1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_HANDLES_H_
6 #define V8_HANDLES_H_
7
8 #include <type_traits>
9
10 #include "include/v8.h"
11 #include "src/base/functional.h"
12 #include "src/base/macros.h"
13 #include "src/checks.h"
14 #include "src/globals.h"
15 #include "src/zone/zone.h"
16
17 namespace v8 {
18 namespace internal {
19
20 // Forward declarations.
21 class DeferredHandles;
22 class HandleScopeImplementer;
23 class Isolate;
24 class Object;
25
26
27 // ----------------------------------------------------------------------------
28 // Base class for Handle instantiations. Don't use directly.
29 class HandleBase {
30 public:
HandleBase(Object ** location)31 V8_INLINE explicit HandleBase(Object** location) : location_(location) {}
32 V8_INLINE explicit HandleBase(Object* object, Isolate* isolate);
33
34 // Check if this handle refers to the exact same object as the other handle.
is_identical_to(const HandleBase that)35 V8_INLINE bool is_identical_to(const HandleBase that) const {
36 // Dereferencing deferred handles to check object equality is safe.
37 SLOW_DCHECK((this->location_ == nullptr ||
38 this->IsDereferenceAllowed(NO_DEFERRED_CHECK)) &&
39 (that.location_ == nullptr ||
40 that.IsDereferenceAllowed(NO_DEFERRED_CHECK)));
41 if (this->location_ == that.location_) return true;
42 if (this->location_ == NULL || that.location_ == NULL) return false;
43 return *this->location_ == *that.location_;
44 }
45
is_null()46 V8_INLINE bool is_null() const { return location_ == nullptr; }
47
48 // Returns the raw address where this handle is stored. This should only be
49 // used for hashing handles; do not ever try to dereference it.
address()50 V8_INLINE Address address() const { return bit_cast<Address>(location_); }
51
52 protected:
53 // Provides the C++ dereference operator.
54 V8_INLINE Object* operator*() const {
55 SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
56 return *location_;
57 }
58
59 // Returns the address to where the raw pointer is stored.
location()60 V8_INLINE Object** location() const {
61 SLOW_DCHECK(location_ == nullptr ||
62 IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK));
63 return location_;
64 }
65
66 enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK };
67 #ifdef DEBUG
68 bool V8_EXPORT_PRIVATE IsDereferenceAllowed(DereferenceCheckMode mode) const;
69 #else
70 V8_INLINE
IsDereferenceAllowed(DereferenceCheckMode mode)71 bool V8_EXPORT_PRIVATE IsDereferenceAllowed(DereferenceCheckMode mode) const {
72 return true;
73 }
74 #endif // DEBUG
75
76 Object** location_;
77 };
78
79
80 // ----------------------------------------------------------------------------
81 // A Handle provides a reference to an object that survives relocation by
82 // the garbage collector.
83 //
84 // Handles are only valid within a HandleScope. When a handle is created
85 // for an object a cell is allocated in the current HandleScope.
86 //
87 // Also note that Handles do not provide default equality comparison or hashing
88 // operators on purpose. Such operators would be misleading, because intended
89 // semantics is ambiguous between Handle location and object identity. Instead
90 // use either {is_identical_to} or {location} explicitly.
91 template <typename T>
92 class Handle final : public HandleBase {
93 public:
94 V8_INLINE explicit Handle(T** location = nullptr)
HandleBase(reinterpret_cast<Object ** > (location))95 : HandleBase(reinterpret_cast<Object**>(location)) {
96 // Type check:
97 static_assert(std::is_base_of<Object, T>::value, "static type violation");
98 }
99
Handle(T * object)100 V8_INLINE explicit Handle(T* object) : Handle(object, object->GetIsolate()) {}
Handle(T * object,Isolate * isolate)101 V8_INLINE Handle(T* object, Isolate* isolate) : HandleBase(object, isolate) {}
102
103 // Allocate a new handle for the object, do not canonicalize.
