• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "nodes.h"
17 
18 #include <cfloat>
19 
20 #include "art_method-inl.h"
21 #include "class_linker-inl.h"
22 #include "code_generator.h"
23 #include "common_dominator.h"
24 #include "ssa_builder.h"
25 #include "base/bit_vector-inl.h"
26 #include "base/bit_utils.h"
27 #include "base/stl_util.h"
28 #include "intrinsics.h"
29 #include "mirror/class-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 
32 namespace art {
33 
34 // Enable floating-point static evaluation during constant folding
35 // only if all floating-point operations and constants evaluate in the
36 // range and precision of the type used (i.e., 32-bit float, 64-bit
37 // double).
38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39 
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41   ScopedObjectAccess soa(Thread::Current());
42   // Create the inexact Object reference type and store it in the HGraph.
43   ClassLinker* linker = Runtime::Current()->GetClassLinker();
44   inexact_object_rti_ = ReferenceTypeInfo::Create(
45       handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46       /* is_exact */ false);
47 }
48 
AddBlock(HBasicBlock * block)49 void HGraph::AddBlock(HBasicBlock* block) {
50   block->SetBlockId(blocks_.size());
51   blocks_.push_back(block);
52 }
53 
FindBackEdges(ArenaBitVector * visited)54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
55   // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56   DCHECK_EQ(visited->GetHighestBitSet(), -1);
57 
58   // Nodes that we're currently visiting, indexed by block id.
59   ArenaBitVector visiting(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
60   // Number of successors visited from a given node, indexed by block id.
61   ArenaVector<size_t> successors_visited(blocks_.size(),
62                                          0u,
63                                          arena_->Adapter(kArenaAllocGraphBuilder));
64   // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
65   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
66   constexpr size_t kDefaultWorklistSize = 8;
67   worklist.reserve(kDefaultWorklistSize);
68   visited->SetBit(entry_block_->GetBlockId());
69   visiting.SetBit(entry_block_->GetBlockId());
70   worklist.push_back(entry_block_);
71 
72   while (!worklist.empty()) {
73     HBasicBlock* current = worklist.back();
74     uint32_t current_id = current->GetBlockId();
75     if (successors_visited[current_id] == current->GetSuccessors().size()) {
76       visiting.ClearBit(current_id);
77       worklist.pop_back();
78     } else {
79       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
80       uint32_t successor_id = successor->GetBlockId();
81       if (visiting.IsBitSet(successor_id)) {
82         DCHECK(ContainsElement(worklist, successor));
83         successor->AddBackEdge(current);
84       } else if (!visited->IsBitSet(successor_id)) {
85         visited->SetBit(successor_id);
86         visiting.SetBit(successor_id);
87         worklist.push_back(successor);
88       }
89     }
90   }
91 }
92 
RemoveEnvironmentUses(HInstruction * instruction)93 static void RemoveEnvironmentUses(HInstruction* instruction) {
94   for (HEnvironment* environment = instruction->GetEnvironment();
95        environment != nullptr;
96        environment = environment->GetParent()) {
97     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
98       if (environment->GetInstructionAt(i) != nullptr) {
99         environment->RemoveAsUserOfInput(i);
100       }
101     }
102   }
103 }
104 
RemoveAsUser(HInstruction * instruction)105 static void RemoveAsUser(HInstruction* instruction) {
106   instruction->RemoveAsUserOfAllInputs();
107   RemoveEnvironmentUses(instruction);
108 }
109 
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const110 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
111   for (size_t i = 0; i < blocks_.size(); ++i) {
112     if (!visited.IsBitSet(i)) {
113       HBasicBlock* block = blocks_[i];
114       if (block == nullptr) continue;
115       DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
116       for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
117         RemoveAsUser(it.Current());
118       }
119     }
120   }
121 }
122 
RemoveDeadBlocks(const ArenaBitVector & visited)123 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
124   for (size_t i = 0; i < blocks_.size(); ++i) {
125     if (!visited.IsBitSet(i)) {
126       HBasicBlock* block = blocks_[i];
127       if (block == nullptr) continue;
128       // We only need to update the successor, which might be live.
129       for (HBasicBlock* successor : block->GetSuccessors()) {
130         successor->RemovePredecessor(block);
131       }
132       // Remove the block from the list of blocks, so that further analyses
133       // never see it.
134       blocks_[i] = nullptr;
135       if (block->IsExitBlock()) {
136         SetExitBlock(nullptr);
137       }
138       // Mark the block as removed. This is used by the HGraphBuilder to discard
139       // the block as a branch target.
140       block->SetGraph(nullptr);
141     }
142   }
143 }
144 
BuildDominatorTree()145 GraphAnalysisResult HGraph::BuildDominatorTree() {
146   ArenaBitVector visited(arena_, blocks_.size(), false, kArenaAllocGraphBuilder);
147 
148   // (1) Find the back edges in the graph doing a DFS traversal.
149   FindBackEdges(&visited);
150 
151   // (2) Remove instructions and phis from blocks not visited during
152   //     the initial DFS as users from other instructions, so that
153   //     users can be safely removed before uses later.
154   RemoveInstructionsAsUsersFromDeadBlocks(visited);
155 
156   // (3) Remove blocks not visited during the initial DFS.
157   //     Step (5) requires dead blocks to be removed from the
158   //     predecessors list of live blocks.
159   RemoveDeadBlocks(visited);
160 
161   // (4) Simplify the CFG now, so that we don't need to recompute
162   //     dominators and the reverse post order.
163   SimplifyCFG();
164 
165   // (5) Compute the dominance information and the reverse post order.
166   ComputeDominanceInformation();
167 
168   // (6) Analyze loops discovered through back edge analysis, and
169   //     set the loop information on each block.
170   GraphAnalysisResult result = AnalyzeLoops();
171   if (result != kAnalysisSuccess) {
172     return result;
173   }
174 
175   // (7) Precompute per-block try membership before entering the SSA builder,
176   //     which needs the information to build catch block phis from values of
177   //     locals at throwing instructions inside try blocks.
178   ComputeTryBlockInformation();
179 
180   return kAnalysisSuccess;
181 }
182 
ClearDominanceInformation()183 void HGraph::ClearDominanceInformation() {
184   for (HBasicBlock* block : GetReversePostOrder()) {
185     block->ClearDominanceInformation();
186   }
187   reverse_post_order_.clear();
188 }
189 
ClearLoopInformation()190 void HGraph::ClearLoopInformation() {
191   SetHasIrreducibleLoops(false);
192   for (HBasicBlock* block : GetReversePostOrder()) {
193     block->SetLoopInformation(nullptr);
194   }
195 }
196 
ClearDominanceInformation()197 void HBasicBlock::ClearDominanceInformation() {
198   dominated_blocks_.clear();
199   dominator_ = nullptr;
200 }
201 
GetFirstInstructionDisregardMoves() const202 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
203   HInstruction* instruction = GetFirstInstruction();
204   while (instruction->IsParallelMove()) {
205     instruction = instruction->GetNext();
206   }
207   return instruction;
208 }
209 
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)210 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
211   DCHECK(ContainsElement(block->GetSuccessors(), successor));
212 
213   HBasicBlock* old_dominator = successor->GetDominator();
214   HBasicBlock* new_dominator =
215       (old_dominator == nullptr) ? block
216                                  : CommonDominator::ForPair(old_dominator, block);
217 
218   if (old_dominator == new_dominator) {
219     return false;
220   } else {
221     successor->SetDominator(new_dominator);
222     return true;
223   }
224 }
225 
ComputeDominanceInformation()226 void HGraph::ComputeDominanceInformation() {
227   DCHECK(reverse_post_order_.empty());
228   reverse_post_order_.reserve(blocks_.size());
229   reverse_post_order_.push_back(entry_block_);
230 
231   // Number of visits of a given node, indexed by block id.
232   ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter(kArenaAllocGraphBuilder));
233   // Number of successors visited from a given node, indexed by block id.
234   ArenaVector<size_t> successors_visited(blocks_.size(),
235                                          0u,
236                                          arena_->Adapter(kArenaAllocGraphBuilder));
237   // Nodes for which we need to visit successors.
238   ArenaVector<HBasicBlock*> worklist(arena_->Adapter(kArenaAllocGraphBuilder));
239   constexpr size_t kDefaultWorklistSize = 8;
240   worklist.reserve(kDefaultWorklistSize);
241   worklist.push_back(entry_block_);
242 
243   while (!worklist.empty()) {
244     HBasicBlock* current = worklist.back();
245     uint32_t current_id = current->GetBlockId();
246     if (successors_visited[current_id] == current->GetSuccessors().size()) {
247       worklist.pop_back();
248     } else {
249       HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
250       UpdateDominatorOfSuccessor(current, successor);
251 
252       // Once all the forward edges have been visited, we know the immediate
253       // dominator of the block. We can then start visiting its successors.
254       if (++visits[successor->GetBlockId()] ==
255           successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
256         reverse_post_order_.push_back(successor);
257         worklist.push_back(successor);
258       }
259     }
260   }
261 
262   // Check if the graph has back edges not dominated by their respective headers.
263   // If so, we need to update the dominators of those headers and recursively of
264   // their successors. We do that with a fix-point iteration over all blocks.
265   // The algorithm is guaranteed to terminate because it loops only if the sum
266   // of all dominator chains has decreased in the current iteration.
267   bool must_run_fix_point = false;
268   for (HBasicBlock* block : blocks_) {
269     if (block != nullptr &&
270         block->IsLoopHeader() &&
271         block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
272       must_run_fix_point = true;
273       break;
274     }
275   }
276   if (must_run_fix_point) {
277     bool update_occurred = true;
278     while (update_occurred) {
279       update_occurred = false;
280       for (HBasicBlock* block : GetReversePostOrder()) {
281         for (HBasicBlock* successor : block->GetSuccessors()) {
282           update_occurred |= UpdateDominatorOfSuccessor(block, successor);
283         }
284       }
285     }
286   }
287 
288   // Make sure that there are no remaining blocks whose dominator information
289   // needs to be updated.
290   if (kIsDebugBuild) {
291     for (HBasicBlock* block : GetReversePostOrder()) {
292       for (HBasicBlock* successor : block->GetSuccessors()) {
293         DCHECK(!UpdateDominatorOfSuccessor(block, successor));
294       }
295     }
296   }
297 
298   // Populate `dominated_blocks_` information after computing all dominators.
299   // The potential presence of irreducible loops requires to do it after.
300   for (HBasicBlock* block : GetReversePostOrder()) {
301     if (!block->IsEntryBlock()) {
302       block->GetDominator()->AddDominatedBlock(block);
303     }
304   }
305 }
306 
SplitEdge(HBasicBlock * block,HBasicBlock * successor)307 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
308   HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc());
309   AddBlock(new_block);
310   // Use `InsertBetween` to ensure the predecessor index and successor index of
311   // `block` and `successor` are preserved.
312   new_block->InsertBetween(block, successor);
313   return new_block;
314 }
315 
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)316 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
317   // Insert a new node between `block` and `successor` to split the
318   // critical edge.
319   HBasicBlock* new_block = SplitEdge(block, successor);
320   new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc()));
321   if (successor->IsLoopHeader()) {
322     // If we split at a back edge boundary, make the new block the back edge.
323     HLoopInformation* info = successor->GetLoopInformation();
324     if (info->IsBackEdge(*block)) {
325       info->RemoveBackEdge(block);
326       info->AddBackEdge(new_block);
327     }
328   }
329 }
330 
SimplifyLoop(HBasicBlock * header)331 void HGraph::SimplifyLoop(HBasicBlock* header) {
332   HLoopInformation* info = header->GetLoopInformation();
333 
334   // Make sure the loop has only one pre header. This simplifies SSA building by having
335   // to just look at the pre header to know which locals are initialized at entry of the
336   // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
337   // this graph.
338   size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
339   if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
340     HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
341     AddBlock(pre_header);
342     pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc()));
343 
344     for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
345       HBasicBlock* predecessor = header->GetPredecessors()[pred];
346       if (!info->IsBackEdge(*predecessor)) {
347         predecessor->ReplaceSuccessor(header, pre_header);
348         pred--;
349       }
350     }
351     pre_header->AddSuccessor(header);
352   }
353 
354   // Make sure the first predecessor of a loop header is the incoming block.
355   if (info->IsBackEdge(*header->GetPredecessors()[0])) {
356     HBasicBlock* to_swap = header->GetPredecessors()[0];
357     for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
358       HBasicBlock* predecessor = header->GetPredecessors()[pred];
359       if (!info->IsBackEdge(*predecessor)) {
360         header->predecessors_[pred] = to_swap;
361         header->predecessors_[0] = predecessor;
362         break;
363       }
364     }
365   }
366 
367   HInstruction* first_instruction = header->GetFirstInstruction();
368   if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
369     // Called from DeadBlockElimination. Update SuspendCheck pointer.
370     info->SetSuspendCheck(first_instruction->AsSuspendCheck());
371   }
372 }
373 
ComputeTryBlockInformation()374 void HGraph::ComputeTryBlockInformation() {
375   // Iterate in reverse post order to propagate try membership information from
376   // predecessors to their successors.
