count). If blocks, CFG edges, or other values
331 // in the parent loop change, then we need call to forgetLoop() for the
332 // parent instead.
333 if (SE)
334 SE->forgetLoop(L);
335
336 assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
337 Changed = true;
338 LI->removeBlock(ExitingBlock);
339
340 DomTreeNode *Node = DT->getNode(ExitingBlock);
341 const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
342 Node->getChildren();
343 while (!Children.empty()) {
344 DomTreeNode *Child = Children.front();
345 DT->changeImmediateDominator(Child, Node->getIDom());
346 }
347 DT->eraseNode(ExitingBlock);
348
349 BI->getSuccessor(0)->removePredecessor(ExitingBlock);
350 BI->getSuccessor(1)->removePredecessor(ExitingBlock);
351 ExitingBlock->eraseFromParent();
352 }
353 }
354
355 return Changed;
356 }
357
358 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
359 /// preheader, this method is called to insert one. This method has two phases:
360 /// preheader insertion and analysis updating.
361 ///
InsertPreheaderForLoop(Loop * L)362 BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
363 BasicBlock *Header = L->getHeader();
364
365 // Compute the set of predecessors of the loop that are not in the loop.
366 SmallVector<BasicBlock*, 8> OutsideBlocks;
367 for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
368 PI != PE; ++PI) {
369 BasicBlock *P = *PI;
370 if (!L->contains(P)) { // Coming in from outside the loop?
371 // If the loop is branched to from an indirect branch, we won't
372 // be able to fully transform the loop, because it prohibits
373 // edge splitting.
374 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
375
376 // Keep track of it.
377 OutsideBlocks.push_back(P);
378 }
379 }
380
381 // Split out the loop pre-header.
382 BasicBlock *NewBB =
383 SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
384 ".preheader", this);
385
386 NewBB->getTerminator()->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
387 DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << NewBB->getName()
388 << "\n");
389
390 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
391 // code layout too horribly.
392 PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
393
394 return NewBB;
395 }
396
397 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
398 /// blocks. This method is used to split exit blocks that have predecessors
399 /// outside of the loop.
RewriteLoopExitBlock(Loop * L,BasicBlock * Exit)400 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
401 SmallVector<BasicBlock*, 8> LoopBlocks;
402 for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
403 BasicBlock *P = *I;
404 if (L->contains(P)) {
405 // Don't do this if the loop is exited via an indirect branch.
406 if (isa<IndirectBrInst>(P->getTerminator())) return 0;
407
408 LoopBlocks.push_back(P);
409 }
410 }
411
412 assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
413 BasicBlock *NewExitBB = 0;
414
415 if (Exit->isLandingPad()) {
416 SmallVector<BasicBlock*, 2> NewBBs;
417 SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
418 LoopBlocks.size()),
419 ".loopexit", ".nonloopexit",
420 this, NewBBs);
421 NewExitBB = NewBBs[0];
422 } else {
423 NewExitBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
424 LoopBlocks.size(), ".loopexit",
425 this);
426 }
427
428 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
429 << NewExitBB->getName() << "\n");
430 return NewExitBB;
431 }
432
433 /// AddBlockAndPredsToSet - Add the specified block, and all of its
434 /// predecessors, to the specified set, if it's not already in there. Stop
435 /// predecessor traversal when we reach StopBlock.
AddBlockAndPredsToSet(BasicBlock * InputBB,BasicBlock * StopBlock,std::set<BasicBlock * > & Blocks)436 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
437 std::set<BasicBlock*> &Blocks) {
438 std::vector<BasicBlock *> WorkList;
439 WorkList.push_back(InputBB);
440 do {
441 BasicBlock *BB = WorkList.back(); WorkList.pop_back();
442 if (Blocks.insert(BB).second && BB != StopBlock)
443 // If BB is not already processed and it is not a stop block then
444 // insert its predecessor in the work list
445 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
446 BasicBlock *WBB = *I;
447 WorkList.push_back(WBB);
448 }
449 } while(!WorkList.empty());
450 }
451
452 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
453 /// PHI node that tells us how to partition the loops.
FindPHIToPartitionLoops(Loop * L,DominatorTree * DT,AliasAnalysis * AA,LoopInfo * LI)454 static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
455 AliasAnalysis *AA, LoopInfo *LI) {
456 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
457 PHINode *PN = cast<PHINode>(I);
458 ++I;
459 if (Value *V = SimplifyInstruction(PN, 0, DT)) {
460 // This is a degenerate PHI already, don't modify it!
461 PN->replaceAllUsesWith(V);
462 if (AA) AA->deleteValue(PN);
463 PN->eraseFromParent();
464 continue;
465 }
466
467 // Scan this PHI node looking for a use of the PHI node by itself.
468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
469 if (PN->getIncomingValue(i) == PN &&
470 L->contains(PN->getIncomingBlock(i)))
471 // We found something tasty to remove.
472 return PN;
473 }
474 return 0;
475 }
476
477 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
478 // right after some 'outside block' block. This prevents the preheader from
479 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
PlaceSplitBlockCarefully(BasicBlock * NewBB,SmallVectorImpl<BasicBlock * > & SplitPreds,Loop * L)480 void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
481 SmallVectorImpl<BasicBlock*> &SplitPreds,
482 Loop *L) {
483 // Check to see if NewBB is already well placed.