104 V8_INLINE static Handle<T> New(T* object, Isolate* isolate);
105
106 // Constructor for handling automatic up casting.
107 // Ex. Handle<JSFunction> can be passed when Handle<Object> is expected.
108 template <typename S>
Handle(Handle<S> handle)109 V8_INLINE Handle(Handle<S> handle)
110 : HandleBase(handle) {
111 T* a = nullptr;
112 S* b = nullptr;
113 a = b; // Fake assignment to enforce type checks.
114 USE(a);
115 }
116
117 V8_INLINE T* operator->() const { return operator*(); }
118
119 // Provides the C++ dereference operator.
120 V8_INLINE T* operator*() const {
121 return reinterpret_cast<T*>(HandleBase::operator*());
122 }
123
124 // Returns the address to where the raw pointer is stored.
location()125 V8_INLINE T** location() const {
126 return reinterpret_cast<T**>(HandleBase::location());
127 }
128
129 template <typename S>
cast(Handle<S> that)130 static const Handle<T> cast(Handle<S> that) {
131 T::cast(*reinterpret_cast<T**>(that.location_));
132 return Handle<T>(reinterpret_cast<T**>(that.location_));
133 }
134
135 // TODO(yangguo): Values that contain empty handles should be declared as
136 // MaybeHandle to force validation before being used as handles.
null()137 static const Handle<T> null() { return Handle<T>(); }
138
139 // Provide function object for location equality comparison.
140 struct equal_to : public std::binary_function<Handle<T>, Handle<T>, bool> {
operatorequal_to141 V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const {
142 return lhs.address() == rhs.address();
143 }
144 };
145
146 // Provide function object for location hashing.
147 struct hash : public std::unary_function<Handle<T>, size_t> {
operatorhash148 V8_INLINE size_t operator()(Handle<T> const& handle) const {
149 return base::hash<void*>()(handle.address());
150 }
151 };
152
153 private:
154 // Handles of different classes are allowed to access each other's location_.
155 template <typename>
156 friend class Handle;
157 // MaybeHandle is allowed to access location_.
158 template <typename>
159 friend class MaybeHandle;
160 };
161
162 template <typename T>
163 inline std::ostream& operator<<(std::ostream& os, Handle<T> handle);
164
165 template <typename T>
handle(T * object,Isolate * isolate)166 V8_INLINE Handle<T> handle(T* object, Isolate* isolate) {
167 return Handle<T>(object, isolate);
168 }
169
170 template <typename T>
handle(T * object)171 V8_INLINE Handle<T> handle(T* object) {
172 return Handle<T>(object);
173 }
174
175
176 // ----------------------------------------------------------------------------
177 // A Handle can be converted into a MaybeHandle. Converting a MaybeHandle
178 // into a Handle requires checking that it does not point to NULL. This
179 // ensures NULL checks before use.
180 //
181 // Also note that Handles do not provide default equality comparison or hashing
182 // operators on purpose. Such operators would be misleading, because intended
183 // semantics is ambiguous between Handle location and object identity.
184 template <typename T>
185 class MaybeHandle final {
186 public:
MaybeHandle()187 V8_INLINE MaybeHandle() {}
~MaybeHandle()188 V8_INLINE ~MaybeHandle() {}
189
190 // Constructor for handling automatic up casting from Handle.
191 // Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected.
192 template <typename S>
MaybeHandle(Handle<S> handle)193 V8_INLINE MaybeHandle(Handle<S> handle)
194 : location_(reinterpret_cast<T**>(handle.location_)) {
195 T* a = nullptr;
196 S* b = nullptr;
197 a = b; // Fake assignment to enforce type checks.
198 USE(a);
199 }
200
201 // Constructor for handling automatic up casting.
202 // Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected.