377   for (HBasicBlock* block : GetReversePostOrder()) {
378     if (block->IsEntryBlock() || block->IsCatchBlock()) {
379       // Catch blocks after simplification have only exceptional predecessors
380       // and hence are never in tries.
381       continue;
382     }
383 
384     // Infer try membership from the first predecessor. Having simplified loops,
385     // the first predecessor can never be a back edge and therefore it must have
386     // been visited already and had its try membership set.
387     HBasicBlock* first_predecessor = block->GetPredecessors()[0];
388     DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
389     const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
390     if (try_entry != nullptr &&
391         (block->GetTryCatchInformation() == nullptr ||
392          try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
393       // We are either setting try block membership for the first time or it
394       // has changed.
395       block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry));
396     }
397   }
398 }
399 
SimplifyCFG()400 void HGraph::SimplifyCFG() {
401 // Simplify the CFG for future analysis, and code generation:
402   // (1): Split critical edges.
403   // (2): Simplify loops by having only one preheader.
404   // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
405   // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
406   for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
407     HBasicBlock* block = blocks_[block_id];
408     if (block == nullptr) continue;
409     if (block->GetSuccessors().size() > 1) {
410       // Only split normal-flow edges. We cannot split exceptional edges as they
411       // are synthesized (approximate real control flow), and we do not need to
412       // anyway. Moves that would be inserted there are performed by the runtime.
413       ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
414       for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
415         HBasicBlock* successor = normal_successors[j];
416         DCHECK(!successor->IsCatchBlock());
417         if (successor == exit_block_) {
418           // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
419           // do not want to split because Goto->Exit is not allowed.
420           DCHECK(block->IsSingleTryBoundary());
421         } else if (successor->GetPredecessors().size() > 1) {
422           SplitCriticalEdge(block, successor);
423           // SplitCriticalEdge could have invalidated the `normal_successors`
424           // ArrayRef. We must re-acquire it.
425           normal_successors = block->GetNormalSuccessors();
426           DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
427           DCHECK_EQ(e, normal_successors.size());
428         }
429       }
430     }
431     if (block->IsLoopHeader()) {
432       SimplifyLoop(block);
433     } else if (!block->IsEntryBlock() &&
434                block->GetFirstInstruction() != nullptr &&
435                block->GetFirstInstruction()->IsSuspendCheck()) {
436       // We are being called by the dead code elimiation pass, and what used to be
437       // a loop got dismantled. Just remove the suspend check.
438       block->RemoveInstruction(block->GetFirstInstruction());
439     }
440   }
441 }
442 
AnalyzeLoops() const443 GraphAnalysisResult HGraph::AnalyzeLoops() const {
444   // We iterate post order to ensure we visit inner loops before outer loops.
445   // `PopulateRecursive` needs this guarantee to know whether a natural loop
446   // contains an irreducible loop.
447   for (HBasicBlock* block : GetPostOrder()) {
448     if (block->IsLoopHeader()) {
449       if (block->IsCatchBlock()) {
450         // TODO: Dealing with exceptional back edges could be tricky because
451         //       they only approximate the real control flow. Bail out for now.
452         return kAnalysisFailThrowCatchLoop;
453       }
454       block->GetLoopInformation()->Populate();
455     }
456   }
457   return kAnalysisSuccess;
458 }
459 
Dump(std::ostream & os)460 void HLoopInformation::Dump(std::ostream& os) {
461   os << "header: " << header_->GetBlockId() << std::endl;
462   os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
463   for (HBasicBlock* block : back_edges_) {
464     os << "back edge: " << block->GetBlockId() << std::endl;
465   }
466   for (HBasicBlock* block : header_->GetPredecessors()) {
467     os << "predecessor: " << block->GetBlockId() << std::endl;
468   }
469   for (uint32_t idx : blocks_.Indexes()) {
470     os << "  in loop: " << idx << std::endl;
471   }
472 }
473 
InsertConstant(HConstant * constant)474 void HGraph::InsertConstant(HConstant* constant) {
475   // New constants are inserted before the SuspendCheck at the bottom of the
476   // entry block. Note that this method can be called from the graph builder and
477   // the entry block therefore may not end with SuspendCheck->Goto yet.
478   HInstruction* insert_before = nullptr;
479 
480   HInstruction* gota = entry_block_->GetLastInstruction();
481   if (gota != nullptr && gota->IsGoto()) {
482     HInstruction* suspend_check = gota->GetPrevious();
483     if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
484       insert_before = suspend_check;
485     } else {
486       insert_before = gota;
487     }
488   }
489 
490   if (insert_before == nullptr) {
491     entry_block_->AddInstruction(constant);
492   } else {
493     entry_block_->InsertInstructionBefore(constant, insert_before);
494   }
495 }
496 
GetNullConstant(uint32_t dex_pc)497 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
498   // For simplicity, don't bother reviving the cached null constant if it is
499   // not null and not in a block. Otherwise, we need to clear the instruction
500   // id and/or any invariants the graph is assuming when adding new instructions.
501   if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
502     cached_null_constant_ = new (arena_) HNullConstant(dex_pc);
503     cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
504     InsertConstant(cached_null_constant_);
505   }
506   if (kIsDebugBuild) {
507     ScopedObjectAccess soa(Thread::Current());
508     DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
509   }
510   return cached_null_constant_;
511 }
512 
GetCurrentMethod()513 HCurrentMethod* HGraph::GetCurrentMethod() {
514   // For simplicity, don't bother reviving the cached current method if it is
515   // not null and not in a block. Otherwise, we need to clear the instruction
516   // id and/or any invariants the graph is assuming when adding new instructions.
517   if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
518     cached_current_method_ = new (arena_) HCurrentMethod(
519         Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt,
520         entry_block_->GetDexPc());
521     if (entry_block_->GetFirstInstruction() == nullptr) {
522       entry_block_->AddInstruction(cached_current_method_);
523     } else {
524       entry_block_->InsertInstructionBefore(
525           cached_current_method_, entry_block_->GetFirstInstruction());
526     }
527   }
528   return cached_current_method_;
529 }
530 
GetMethodName() const531 const char* HGraph::GetMethodName() const {
532   const DexFile::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
533   return dex_file_.GetMethodName(method_id);
534 }
535 
PrettyMethod(bool with_signature) const536 std::string HGraph::PrettyMethod(bool with_signature) const {
537   return dex_file_.PrettyMethod(method_idx_, with_signature);
538 }
539 
GetConstant(Primitive::Type type,int64_t value,uint32_t dex_pc)540 HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) {
541   switch (type) {
542     case Primitive::Type::kPrimBoolean:
543       DCHECK(IsUint<1>(value));
544       FALLTHROUGH_INTENDED;
545     case Primitive::Type::kPrimByte:
546     case Primitive::Type::kPrimChar:
547     case Primitive::Type::kPrimShort:
548     case Primitive::Type::kPrimInt:
549       DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value));
550       return GetIntConstant(static_cast<int32_t>(value), dex_pc);
551 
552     case Primitive::Type::kPrimLong:
553       return GetLongConstant(value, dex_pc);
554 
555     default:
556       LOG(FATAL) << "Unsupported constant type";
557       UNREACHABLE();
558   }
559 }
560 
CacheFloatConstant(HFloatConstant * constant)561 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
562   int32_t value = bit_cast<int32_t, float>(constant->GetValue());
563   DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
564   cached_float_constants_.Overwrite(value, constant);
565 }
566 
CacheDoubleConstant(HDoubleConstant * constant)567 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
568   int64_t value = bit_cast<int64_t, double>(constant->GetValue());
569   DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
570   cached_double_constants_.Overwrite(value, constant);
571 }
572 
Add(HBasicBlock * block)573 void HLoopInformation::Add(HBasicBlock* block) {
574   blocks_.SetBit(block->GetBlockId());
575 }
576 
Remove(HBasicBlock * block)577 void HLoopInformation::Remove(HBasicBlock* block) {
578   blocks_.ClearBit(block->GetBlockId());
579 }
580 
PopulateRecursive(HBasicBlock * block)581 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
582   if (blocks_.IsBitSet(block->GetBlockId())) {
583     return;
584   }
585 
586   blocks_.SetBit(block->GetBlockId());
587   block->SetInLoop(this);
588   if (block->IsLoopHeader()) {
589     // We're visiting loops in post-order, so inner loops must have been
590     // populated already.
591     DCHECK(block->GetLoopInformation()->IsPopulated());
592     if (block->GetLoopInformation()->IsIrreducible()) {
593       contains_irreducible_loop_ = true;
594     }
595   }
596   for (HBasicBlock* predecessor : block->GetPredecessors()) {
597     PopulateRecursive(predecessor);
598   }
599 }
600 
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)601 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
602   size_t block_id = block->GetBlockId();
603 
604   // If `block` is in `finalized`, we know its membership in the loop has been
605   // decided and it does not need to be revisited.
606   if (finalized->IsBitSet(block_id)) {
607     return;
608   }
609 
610   bool is_finalized = false;
611   if (block->IsLoopHeader()) {
612     // If we hit a loop header in an irreducible loop, we first check if the
613     // pre header of that loop belongs to the currently analyzed loop. If it does,
614     // then we visit the back edges.
615     // Note that we cannot use GetPreHeader, as the loop may have not been populated
616     // yet.
617     HBasicBlock* pre_header = block->GetPredecessors()[0];
618     PopulateIrreducibleRecursive(pre_header, finalized);
619     if (blocks_.IsBitSet(pre_header->GetBlockId())) {
620       block->SetInLoop(this);
621       blocks_.SetBit(block_id);
622       finalized->SetBit(block_id);
623       is_finalized = true;
624 
625       HLoopInformation* info = block->GetLoopInformation();
626       for (HBasicBlock* back_edge : info->GetBackEdges()) {
627         PopulateIrreducibleRecursive(back_edge, finalized);
628       }
629     }
630   } else {
631     // Visit all predecessors. If one predecessor is part of the loop, this
632     // block is also part of this loop.
633     for (HBasicBlock* predecessor : block->GetPredecessors()) {
634       PopulateIrreducibleRecursive(predecessor, finalized);
635       if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
636         block->SetInLoop(this);
637         blocks_.SetBit(block_id);
638         finalized->SetBit(block_id);
639         is_finalized = true;
640       }
641     }
642   }
643 
644   // All predecessors have been recursively visited. Mark finalized if not marked yet.
645   if (!is_finalized) {
646     finalized->SetBit(block_id);
647   }
648 }
649 
Populate()650 void HLoopInformation::Populate() {
651   DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
652   // Populate this loop: starting with the back edge, recursively add predecessors
653   // that are not already part of that loop. Set the header as part of the loop
654   // to end the recursion.
655   // This is a recursive implementation of the algorithm described in
656   // "Advanced Compiler Design & Implementation" (Muchnick) p192.
657   HGraph* graph = header_->GetGraph();
658   blocks_.SetBit(header_->GetBlockId());
659   header_->SetInLoop(this);
660 
661   bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
662 
663   if (is_irreducible_loop) {
664     ArenaBitVector visited(graph->GetArena(),
665                            graph->GetBlocks().size(),
666                            /* expandable */ false,
667                            kArenaAllocGraphBuilder);
668     // Stop marking blocks at the loop header.
669     visited.SetBit(header_->GetBlockId());
670 
671     for (HBasicBlock* back_edge : GetBackEdges()) {
672       PopulateIrreducibleRecursive(back_edge, &visited);
673     }
674   } else {
675     for (HBasicBlock* back_edge : GetBackEdges()) {
676       PopulateRecursive(back_edge);
677     }
678   }
679 
680   if (!is_irreducible_loop && graph->IsCompilingOsr()) {
681     // When compiling in OSR mode, all loops in the compiled method may be entered
682     // from the interpreter. We treat this OSR entry point just like an extra entry
683     // to an irreducible loop, so we need to mark the method's loops as irreducible.
684     // This does not apply to inlined loops which do not act as OSR entry points.
685     if (suspend_check_ == nullptr) {
686       // Just building the graph in OSR mode, this loop is not inlined. We never build an
687       // inner graph in OSR mode as we can do OSR transition only from the outer method.
688       is_irreducible_loop = true;
689     } else {
690       // Look at the suspend check's environment to determine if the loop was inlined.
