• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_HEAP_HEAP_H_
6 #define V8_HEAP_HEAP_H_
7 
8 #include <cmath>
9 #include <map>
10 
11 // Clients of this interface shouldn't depend on lots of heap internals.
12 // Do not include anything from src/heap here!
13 #include "include/v8.h"
14 #include "src/allocation.h"
15 #include "src/assert-scope.h"
16 #include "src/base/atomic-utils.h"
17 #include "src/debug/debug-interface.h"
18 #include "src/globals.h"
19 #include "src/heap-symbols.h"
20 #include "src/list.h"
21 #include "src/objects.h"
22 
23 namespace v8 {
24 namespace internal {
25 
26 using v8::MemoryPressureLevel;
27 
28 // Defines all the roots in Heap.
29 #define STRONG_ROOT_LIST(V)                                                    \
30   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
31   /* The first 32 entries are most often used in the startup snapshot and   */ \
32   /* can use a shorter representation in the serialization format.          */ \
33   V(Map, free_space_map, FreeSpaceMap)                                         \
34   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
35   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
36   V(Oddball, uninitialized_value, UninitializedValue)                          \
37   V(Oddball, undefined_value, UndefinedValue)                                  \
38   V(Oddball, the_hole_value, TheHoleValue)                                     \
39   V(Oddball, null_value, NullValue)                                            \
40   V(Oddball, true_value, TrueValue)                                            \
41   V(Oddball, false_value, FalseValue)                                          \
42   V(String, empty_string, empty_string)                                        \
43   V(Map, meta_map, MetaMap)                                                    \
44   V(Map, byte_array_map, ByteArrayMap)                                         \
45   V(Map, fixed_array_map, FixedArrayMap)                                       \
46   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
47   V(Map, hash_table_map, HashTableMap)                                         \
48   V(Map, symbol_map, SymbolMap)                                                \
49   V(Map, one_byte_string_map, OneByteStringMap)                                \
50   V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
51   V(Map, scope_info_map, ScopeInfoMap)                                         \
52   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
53   V(Map, code_map, CodeMap)                                                    \
54   V(Map, function_context_map, FunctionContextMap)                             \
55   V(Map, cell_map, CellMap)                                                    \
56   V(Map, weak_cell_map, WeakCellMap)                                           \
57   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
58   V(Map, foreign_map, ForeignMap)                                              \
59   V(Map, heap_number_map, HeapNumberMap)                                       \
60   V(Map, transition_array_map, TransitionArrayMap)                             \
61   V(Map, feedback_vector_map, FeedbackVectorMap)                               \
62   V(ScopeInfo, empty_scope_info, EmptyScopeInfo)                               \
63   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
64   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
65   /* Entries beyond the first 32                                            */ \
66   /* The roots above this line should be boring from a GC point of view.    */ \
67   /* This means they are never in new space and never on a page that is     */ \
68   /* being compacted.                                                       */ \
69   /* Oddballs */                                                               \
70   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
71   V(Oddball, arguments_marker, ArgumentsMarker)                                \
72   V(Oddball, exception, Exception)                                             \
73   V(Oddball, termination_exception, TerminationException)                      \
74   V(Oddball, optimized_out, OptimizedOut)                                      \
75   V(Oddball, stale_register, StaleRegister)                                    \
76   /* Context maps */                                                           \
77   V(Map, native_context_map, NativeContextMap)                                 \
78   V(Map, module_context_map, ModuleContextMap)                                 \
79   V(Map, eval_context_map, EvalContextMap)                                     \
80   V(Map, script_context_map, ScriptContextMap)                                 \
81   V(Map, block_context_map, BlockContextMap)                                   \
82   V(Map, catch_context_map, CatchContextMap)                                   \
83   V(Map, with_context_map, WithContextMap)                                     \
84   V(Map, debug_evaluate_context_map, DebugEvaluateContextMap)                  \
85   V(Map, script_context_table_map, ScriptContextTableMap)                      \
86   /* Maps */                                                                   \
87   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
88   V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
89   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
90   V(Map, unseeded_number_dictionary_map, UnseededNumberDictionaryMap)          \
91   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
92   V(Map, message_object_map, JSMessageObjectMap)                               \
93   V(Map, external_map, ExternalMap)                                            \
94   V(Map, bytecode_array_map, BytecodeArrayMap)                                 \
95   V(Map, module_info_map, ModuleInfoMap)                                       \
96   V(Map, no_closures_cell_map, NoClosuresCellMap)                              \
97   V(Map, one_closure_cell_map, OneClosureCellMap)                              \
98   V(Map, many_closures_cell_map, ManyClosuresCellMap)                          \
99   /* String maps */                                                            \
100   V(Map, native_source_string_map, NativeSourceStringMap)                      \
101   V(Map, string_map, StringMap)                                                \
102   V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
103   V(Map, cons_string_map, ConsStringMap)                                       \
104   V(Map, thin_one_byte_string_map, ThinOneByteStringMap)                       \
105   V(Map, thin_string_map, ThinStringMap)                                       \
106   V(Map, sliced_string_map, SlicedStringMap)                                   \
107   V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
108   V(Map, external_string_map, ExternalStringMap)                               \
109   V(Map, external_string_with_one_byte_data_map,                               \
110     ExternalStringWithOneByteDataMap)                                          \
111   V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
112   V(Map, short_external_string_map, ShortExternalStringMap)                    \
113   V(Map, short_external_string_with_one_byte_data_map,                         \
114     ShortExternalStringWithOneByteDataMap)                                     \
115   V(Map, internalized_string_map, InternalizedStringMap)                       \
116   V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
117   V(Map, external_internalized_string_with_one_byte_data_map,                  \
118     ExternalInternalizedStringWithOneByteDataMap)                              \
119   V(Map, external_one_byte_internalized_string_map,                            \
120     ExternalOneByteInternalizedStringMap)                                      \
121   V(Map, short_external_internalized_string_map,                               \
122     ShortExternalInternalizedStringMap)                                        \
123   V(Map, short_external_internalized_string_with_one_byte_data_map,            \
124     ShortExternalInternalizedStringWithOneByteDataMap)                         \
125   V(Map, short_external_one_byte_internalized_string_map,                      \
126     ShortExternalOneByteInternalizedStringMap)                                 \
127   V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
128   /* Array element maps */                                                     \
129   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
130   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
131   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
132   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
133   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
134   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