203 template <typename S>
MaybeHandle(MaybeHandle<S> maybe_handle)204 V8_INLINE MaybeHandle(MaybeHandle<S> maybe_handle)
205 : location_(reinterpret_cast<T**>(maybe_handle.location_)) {
206 T* a = nullptr;
207 S* b = nullptr;
208 a = b; // Fake assignment to enforce type checks.
209 USE(a);
210 }
211
212 template <typename S>
MaybeHandle(S * object,Isolate * isolate)213 V8_INLINE MaybeHandle(S* object, Isolate* isolate)
214 : MaybeHandle(handle(object, isolate)) {}
215
Assert()216 V8_INLINE void Assert() const { DCHECK_NOT_NULL(location_); }
Check()217 V8_INLINE void Check() const { CHECK_NOT_NULL(location_); }
218
ToHandleChecked()219 V8_INLINE Handle<T> ToHandleChecked() const {
220 Check();
221 return Handle<T>(location_);
222 }
223
224 // Convert to a Handle with a type that can be upcasted to.
225 template <typename S>
ToHandle(Handle<S> * out)226 V8_INLINE bool ToHandle(Handle<S>* out) const {
227 if (location_ == nullptr) {
228 *out = Handle<T>::null();
229 return false;
230 } else {
231 *out = Handle<T>(location_);
232 return true;
233 }
234 }
235
236 // Returns the raw address where this handle is stored. This should only be
237 // used for hashing handles; do not ever try to dereference it.
address()238 V8_INLINE Address address() const { return bit_cast<Address>(location_); }
239
is_null()240 bool is_null() const { return location_ == nullptr; }
241
242 protected:
243 T** location_ = nullptr;
244
245 // MaybeHandles of different classes are allowed to access each
246 // other's location_.
247 template <typename>
248 friend class MaybeHandle;
249 };
250
251
252 // ----------------------------------------------------------------------------
253 // A stack-allocated class that governs a number of local handles.
254 // After a handle scope has been created, all local handles will be
255 // allocated within that handle scope until either the handle scope is
256 // deleted or another handle scope is created. If there is already a
257 // handle scope and a new one is created, all allocations will take
258 // place in the new handle scope until it is deleted. After that,
259 // new handles will again be allocated in the original handle scope.
260 //
261 // After the handle scope of a local handle has been deleted the
262 // garbage collector will no longer track the object stored in the
263 // handle and may deallocate it. The behavior of accessing a handle
264 // for which the handle scope has been deleted is undefined.
265 class HandleScope {
266 public:
267 explicit inline HandleScope(Isolate* isolate);
268
269 inline ~HandleScope();
270
271 // Counts the number of allocated handles.
272 V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate);
273
274 // Create a new handle or lookup a canonical handle.
275 V8_INLINE static Object** GetHandle(Isolate* isolate, Object* value);
276
277 // Creates a new handle with the given value.
278 V8_INLINE static Object** CreateHandle(Isolate* isolate, Object* value);
279
280 // Deallocates any extensions used by the current scope.
281 V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate);
282
283 static Address current_next_address(Isolate* isolate);
284 static Address current_limit_address(Isolate* isolate);
285 static Address current_level_address(Isolate* isolate);
286
287 // Closes the HandleScope (invalidating all handles
288 // created in the scope of the HandleScope) and returns
289 // a Handle backed by the parent scope holding the
290 // value of the argument handle.
291 template <typename T>
292 Handle<T> CloseAndEscape(Handle<T> handle_value);
293
isolate()294 Isolate* isolate() { return isolate_; }
295
296 // Limit for number of handles with --check-handle-count. This is
297 // large enough to compile natives and pass unit tests with some
298 // slack for future changes to natives.
299 static const int kCheckHandleThreshold = 30 * 1024;
300
301 private:
302 // Prevent heap allocation or illegal handle scopes.
303 void* operator new(size_t size);
304 void operator delete(void* size_t);
305
306 Isolate* isolate_;
307 Object** prev_next_;
308 Object** prev_limit_;
309
310 // Close the handle scope resetting limits to a previous state.