691       DCHECK(suspend_check_->HasEnvironment());
692       if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
693         is_irreducible_loop = true;
694       }
695     }
696   }
697   if (is_irreducible_loop) {
698     irreducible_ = true;
699     contains_irreducible_loop_ = true;
700     graph->SetHasIrreducibleLoops(true);
701   }
702   graph->SetHasLoops(true);
703 }
704 
GetPreHeader() const705 HBasicBlock* HLoopInformation::GetPreHeader() const {
706   HBasicBlock* block = header_->GetPredecessors()[0];
707   DCHECK(irreducible_ || (block == header_->GetDominator()));
708   return block;
709 }
710 
Contains(const HBasicBlock & block) const711 bool HLoopInformation::Contains(const HBasicBlock& block) const {
712   return blocks_.IsBitSet(block.GetBlockId());
713 }
714 
IsIn(const HLoopInformation & other) const715 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
716   return other.blocks_.IsBitSet(header_->GetBlockId());
717 }
718 
IsDefinedOutOfTheLoop(HInstruction * instruction) const719 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
720   return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
721 }
722 
GetLifetimeEnd() const723 size_t HLoopInformation::GetLifetimeEnd() const {
724   size_t last_position = 0;
725   for (HBasicBlock* back_edge : GetBackEdges()) {
726     last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
727   }
728   return last_position;
729 }
730 
HasBackEdgeNotDominatedByHeader() const731 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
732   for (HBasicBlock* back_edge : GetBackEdges()) {
733     DCHECK(back_edge->GetDominator() != nullptr);
734     if (!header_->Dominates(back_edge)) {
735       return true;
736     }
737   }
738   return false;
739 }
740 
DominatesAllBackEdges(HBasicBlock * block)741 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
742   for (HBasicBlock* back_edge : GetBackEdges()) {
743     if (!block->Dominates(back_edge)) {
744       return false;
745     }
746   }
747   return true;
748 }
749 
750 
HasExitEdge() const751 bool HLoopInformation::HasExitEdge() const {
752   // Determine if this loop has at least one exit edge.
753   HBlocksInLoopReversePostOrderIterator it_loop(*this);
754   for (; !it_loop.Done(); it_loop.Advance()) {
755     for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
756       if (!Contains(*successor)) {
757         return true;
758       }
759     }
760   }
761   return false;
762 }
763 
Dominates(HBasicBlock * other) const764 bool HBasicBlock::Dominates(HBasicBlock* other) const {
765   // Walk up the dominator tree from `other`, to find out if `this`
766   // is an ancestor.
767   HBasicBlock* current = other;
768   while (current != nullptr) {
769     if (current == this) {
770       return true;
771     }
772     current = current->GetDominator();
773   }
774   return false;
775 }
776 
UpdateInputsUsers(HInstruction * instruction)777 static void UpdateInputsUsers(HInstruction* instruction) {
778   HInputsRef inputs = instruction->GetInputs();
779   for (size_t i = 0; i < inputs.size(); ++i) {
780     inputs[i]->AddUseAt(instruction, i);
781   }
782   // Environment should be created later.
783   DCHECK(!instruction->HasEnvironment());
784 }
785 
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)786 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
787                                                   HInstruction* replacement) {
788   DCHECK(initial->GetBlock() == this);
789   if (initial->IsControlFlow()) {
790     // We can only replace a control flow instruction with another control flow instruction.
791     DCHECK(replacement->IsControlFlow());
792     DCHECK_EQ(replacement->GetId(), -1);
793     DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid);
794     DCHECK_EQ(initial->GetBlock(), this);
795     DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid);
796     DCHECK(initial->GetUses().empty());
797     DCHECK(initial->GetEnvUses().empty());
798     replacement->SetBlock(this);
799     replacement->SetId(GetGraph()->GetNextInstructionId());
800     instructions_.InsertInstructionBefore(replacement, initial);
801     UpdateInputsUsers(replacement);
802   } else {
803     InsertInstructionBefore(replacement, initial);
804     initial->ReplaceWith(replacement);
805   }
806   RemoveInstruction(initial);
807 }
808 
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)809 static void Add(HInstructionList* instruction_list,
810                 HBasicBlock* block,
811                 HInstruction* instruction) {
812   DCHECK(instruction->GetBlock() == nullptr);
813   DCHECK_EQ(instruction->GetId(), -1);
814   instruction->SetBlock(block);
815   instruction->SetId(block->GetGraph()->GetNextInstructionId());
816   UpdateInputsUsers(instruction);
817   instruction_list->AddInstruction(instruction);
818 }
819 
AddInstruction(HInstruction * instruction)820 void HBasicBlock::AddInstruction(HInstruction* instruction) {
821   Add(&instructions_, this, instruction);
822 }
823 
AddPhi(HPhi * phi)824 void HBasicBlock::AddPhi(HPhi* phi) {
825   Add(&phis_, this, phi);
826 }
827 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)828 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
829   DCHECK(!cursor->IsPhi());
830   DCHECK(!instruction->IsPhi());
831   DCHECK_EQ(instruction->GetId(), -1);
832   DCHECK_NE(cursor->GetId(), -1);
833   DCHECK_EQ(cursor->GetBlock(), this);
834   DCHECK(!instruction->IsControlFlow());
835   instruction->SetBlock(this);
836   instruction->SetId(GetGraph()->GetNextInstructionId());
837   UpdateInputsUsers(instruction);
838   instructions_.InsertInstructionBefore(instruction, cursor);
839 }
840 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)841 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
842   DCHECK(!cursor->IsPhi());
843   DCHECK(!instruction->IsPhi());
844   DCHECK_EQ(instruction->GetId(), -1);
845   DCHECK_NE(cursor->GetId(), -1);
846   DCHECK_EQ(cursor->GetBlock(), this);
847   DCHECK(!instruction->IsControlFlow());
848   DCHECK(!cursor->IsControlFlow());
849   instruction->SetBlock(this);
850   instruction->SetId(GetGraph()->GetNextInstructionId());
851   UpdateInputsUsers(instruction);
852   instructions_.InsertInstructionAfter(instruction, cursor);
853 }
854 
InsertPhiAfter(HPhi * phi,HPhi * cursor)855 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
856   DCHECK_EQ(phi->GetId(), -1);
857   DCHECK_NE(cursor->GetId(), -1);
858   DCHECK_EQ(cursor->GetBlock(), this);
859   phi->SetBlock(this);
860   phi->SetId(GetGraph()->GetNextInstructionId());
861   UpdateInputsUsers(phi);
862   phis_.InsertInstructionAfter(phi, cursor);
863 }
864 
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)865 static void Remove(HInstructionList* instruction_list,
866                    HBasicBlock* block,
867                    HInstruction* instruction,
868                    bool ensure_safety) {
869   DCHECK_EQ(block, instruction->GetBlock());
870   instruction->SetBlock(nullptr);
871   instruction_list->RemoveInstruction(instruction);
872   if (ensure_safety) {
873     DCHECK(instruction->GetUses().empty());
874     DCHECK(instruction->GetEnvUses().empty());
875     RemoveAsUser(instruction);
876   }
877 }
878 
RemoveInstruction(HInstruction * instruction,bool ensure_safety)879 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
880   DCHECK(!instruction->IsPhi());
881   Remove(&instructions_, this, instruction, ensure_safety);
882 }
883 
RemovePhi(HPhi * phi,bool ensure_safety)884 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
885   Remove(&phis_, this, phi, ensure_safety);
886 }
887 
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)888 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
889   if (instruction->IsPhi()) {
890     RemovePhi(instruction->AsPhi(), ensure_safety);
891   } else {
892     RemoveInstruction(instruction, ensure_safety);
893   }
894 }
895 
CopyFrom(const ArenaVector<HInstruction * > & locals)896 void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) {
897   for (size_t i = 0; i < locals.size(); i++) {
898     HInstruction* instruction = locals[i];
899     SetRawEnvAt(i, instruction);
900     if (instruction != nullptr) {
901       instruction->AddEnvUseAt(this, i);
902     }
903   }
904 }
905 
CopyFrom(HEnvironment * env)906 void HEnvironment::CopyFrom(HEnvironment* env) {
907   for (size_t i = 0; i < env->Size(); i++) {
908     HInstruction* instruction = env->GetInstructionAt(i);
909     SetRawEnvAt(i, instruction);
910     if (instruction != nullptr) {
911       instruction->AddEnvUseAt(this, i);
912     }
913   }
914 }
915 
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)916 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
917                                                  HBasicBlock* loop_header) {
918   DCHECK(loop_header->IsLoopHeader());
919   for (size_t i = 0; i < env->Size(); i++) {
920     HInstruction* instruction = env->GetInstructionAt(i);
921     SetRawEnvAt(i, instruction);
922     if (instruction == nullptr) {
923       continue;
924     }
925     if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
926       // At the end of the loop pre-header, the corresponding value for instruction
927       // is the first input of the phi.
928       HInstruction* initial = instruction->AsPhi()->InputAt(0);
929       SetRawEnvAt(i, initial);
930       initial->AddEnvUseAt(this, i);
931     } else {
932       instruction->AddEnvUseAt(this, i);
933     }
934   }
935 }
936 
RemoveAsUserOfInput(size_t index) const937 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
938   const HUserRecord<HEnvironment*>& env_use = vregs_[index];
939   HInstruction* user = env_use.GetInstruction();
940   auto before_env_use_node = env_use.GetBeforeUseNode();
941   user->env_uses_.erase_after(before_env_use_node);
942   user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
943 }
944 
GetKind() const945 HInstruction::InstructionKind HInstruction::GetKind() const {
946   return GetKindInternal();
947 }
948 
GetNextDisregardingMoves() const949 HInstruction* HInstruction::GetNextDisregardingMoves() const {
950   HInstruction* next = GetNext();
951   while (next != nullptr && next->IsParallelMove()) {
952     next = next->GetNext();
953   }
954   return next;
955 }
956 
GetPreviousDisregardingMoves() const957 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
958   HInstruction* previous = GetPrevious();
959   while (previous != nullptr && previous->IsParallelMove()) {
960     previous = previous->GetPrevious();
961   }
962   return previous;
963 }
964 
AddInstruction(HInstruction * instruction)965 void HInstructionList::AddInstruction(HInstruction* instruction) {
966   if (first_instruction_ == nullptr) {
967     DCHECK(last_instruction_ == nullptr);
968     first_instruction_ = last_instruction_ = instruction;
969   } else {
970     DCHECK(last_instruction_ != nullptr);
971     last_instruction_->next_ = instruction;
972     instruction->previous_ = last_instruction_;
973     last_instruction_ = instruction;
974   }
975 }
976 
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)977 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
978   DCHECK(Contains(cursor));
979   if (cursor == first_instruction_) {
980     cursor->previous_ = instruction;
981     instruction->next_ = cursor;
982     first_instruction_ = instruction;
983   } else {
984     instruction->previous_ = cursor->previous_;
985     instruction->next_ = cursor;
986     cursor->previous_ = instruction;
987     instruction->previous_->next_ = instruction;
988   }
989 }
990 
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)991 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
992   DCHECK(Contains(cursor));
993   if (cursor == last_instruction_) {
994     cursor->next_ = instruction;
995     instruction->previous_ = cursor;
996     last_instruction_ = instruction;
997   } else {
998     instruction->next_ = cursor->next_;
999     instruction->previous_ = cursor;
1000     cursor->next_ = instruction;
1001     instruction->next_->previous_ = instruction;
1002   }
1003 }
1004 
RemoveInstruction(HInstruction * instruction)1005 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1006   if (instruction->previous_ != nullptr) {
1007     instruction->previous_->next_ = instruction->next_;
1008   }
1009   if (instruction->next_ != nullptr) {
1010     instruction->next_->previous_ = instruction->previous_;
1011   }
1012   if (instruction == first_instruction_) {
1013     first_instruction_ = instruction->next_;
1014   }
1015   if (instruction == last_instruction_) {
1016     last_instruction_ = instruction->previous_;
1017   }
1018 }
1019 
Contains(HInstruction * instruction) const1020 bool HInstructionList::Contains(HInstruction* instruction) const {
1021   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1022     if (it.Current() == instruction) {
1023       return true;
1024     }
1025   }
1026   return false;
1027 }
1028 
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1029 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1030                                    const HInstruction* instruction2) const {
1031   DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1032   for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1033     if (it.Current() == instruction1) {
1034       return true;
1035     }
1036     if (it.Current() == instruction2) {
1037       return false;
1038     }
1039   }
1040   LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1041   return true;
1042 }
1043 
StrictlyDominates(HInstruction * other_instruction) const1044 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1045   if (other_instruction == this) {
1046     // An instruction does not strictly dominate itself.
1047     return false;
1048   }
1049   HBasicBlock* block = GetBlock();
1050   HBasicBlock* other_block = other_instruction->GetBlock();
1051   if (block != other_block) {
1052     return GetBlock()->Dominates(other_instruction->GetBlock());
1053   } else {
1054     // If both instructions are in the same block, ensure this
1055     // instruction comes before `other_instruction`.
1056     if (IsPhi()) {
1057       if (!other_instruction->IsPhi()) {
1058         // Phis appear before non phi-instructions so this instruction
1059         // dominates `other_instruction`.
1060         return true;
1061       } else {
1062         // There is no order among phis.
1063         LOG(FATAL) << "There is no dominance between phis of a same block.";
1064         return false;
1065       }
1066     } else {
1067       // `this` is not a phi.
1068       if (other_instruction->IsPhi()) {
1069         // Phis appear before non phi-instructions so this instruction
1070         // does not dominate `other_instruction`.
1071         return false;
1072       } else {
1073         // Check whether this instruction comes before
1074         // `other_instruction` in the instruction list.
1075         return block->GetInstructions().FoundBefore(this, other_instruction);
1076       }
1077     }
1078   }
1079 }
1080 
RemoveEnvironment()1081 void HInstruction::RemoveEnvironment() {
1082   RemoveEnvironmentUses(this);
1083   environment_ = nullptr;
1084 }
1085 
ReplaceWith(HInstruction * other)1086 void HInstruction::ReplaceWith(HInstruction* other) {
1087   DCHECK(other != nullptr);
1088   // Note: fixup_end remains valid across splice_after().