135   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
136   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
137   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
138   /* Canonical empty values */                                                 \
139   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
140   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
141   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
142   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
143   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
144   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
145   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
146   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
147   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
148   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
149     EmptyFixedUint8ClampedArray)                                               \
150   V(Script, empty_script, EmptyScript)                                         \
151   V(Cell, undefined_cell, UndefinedCell)                                       \
152   V(FixedArray, empty_sloppy_arguments_elements, EmptySloppyArgumentsElements) \
153   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
154     EmptySlowElementDictionary)                                                \
155   V(PropertyCell, empty_property_cell, EmptyPropertyCell)                      \
156   V(WeakCell, empty_weak_cell, EmptyWeakCell)                                  \
157   /* Protectors */                                                             \
158   V(PropertyCell, array_protector, ArrayProtector)                             \
159   V(Cell, is_concat_spreadable_protector, IsConcatSpreadableProtector)         \
160   V(Cell, species_protector, SpeciesProtector)                                 \
161   V(PropertyCell, string_length_protector, StringLengthProtector)              \
162   V(Cell, fast_array_iteration_protector, FastArrayIterationProtector)         \
163   V(PropertyCell, array_iterator_protector, ArrayIteratorProtector)            \
164   V(PropertyCell, array_buffer_neutering_protector,                            \
165     ArrayBufferNeuteringProtector)                                             \
166   /* Special numbers */                                                        \
167   V(HeapNumber, nan_value, NanValue)                                           \
168   V(HeapNumber, hole_nan_value, HoleNanValue)                                  \
169   V(HeapNumber, infinity_value, InfinityValue)                                 \
170   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
171   V(HeapNumber, minus_infinity_value, MinusInfinityValue)                      \
172   /* Caches */                                                                 \
173   V(FixedArray, number_string_cache, NumberStringCache)                        \
174   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
175   V(FixedArray, string_split_cache, StringSplitCache)                          \
176   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
177   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
178   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
179   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
180   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
181   V(FixedArray, experimental_natives_source_cache,                             \
182     ExperimentalNativesSourceCache)                                            \
183   V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache)           \
184   V(FixedArray, experimental_extra_natives_source_cache,                       \
185     ExperimentalExtraNativesSourceCache)                                       \
186   /* Lists and dictionaries */                                                 \
187   V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary)    \
188   V(NameDictionary, public_symbol_table, PublicSymbolTable)                    \
189   V(NameDictionary, api_symbol_table, ApiSymbolTable)                          \
190   V(NameDictionary, api_private_symbol_table, ApiPrivateSymbolTable)           \
191   V(Object, script_list, ScriptList)                                           \
192   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
193   V(FixedArray, materialized_objects, MaterializedObjects)                     \
194   V(FixedArray, microtask_queue, MicrotaskQueue)                               \
195   V(FixedArray, detached_contexts, DetachedContexts)                           \
196   V(ArrayList, retained_maps, RetainedMaps)                                    \
197   V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable)           \
198   /* weak_new_space_object_to_code_list is an array of weak cells, where */    \
199   /* slots with even indices refer to the weak object, and the subsequent */   \
200   /* slots refer to the code with the reference to the weak object. */         \
201   V(ArrayList, weak_new_space_object_to_code_list,                             \
202     WeakNewSpaceObjectToCodeList)                                              \
203   /* List to hold onto feedback vectors that we need for code coverage */      \
204   V(Object, code_coverage_list, CodeCoverageList)                              \
205   V(Object, weak_stack_trace_list, WeakStackTraceList)                         \
206   V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos)       \
207   V(FixedArray, serialized_templates, SerializedTemplates)                     \
208   V(FixedArray, serialized_global_proxy_sizes, SerializedGlobalProxySizes)     \
209   /* Configured values */                                                      \
210   V(TemplateList, message_listeners, MessageListeners)                         \
211   V(InterceptorInfo, noop_interceptor_info, NoOpInterceptorInfo)               \
212   V(Code, js_entry_code, JsEntryCode)                                          \
213   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
214   /* Oddball maps */                                                           \
215   V(Map, undefined_map, UndefinedMap)                                          \
216   V(Map, the_hole_map, TheHoleMap)                                             \
217   V(Map, null_map, NullMap)                                                    \
218   V(Map, boolean_map, BooleanMap)                                              \
219   V(Map, uninitialized_map, UninitializedMap)                                  \
220   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
221   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
222   V(Map, exception_map, ExceptionMap)                                          \
223   V(Map, termination_exception_map, TerminationExceptionMap)                   \
224   V(Map, optimized_out_map, OptimizedOutMap)                                   \
225   V(Map, stale_register_map, StaleRegisterMap)                                 \
226   /* per-Isolate map for JSPromiseCapability. */                               \
227   /* TODO(caitp): Make this a Struct */                                        \
228   V(Map, js_promise_capability_map, JSPromiseCapabilityMap)
229 
230 // Entries in this list are limited to Smis and are not visited during GC.
231 #define SMI_ROOT_LIST(V)                                                       \
232   V(Smi, stack_limit, StackLimit)                                              \
233   V(Smi, real_stack_limit, RealStackLimit)                                     \
234   V(Smi, last_script_id, LastScriptId)                                         \
235   V(Smi, hash_seed, HashSeed)                                                  \
236   /* To distinguish the function templates, so that we can find them in the */ \
237   /* function cache of the native context. */                                  \
238   V(Smi, next_template_serial_number, NextTemplateSerialNumber)                \
239   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
240   V(Smi, construct_stub_create_deopt_pc_offset,                                \
241     ConstructStubCreateDeoptPCOffset)                                          \
242   V(Smi, construct_stub_invoke_deopt_pc_offset,                                \
243     ConstructStubInvokeDeoptPCOffset)                                          \
244   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
245   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)                 \
246   V(Smi, interpreter_entry_return_pc_offset, InterpreterEntryReturnPCOffset)
247 
248 #define ROOT_LIST(V)  \
249   STRONG_ROOT_LIST(V) \
250   SMI_ROOT_LIST(V)    \
251   V(StringTable, string_table, StringTable)
252 
253 
254 // Heap roots that are known to be immortal immovable, for which we can safely
255 // skip write barriers. This list is not complete and has omissions.