484 Function::iterator BBI = NewBB; --BBI;
485 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
486 if (&*BBI == SplitPreds[i])
487 return;
488 }
489
490 // If it isn't already after an outside block, move it after one. This is
491 // always good as it makes the uncond branch from the outside block into a
492 // fall-through.
493
494 // Figure out *which* outside block to put this after. Prefer an outside
495 // block that neighbors a BB actually in the loop.
496 BasicBlock *FoundBB = 0;
497 for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
498 Function::iterator BBI = SplitPreds[i];
499 if (++BBI != NewBB->getParent()->end() &&
500 L->contains(BBI)) {
501 FoundBB = SplitPreds[i];
502 break;
503 }
504 }
505
506 // If our heuristic for a *good* bb to place this after doesn't find
507 // anything, just pick something. It's likely better than leaving it within
508 // the loop.
509 if (!FoundBB)
510 FoundBB = SplitPreds[0];
511 NewBB->moveAfter(FoundBB);
512 }
513
514
515 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
516 /// them out into a nested loop. This is important for code that looks like
517 /// this:
518 ///
519 /// Loop:
520 /// ...
521 /// br cond, Loop, Next
522 /// ...
523 /// br cond2, Loop, Out
524 ///
525 /// To identify this common case, we look at the PHI nodes in the header of the
526 /// loop. PHI nodes with unchanging values on one backedge correspond to values
527 /// that change in the "outer" loop, but not in the "inner" loop.
528 ///
529 /// If we are able to separate out a loop, return the new outer loop that was
530 /// created.
531 ///
SeparateNestedLoop(Loop * L,LPPassManager & LPM)532 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM) {
533 PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
534 if (PN == 0) return 0; // No known way to partition.
535
536 // Pull out all predecessors that have varying values in the loop. This
537 // handles the case when a PHI node has multiple instances of itself as
538 // arguments.
539 SmallVector<BasicBlock*, 8> OuterLoopPreds;
540 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
541 if (PN->getIncomingValue(i) != PN ||
542 !L->contains(PN->getIncomingBlock(i))) {
543 // We can't split indirectbr edges.
544 if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
545 return 0;
546
547 OuterLoopPreds.push_back(PN->getIncomingBlock(i));
548 }
549
550 DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
551
552 // If ScalarEvolution is around and knows anything about values in
553 // this loop, tell it to forget them, because we're about to
554 // substantially change it.
555 if (SE)
556 SE->forgetLoop(L);
557
558 BasicBlock *Header = L->getHeader();
559 BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
560 OuterLoopPreds.size(),
561 ".outer", this);
562
563 // Make sure that NewBB is put someplace intelligent, which doesn't mess up
564 // code layout too horribly.
565 PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
566
567 // Create the new outer loop.
568 Loop *NewOuter = new Loop();
569
570 // Change the parent loop to use the outer loop as its child now.
571 if (Loop *Parent = L->getParentLoop())
572 Parent->replaceChildLoopWith(L, NewOuter);
573 else
574 LI->changeTopLevelLoop(L, NewOuter);
575
576 // L is now a subloop of our outer loop.
577 NewOuter->addChildLoop(L);
578
579 // Add the new loop to the pass manager queue.
580 LPM.insertLoopIntoQueue(NewOuter);
581
582 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
583 I != E; ++I)
584 NewOuter->addBlockEntry(*I);
585
586 // Now reset the header in L, which had been moved by
587 // SplitBlockPredecessors for the outer loop.
588 L->moveToHeader(Header);
589
590 // Determine which blocks should stay in L and which should be moved out to
591 // the Outer loop now.
592 std::set<BasicBlock*> BlocksInL;
593 for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
594 BasicBlock *P = *PI;
595 if (DT->dominates(Header, P))
596 AddBlockAndPredsToSet(P, Header, BlocksInL);
597 }
598
599 // Scan all of the loop children of L, moving them to OuterLoop if they are
600 // not part of the inner loop.
601 const std::vector<Loop*> &SubLoops = L->getSubLoops();
602 for (size_t I = 0; I != SubLoops.size(); )
603 if (BlocksInL.count(SubLoops[I]->getHeader()))
604 ++I; // Loop remains in L
605 else
606 NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
607
608 // Now that we know which blocks are in L and which need to be moved to
609 // OuterLoop, move any blocks that need it.
610 for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
611 BasicBlock *BB = L->getBlocks()[i];
612 if (!BlocksInL.count(BB)) {
613 // Move this block to the parent, updating the exit blocks sets
614 L->removeBlockFromLoop(BB);
615 if ((*LI)[BB] == L)
616 LI->changeLoopFor(BB, NewOuter);
617 --i;
618 }
619 }
620
621 return NewOuter;
622 }
623
624
625
626 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
627 /// has more than one backedge in it. If this occurs, revector all of these
628 /// backedges to target a new basic block and have that block branch to the loop
629 /// header. This ensures that loops have exactly one backedge.