1089   auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1090   other->uses_.splice_after(other->uses_.before_begin(), uses_);
1091   other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1092 
1093   // Note: env_fixup_end remains valid across splice_after().
1094   auto env_fixup_end =
1095       other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1096   other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1097   other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1098 
1099   DCHECK(uses_.empty());
1100   DCHECK(env_uses_.empty());
1101 }
1102 
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1103 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1104   const HUseList<HInstruction*>& uses = GetUses();
1105   for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1106     HInstruction* user = it->GetUser();
1107     size_t index = it->GetIndex();
1108     // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1109     ++it;
1110     if (dominator->StrictlyDominates(user)) {
1111       user->ReplaceInput(replacement, index);
1112     }
1113   }
1114 }
1115 
ReplaceInput(HInstruction * replacement,size_t index)1116 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1117   HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1118   if (input_use.GetInstruction() == replacement) {
1119     // Nothing to do.
1120     return;
1121   }
1122   HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1123   // Note: fixup_end remains valid across splice_after().
1124   auto fixup_end =
1125       replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1126   replacement->uses_.splice_after(replacement->uses_.before_begin(),
1127                                   input_use.GetInstruction()->uses_,
1128                                   before_use_node);
1129   replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1130   input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1131 }
1132 
EnvironmentSize() const1133 size_t HInstruction::EnvironmentSize() const {
1134   return HasEnvironment() ? environment_->Size() : 0;
1135 }
1136 
AddInput(HInstruction * input)1137 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1138   DCHECK(input->GetBlock() != nullptr);
1139   inputs_.push_back(HUserRecord<HInstruction*>(input));
1140   input->AddUseAt(this, inputs_.size() - 1);
1141 }
1142 
InsertInputAt(size_t index,HInstruction * input)1143 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1144   inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1145   input->AddUseAt(this, index);
1146   // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1147   for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1148     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1149     inputs_[i].GetUseNode()->SetIndex(i);
1150   }
1151 }
1152 
RemoveInputAt(size_t index)1153 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1154   RemoveAsUserOfInput(index);
1155   inputs_.erase(inputs_.begin() + index);
1156   // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1157   for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1158     DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1159     inputs_[i].GetUseNode()->SetIndex(i);
1160   }
1161 }
1162 
RemoveAllInputs()1163 void HVariableInputSizeInstruction::RemoveAllInputs() {
1164   RemoveAsUserOfAllInputs();
1165   DCHECK(!HasNonEnvironmentUses());
1166 
1167   inputs_.clear();
1168   DCHECK_EQ(0u, InputCount());
1169 }
1170 
RemoveConstructorFences(HInstruction * instruction)1171 void HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1172   DCHECK(instruction->GetBlock() != nullptr);
1173   // Removing constructor fences only makes sense for instructions with an object return type.
1174   DCHECK_EQ(Primitive::kPrimNot, instruction->GetType());
1175 
1176   // Efficient implementation that simultaneously (in one pass):
1177   // * Scans the uses list for all constructor fences.
1178   // * Deletes that constructor fence from the uses list of `instruction`.
1179   // * Deletes `instruction` from the constructor fence's inputs.
1180   // * Deletes the constructor fence if it now has 0 inputs.
1181 
1182   const HUseList<HInstruction*>& uses = instruction->GetUses();
1183   // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1184   for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1185     const HUseListNode<HInstruction*>& use_node = *it;
1186     HInstruction* const use_instruction = use_node.GetUser();
1187 
1188     // Advance the iterator immediately once we fetch the use_node.
1189     // Warning: If the input is removed, the current iterator becomes invalid.
1190     ++it;
1191 
1192     if (use_instruction->IsConstructorFence()) {
1193       HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1194       size_t input_index = use_node.GetIndex();
1195 
1196       // Process the candidate instruction for removal
1197       // from the graph.
1198 
1199       // Constructor fence instructions are never
1200       // used by other instructions.
1201       //
1202       // If we wanted to make this more generic, it
1203       // could be a runtime if statement.
1204       DCHECK(!ctor_fence->HasUses());
1205 
1206       // A constructor fence's return type is "kPrimVoid"
1207       // and therefore it can't have any environment uses.
1208       DCHECK(!ctor_fence->HasEnvironmentUses());
1209 
1210       // Remove the inputs first, otherwise removing the instruction
1211       // will try to remove its uses while we are already removing uses
1212       // and this operation will fail.
1213       DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1214 
1215       // Removing the input will also remove the `use_node`.
1216       // (Do not look at `use_node` after this, it will be a dangling reference).
1217       ctor_fence->RemoveInputAt(input_index);
1218 
1219       // Once all inputs are removed, the fence is considered dead and
1220       // is removed.
1221       if (ctor_fence->InputCount() == 0u) {
1222         ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1223       }
1224     }
1225   }
1226 
1227   if (kIsDebugBuild) {
1228     // Post-condition checks:
1229     // * None of the uses of `instruction` are a constructor fence.
1230     // * The `instruction` itself did not get removed from a block.
1231     for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1232       CHECK(!use_node.GetUser()->IsConstructorFence());
1233     }
1234     CHECK(instruction->GetBlock() != nullptr);
1235   }
1236 }
1237 
GetAssociatedAllocation()1238 HInstruction* HConstructorFence::GetAssociatedAllocation() {
1239   HInstruction* new_instance_inst = GetPrevious();
1240   // Check if the immediately preceding instruction is a new-instance/new-array.
1241   // Otherwise this fence is for protecting final fields.
1242   if (new_instance_inst != nullptr &&
1243       (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1244     // TODO: Need to update this code to handle multiple inputs.
1245     DCHECK_EQ(InputCount(), 1u);
1246     return new_instance_inst;
1247   } else {
1248     return nullptr;
1249   }
1250 }
1251 
1252 #define DEFINE_ACCEPT(name, super)                                             \
1253 void H##name::Accept(HGraphVisitor* visitor) {                                 \
1254   visitor->Visit##name(this);                                                  \
1255 }
1256 
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1257 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1258 
1259 #undef DEFINE_ACCEPT
1260 
1261 void HGraphVisitor::VisitInsertionOrder() {
1262   const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1263   for (HBasicBlock* block : blocks) {
1264     if (block != nullptr) {
1265       VisitBasicBlock(block);
1266     }
1267   }
1268 }
1269 
VisitReversePostOrder()1270 void HGraphVisitor::VisitReversePostOrder() {
1271   for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1272     VisitBasicBlock(block);
1273   }
1274 }
1275 
VisitBasicBlock(HBasicBlock * block)1276 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1277   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1278     it.Current()->Accept(this);
1279   }
1280   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1281     it.Current()->Accept(this);
1282   }
1283 }
1284 
TryStaticEvaluation() const1285 HConstant* HTypeConversion::TryStaticEvaluation() const {
1286   HGraph* graph = GetBlock()->GetGraph();
1287   if (GetInput()->IsIntConstant()) {
1288     int32_t value = GetInput()->AsIntConstant()->GetValue();
1289     switch (GetResultType()) {
1290       case Primitive::kPrimLong:
1291         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1292       case Primitive::kPrimFloat:
1293         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1294       case Primitive::kPrimDouble:
1295         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1296       default:
1297         return nullptr;
1298     }
1299   } else if (GetInput()->IsLongConstant()) {
1300     int64_t value = GetInput()->AsLongConstant()->GetValue();
1301     switch (GetResultType()) {
1302       case Primitive::kPrimInt:
1303         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1304       case Primitive::kPrimFloat:
1305         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1306       case Primitive::kPrimDouble:
1307         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1308       default:
1309         return nullptr;
1310     }
1311   } else if (GetInput()->IsFloatConstant()) {
1312     float value = GetInput()->AsFloatConstant()->GetValue();
1313     switch (GetResultType()) {
1314       case Primitive::kPrimInt:
1315         if (std::isnan(value))
1316           return graph->GetIntConstant(0, GetDexPc());
1317         if (value >= kPrimIntMax)
1318           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1319         if (value <= kPrimIntMin)
1320           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1321         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1322       case Primitive::kPrimLong:
1323         if (std::isnan(value))
1324           return graph->GetLongConstant(0, GetDexPc());
1325         if (value >= kPrimLongMax)
1326           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1327         if (value <= kPrimLongMin)
1328           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1329         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1330       case Primitive::kPrimDouble:
1331         return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1332       default:
1333         return nullptr;
1334     }
1335   } else if (GetInput()->IsDoubleConstant()) {
1336     double value = GetInput()->AsDoubleConstant()->GetValue();
1337     switch (GetResultType()) {
1338       case Primitive::kPrimInt:
1339         if (std::isnan(value))
1340           return graph->GetIntConstant(0, GetDexPc());
1341         if (value >= kPrimIntMax)
1342           return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1343         if (value <= kPrimLongMin)
1344           return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1345         return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1346       case Primitive::kPrimLong:
1347         if (std::isnan(value))
1348           return graph->GetLongConstant(0, GetDexPc());
1349         if (value >= kPrimLongMax)
1350           return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1351         if (value <= kPrimLongMin)
1352           return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1353         return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1354       case Primitive::kPrimFloat:
1355         return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1356       default:
1357         return nullptr;
1358     }
1359   }
1360   return nullptr;
1361 }
1362 
TryStaticEvaluation() const1363 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1364   if (GetInput()->IsIntConstant()) {
1365     return Evaluate(GetInput()->AsIntConstant());
1366   } else if (GetInput()->IsLongConstant()) {
1367     return Evaluate(GetInput()->AsLongConstant());
1368   } else if (kEnableFloatingPointStaticEvaluation) {
1369     if (GetInput()->IsFloatConstant()) {
1370       return Evaluate(GetInput()->AsFloatConstant());
1371     } else if (GetInput()->IsDoubleConstant()) {
1372       return Evaluate(GetInput()->AsDoubleConstant());
1373     }
1374   }
1375   return nullptr;
1376 }
1377 
TryStaticEvaluation() const1378 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1379   if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1380     return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1381   } else if (GetLeft()->IsLongConstant()) {
1382     if (GetRight()->IsIntConstant()) {
1383       // The binop(long, int) case is only valid for shifts and rotations.
1384       DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1385       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1386     } else if (GetRight()->IsLongConstant()) {
1387       return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1388     }
1389   } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1390     // The binop(null, null) case is only valid for equal and not-equal conditions.
1391     DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1392     return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1393   } else if (kEnableFloatingPointStaticEvaluation) {
1394     if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1395       return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1396     } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1397       return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1398     }
1399   }
1400   return nullptr;
1401 }
1402 
GetConstantRight() const1403 HConstant* HBinaryOperation::GetConstantRight() const {
1404   if (GetRight()->IsConstant()) {
1405     return GetRight()->AsConstant();
1406   } else if (IsCommutative() && GetLeft()->IsConstant()) {
1407     return GetLeft()->AsConstant();
1408   } else {
1409     return nullptr;
1410   }
1411 }
1412 
1413 // If `GetConstantRight()` returns one of the input, this returns the other
1414 // one. Otherwise it returns null.
GetLeastConstantLeft() const1415 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1416   HInstruction* most_constant_right = GetConstantRight();
1417   if (most_constant_right == nullptr) {
1418     return nullptr;
1419   } else if (most_constant_right == GetLeft()) {
1420     return GetRight();
1421   } else {
1422     return GetLeft();
1423   }
1424 }
1425 
operator <<(std::ostream & os,const ComparisonBias & rhs)1426 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1427   switch (rhs) {
1428     case ComparisonBias::kNoBias:
1429       return os << "no_bias";
1430     case ComparisonBias::kGtBias:
1431       return os << "gt_bias";
1432     case ComparisonBias::kLtBias:
1433       return os << "lt_bias";
1434     default:
1435       LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1436       UNREACHABLE();
1437   }
1438 }
1439 
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1440 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1441   return this == instruction->GetPreviousDisregardingMoves();
1442 }
1443 
Equals(const HInstruction * other) const1444 bool HInstruction::Equals(const HInstruction* other) const {
1445   if (!InstructionTypeEquals(other)) return false;
1446   DCHECK_EQ(GetKind(), other->GetKind());
1447   if (!InstructionDataEquals(other)) return false;
1448   if (GetType() != other->GetType()) return false;
1449   HConstInputsRef inputs = GetInputs();
1450   HConstInputsRef other_inputs = other->GetInputs();
1451   if (inputs.size() != other_inputs.size()) return false;
1452   for (size_t i = 0; i != inputs.size(); ++i) {
1453     if (inputs[i] != other_inputs[i]) return false;
1454   }
1455 
1456   DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1457   return true;
1458 }
1459 
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1460 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1461 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1462   switch (rhs) {
1463     FOR_EACH_INSTRUCTION(DECLARE_CASE)
1464     default:
1465       os << "Unknown instruction kind " << static_cast<int>(rhs);
1466       break;
1467   }
1468 #undef DECLARE_CASE
1469   return os;
1470 }
1471 
MoveBefore(HInstruction * cursor,bool do_checks)1472 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1473   if (do_checks) {
1474     DCHECK(!IsPhi());
1475     DCHECK(!IsControlFlow());
1476     DCHECK(CanBeMoved() ||
1477            // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1478            IsShouldDeoptimizeFlag());
1479     DCHECK(!cursor->IsPhi());
1480   }
1481 
1482   next_->previous_ = previous_;
1483   if (previous_ != nullptr) {
1484     previous_->next_ = next_;
1485   }
1486   if (block_->instructions_.first_instruction_ == this) {
1487     block_->instructions_.first_instruction_ = next_;
1488   }
1489   DCHECK_NE(block_->instructions_.last_instruction_, this);
1490 
1491   previous_ = cursor->previous_;
1492   if (previous_ != nullptr) {
1493     previous_->next_ = this;
1494   }
1495   next_ = cursor;
1496   cursor->previous_ = this;
1497   block_ = cursor->block_;
1498 
1499   if (block_->instructions_.first_instruction_ == cursor) {
1500     block_->instructions_.first_instruction_ = this;
1501   }
1502 }
1503 
MoveBeforeFirstUserAndOutOfLoops()1504 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1505   DCHECK(!CanThrow());
1506   DCHECK(!HasSideEffects());
1507   DCHECK(!HasEnvironmentUses());
1508   DCHECK(HasNonEnvironmentUses());
1509   DCHECK(!IsPhi());  // Makes no sense for Phi.
1510   DCHECK_EQ(InputCount(), 0u);
1511 
1512   // Find the target block.