256 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
257   V(ByteArrayMap)                       \
258   V(BytecodeArrayMap)                   \
259   V(FreeSpaceMap)                       \
260   V(OnePointerFillerMap)                \
261   V(TwoPointerFillerMap)                \
262   V(UndefinedValue)                     \
263   V(TheHoleValue)                       \
264   V(NullValue)                          \
265   V(TrueValue)                          \
266   V(FalseValue)                         \
267   V(UninitializedValue)                 \
268   V(CellMap)                            \
269   V(GlobalPropertyCellMap)              \
270   V(SharedFunctionInfoMap)              \
271   V(MetaMap)                            \
272   V(HeapNumberMap)                      \
273   V(MutableHeapNumberMap)               \
274   V(NativeContextMap)                   \
275   V(FixedArrayMap)                      \
276   V(CodeMap)                            \
277   V(ScopeInfoMap)                       \
278   V(ModuleInfoMap)                      \
279   V(FixedCOWArrayMap)                   \
280   V(FixedDoubleArrayMap)                \
281   V(WeakCellMap)                        \
282   V(TransitionArrayMap)                 \
283   V(NoInterceptorResultSentinel)        \
284   V(HashTableMap)                       \
285   V(OrderedHashTableMap)                \
286   V(EmptyFixedArray)                    \
287   V(EmptyByteArray)                     \
288   V(EmptyDescriptorArray)               \
289   V(ArgumentsMarker)                    \
290   V(SymbolMap)                          \
291   V(SloppyArgumentsElementsMap)         \
292   V(FunctionContextMap)                 \
293   V(CatchContextMap)                    \
294   V(WithContextMap)                     \
295   V(BlockContextMap)                    \
296   V(ModuleContextMap)                   \
297   V(EvalContextMap)                     \
298   V(ScriptContextMap)                   \
299   V(UndefinedMap)                       \
300   V(TheHoleMap)                         \
301   V(NullMap)                            \
302   V(BooleanMap)                         \
303   V(UninitializedMap)                   \
304   V(ArgumentsMarkerMap)                 \
305   V(JSMessageObjectMap)                 \
306   V(ForeignMap)                         \
307   V(NoClosuresCellMap)                  \
308   V(OneClosureCellMap)                  \
309   V(ManyClosuresCellMap)                \
310   V(NanValue)                           \
311   V(InfinityValue)                      \
312   V(MinusZeroValue)                     \
313   V(MinusInfinityValue)                 \
314   V(EmptyWeakCell)                      \
315   V(empty_string)                       \
316   PRIVATE_SYMBOL_LIST(V)
317 
318 // Forward declarations.
319 class AllocationObserver;
320 class ArrayBufferTracker;
321 class GCIdleTimeAction;
322 class GCIdleTimeHandler;
323 class GCIdleTimeHeapState;
324 class GCTracer;
325 class HeapObjectsFilter;
326 class HeapStats;
327 class HistogramTimer;
328 class Isolate;
329 class LocalEmbedderHeapTracer;
330 class MemoryAllocator;
331 class MemoryReducer;
332 class ObjectIterator;
333 class ObjectStats;
334 class Page;
335 class PagedSpace;
336 class Scavenger;
337 class ScavengeJob;
338 class Space;
339 class StoreBuffer;
340 class TracePossibleWrapperReporter;
341 class WeakObjectRetainer;
342 
343 typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
344 
345 enum ArrayStorageAllocationMode {
346   DONT_INITIALIZE_ARRAY_ELEMENTS,
347   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
348 };
349 
350 enum class ClearRecordedSlots { kYes, kNo };
351 
352 enum class GarbageCollectionReason {
353   kUnknown = 0,
354   kAllocationFailure = 1,
355   kAllocationLimit = 2,
356   kContextDisposal = 3,
357   kCountersExtension = 4,
358   kDebugger = 5,
359   kDeserializer = 6,
360   kExternalMemoryPressure = 7,
361   kFinalizeMarkingViaStackGuard = 8,
362   kFinalizeMarkingViaTask = 9,
363   kFullHashtable = 10,
364   kHeapProfiler = 11,
365   kIdleTask = 12,
366   kLastResort = 13,
367   kLowMemoryNotification = 14,
368   kMakeHeapIterable = 15,
369   kMemoryPressure = 16,
370   kMemoryReducer = 17,
371   kRuntime = 18,
372   kSamplingProfiler = 19,
373   kSnapshotCreator = 20,
374   kTesting = 21
375   // If you add new items here, then update the incremental_marking_reason,
376   // mark_compact_reason, and scavenge_reason counters in counters.h.
377   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
378 };
379 
380 enum class YoungGenerationHandling {
381   kRegularScavenge = 0,
382   kFastPromotionDuringScavenge = 1,
383   // Histogram::InspectConstructionArguments in chromium requires us to have at
384   // least three buckets.
385   kUnusedBucket = 2,
386   // If you add new items here, then update the young_generation_handling in
387   // counters.h.
388   // Also update src/tools/metrics/histograms/histograms.xml in chromium.
389 };
390 
391 // A queue of objects promoted during scavenge. Each object is accompanied by
392 // its size to avoid dereferencing a map pointer for scanning. The last page in
393 // to-space is used for the promotion queue. On conflict during scavenge, the
394 // promotion queue is allocated externally and all entries are copied to the
395 // external queue.
396 class PromotionQueue {
397  public:
PromotionQueue(Heap * heap)398   explicit PromotionQueue(Heap* heap)
399       : front_(nullptr),
400         rear_(nullptr),
401         limit_(nullptr),
402         emergency_stack_(nullptr),
403         heap_(heap) {}
404 
405   void Initialize();
406   void Destroy();
407 
408   inline void SetNewLimit(Address limit);
409   inline bool IsBelowPromotionQueue(Address to_space_top);
410 
411   inline void insert(HeapObject* target, int32_t size, bool was_marked_black);
412   inline void remove(HeapObject** target, int32_t* size,
413                      bool* was_marked_black);
414 
is_empty()415   bool is_empty() {
416     return (front_ == rear_) &&
417            (emergency_stack_ == nullptr || emergency_stack_->length() == 0);
418   }
419 
420  private:
421   struct Entry {
EntryEntry422     Entry(HeapObject* obj, int32_t size, bool was_marked_black)
423         : obj_(obj), size_(size), was_marked_black_(was_marked_black) {}
424 
425     HeapObject* obj_;
426     int32_t size_ : 31;
427     bool was_marked_black_ : 1;
428   };
429 
430   inline Page* GetHeadPage();
431 
432   void RelocateQueueHead();
433 
434   // The front of the queue is higher in the memory page chain than the rear.
435   struct Entry* front_;
436   struct Entry* rear_;
437   struct Entry* limit_;
438 
439   List<Entry>* emergency_stack_;
440   Heap* heap_;
441 
442   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
443 };
444 
445 class AllocationResult {
446  public:
447   static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) {
448     return AllocationResult(space);
449   }
450 
451   // Implicit constructor from Object*.
AllocationResult(Object * object)452   AllocationResult(Object* object)  // NOLINT
453       : object_(object) {
454     // AllocationResults can't return Smis, which are used to represent
455     // failure and the space to retry in.