311 static inline void CloseScope(Isolate* isolate,
312 Object** prev_next,
313 Object** prev_limit);
314
315 // Extend the handle scope making room for more handles.
316 V8_EXPORT_PRIVATE static Object** Extend(Isolate* isolate);
317
318 #ifdef ENABLE_HANDLE_ZAPPING
319 // Zaps the handles in the half-open interval [start, end).
320 V8_EXPORT_PRIVATE static void ZapRange(Object** start, Object** end);
321 #endif
322
323 friend class v8::HandleScope;
324 friend class DeferredHandles;
325 friend class DeferredHandleScope;
326 friend class HandleScopeImplementer;
327 friend class Isolate;
328
329 DISALLOW_COPY_AND_ASSIGN(HandleScope);
330 };
331
332
333 // Forward declarations for CanonicalHandleScope.
334 template <typename V, class AllocationPolicy>
335 class IdentityMap;
336 class RootIndexMap;
337
338
339 // A CanonicalHandleScope does not open a new HandleScope. It changes the
340 // existing HandleScope so that Handles created within are canonicalized.
341 // This does not apply to nested inner HandleScopes unless a nested
342 // CanonicalHandleScope is introduced. Handles are only canonicalized within
343 // the same CanonicalHandleScope, but not across nested ones.
344 class V8_EXPORT_PRIVATE CanonicalHandleScope final {
345 public:
346 explicit CanonicalHandleScope(Isolate* isolate);
347 ~CanonicalHandleScope();
348
349 private:
350 Object** Lookup(Object* object);
351
352 Isolate* isolate_;
353 Zone zone_;
354 RootIndexMap* root_index_map_;
355 IdentityMap<Object**, ZoneAllocationPolicy>* identity_map_;
356 // Ordinary nested handle scopes within the current one are not canonical.
357 int canonical_level_;
358 // We may have nested canonical scopes. Handles are canonical within each one.
359 CanonicalHandleScope* prev_canonical_scope_;
360
361 friend class HandleScope;
362 };
363
364 class V8_EXPORT_PRIVATE DeferredHandleScope final {
365 public:
366 explicit DeferredHandleScope(Isolate* isolate);
367 // The DeferredHandles object returned stores the Handles created
368 // since the creation of this DeferredHandleScope. The Handles are
369 // alive as long as the DeferredHandles object is alive.
370 DeferredHandles* Detach();
371 ~DeferredHandleScope();
372
373 private:
374 Object** prev_limit_;
375 Object** prev_next_;
376 HandleScopeImplementer* impl_;
377
378 #ifdef DEBUG
379 bool handles_detached_;
380 int prev_level_;
381 #endif
382
383 friend class HandleScopeImplementer;
384 };
385
386
387 // Seal off the current HandleScope so that new handles can only be created
388 // if a new HandleScope is entered.
389 class SealHandleScope final {
390 public:
391 #ifndef DEBUG
SealHandleScope(Isolate * isolate)392 explicit SealHandleScope(Isolate* isolate) {}
~SealHandleScope()393 ~SealHandleScope() {}
394 #else
395 explicit inline SealHandleScope(Isolate* isolate);
396 inline ~SealHandleScope();
397 private:
398 Isolate* isolate_;
399 Object** prev_limit_;
400 int prev_sealed_level_;
401 #endif
402 };
403
404
405 struct HandleScopeData final {
406 Object** next;
407 Object** limit;
408 int level;
409 int sealed_level;
410 CanonicalHandleScope* canonical_scope;
411
Initializefinal412 void Initialize() {
413 next = limit = NULL;
414 sealed_level = level = 0;
415 canonical_scope = NULL;
416 }
417 };
418
419 } // namespace internal
420 } // namespace v8
421
422 #endif // V8_HANDLES_H_
423