1513   auto uses_it = GetUses().begin();
1514   auto uses_end = GetUses().end();
1515   HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1516   ++uses_it;
1517   while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1518     ++uses_it;
1519   }
1520   if (uses_it != uses_end) {
1521     // This instruction has uses in two or more blocks. Find the common dominator.
1522     CommonDominator finder(target_block);
1523     for (; uses_it != uses_end; ++uses_it) {
1524       finder.Update(uses_it->GetUser()->GetBlock());
1525     }
1526     target_block = finder.Get();
1527     DCHECK(target_block != nullptr);
1528   }
1529   // Move to the first dominator not in a loop.
1530   while (target_block->IsInLoop()) {
1531     target_block = target_block->GetDominator();
1532     DCHECK(target_block != nullptr);
1533   }
1534 
1535   // Find insertion position.
1536   HInstruction* insert_pos = nullptr;
1537   for (const HUseListNode<HInstruction*>& use : GetUses()) {
1538     if (use.GetUser()->GetBlock() == target_block &&
1539         (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1540       insert_pos = use.GetUser();
1541     }
1542   }
1543   if (insert_pos == nullptr) {
1544     // No user in `target_block`, insert before the control flow instruction.
1545     insert_pos = target_block->GetLastInstruction();
1546     DCHECK(insert_pos->IsControlFlow());
1547     // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1548     if (insert_pos->IsIf()) {
1549       HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1550       if (if_input == insert_pos->GetPrevious()) {
1551         insert_pos = if_input;
1552       }
1553     }
1554   }
1555   MoveBefore(insert_pos);
1556 }
1557 
SplitBefore(HInstruction * cursor)1558 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1559   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1560   DCHECK_EQ(cursor->GetBlock(), this);
1561 
1562   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1563                                                                     cursor->GetDexPc());
1564   new_block->instructions_.first_instruction_ = cursor;
1565   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1566   instructions_.last_instruction_ = cursor->previous_;
1567   if (cursor->previous_ == nullptr) {
1568     instructions_.first_instruction_ = nullptr;
1569   } else {
1570     cursor->previous_->next_ = nullptr;
1571     cursor->previous_ = nullptr;
1572   }
1573 
1574   new_block->instructions_.SetBlockOfInstructions(new_block);
1575   AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc()));
1576 
1577   for (HBasicBlock* successor : GetSuccessors()) {
1578     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1579   }
1580   new_block->successors_.swap(successors_);
1581   DCHECK(successors_.empty());
1582   AddSuccessor(new_block);
1583 
1584   GetGraph()->AddBlock(new_block);
1585   return new_block;
1586 }
1587 
CreateImmediateDominator()1588 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1589   DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1590   DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1591 
1592   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1593 
1594   for (HBasicBlock* predecessor : GetPredecessors()) {
1595     predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1596   }
1597   new_block->predecessors_.swap(predecessors_);
1598   DCHECK(predecessors_.empty());
1599   AddPredecessor(new_block);
1600 
1601   GetGraph()->AddBlock(new_block);
1602   return new_block;
1603 }
1604 
SplitBeforeForInlining(HInstruction * cursor)1605 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1606   DCHECK_EQ(cursor->GetBlock(), this);
1607 
1608   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(),
1609                                                                     cursor->GetDexPc());
1610   new_block->instructions_.first_instruction_ = cursor;
1611   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1612   instructions_.last_instruction_ = cursor->previous_;
1613   if (cursor->previous_ == nullptr) {
1614     instructions_.first_instruction_ = nullptr;
1615   } else {
1616     cursor->previous_->next_ = nullptr;
1617     cursor->previous_ = nullptr;
1618   }
1619 
1620   new_block->instructions_.SetBlockOfInstructions(new_block);
1621 
1622   for (HBasicBlock* successor : GetSuccessors()) {
1623     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1624   }
1625   new_block->successors_.swap(successors_);
1626   DCHECK(successors_.empty());
1627 
1628   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1629     dominated->dominator_ = new_block;
1630   }
1631   new_block->dominated_blocks_.swap(dominated_blocks_);
1632   DCHECK(dominated_blocks_.empty());
1633   return new_block;
1634 }
1635 
SplitAfterForInlining(HInstruction * cursor)1636 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1637   DCHECK(!cursor->IsControlFlow());
1638   DCHECK_NE(instructions_.last_instruction_, cursor);
1639   DCHECK_EQ(cursor->GetBlock(), this);
1640 
1641   HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc());
1642   new_block->instructions_.first_instruction_ = cursor->GetNext();
1643   new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1644   cursor->next_->previous_ = nullptr;
1645   cursor->next_ = nullptr;
1646   instructions_.last_instruction_ = cursor;
1647 
1648   new_block->instructions_.SetBlockOfInstructions(new_block);
1649   for (HBasicBlock* successor : GetSuccessors()) {
1650     successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1651   }
1652   new_block->successors_.swap(successors_);
1653   DCHECK(successors_.empty());
1654 
1655   for (HBasicBlock* dominated : GetDominatedBlocks()) {
1656     dominated->dominator_ = new_block;
1657   }
1658   new_block->dominated_blocks_.swap(dominated_blocks_);
1659   DCHECK(dominated_blocks_.empty());
1660   return new_block;
1661 }
1662 
ComputeTryEntryOfSuccessors() const1663 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1664   if (EndsWithTryBoundary()) {
1665     HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1666     if (try_boundary->IsEntry()) {
1667       DCHECK(!IsTryBlock());
1668       return try_boundary;
1669     } else {
1670       DCHECK(IsTryBlock());
1671       DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1672       return nullptr;
1673     }
1674   } else if (IsTryBlock()) {
1675     return &try_catch_information_->GetTryEntry();
1676   } else {
1677     return nullptr;
1678   }
1679 }
1680 
HasThrowingInstructions() const1681 bool HBasicBlock::HasThrowingInstructions() const {
1682   for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1683     if (it.Current()->CanThrow()) {
1684       return true;
1685     }
1686   }
1687   return false;
1688 }
1689 
HasOnlyOneInstruction(const HBasicBlock & block)1690 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1691   return block.GetPhis().IsEmpty()
1692       && !block.GetInstructions().IsEmpty()
1693       && block.GetFirstInstruction() == block.GetLastInstruction();
1694 }
1695 
IsSingleGoto() const1696 bool HBasicBlock::IsSingleGoto() const {
1697   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1698 }
1699 
IsSingleTryBoundary() const1700 bool HBasicBlock::IsSingleTryBoundary() const {
1701   return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1702 }
1703 
EndsWithControlFlowInstruction() const1704 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1705   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1706 }
1707 
EndsWithIf() const1708 bool HBasicBlock::EndsWithIf() const {
1709   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1710 }
1711 
EndsWithTryBoundary() const1712 bool HBasicBlock::EndsWithTryBoundary() const {
1713   return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1714 }
1715 
HasSinglePhi() const1716 bool HBasicBlock::HasSinglePhi() const {
1717   return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1718 }
1719 
GetNormalSuccessors() const1720 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1721   if (EndsWithTryBoundary()) {
1722     // The normal-flow successor of HTryBoundary is always stored at index zero.
1723     DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1724     return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1725   } else {
1726     // All successors of blocks not ending with TryBoundary are normal.
1727     return ArrayRef<HBasicBlock* const>(successors_);
1728   }
1729 }
1730 
GetExceptionalSuccessors() const1731 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1732   if (EndsWithTryBoundary()) {
1733     return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1734   } else {
1735     // Blocks not ending with TryBoundary do not have exceptional successors.
1736     return ArrayRef<HBasicBlock* const>();
1737   }
1738 }
1739 
HasSameExceptionHandlersAs(const HTryBoundary & other) const1740 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1741   ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1742   ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1743 
1744   size_t length = handlers1.size();
1745   if (length != handlers2.size()) {
1746     return false;
1747   }
1748 
1749   // Exception handlers need to be stored in the same order.
1750   for (size_t i = 0; i < length; ++i) {
1751     if (handlers1[i] != handlers2[i]) {
1752       return false;
1753     }
1754   }
1755   return true;
1756 }
1757 
CountSize() const1758 size_t HInstructionList::CountSize() const {
1759   size_t size = 0;
1760   HInstruction* current = first_instruction_;
1761   for (; current != nullptr; current = current->GetNext()) {
1762     size++;
1763   }
1764   return size;
1765 }
1766 
SetBlockOfInstructions(HBasicBlock * block) const1767 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
1768   for (HInstruction* current = first_instruction_;
1769        current != nullptr;
1770        current = current->GetNext()) {
1771     current->SetBlock(block);
1772   }
1773 }
1774 
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)1775 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
1776   DCHECK(Contains(cursor));
1777   if (!instruction_list.IsEmpty()) {
1778     if (cursor == last_instruction_) {
1779       last_instruction_ = instruction_list.last_instruction_;
1780     } else {
1781       cursor->next_->previous_ = instruction_list.last_instruction_;
1782     }
1783     instruction_list.last_instruction_->next_ = cursor->next_;
1784     cursor->next_ = instruction_list.first_instruction_;
1785     instruction_list.first_instruction_->previous_ = cursor;
1786   }
1787 }
1788 
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)1789 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
1790   DCHECK(Contains(cursor));
1791   if (!instruction_list.IsEmpty()) {
1792     if (cursor == first_instruction_) {
1793       first_instruction_ = instruction_list.first_instruction_;
1794     } else {
1795       cursor->previous_->next_ = instruction_list.first_instruction_;
1796     }
1797     instruction_list.last_instruction_->next_ = cursor;
1798     instruction_list.first_instruction_->previous_ = cursor->previous_;
1799     cursor->previous_ = instruction_list.last_instruction_;
1800   }
1801 }
1802 
Add(const HInstructionList & instruction_list)1803 void HInstructionList::Add(const HInstructionList& instruction_list) {
1804   if (IsEmpty()) {
1805     first_instruction_ = instruction_list.first_instruction_;
1806     last_instruction_ = instruction_list.last_instruction_;
1807   } else {
1808     AddAfter(last_instruction_, instruction_list);
1809   }
1810 }
1811 
1812 // Should be called on instructions in a dead block in post order. This method
1813 // assumes `insn` has been removed from all users with the exception of catch
1814 // phis because of missing exceptional edges in the graph. It removes the
1815 // instruction from catch phi uses, together with inputs of other catch phis in
1816 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)1817 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
1818   DCHECK(!insn->HasEnvironmentUses());
1819   while (insn->HasNonEnvironmentUses()) {
1820     const HUseListNode<HInstruction*>& use = insn->GetUses().front();
1821     size_t use_index = use.GetIndex();
1822     HBasicBlock* user_block =  use.GetUser()->GetBlock();
1823     DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
1824     for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1825       phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
1826     }
1827   }
1828 }
1829 
DisconnectAndDelete()1830 void HBasicBlock::DisconnectAndDelete() {
1831   // Dominators must be removed after all the blocks they dominate. This way
1832   // a loop header is removed last, a requirement for correct loop information
1833   // iteration.
1834   DCHECK(dominated_blocks_.empty());
1835 
1836   // The following steps gradually remove the block from all its dependants in
1837   // post order (b/27683071).
1838 
1839   // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
1840   //     We need to do this before step (4) which destroys the predecessor list.
1841   HBasicBlock* loop_update_start = this;
1842   if (IsLoopHeader()) {
1843     HLoopInformation* loop_info = GetLoopInformation();
1844     // All other blocks in this loop should have been removed because the header
1845     // was their dominator.
1846     // Note that we do not remove `this` from `loop_info` as it is unreachable.