456     CHECK(!object->IsSmi());
457   }
458 
AllocationResult()459   AllocationResult() : object_(Smi::FromInt(NEW_SPACE)) {}
460 
IsRetry()461   inline bool IsRetry() { return object_->IsSmi(); }
462   inline HeapObject* ToObjectChecked();
463   inline AllocationSpace RetrySpace();
464 
465   template <typename T>
To(T ** obj)466   bool To(T** obj) {
467     if (IsRetry()) return false;
468     *obj = T::cast(object_);
469     return true;
470   }
471 
472  private:
AllocationResult(AllocationSpace space)473   explicit AllocationResult(AllocationSpace space)
474       : object_(Smi::FromInt(static_cast<int>(space))) {}
475 
476   Object* object_;
477 };
478 
479 STATIC_ASSERT(sizeof(AllocationResult) == kPointerSize);
480 
481 #ifdef DEBUG
482 struct CommentStatistic {
483   const char* comment;
484   int size;
485   int count;
ClearCommentStatistic486   void Clear() {
487     comment = NULL;
488     size = 0;
489     count = 0;
490   }
491   // Must be small, since an iteration is used for lookup.
492   static const int kMaxComments = 64;
493 };
494 #endif
495 
496 class NumberAndSizeInfo BASE_EMBEDDED {
497  public:
NumberAndSizeInfo()498   NumberAndSizeInfo() : number_(0), bytes_(0) {}
499 
number()500   int number() const { return number_; }
increment_number(int num)501   void increment_number(int num) { number_ += num; }
502 
bytes()503   int bytes() const { return bytes_; }
increment_bytes(int size)504   void increment_bytes(int size) { bytes_ += size; }
505 
clear()506   void clear() {
507     number_ = 0;
508     bytes_ = 0;
509   }
510 
511  private:
512   int number_;
513   int bytes_;
514 };
515 
516 // HistogramInfo class for recording a single "bar" of a histogram.  This
517 // class is used for collecting statistics to print to the log file.
518 class HistogramInfo : public NumberAndSizeInfo {
519  public:
HistogramInfo()520   HistogramInfo() : NumberAndSizeInfo(), name_(nullptr) {}
521 
name()522   const char* name() { return name_; }
set_name(const char * name)523   void set_name(const char* name) { name_ = name; }
524 
525  private:
526   const char* name_;
527 };
528 
529 class Heap {
530  public:
531   // Declare all the root indices.  This defines the root list order.
532   enum RootListIndex {
533 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
534     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
535 #undef ROOT_INDEX_DECLARATION
536 
537 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
538         INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
539 #undef STRING_DECLARATION
540 
541 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
542             PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
543 #undef SYMBOL_INDEX_DECLARATION
544 
545 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex,
546                 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
547                     WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
548 #undef SYMBOL_INDEX_DECLARATION
549 
550 // Utility type maps
551 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
552                         STRUCT_LIST(DECLARE_STRUCT_MAP)
553 #undef DECLARE_STRUCT_MAP
554                             kStringTableRootIndex,
555 
556 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
557     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
558 #undef ROOT_INDEX_DECLARATION
559         kRootListLength,
560     kStrongRootListLength = kStringTableRootIndex,
561     kSmiRootsStart = kStringTableRootIndex + 1
562   };
563 
564   enum FindMementoMode { kForRuntime, kForGC };
565 
566   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
567 
568   enum UpdateAllocationSiteMode { kGlobal, kCached };
569 
570   // Taking this lock prevents the GC from entering a phase that relocates
571   // object references.
572   class RelocationLock {
573    public:
RelocationLock(Heap * heap)574     explicit RelocationLock(Heap* heap) : heap_(heap) {
575       heap_->relocation_mutex_.Lock();
576     }
577 
~RelocationLock()578     ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
579 
580    private:
581     Heap* heap_;
582   };
583 
584   // Support for partial snapshots.  After calling this we have a linear
585   // space to write objects in each space.
586   struct Chunk {
587     uint32_t size;
588     Address start;
589     Address end;
590   };
591   typedef List<Chunk> Reservation;
592 
593   static const int kInitalOldGenerationLimitFactor = 2;
594 
595 #if V8_OS_ANDROID
596   // Don't apply pointer multiplier on Android since it has no swap space and
597   // should instead adapt it's heap size based on available physical memory.
598   static const int kPointerMultiplier = 1;
599 #else
600   static const int kPointerMultiplier = i::kPointerSize / 4;
601 #endif
602 
603   // The new space size has to be a power of 2. Sizes are in MB.
604   static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
605   static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
606   static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
607   static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
608 
609   // The old space size has to be a multiple of Page::kPageSize.
610   // Sizes are in MB.
611   static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
612   static const int kMaxOldSpaceSizeMediumMemoryDevice =
613       256 * kPointerMultiplier;
614   static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
615   static const int kMaxOldSpaceSizeHugeMemoryDevice = 1024 * kPointerMultiplier;
616 
617   // The executable size has to be a multiple of Page::kPageSize.
618   // Sizes are in MB.
619   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
620   static const int kMaxExecutableSizeMediumMemoryDevice =
621       192 * kPointerMultiplier;
622   static const int kMaxExecutableSizeHighMemoryDevice =
623       256 * kPointerMultiplier;
624   static const int kMaxExecutableSizeHugeMemoryDevice =
625       256 * kPointerMultiplier;
626 
627   static const int kTraceRingBufferSize = 512;
628   static const int kStacktraceBufferSize = 512;
629 
630   V8_EXPORT_PRIVATE static const double kMinHeapGrowingFactor;
631   V8_EXPORT_PRIVATE static const double kMaxHeapGrowingFactor;
632   static const double kMaxHeapGrowingFactorMemoryConstrained;
633   static const double kMaxHeapGrowingFactorIdle;
634   static const double kConservativeHeapGrowingFactor;
635   static const double kTargetMutatorUtilization;
636 
637   static const int kNoGCFlags = 0;
638   static const int kReduceMemoryFootprintMask = 1;
639   static const int kAbortIncrementalMarkingMask = 2;
640   static const int kFinalizeIncrementalMarkingMask = 4;
641 
642   // Making the heap iterable requires us to abort incremental marking.
643   static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
644 
645   // The roots that have an index less than this are always in old space.
646   static const int kOldSpaceRoots = 0x20;
647 
648   // The minimum size of a HeapObject on the heap.
649   static const int kMinObjectSizeInWords = 2;
650 
651   static const int kMinPromotedPercentForFastPromotionMode = 90;
652 
653   STATIC_ASSERT(kUndefinedValueRootIndex ==
654                 Internals::kUndefinedValueRootIndex);
655   STATIC_ASSERT(kTheHoleValueRootIndex == Internals::kTheHoleValueRootIndex);
656   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
657   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
658   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
659   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
660 
661   // Calculates the maximum amount of filler that could be required by the
662   // given alignment.