630 ///
631 BasicBlock *
InsertUniqueBackedgeBlock(Loop * L,BasicBlock * Preheader)632 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
633 assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
634
635 // Get information about the loop
636 BasicBlock *Header = L->getHeader();
637 Function *F = Header->getParent();
638
639 // Unique backedge insertion currently depends on having a preheader.
640 if (!Preheader)
641 return 0;
642
643 // Figure out which basic blocks contain back-edges to the loop header.
644 std::vector<BasicBlock*> BackedgeBlocks;
645 for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
646 BasicBlock *P = *I;
647
648 // Indirectbr edges cannot be split, so we must fail if we find one.
649 if (isa<IndirectBrInst>(P->getTerminator()))
650 return 0;
651
652 if (P != Preheader) BackedgeBlocks.push_back(P);
653 }
654
655 // Create and insert the new backedge block...
656 BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
657 Header->getName()+".backedge", F);
658 BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
659
660 DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
661 << BEBlock->getName() << "\n");
662
663 // Move the new backedge block to right after the last backedge block.
664 Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
665 F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
666
667 // Now that the block has been inserted into the function, create PHI nodes in
668 // the backedge block which correspond to any PHI nodes in the header block.
669 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
670 PHINode *PN = cast<PHINode>(I);
671 PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
672 PN->getName()+".be", BETerminator);
673 if (AA) AA->copyValue(PN, NewPN);
674
675 // Loop over the PHI node, moving all entries except the one for the
676 // preheader over to the new PHI node.
677 unsigned PreheaderIdx = ~0U;
678 bool HasUniqueIncomingValue = true;
679 Value *UniqueValue = 0;
680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
681 BasicBlock *IBB = PN->getIncomingBlock(i);
682 Value *IV = PN->getIncomingValue(i);
683 if (IBB == Preheader) {
684 PreheaderIdx = i;
685 } else {
686 NewPN->addIncoming(IV, IBB);
687 if (HasUniqueIncomingValue) {
688 if (UniqueValue == 0)
689 UniqueValue = IV;
690 else if (UniqueValue != IV)
691 HasUniqueIncomingValue = false;
692 }
693 }
694 }
695
696 // Delete all of the incoming values from the old PN except the preheader's
697 assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
698 if (PreheaderIdx != 0) {
699 PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
700 PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
701 }
702 // Nuke all entries except the zero'th.
703 for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
704 PN->removeIncomingValue(e-i, false);
705
706 // Finally, add the newly constructed PHI node as the entry for the BEBlock.
707 PN->addIncoming(NewPN, BEBlock);
708
709 // As an optimization, if all incoming values in the new PhiNode (which is a
710 // subset of the incoming values of the old PHI node) have the same value,
711 // eliminate the PHI Node.
712 if (HasUniqueIncomingValue) {
713 NewPN->replaceAllUsesWith(UniqueValue);
714 if (AA) AA->deleteValue(NewPN);
715 BEBlock->getInstList().erase(NewPN);
716 }
717 }
718
719 // Now that all of the PHI nodes have been inserted and adjusted, modify the
720 // backedge blocks to just to the BEBlock instead of the header.
721 for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
722 TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
723 for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
724 if (TI->getSuccessor(Op) == Header)
725 TI->setSuccessor(Op, BEBlock);
726 }
727
728 //===--- Update all analyses which we must preserve now -----------------===//
729
730 // Update Loop Information - we know that this block is now in the current
731 // loop and all parent loops.
732 L->addBasicBlockToLoop(BEBlock, LI->getBase());
733
734 // Update dominator information
735 DT->splitBlock(BEBlock);
736
737 return BEBlock;
738 }
739
verifyAnalysis() const740 void LoopSimplify::verifyAnalysis() const {
741 // It used to be possible to just assert L->isLoopSimplifyForm(), however
742 // with the introduction of indirectbr, there are now cases where it's
743 // not possible to transform a loop as necessary. We can at least check
744 // that there is an indirectbr near any time there's trouble.
745
746 // Indirectbr can interfere with preheader and unique backedge insertion.
747 if (!L->getLoopPreheader() || !L->getLoopLatch()) {
748 bool HasIndBrPred = false;
749 for (pred_iterator PI = pred_begin(L->getHeader()),
750 PE = pred_end(L->getHeader()); PI != PE; ++PI)
751 if (isa<IndirectBrInst>((*PI)->getTerminator())) {
752 HasIndBrPred = true;
753 break;
754 }
755 assert(HasIndBrPred &&
756 "LoopSimplify has no excuse for missing loop header info!");
757 (void)HasIndBrPred;
758 }
759
760 // Indirectbr can interfere with exit block canonicalization.
761 if (!L->hasDedicatedExits()) {
762 bool HasIndBrExiting = false;
763 SmallVector<BasicBlock*, 8> ExitingBlocks;
764 L->getExitingBlocks(ExitingBlocks);
765 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
766 if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
767 HasIndBrExiting = true;
768 break;
769 }
770 }
771
772 assert(HasIndBrExiting &&
773 "LoopSimplify has no excuse for missing exit block info!");
774 (void)HasIndBrExiting;
775 }
776 }
777