1847     DCHECK(!loop_info->IsIrreducible());
1848     DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
1849     DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
1850     loop_update_start = loop_info->GetPreHeader();
1851   }
1852 
1853   // (2) Disconnect the block from its successors and update their phis.
1854   for (HBasicBlock* successor : successors_) {
1855     // Delete this block from the list of predecessors.
1856     size_t this_index = successor->GetPredecessorIndexOf(this);
1857     successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
1858 
1859     // Check that `successor` has other predecessors, otherwise `this` is the
1860     // dominator of `successor` which violates the order DCHECKed at the top.
1861     DCHECK(!successor->predecessors_.empty());
1862 
1863     // Remove this block's entries in the successor's phis. Skip exceptional
1864     // successors because catch phi inputs do not correspond to predecessor
1865     // blocks but throwing instructions. The inputs of the catch phis will be
1866     // updated in step (3).
1867     if (!successor->IsCatchBlock()) {
1868       if (successor->predecessors_.size() == 1u) {
1869         // The successor has just one predecessor left. Replace phis with the only
1870         // remaining input.
1871         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1872           HPhi* phi = phi_it.Current()->AsPhi();
1873           phi->ReplaceWith(phi->InputAt(1 - this_index));
1874           successor->RemovePhi(phi);
1875         }
1876       } else {
1877         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1878           phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
1879         }
1880       }
1881     }
1882   }
1883   successors_.clear();
1884 
1885   // (3) Remove instructions and phis. Instructions should have no remaining uses
1886   //     except in catch phis. If an instruction is used by a catch phi at `index`,
1887   //     remove `index`-th input of all phis in the catch block since they are
1888   //     guaranteed dead. Note that we may miss dead inputs this way but the
1889   //     graph will always remain consistent.
1890   for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1891     HInstruction* insn = it.Current();
1892     RemoveUsesOfDeadInstruction(insn);
1893     RemoveInstruction(insn);
1894   }
1895   for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
1896     HPhi* insn = it.Current()->AsPhi();
1897     RemoveUsesOfDeadInstruction(insn);
1898     RemovePhi(insn);
1899   }
1900 
1901   // (4) Disconnect the block from its predecessors and update their
1902   //     control-flow instructions.
1903   for (HBasicBlock* predecessor : predecessors_) {
1904     // We should not see any back edges as they would have been removed by step (3).
1905     DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
1906 
1907     HInstruction* last_instruction = predecessor->GetLastInstruction();
1908     if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
1909       // This block is the only normal-flow successor of the TryBoundary which
1910       // makes `predecessor` dead. Since DCE removes blocks in post order,
1911       // exception handlers of this TryBoundary were already visited and any
1912       // remaining handlers therefore must be live. We remove `predecessor` from
1913       // their list of predecessors.
1914       DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
1915       while (predecessor->GetSuccessors().size() > 1) {
1916         HBasicBlock* handler = predecessor->GetSuccessors()[1];
1917         DCHECK(handler->IsCatchBlock());
1918         predecessor->RemoveSuccessor(handler);
1919         handler->RemovePredecessor(predecessor);
1920       }
1921     }
1922 
1923     predecessor->RemoveSuccessor(this);
1924     uint32_t num_pred_successors = predecessor->GetSuccessors().size();
1925     if (num_pred_successors == 1u) {
1926       // If we have one successor after removing one, then we must have
1927       // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
1928       // successor. Replace those with a HGoto.
1929       DCHECK(last_instruction->IsIf() ||
1930              last_instruction->IsPackedSwitch() ||
1931              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1932       predecessor->RemoveInstruction(last_instruction);
1933       predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc()));
1934     } else if (num_pred_successors == 0u) {
1935       // The predecessor has no remaining successors and therefore must be dead.
1936       // We deliberately leave it without a control-flow instruction so that the
1937       // GraphChecker fails unless it is not removed during the pass too.
1938       predecessor->RemoveInstruction(last_instruction);
1939     } else {
1940       // There are multiple successors left. The removed block might be a successor
1941       // of a PackedSwitch which will be completely removed (perhaps replaced with
1942       // a Goto), or we are deleting a catch block from a TryBoundary. In either
1943       // case, leave `last_instruction` as is for now.
1944       DCHECK(last_instruction->IsPackedSwitch() ||
1945              (last_instruction->IsTryBoundary() && IsCatchBlock()));
1946     }
1947   }
1948   predecessors_.clear();
1949 
1950   // (5) Remove the block from all loops it is included in. Skip the inner-most
1951   //     loop if this is the loop header (see definition of `loop_update_start`)
1952   //     because the loop header's predecessor list has been destroyed in step (4).
1953   for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
1954     HLoopInformation* loop_info = it.Current();
1955     loop_info->Remove(this);
1956     if (loop_info->IsBackEdge(*this)) {
1957       // If this was the last back edge of the loop, we deliberately leave the
1958       // loop in an inconsistent state and will fail GraphChecker unless the
1959       // entire loop is removed during the pass.
1960       loop_info->RemoveBackEdge(this);
1961     }
1962   }
1963 
1964   // (6) Disconnect from the dominator.
1965   dominator_->RemoveDominatedBlock(this);
1966   SetDominator(nullptr);
1967 
1968   // (7) Delete from the graph, update reverse post order.
1969   graph_->DeleteDeadEmptyBlock(this);
1970   SetGraph(nullptr);
1971 }
1972 
MergeInstructionsWith(HBasicBlock * other)1973 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
1974   DCHECK(EndsWithControlFlowInstruction());
1975   RemoveInstruction(GetLastInstruction());
1976   instructions_.Add(other->GetInstructions());
1977   other->instructions_.SetBlockOfInstructions(this);
1978   other->instructions_.Clear();
1979 }
1980 
MergeWith(HBasicBlock * other)1981 void HBasicBlock::MergeWith(HBasicBlock* other) {
1982   DCHECK_EQ(GetGraph(), other->GetGraph());
1983   DCHECK(ContainsElement(dominated_blocks_, other));
1984   DCHECK_EQ(GetSingleSuccessor(), other);
1985   DCHECK_EQ(other->GetSinglePredecessor(), this);
1986   DCHECK(other->GetPhis().IsEmpty());
1987 
1988   // Move instructions from `other` to `this`.
1989   MergeInstructionsWith(other);
1990 
1991   // Remove `other` from the loops it is included in.
1992   for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
1993     HLoopInformation* loop_info = it.Current();
1994     loop_info->Remove(other);
1995     if (loop_info->IsBackEdge(*other)) {
1996       loop_info->ReplaceBackEdge(other, this);
1997     }
1998   }
1999 
2000   // Update links to the successors of `other`.
2001   successors_.clear();
2002   for (HBasicBlock* successor : other->GetSuccessors()) {
2003     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2004   }
2005   successors_.swap(other->successors_);
2006   DCHECK(other->successors_.empty());
2007 
2008   // Update the dominator tree.
2009   RemoveDominatedBlock(other);
2010   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2011     dominated->SetDominator(this);
2012   }
2013   dominated_blocks_.insert(
2014       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2015   other->dominated_blocks_.clear();
2016   other->dominator_ = nullptr;
2017 
2018   // Clear the list of predecessors of `other` in preparation of deleting it.
2019   other->predecessors_.clear();
2020 
2021   // Delete `other` from the graph. The function updates reverse post order.
2022   graph_->DeleteDeadEmptyBlock(other);
2023   other->SetGraph(nullptr);
2024 }
2025 
MergeWithInlined(HBasicBlock * other)2026 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2027   DCHECK_NE(GetGraph(), other->GetGraph());
2028   DCHECK(GetDominatedBlocks().empty());
2029   DCHECK(GetSuccessors().empty());
2030   DCHECK(!EndsWithControlFlowInstruction());
2031   DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2032   DCHECK(other->GetPhis().IsEmpty());
2033   DCHECK(!other->IsInLoop());
2034 
2035   // Move instructions from `other` to `this`.
2036   instructions_.Add(other->GetInstructions());
2037   other->instructions_.SetBlockOfInstructions(this);
2038 
2039   // Update links to the successors of `other`.
2040   successors_.clear();
2041   for (HBasicBlock* successor : other->GetSuccessors()) {
2042     successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2043   }
2044   successors_.swap(other->successors_);
2045   DCHECK(other->successors_.empty());
2046 
2047   // Update the dominator tree.
2048   for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2049     dominated->SetDominator(this);
2050   }
2051   dominated_blocks_.insert(
2052       dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2053   other->dominated_blocks_.clear();
2054   other->dominator_ = nullptr;
2055   other->graph_ = nullptr;
2056 }
2057 
ReplaceWith(HBasicBlock * other)2058 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2059   while (!GetPredecessors().empty()) {
2060     HBasicBlock* predecessor = GetPredecessors()[0];
2061     predecessor->ReplaceSuccessor(this, other);
2062   }
2063   while (!GetSuccessors().empty()) {
2064     HBasicBlock* successor = GetSuccessors()[0];
2065     successor->ReplacePredecessor(this, other);
2066   }
2067   for (HBasicBlock* dominated : GetDominatedBlocks()) {
2068     other->AddDominatedBlock(dominated);
2069   }
2070   GetDominator()->ReplaceDominatedBlock(this, other);
2071   other->SetDominator(GetDominator());
2072   dominator_ = nullptr;
2073   graph_ = nullptr;
2074 }
2075 
DeleteDeadEmptyBlock(HBasicBlock * block)2076 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2077   DCHECK_EQ(block->GetGraph(), this);
2078   DCHECK(block->GetSuccessors().empty());
2079   DCHECK(block->GetPredecessors().empty());
2080   DCHECK(block->GetDominatedBlocks().empty());
2081   DCHECK(block->GetDominator() == nullptr);
2082   DCHECK(block->GetInstructions().IsEmpty());
2083   DCHECK(block->GetPhis().IsEmpty());
2084 
2085   if (block->IsExitBlock()) {
2086     SetExitBlock(nullptr);
2087   }
2088 
2089   RemoveElement(reverse_post_order_, block);
2090   blocks_[block->GetBlockId()] = nullptr;
2091   block->SetGraph(nullptr);
2092 }
2093 
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)2094 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2095                                                    HBasicBlock* reference,
2096                                                    bool replace_if_back_edge) {
2097   if (block->IsLoopHeader()) {
2098     // Clear the information of which blocks are contained in that loop. Since the
2099     // information is stored as a bit vector based on block ids, we have to update
2100     // it, as those block ids were specific to the callee graph and we are now adding
2101     // these blocks to the caller graph.
2102     block->GetLoopInformation()->ClearAllBlocks();
2103   }
2104 
2105   // If not already in a loop, update the loop information.
2106   if (!block->IsInLoop()) {
2107     block->SetLoopInformation(reference->GetLoopInformation());
2108   }
2109 
2110   // If the block is in a loop, update all its outward loops.
2111   HLoopInformation* loop_info = block->GetLoopInformation();
2112   if (loop_info != nullptr) {
2113     for (HLoopInformationOutwardIterator loop_it(*block);
2114          !loop_it.Done();
2115          loop_it.Advance()) {
2116       loop_it.Current()->Add(block);
2117     }
2118     if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2119       loop_info->ReplaceBackEdge(reference, block);
2120     }
2121   }
2122 
2123   // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2124   TryCatchInformation* try_catch_info = reference->IsTryBlock()
2125       ? reference->GetTryCatchInformation()
2126       : nullptr;
2127   block->SetTryCatchInformation(try_catch_info);
2128 }
2129 
InlineInto(HGraph * outer_graph,HInvoke * invoke)2130 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2131   DCHECK(HasExitBlock()) << "Unimplemented scenario";
2132   // Update the environments in this graph to have the invoke's environment
2133   // as parent.
2134   {
2135     // Skip the entry block, we do not need to update the entry's suspend check.
2136     for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2137       for (HInstructionIterator instr_it(block->GetInstructions());
2138            !instr_it.Done();
2139            instr_it.Advance()) {
2140         HInstruction* current = instr_it.Current();
2141         if (current->NeedsEnvironment()) {
2142           DCHECK(current->HasEnvironment());
2143           current->GetEnvironment()->SetAndCopyParentChain(
2144               outer_graph->GetArena(), invoke->GetEnvironment());
2145         }
2146       }
2147     }
2148   }
2149   outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2150 
2151   if (HasBoundsChecks()) {
2152     outer_graph->SetHasBoundsChecks(true);
2153   }
2154   if (HasLoops()) {
2155     outer_graph->SetHasLoops(true);
2156   }
2157   if (HasIrreducibleLoops()) {
2158     outer_graph->SetHasIrreducibleLoops(true);
2159   }
2160   if (HasTryCatch()) {
2161     outer_graph->SetHasTryCatch(true);
2162   }
2163   if (HasSIMD()) {
2164     outer_graph->SetHasSIMD(true);
2165   }
2166 
2167   HInstruction* return_value = nullptr;
2168   if (GetBlocks().size() == 3) {
2169     // Inliner already made sure we don't inline methods that always throw.
2170     DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2171     // Simple case of an entry block, a body block, and an exit block.
2172     // Put the body block's instruction into `invoke`'s block.