663   static int GetMaximumFillToAlign(AllocationAlignment alignment);
664   // Calculates the actual amount of filler required for a given address at the
665   // given alignment.
666   static int GetFillToAlign(Address address, AllocationAlignment alignment);
667 
668   template <typename T>
669   static inline bool IsOneByte(T t, int chars);
670 
671   static void FatalProcessOutOfMemory(const char* location,
672                                       bool is_heap_oom = false);
673 
674   static bool RootIsImmortalImmovable(int root_index);
675 
676   // Checks whether the space is valid.
677   static bool IsValidAllocationSpace(AllocationSpace space);
678 
679   // Generated code can embed direct references to non-writable roots if
680   // they are in new space.
681   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
682 
683   static bool IsUnmodifiedHeapObject(Object** p);
684 
685   // Zapping is needed for verify heap, and always done in debug builds.
ShouldZapGarbage()686   static inline bool ShouldZapGarbage() {
687 #ifdef DEBUG
688     return true;
689 #else
690 #ifdef VERIFY_HEAP
691     return FLAG_verify_heap;
692 #else
693     return false;
694 #endif
695 #endif
696   }
697 
IsYoungGenerationCollector(GarbageCollector collector)698   static inline bool IsYoungGenerationCollector(GarbageCollector collector) {
699     return collector == SCAVENGER || collector == MINOR_MARK_COMPACTOR;
700   }
701 
YoungGenerationCollector()702   static inline GarbageCollector YoungGenerationCollector() {
703     return (FLAG_minor_mc) ? MINOR_MARK_COMPACTOR : SCAVENGER;
704   }
705 
CollectorName(GarbageCollector collector)706   static inline const char* CollectorName(GarbageCollector collector) {
707     switch (collector) {
708       case SCAVENGER:
709         return "Scavenger";
710       case MARK_COMPACTOR:
711         return "Mark-Compact";
712       case MINOR_MARK_COMPACTOR:
713         return "Minor Mark-Compact";
714     }
715     return "Unknown collector";
716   }
717 
718   V8_EXPORT_PRIVATE static double HeapGrowingFactor(double gc_speed,
719                                                     double mutator_speed);
720 
721   // Copy block of memory from src to dst. Size of block should be aligned
722   // by pointer size.
723   static inline void CopyBlock(Address dst, Address src, int byte_size);
724 
725   // Determines a static visitor id based on the given {map} that can then be
726   // stored on the map to facilitate fast dispatch for {StaticVisitorBase}.
727   static int GetStaticVisitorIdForMap(Map* map);
728 
729   // Notifies the heap that is ok to start marking or other activities that
730   // should not happen during deserialization.
731   void NotifyDeserializationComplete();
732 
733   inline Address* NewSpaceAllocationTopAddress();
734   inline Address* NewSpaceAllocationLimitAddress();
735   inline Address* OldSpaceAllocationTopAddress();
736   inline Address* OldSpaceAllocationLimitAddress();
737 
738   // Clear the Instanceof cache (used when a prototype changes).
739   inline void ClearInstanceofCache();
740 
741   // FreeSpace objects have a null map after deserialization. Update the map.
742   void RepairFreeListsAfterDeserialization();
743 
744   // Move len elements within a given array from src_index index to dst_index
745   // index.
746   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
747 
748   // Initialize a filler object to keep the ability to iterate over the heap
749   // when introducing gaps within pages. If slots could have been recorded in
750   // the freed area, then pass ClearRecordedSlots::kYes as the mode. Otherwise,
751   // pass ClearRecordedSlots::kNo.
752   HeapObject* CreateFillerObjectAt(Address addr, int size,
753                                    ClearRecordedSlots mode);
754 
755   bool CanMoveObjectStart(HeapObject* object);
756 
757   static bool IsImmovable(HeapObject* object);
758 
759   // Maintain consistency of live bytes during incremental marking.
760   void AdjustLiveBytes(HeapObject* object, int by);
761 
762   // Trim the given array from the left. Note that this relocates the object
763   // start and hence is only valid if there is only a single reference to it.
764   FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
765 
766   // Trim the given array from the right.
767   void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
768 
769   // Converts the given boolean condition to JavaScript boolean value.
770   inline Oddball* ToBoolean(bool condition);
771 
772   // Notify the heap that a context has been disposed.
773   int NotifyContextDisposed(bool dependant_context);
774 
set_native_contexts_list(Object * object)775   void set_native_contexts_list(Object* object) {
776     native_contexts_list_ = object;
777   }
native_contexts_list()778   Object* native_contexts_list() const { return native_contexts_list_; }
779 
set_allocation_sites_list(Object * object)780   void set_allocation_sites_list(Object* object) {
781     allocation_sites_list_ = object;
782   }
allocation_sites_list()783   Object* allocation_sites_list() { return allocation_sites_list_; }
784 
785   // Used in CreateAllocationSiteStub and the (de)serializer.
allocation_sites_list_address()786   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
787 
set_encountered_weak_collections(Object * weak_collection)788   void set_encountered_weak_collections(Object* weak_collection) {
789     encountered_weak_collections_ = weak_collection;
790   }
encountered_weak_collections()791   Object* encountered_weak_collections() const {
792     return encountered_weak_collections_;
793   }
VisitEncounteredWeakCollections(ObjectVisitor * visitor)794   void VisitEncounteredWeakCollections(ObjectVisitor* visitor) {
795     visitor->VisitPointer(&encountered_weak_collections_);
796   }
797 
set_encountered_weak_cells(Object * weak_cell)798   void set_encountered_weak_cells(Object* weak_cell) {
799     encountered_weak_cells_ = weak_cell;
800   }
encountered_weak_cells()801   Object* encountered_weak_cells() const { return encountered_weak_cells_; }
802 
set_encountered_transition_arrays(Object * transition_array)803   void set_encountered_transition_arrays(Object* transition_array) {
804     encountered_transition_arrays_ = transition_array;
805   }
encountered_transition_arrays()806   Object* encountered_transition_arrays() const {
807     return encountered_transition_arrays_;
808   }
809 
810   // Number of mark-sweeps.
ms_count()811   int ms_count() const { return ms_count_; }
812 
813   // Checks whether the given object is allowed to be migrated from it's
814   // current space into the given destination space. Used for debugging.
815   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
816 
817   void CheckHandleCount();
818 
819   // Number of "runtime allocations" done so far.
allocations_count()820   uint32_t allocations_count() { return allocations_count_; }
821 
822   // Print short heap statistics.
823   void PrintShortHeapStatistics();
824 
gc_state()825   inline HeapState gc_state() { return gc_state_; }
826   void SetGCState(HeapState state);
827 
IsInGCPostProcessing()828   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
829 
830   // If an object has an AllocationMemento trailing it, return it, otherwise
831   // return NULL;
832   template <FindMementoMode mode>
833   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
834 
835   // Returns false if not able to reserve.
836   bool ReserveSpace(Reservation* reservations, List<Address>* maps);
837 
838   //
839   // Support for the API.
840   //
841 
842   bool CreateApiObjects();
843 
844   // Implements the corresponding V8 API function.
845   bool IdleNotification(double deadline_in_seconds);
846   bool IdleNotification(int idle_time_in_ms);
847 
848   void MemoryPressureNotification(MemoryPressureLevel level,
849                                   bool is_isolate_locked);
850   void CheckMemoryPressure();
851 
852   void SetOutOfMemoryCallback(v8::debug::OutOfMemoryCallback callback,
853                               void* data);
854 
855   double MonotonicallyIncreasingTimeInMs();
856 
857   void RecordStats(HeapStats* stats, bool take_snapshot = false);
858 
859   // Check new space expansion criteria and expand semispaces if it was hit.
860   void CheckNewSpaceExpansionCriteria();
861 
862   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
863 
864   // An object should be promoted if the object has survived a
865   // scavenge operation.
866   inline bool ShouldBePromoted(Address old_address, int object_size);
867 
868   void ClearNormalizedMapCaches();
869 
870   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
871 
872   // Completely clear the Instanceof cache (to stop it keeping objects alive
873   // around a GC).
874   inline void CompletelyClearInstanceofCache();
875 
876   inline uint32_t HashSeed();
877 
878   inline int NextScriptId();
879 
880   inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
881   inline void SetConstructStubCreateDeoptPCOffset(int pc_offset);
882   inline void SetConstructStubInvokeDeoptPCOffset(int pc_offset);
883   inline void SetGetterStubDeoptPCOffset(int pc_offset);
884   inline void SetSetterStubDeoptPCOffset(int pc_offset);
885   inline void SetInterpreterEntryReturnPCOffset(int pc_offset);
886   inline int GetNextTemplateSerialNumber();
887 
888   inline void SetSerializedTemplates(FixedArray* templates);
889   inline void SetSerializedGlobalProxySizes(FixedArray* sizes);
890 
891   // For post mortem debugging.
892   void RememberUnmappedPage(Address page, bool compacted);
893 
894   // Global inline caching age: it is incremented on some GCs after context
895   // disposal. We use it to flush inline caches.
global_ic_age()896   int global_ic_age() { return global_ic_age_; }
897 
AgeInlineCaches()898   void AgeInlineCaches() {
899     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
900   }
901 
external_memory_hard_limit()902   int64_t external_memory_hard_limit() { return MaxOldGenerationSize() / 2; }
903 
external_memory()904   int64_t external_memory() { return external_memory_; }
update_external_memory(int64_t delta)905   void update_external_memory(int64_t delta) { external_memory_ += delta; }
906 
update_external_memory_concurrently_freed(intptr_t freed)907   void update_external_memory_concurrently_freed(intptr_t freed) {
908     external_memory_concurrently_freed_.Increment(freed);
909   }
910 
account_external_memory_concurrently_freed()911   void account_external_memory_concurrently_freed() {
912     external_memory_ -= external_memory_concurrently_freed_.Value();
913     external_memory_concurrently_freed_.SetValue(0);
914   }
915 
916   void DeoptMarkedAllocationSites();
917 
918   inline bool DeoptMaybeTenuredAllocationSites();
919 
920   void AddWeakNewSpaceObjectToCodeDependency(Handle<HeapObject> obj,
921                                              Handle<WeakCell> code);
922 
923   void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
924                                      Handle<DependentCode> dep);
925 
926   DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
927 
928   void CompactWeakFixedArrays();
929 
930   void AddRetainedMap(Handle<Map> map);
931 
932   // This event is triggered after successful allocation of a new object made
933   // by runtime. Allocations of target space for object evacuation do not
934   // trigger the event. In order to track ALL allocations one must turn off
935   // FLAG_inline_new and FLAG_use_allocation_folding.
936   inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
937 
938   // This event is triggered after object is moved to a new place.
939   inline void OnMoveEvent(HeapObject* target, HeapObject* source,
940                           int size_in_bytes);
941 
deserialization_complete()942   bool deserialization_complete() const { return deserialization_complete_; }
943 
944   bool HasLowAllocationRate();
945   bool HasHighFragmentation();
946   bool HasHighFragmentation(size_t used, size_t committed);
947 
948   void ActivateMemoryReducerIfNeeded();
949 
950   bool ShouldOptimizeForMemoryUsage();
951 
IsLowMemoryDevice()952   bool IsLowMemoryDevice() {
953     return max_old_generation_size_ <= kMaxOldSpaceSizeLowMemoryDevice;
954   }
955 
IsMemoryConstrainedDevice()956   bool IsMemoryConstrainedDevice() {
957     return max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice;
958   }
959 
HighMemoryPressure()960   bool HighMemoryPressure() {
961     return memory_pressure_level_.Value() != MemoryPressureLevel::kNone;
962   }
963 
HeapLimitForDebugging()964   size_t HeapLimitForDebugging() {
965     const size_t kDebugHeapSizeFactor = 4;
966     size_t max_limit = std::numeric_limits<size_t>::max() / 4;
967     return Min(max_limit,
968                initial_max_old_generation_size_ * kDebugHeapSizeFactor);
969   }
970 
IncreaseHeapLimitForDebugging()971   void IncreaseHeapLimitForDebugging() {
972     max_old_generation_size_ =
973         Max(max_old_generation_size_, HeapLimitForDebugging());
974   }
975 
RestoreOriginalHeapLimit()976   void RestoreOriginalHeapLimit() {
977     // Do not set the limit lower than the live size + some slack.
978     size_t min_limit = SizeOfObjects() + SizeOfObjects() / 4;
979     max_old_generation_size_ =
980         Min(max_old_generation_size_,
981             Max(initial_max_old_generation_size_, min_limit));
982   }
983 
IsHeapLimitIncreasedForDebugging()984   bool IsHeapLimitIncreasedForDebugging() {
985     return max_old_generation_size_ == HeapLimitForDebugging();
986   }
987 
988   // ===========================================================================
989   // Initialization. ===========================================================
990   // ===========================================================================
991 
992   // Configure heap size in MB before setup. Return false if the heap has been
993   // set up already.