2173     HBasicBlock* body = GetBlocks()[1];
2174     DCHECK(GetBlocks()[0]->IsEntryBlock());
2175     DCHECK(GetBlocks()[2]->IsExitBlock());
2176     DCHECK(!body->IsExitBlock());
2177     DCHECK(!body->IsInLoop());
2178     HInstruction* last = body->GetLastInstruction();
2179 
2180     // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2181     invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2182     body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2183 
2184     // Replace the invoke with the return value of the inlined graph.
2185     if (last->IsReturn()) {
2186       return_value = last->InputAt(0);
2187     } else {
2188       DCHECK(last->IsReturnVoid());
2189     }
2190 
2191     invoke->GetBlock()->RemoveInstruction(last);
2192   } else {
2193     // Need to inline multiple blocks. We split `invoke`'s block
2194     // into two blocks, merge the first block of the inlined graph into
2195     // the first half, and replace the exit block of the inlined graph
2196     // with the second half.
2197     ArenaAllocator* allocator = outer_graph->GetArena();
2198     HBasicBlock* at = invoke->GetBlock();
2199     // Note that we split before the invoke only to simplify polymorphic inlining.
2200     HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2201 
2202     HBasicBlock* first = entry_block_->GetSuccessors()[0];
2203     DCHECK(!first->IsInLoop());
2204     at->MergeWithInlined(first);
2205     exit_block_->ReplaceWith(to);
2206 
2207     // Update the meta information surrounding blocks:
2208     // (1) the graph they are now in,
2209     // (2) the reverse post order of that graph,
2210     // (3) their potential loop information, inner and outer,
2211     // (4) try block membership.
2212     // Note that we do not need to update catch phi inputs because they
2213     // correspond to the register file of the outer method which the inlinee
2214     // cannot modify.
2215 
2216     // We don't add the entry block, the exit block, and the first block, which
2217     // has been merged with `at`.
2218     static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2219 
2220     // We add the `to` block.
2221     static constexpr int kNumberOfNewBlocksInCaller = 1;
2222     size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2223         + kNumberOfNewBlocksInCaller;
2224 
2225     // Find the location of `at` in the outer graph's reverse post order. The new
2226     // blocks will be added after it.
2227     size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2228     MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2229 
2230     // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2231     // and (4) to the blocks that apply.
2232     for (HBasicBlock* current : GetReversePostOrder()) {
2233       if (current != exit_block_ && current != entry_block_ && current != first) {
2234         DCHECK(current->GetTryCatchInformation() == nullptr);
2235         DCHECK(current->GetGraph() == this);
2236         current->SetGraph(outer_graph);
2237         outer_graph->AddBlock(current);
2238         outer_graph->reverse_post_order_[++index_of_at] = current;
2239         UpdateLoopAndTryInformationOfNewBlock(current, at,  /* replace_if_back_edge */ false);
2240       }
2241     }
2242 
2243     // Do (1), (2), (3) and (4) to `to`.
2244     to->SetGraph(outer_graph);
2245     outer_graph->AddBlock(to);
2246     outer_graph->reverse_post_order_[++index_of_at] = to;
2247     // Only `to` can become a back edge, as the inlined blocks
2248     // are predecessors of `to`.
2249     UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2250 
2251     // Update all predecessors of the exit block (now the `to` block)
2252     // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2253     // to now get the outer graph exit block as successor. Note that the inliner
2254     // currently doesn't support inlining methods with try/catch.
2255     HPhi* return_value_phi = nullptr;
2256     bool rerun_dominance = false;
2257     bool rerun_loop_analysis = false;
2258     for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2259       HBasicBlock* predecessor = to->GetPredecessors()[pred];
2260       HInstruction* last = predecessor->GetLastInstruction();
2261       if (last->IsThrow()) {
2262         DCHECK(!at->IsTryBlock());
2263         predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2264         --pred;
2265         // We need to re-run dominance information, as the exit block now has
2266         // a new dominator.
2267         rerun_dominance = true;
2268         if (predecessor->GetLoopInformation() != nullptr) {
2269           // The exit block and blocks post dominated by the exit block do not belong
2270           // to any loop. Because we do not compute the post dominators, we need to re-run
2271           // loop analysis to get the loop information correct.
2272           rerun_loop_analysis = true;
2273         }
2274       } else {
2275         if (last->IsReturnVoid()) {
2276           DCHECK(return_value == nullptr);
2277           DCHECK(return_value_phi == nullptr);
2278         } else {
2279           DCHECK(last->IsReturn());
2280           if (return_value_phi != nullptr) {
2281             return_value_phi->AddInput(last->InputAt(0));
2282           } else if (return_value == nullptr) {
2283             return_value = last->InputAt(0);
2284           } else {
2285             // There will be multiple returns.
2286             return_value_phi = new (allocator) HPhi(
2287                 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2288             to->AddPhi(return_value_phi);
2289             return_value_phi->AddInput(return_value);
2290             return_value_phi->AddInput(last->InputAt(0));
2291             return_value = return_value_phi;
2292           }
2293         }
2294         predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2295         predecessor->RemoveInstruction(last);
2296       }
2297     }
2298     if (rerun_loop_analysis) {
2299       DCHECK(!outer_graph->HasIrreducibleLoops())
2300           << "Recomputing loop information in graphs with irreducible loops "
2301           << "is unsupported, as it could lead to loop header changes";
2302       outer_graph->ClearLoopInformation();
2303       outer_graph->ClearDominanceInformation();
2304       outer_graph->BuildDominatorTree();
2305     } else if (rerun_dominance) {
2306       outer_graph->ClearDominanceInformation();
2307       outer_graph->ComputeDominanceInformation();
2308     }
2309   }
2310 
2311   // Walk over the entry block and:
2312   // - Move constants from the entry block to the outer_graph's entry block,
2313   // - Replace HParameterValue instructions with their real value.
2314   // - Remove suspend checks, that hold an environment.
2315   // We must do this after the other blocks have been inlined, otherwise ids of
2316   // constants could overlap with the inner graph.
2317   size_t parameter_index = 0;
2318   for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2319     HInstruction* current = it.Current();
2320     HInstruction* replacement = nullptr;
2321     if (current->IsNullConstant()) {
2322       replacement = outer_graph->GetNullConstant(current->GetDexPc());
2323     } else if (current->IsIntConstant()) {
2324       replacement = outer_graph->GetIntConstant(
2325           current->AsIntConstant()->GetValue(), current->GetDexPc());
2326     } else if (current->IsLongConstant()) {
2327       replacement = outer_graph->GetLongConstant(
2328           current->AsLongConstant()->GetValue(), current->GetDexPc());
2329     } else if (current->IsFloatConstant()) {
2330       replacement = outer_graph->GetFloatConstant(
2331           current->AsFloatConstant()->GetValue(), current->GetDexPc());
2332     } else if (current->IsDoubleConstant()) {
2333       replacement = outer_graph->GetDoubleConstant(
2334           current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2335     } else if (current->IsParameterValue()) {
2336       if (kIsDebugBuild
2337           && invoke->IsInvokeStaticOrDirect()
2338           && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2339         // Ensure we do not use the last input of `invoke`, as it
2340         // contains a clinit check which is not an actual argument.
2341         size_t last_input_index = invoke->InputCount() - 1;
2342         DCHECK(parameter_index != last_input_index);
2343       }
2344       replacement = invoke->InputAt(parameter_index++);
2345     } else if (current->IsCurrentMethod()) {
2346       replacement = outer_graph->GetCurrentMethod();
2347     } else {
2348       DCHECK(current->IsGoto() || current->IsSuspendCheck());
2349       entry_block_->RemoveInstruction(current);
2350     }
2351     if (replacement != nullptr) {
2352       current->ReplaceWith(replacement);
2353       // If the current is the return value then we need to update the latter.
2354       if (current == return_value) {
2355         DCHECK_EQ(entry_block_, return_value->GetBlock());
2356         return_value = replacement;
2357       }
2358     }
2359   }
2360 
2361   return return_value;
2362 }
2363 
2364 /*
2365  * Loop will be transformed to:
2366  *       old_pre_header
2367  *             |
2368  *          if_block
2369  *           /    \
2370  *  true_block   false_block
2371  *           \    /
2372  *       new_pre_header
2373  *             |
2374  *           header
2375  */
TransformLoopHeaderForBCE(HBasicBlock * header)2376 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2377   DCHECK(header->IsLoopHeader());
2378   HBasicBlock* old_pre_header = header->GetDominator();
2379 
2380   // Need extra block to avoid critical edge.
2381   HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2382   HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2383   HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc());
2384   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2385   AddBlock(if_block);
2386   AddBlock(true_block);
2387   AddBlock(false_block);
2388   AddBlock(new_pre_header);
2389 
2390   header->ReplacePredecessor(old_pre_header, new_pre_header);
2391   old_pre_header->successors_.clear();
2392   old_pre_header->dominated_blocks_.clear();
2393 
2394   old_pre_header->AddSuccessor(if_block);
2395   if_block->AddSuccessor(true_block);  // True successor
2396   if_block->AddSuccessor(false_block);  // False successor
2397   true_block->AddSuccessor(new_pre_header);
2398   false_block->AddSuccessor(new_pre_header);
2399 
2400   old_pre_header->dominated_blocks_.push_back(if_block);
2401   if_block->SetDominator(old_pre_header);
2402   if_block->dominated_blocks_.push_back(true_block);
2403   true_block->SetDominator(if_block);
2404   if_block->dominated_blocks_.push_back(false_block);
2405   false_block->SetDominator(if_block);
2406   if_block->dominated_blocks_.push_back(new_pre_header);
2407   new_pre_header->SetDominator(if_block);
2408   new_pre_header->dominated_blocks_.push_back(header);
2409   header->SetDominator(new_pre_header);
2410 
2411   // Fix reverse post order.
2412   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2413   MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2414   reverse_post_order_[index_of_header++] = if_block;
2415   reverse_post_order_[index_of_header++] = true_block;
2416   reverse_post_order_[index_of_header++] = false_block;
2417   reverse_post_order_[index_of_header++] = new_pre_header;
2418 
2419   // The pre_header can never be a back edge of a loop.
2420   DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2421          !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2422   UpdateLoopAndTryInformationOfNewBlock(
2423       if_block, old_pre_header, /* replace_if_back_edge */ false);
2424   UpdateLoopAndTryInformationOfNewBlock(
2425       true_block, old_pre_header, /* replace_if_back_edge */ false);
2426   UpdateLoopAndTryInformationOfNewBlock(
2427       false_block, old_pre_header, /* replace_if_back_edge */ false);
2428   UpdateLoopAndTryInformationOfNewBlock(
2429       new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2430 }
2431 
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2432 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2433                                                    HBasicBlock* body,
2434                                                    HBasicBlock* exit) {
2435   DCHECK(header->IsLoopHeader());
2436   HLoopInformation* loop = header->GetLoopInformation();
2437 
2438   // Add new loop blocks.
2439   HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2440   HBasicBlock* new_header = new (arena_) HBasicBlock(this, header->GetDexPc());
2441   HBasicBlock* new_body = new (arena_) HBasicBlock(this, header->GetDexPc());
2442   AddBlock(new_pre_header);
2443   AddBlock(new_header);
2444   AddBlock(new_body);
2445 
2446   // Set up control flow.
2447   header->ReplaceSuccessor(exit, new_pre_header);
2448   new_pre_header->AddSuccessor(new_header);
2449   new_header->AddSuccessor(exit);
2450   new_header->AddSuccessor(new_body);
2451   new_body->AddSuccessor(new_header);
2452 
2453   // Set up dominators.
2454   header->ReplaceDominatedBlock(exit, new_pre_header);
2455   new_pre_header->SetDominator(header);
2456   new_pre_header->dominated_blocks_.push_back(new_header);
2457   new_header->SetDominator(new_pre_header);
2458   new_header->dominated_blocks_.push_back(new_body);
2459   new_body->SetDominator(new_header);
2460   new_header->dominated_blocks_.push_back(exit);
2461   exit->SetDominator(new_header);
2462 
2463   // Fix reverse post order.
2464   size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2465   MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2466   reverse_post_order_[++index_of_header] = new_pre_header;
2467   reverse_post_order_[++index_of_header] = new_header;
2468   size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2469   MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2470   reverse_post_order_[index_of_body] = new_body;
2471 
2472   // Add gotos and suspend check (client must add conditional in header).
2473   new_pre_header->AddInstruction(new (arena_) HGoto());
2474   HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(header->GetDexPc());
2475   new_header->AddInstruction(suspend_check);
2476   new_body->AddInstruction(new (arena_) HGoto());
2477   suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2478       loop->GetSuspendCheck()->GetEnvironment(), header);
2479 
2480   // Update loop information.