994   bool ConfigureHeap(size_t max_semi_space_size, size_t max_old_space_size,
995                      size_t max_executable_size, size_t code_range_size);
996   bool ConfigureHeapDefault();
997 
998   // Prepares the heap, setting up memory areas that are needed in the isolate
999   // without actually creating any objects.
1000   bool SetUp();
1001 
1002   // Bootstraps the object heap with the core set of objects required to run.
1003   // Returns whether it succeeded.
1004   bool CreateHeapObjects();
1005 
1006   // Create ObjectStats if live_object_stats_ or dead_object_stats_ are nullptr.
1007   V8_INLINE void CreateObjectStats();
1008 
1009   // Destroys all memory allocated by the heap.
1010   void TearDown();
1011 
1012   // Returns whether SetUp has been called.
1013   bool HasBeenSetUp();
1014 
1015   // ===========================================================================
1016   // Getters for spaces. =======================================================
1017   // ===========================================================================
1018 
1019   inline Address NewSpaceTop();
1020 
new_space()1021   NewSpace* new_space() { return new_space_; }
old_space()1022   OldSpace* old_space() { return old_space_; }
code_space()1023   OldSpace* code_space() { return code_space_; }
map_space()1024   MapSpace* map_space() { return map_space_; }
lo_space()1025   LargeObjectSpace* lo_space() { return lo_space_; }
1026 
1027   inline PagedSpace* paged_space(int idx);
1028   inline Space* space(int idx);
1029 
1030   // Returns name of the space.
1031   const char* GetSpaceName(int idx);
1032 
1033   // ===========================================================================
1034   // Getters to other components. ==============================================
1035   // ===========================================================================
1036 
tracer()1037   GCTracer* tracer() { return tracer_; }
1038 
memory_allocator()1039   MemoryAllocator* memory_allocator() { return memory_allocator_; }
1040 
promotion_queue()1041   PromotionQueue* promotion_queue() { return &promotion_queue_; }
1042 
1043   inline Isolate* isolate();
1044 
mark_compact_collector()1045   MarkCompactCollector* mark_compact_collector() {
1046     return mark_compact_collector_;
1047   }
1048 
1049   // ===========================================================================
1050   // Root set access. ==========================================================
1051   // ===========================================================================
1052 
1053   // Heap root getters.
1054 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
1055   ROOT_LIST(ROOT_ACCESSOR)
1056 #undef ROOT_ACCESSOR
1057 
1058   // Utility type maps.
1059 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map();
STRUCT_LIST(STRUCT_MAP_ACCESSOR)1060   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
1061 #undef STRUCT_MAP_ACCESSOR
1062 
1063 #define STRING_ACCESSOR(name, str) inline String* name();
1064   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
1065 #undef STRING_ACCESSOR
1066 
1067 #define SYMBOL_ACCESSOR(name) inline Symbol* name();
1068   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
1069 #undef SYMBOL_ACCESSOR
1070 
1071 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name();
1072   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
1073   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
1074 #undef SYMBOL_ACCESSOR
1075 
1076   Object* root(RootListIndex index) { return roots_[index]; }
root_handle(RootListIndex index)1077   Handle<Object> root_handle(RootListIndex index) {
1078     return Handle<Object>(&roots_[index]);
1079   }
1080   template <typename T>
IsRootHandle(Handle<T> handle,RootListIndex * index)1081   bool IsRootHandle(Handle<T> handle, RootListIndex* index) const {
1082     Object** const handle_location = bit_cast<Object**>(handle.address());
1083     if (handle_location >= &roots_[kRootListLength]) return false;
1084     if (handle_location < &roots_[0]) return false;
1085     *index = static_cast<RootListIndex>(handle_location - &roots_[0]);
1086     return true;
1087   }
1088 
1089   // Generated code can embed this address to get access to the roots.
roots_array_start()1090   Object** roots_array_start() { return roots_; }
1091 
1092   // Sets the stub_cache_ (only used when expanding the dictionary).
SetRootCodeStubs(UnseededNumberDictionary * value)1093   void SetRootCodeStubs(UnseededNumberDictionary* value) {
1094     roots_[kCodeStubsRootIndex] = value;
1095   }
1096 
SetRootMaterializedObjects(FixedArray * objects)1097   void SetRootMaterializedObjects(FixedArray* objects) {
1098     roots_[kMaterializedObjectsRootIndex] = objects;
1099   }
1100 
SetRootScriptList(Object * value)1101   void SetRootScriptList(Object* value) {
1102     roots_[kScriptListRootIndex] = value;
1103   }
1104 
SetRootStringTable(StringTable * value)1105   void SetRootStringTable(StringTable* value) {
1106     roots_[kStringTableRootIndex] = value;
1107   }
1108 
SetRootNoScriptSharedFunctionInfos(Object * value)1109   void SetRootNoScriptSharedFunctionInfos(Object* value) {
1110     roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
1111   }
1112 
SetMessageListeners(TemplateList * value)1113   void SetMessageListeners(TemplateList* value) {
1114     roots_[kMessageListenersRootIndex] = value;
1115   }
1116 
1117   // Set the stack limit in the roots_ array.  Some architectures generate
1118   // code that looks here, because it is faster than loading from the static
1119   // jslimit_/real_jslimit_ variable in the StackGuard.
1120   void SetStackLimits();
1121 
1122   // The stack limit is thread-dependent. To be able to reproduce the same
1123   // snapshot blob, we need to reset it before serializing.
1124   void ClearStackLimits();
1125 
1126   // Generated code can treat direct references to this root as constant.
1127   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
1128 
1129   Map* MapForFixedTypedArray(ExternalArrayType array_type);
1130   RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
1131 
1132   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
1133   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
1134 
1135   void RegisterStrongRoots(Object** start, Object** end);
1136   void UnregisterStrongRoots(Object** start);
1137 
1138   // ===========================================================================
1139   // Inline allocation. ========================================================
1140   // ===========================================================================
1141 
1142   // Indicates whether inline bump-pointer allocation has been disabled.
inline_allocation_disabled()1143   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
1144 
1145   // Switch whether inline bump-pointer allocation should be used.
1146   void EnableInlineAllocation();
1147   void DisableInlineAllocation();
1148 
1149   // ===========================================================================
1150   // Methods triggering GCs. ===================================================
1151   // ===========================================================================
1152 
1153   // Performs garbage collection operation.
1154   // Returns whether there is a chance that another major GC could
1155   // collect more garbage.
1156   inline bool CollectGarbage(
1157       AllocationSpace space, GarbageCollectionReason gc_reason,
1158       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1159 
1160   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
1161   // non-zero, then the slower precise sweeper is used, which leaves the heap
1162   // in a state where we can iterate over the heap visiting all objects.