2481   new_header->AddBackEdge(new_body);
2482   new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2483   new_header->GetLoopInformation()->Populate();
2484   new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation());  // outward
2485   HLoopInformationOutwardIterator it(*new_header);
2486   for (it.Advance(); !it.Done(); it.Advance()) {
2487     it.Current()->Add(new_pre_header);
2488     it.Current()->Add(new_header);
2489     it.Current()->Add(new_body);
2490   }
2491   return new_pre_header;
2492 }
2493 
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2494 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2495     REQUIRES_SHARED(Locks::mutator_lock_) {
2496   if (rti.IsValid()) {
2497     DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2498         << " upper_bound_rti: " << upper_bound_rti
2499         << " rti: " << rti;
2500     DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2501         << " upper_bound_rti: " << upper_bound_rti
2502         << " rti: " << rti;
2503   }
2504 }
2505 
SetReferenceTypeInfo(ReferenceTypeInfo rti)2506 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2507   if (kIsDebugBuild) {
2508     DCHECK_EQ(GetType(), Primitive::kPrimNot);
2509     ScopedObjectAccess soa(Thread::Current());
2510     DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2511     if (IsBoundType()) {
2512       // Having the test here spares us from making the method virtual just for
2513       // the sake of a DCHECK.
2514       CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2515     }
2516   }
2517   reference_type_handle_ = rti.GetTypeHandle();
2518   SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2519 }
2520 
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2521 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2522   if (kIsDebugBuild) {
2523     ScopedObjectAccess soa(Thread::Current());
2524     DCHECK(upper_bound.IsValid());
2525     DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2526     CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2527   }
2528   upper_bound_ = upper_bound;
2529   SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2530 }
2531 
Create(TypeHandle type_handle,bool is_exact)2532 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2533   if (kIsDebugBuild) {
2534     ScopedObjectAccess soa(Thread::Current());
2535     DCHECK(IsValidHandle(type_handle));
2536     if (!is_exact) {
2537       DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2538           << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2539     }
2540   }
2541   return ReferenceTypeInfo(type_handle, is_exact);
2542 }
2543 
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2544 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2545   ScopedObjectAccess soa(Thread::Current());
2546   os << "["
2547      << " is_valid=" << rhs.IsValid()
2548      << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2549      << " is_exact=" << rhs.IsExact()
2550      << " ]";
2551   return os;
2552 }
2553 
HasAnyEnvironmentUseBefore(HInstruction * other)2554 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2555   // For now, assume that instructions in different blocks may use the
2556   // environment.
2557   // TODO: Use the control flow to decide if this is true.
2558   if (GetBlock() != other->GetBlock()) {
2559     return true;
2560   }
2561 
2562   // We know that we are in the same block. Walk from 'this' to 'other',
2563   // checking to see if there is any instruction with an environment.
2564   HInstruction* current = this;
2565   for (; current != other && current != nullptr; current = current->GetNext()) {
2566     // This is a conservative check, as the instruction result may not be in
2567     // the referenced environment.
2568     if (current->HasEnvironment()) {
2569       return true;
2570     }
2571   }
2572 
2573   // We should have been called with 'this' before 'other' in the block.
2574   // Just confirm this.
2575   DCHECK(current != nullptr);
2576   return false;
2577 }
2578 
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2579 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2580                            IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2581                            IntrinsicSideEffects side_effects,
2582                            IntrinsicExceptions exceptions) {
2583   intrinsic_ = intrinsic;
2584   IntrinsicOptimizations opt(this);
2585 
2586   // Adjust method's side effects from intrinsic table.
2587   switch (side_effects) {
2588     case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2589     case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2590     case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2591     case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2592   }
2593 
2594   if (needs_env_or_cache == kNoEnvironmentOrCache) {
2595     opt.SetDoesNotNeedDexCache();
2596     opt.SetDoesNotNeedEnvironment();
2597   } else {
2598     // If we need an environment, that means there will be a call, which can trigger GC.
2599     SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2600   }
2601   // Adjust method's exception status from intrinsic table.
2602   SetCanThrow(exceptions == kCanThrow);
2603 }
2604 
IsStringAlloc() const2605 bool HNewInstance::IsStringAlloc() const {
2606   ScopedObjectAccess soa(Thread::Current());
2607   return GetReferenceTypeInfo().IsStringClass();
2608 }
2609 
NeedsEnvironment() const2610 bool HInvoke::NeedsEnvironment() const {
2611   if (!IsIntrinsic()) {
2612     return true;
2613   }
2614   IntrinsicOptimizations opt(*this);
2615   return !opt.GetDoesNotNeedEnvironment();
2616 }
2617 
GetDexFileForPcRelativeDexCache() const2618 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2619   ArtMethod* caller = GetEnvironment()->GetMethod();
2620   ScopedObjectAccess soa(Thread::Current());
2621   // `caller` is null for a top-level graph representing a method whose declaring
2622   // class was not resolved.
2623   return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2624 }
2625 
NeedsDexCacheOfDeclaringClass() const2626 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2627   if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
2628     return false;
2629   }
2630   if (!IsIntrinsic()) {
2631     return true;
2632   }
2633   IntrinsicOptimizations opt(*this);
2634   return !opt.GetDoesNotNeedDexCache();
2635 }
2636 
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2637 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2638   switch (rhs) {
2639     case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2640       return os << "StringInit";
2641     case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2642       return os << "Recursive";
2643     case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
2644       return os << "BootImageLinkTimePcRelative";
2645     case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2646       return os << "DirectAddress";
2647     case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
2648       return os << "BssEntry";
2649     case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
2650       return os << "RuntimeCall";
2651     default:
2652       LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2653       UNREACHABLE();
2654   }
2655 }
2656 
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2657 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2658   switch (rhs) {
2659     case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2660       return os << "explicit";
2661     case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2662       return os << "implicit";
2663     case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2664       return os << "none";
2665     default:
2666       LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2667       UNREACHABLE();
2668   }
2669 }
2670 
InstructionDataEquals(const HInstruction * other) const2671 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2672   const HLoadClass* other_load_class = other->AsLoadClass();
2673   // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2674   // names rather than type indexes. However, we shall also have to re-think the hash code.
2675   if (type_index_ != other_load_class->type_index_ ||
2676       GetPackedFields() != other_load_class->GetPackedFields()) {
2677     return false;
2678   }
2679   switch (GetLoadKind()) {
2680     case LoadKind::kBootImageAddress:
2681     case LoadKind::kJitTableAddress: {
2682       ScopedObjectAccess soa(Thread::Current());
2683       return GetClass().Get() == other_load_class->GetClass().Get();
2684     }
2685     default:
2686       DCHECK(HasTypeReference(GetLoadKind()));
2687       return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2688   }
2689 }
2690 
SetLoadKind(LoadKind load_kind)2691 void HLoadClass::SetLoadKind(LoadKind load_kind) {
2692   SetPackedField<LoadKindField>(load_kind);
2693 
2694   if (load_kind != LoadKind::kRuntimeCall &&
2695       load_kind != LoadKind::kReferrersClass) {
2696     RemoveAsUserOfInput(0u);
2697     SetRawInputAt(0u, nullptr);
2698   }
2699 
2700   if (!NeedsEnvironment()) {
2701     RemoveEnvironment();
2702     SetSideEffects(SideEffects::None());
2703   }
2704 }
2705 
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2706 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2707   switch (rhs) {
2708     case HLoadClass::LoadKind::kReferrersClass:
2709       return os << "ReferrersClass";
2710     case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2711       return os << "BootImageLinkTimePcRelative";
2712     case HLoadClass::LoadKind::kBootImageAddress:
2713       return os << "BootImageAddress";
2714     case HLoadClass::LoadKind::kBssEntry:
2715       return os << "BssEntry";
2716     case HLoadClass::LoadKind::kJitTableAddress:
2717       return os << "JitTableAddress";
2718     case HLoadClass::LoadKind::kRuntimeCall:
2719       return os << "RuntimeCall";
2720     default:
2721       LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2722       UNREACHABLE();
2723   }
2724 }
2725 
InstructionDataEquals(const HInstruction * other) const2726 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2727   const HLoadString* other_load_string = other->AsLoadString();
2728   // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2729   // rather than their indexes. However, we shall also have to re-think the hash code.
2730   if (string_index_ != other_load_string->string_index_ ||
2731       GetPackedFields() != other_load_string->GetPackedFields()) {
2732     return false;
2733   }
2734   switch (GetLoadKind()) {
2735     case LoadKind::kBootImageAddress:
2736     case LoadKind::kJitTableAddress: {
2737       ScopedObjectAccess soa(Thread::Current());
2738       return GetString().Get() == other_load_string->GetString().Get();
2739     }
2740     default:
2741       return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2742   }
2743 }
2744 
SetLoadKind(LoadKind load_kind)2745 void HLoadString::SetLoadKind(LoadKind load_kind) {
2746   // Once sharpened, the load kind should not be changed again.
2747   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
2748   SetPackedField<LoadKindField>(load_kind);
2749 
2750   if (load_kind != LoadKind::kRuntimeCall) {
2751     RemoveAsUserOfInput(0u);
2752     SetRawInputAt(0u, nullptr);
2753   }
2754   if (!NeedsEnvironment()) {
2755     RemoveEnvironment();
2756     SetSideEffects(SideEffects::None());
2757   }
2758 }
2759 
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2760 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2761   switch (rhs) {
2762     case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2763       return os << "BootImageLinkTimePcRelative";
2764     case HLoadString::LoadKind::kBootImageAddress:
2765       return os << "BootImageAddress";
2766     case HLoadString::LoadKind::kBssEntry:
2767       return os << "BssEntry";
2768     case HLoadString::LoadKind::kJitTableAddress:
2769       return os << "JitTableAddress";
2770     case HLoadString::LoadKind::kRuntimeCall:
2771       return os << "RuntimeCall";
2772     default:
2773       LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2774       UNREACHABLE();
2775   }
2776 }
2777 
RemoveEnvironmentUsers()2778 void HInstruction::RemoveEnvironmentUsers() {
2779   for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
2780     HEnvironment* user = use.GetUser();
2781     user->SetRawEnvAt(use.GetIndex(), nullptr);
2782   }
2783   env_uses_.clear();
2784 }
2785 
2786 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)2787 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
2788   ArenaAllocator* allocator = GetArena();
2789 
2790   if (cond->IsCondition() &&
2791       !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) {
2792     // Can't reverse floating point conditions.  We have to use HBooleanNot in that case.
2793     HInstruction* lhs = cond->InputAt(0);
2794     HInstruction* rhs = cond->InputAt(1);
2795     HInstruction* replacement = nullptr;
2796     switch (cond->AsCondition()->GetOppositeCondition()) {  // get *opposite*
2797       case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
2798       case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
2799       case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
2800       case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
2801       case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
2802       case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
2803       case kCondB:  replacement = new (allocator) HBelow(lhs, rhs); break;
2804       case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
2805       case kCondA:  replacement = new (allocator) HAbove(lhs, rhs); break;
2806       case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
2807       default:
2808         LOG(FATAL) << "Unexpected condition";
2809         UNREACHABLE();
2810     }
2811     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2812     return replacement;
2813   } else if (cond->IsIntConstant()) {
2814     HIntConstant* int_const = cond->AsIntConstant();
2815     if (int_const->IsFalse()) {
2816       return GetIntConstant(1);
2817     } else {
2818       DCHECK(int_const->IsTrue()) << int_const->GetValue();
2819       return GetIntConstant(0);
2820     }
2821   } else {
2822     HInstruction* replacement = new (allocator) HBooleanNot(cond);
2823     cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
2824     return replacement;
2825   }
2826 }
2827 
operator <<(std::ostream & os,const MoveOperands & rhs)2828 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
2829   os << "["
2830      << " source=" << rhs.GetSource()
2831      << " destination=" << rhs.GetDestination()
2832      << " type=" << rhs.GetType()
2833      << " instruction=";
2834   if (rhs.GetInstruction() != nullptr) {
2835     os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
2836   } else {
2837     os << "null";
2838   }
2839   os << " ]";
2840   return os;
2841 }
2842 
operator <<(std::ostream & os,TypeCheckKind rhs)2843 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
2844   switch (rhs) {
2845     case TypeCheckKind::kUnresolvedCheck:
2846       return os << "unresolved_check";
2847     case TypeCheckKind::kExactCheck:
2848       return os << "exact_check";
2849     case TypeCheckKind::kClassHierarchyCheck:
2850       return os << "class_hierarchy_check";
2851     case TypeCheckKind::kAbstractClassCheck:
2852       return os << "abstract_class_check";
2853     case TypeCheckKind::kInterfaceCheck:
2854       return os << "interface_check";
2855     case TypeCheckKind::kArrayObjectCheck:
2856       return os << "array_object_check";
2857     case TypeCheckKind::kArrayCheck:
2858       return os << "array_check";
2859     default:
2860       LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
2861       UNREACHABLE();
2862   }
2863 }
2864 
operator <<(std::ostream & os,const MemBarrierKind & kind)2865 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
2866   switch (kind) {
2867     case MemBarrierKind::kAnyStore:
2868       return os << "AnyStore";
2869     case MemBarrierKind::kLoadAny:
2870       return os << "LoadAny";
2871     case MemBarrierKind::kStoreStore:
2872       return os << "StoreStore";
2873     case MemBarrierKind::kAnyAny:
2874       return os << "AnyAny";
2875     case MemBarrierKind::kNTStoreStore:
2876       return os << "NTStoreStore";
2877 
2878     default:
2879       LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
2880       UNREACHABLE();
2881   }
2882 }
2883 
2884 }  // namespace art
2885