1163   void CollectAllGarbage(
1164       int flags, GarbageCollectionReason gc_reason,
1165       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1166 
1167   // Last hope GC, should try to squeeze as much as possible.
1168   void CollectAllAvailableGarbage(GarbageCollectionReason gc_reason);
1169 
1170   // Reports and external memory pressure event, either performs a major GC or
1171   // completes incremental marking in order to free external resources.
1172   void ReportExternalMemoryPressure();
1173 
1174   // Invoked when GC was requested via the stack guard.
1175   void HandleGCRequest();
1176 
1177   // ===========================================================================
1178   // Iterators. ================================================================
1179   // ===========================================================================
1180 
1181   // Iterates over all roots in the heap.
1182   void IterateRoots(ObjectVisitor* v, VisitMode mode);
1183   // Iterates over all strong roots in the heap.
1184   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
1185   // Iterates over entries in the smi roots list.  Only interesting to the
1186   // serializer/deserializer, since GC does not care about smis.
1187   void IterateSmiRoots(ObjectVisitor* v);
1188   // Iterates over all the other roots in the heap.
1189   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
1190 
1191   // Iterate pointers of promoted objects.
1192   void IterateAndScavengePromotedObject(HeapObject* target, int size,
1193                                         bool was_marked_black);
1194 
1195   // ===========================================================================
1196   // Store buffer API. =========================================================
1197   // ===========================================================================
1198 
1199   // Write barrier support for object[offset] = o;
1200   inline void RecordWrite(Object* object, int offset, Object* o);
1201   inline void RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* target);
1202   void RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* target);
1203   void RecordWritesIntoCode(Code* code);
1204   inline void RecordFixedArrayElements(FixedArray* array, int offset,
1205                                        int length);
1206 
1207   inline Address* store_buffer_top_address();
1208 
1209   void ClearRecordedSlot(HeapObject* object, Object** slot);
1210   void ClearRecordedSlotRange(Address start, Address end);
1211 
1212   bool HasRecordedSlot(HeapObject* object, Object** slot);
1213 
1214   // ===========================================================================
1215   // Incremental marking API. ==================================================
1216   // ===========================================================================
1217 
1218   // Start incremental marking and ensure that idle time handler can perform
1219   // incremental steps.
1220   void StartIdleIncrementalMarking(GarbageCollectionReason gc_reason);
1221 
1222   // Starts incremental marking assuming incremental marking is currently
1223   // stopped.
1224   void StartIncrementalMarking(
1225       int gc_flags, GarbageCollectionReason gc_reason,
1226       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
1227 
1228   void StartIncrementalMarkingIfAllocationLimitIsReached(
1229       int gc_flags,
1230       GCCallbackFlags gc_callback_flags = GCCallbackFlags::kNoGCCallbackFlags);
1231 
1232   void FinalizeIncrementalMarkingIfComplete(GarbageCollectionReason gc_reason);
1233 
1234   bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms,
1235                                          GarbageCollectionReason gc_reason);
1236 
1237   void RegisterReservationsForBlackAllocation(Reservation* reservations);
1238 
incremental_marking()1239   IncrementalMarking* incremental_marking() { return incremental_marking_; }
1240 
1241   // The runtime uses this function to notify potentially unsafe object layout
1242   // changes that require special synchronization with the concurrent marker.
1243   // A layout change is unsafe if
1244   // - it removes a tagged in-object field.
1245   // - it replaces a tagged in-objects field with an untagged in-object field.
1246   void NotifyObjectLayoutChange(HeapObject* object,
1247                                 const DisallowHeapAllocation&);
1248 #ifdef VERIFY_HEAP
1249   // This function checks that either
1250   // - the map transition is safe,
1251   // - or it was communicated to GC using NotifyObjectLayoutChange.
1252   void VerifyObjectLayoutChange(HeapObject* object, Map* new_map);
1253 #endif
1254 
1255   // ===========================================================================
1256   // Embedder heap tracer support. =============================================
1257   // ===========================================================================
1258 
local_embedder_heap_tracer()1259   LocalEmbedderHeapTracer* local_embedder_heap_tracer() {
1260     return local_embedder_heap_tracer_;
1261   }
1262   void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
1263   void TracePossibleWrapper(JSObject* js_object);
1264   void RegisterExternallyReferencedObject(Object** object);
1265 
1266   // ===========================================================================
1267   // External string table API. ================================================
1268   // ===========================================================================
1269 
1270   // Registers an external string.
1271   inline void RegisterExternalString(String* string);
1272 
1273   // Finalizes an external string by deleting the associated external
1274   // data and clearing the resource pointer.
1275   inline void FinalizeExternalString(String* string);
1276 
1277   // ===========================================================================
1278   // Methods checking/returning the space of a given object/address. ===========
1279   // ===========================================================================
1280 
1281   // Returns whether the object resides in new space.
1282   inline bool InNewSpace(Object* object);
1283   inline bool InFromSpace(Object* object);
1284   inline bool InToSpace(Object* object);
1285 
1286   // Returns whether the object resides in old space.
1287   inline bool InOldSpace(Object* object);
1288 
1289   // Checks whether an address/object in the heap (including auxiliary
1290   // area and unused area).
1291   bool Contains(HeapObject* value);
1292 
1293   // Checks whether an address/object in a space.
1294   // Currently used by tests, serialization and heap verification only.
1295   bool InSpace(HeapObject* value, AllocationSpace space);
1296 
1297   // Slow methods that can be used for verification as they can also be used
1298   // with off-heap Addresses.
1299   bool ContainsSlow(Address addr);
1300   bool InSpaceSlow(Address addr, AllocationSpace space);
1301   inline bool InNewSpaceSlow(Address address);
1302   inline bool InOldSpaceSlow(Address address);
1303 
1304   // ===========================================================================
1305   // Object statistics tracking. ===============================================
1306   // ===========================================================================
1307 
1308   // Returns the number of buckets used by object statistics tracking during a
1309   // major GC. Note that the following methods fail gracefully when the bounds
1310   // are exceeded though.
1311   size_t NumberOfTrackedHeapObjectTypes();
1312 
1313   // Returns object statistics about count and size at the last major GC.
1314   // Objects are being grouped into buckets that roughly resemble existing
1315   // instance types.
1316   size_t ObjectCountAtLastGC(size_t index);
1317   size_t ObjectSizeAtLastGC(size_t index);
1318 
1319   // Retrieves names of buckets used by object statistics tracking.
1320   bool GetObjectTypeName(size_t index, const char** object_type,
1321                          const char** object_sub_type);
1322 
1323   // ===========================================================================
1324   // Code statistics. ==========================================================
1325   // ===========================================================================
1326 
1327   // Collect code (Code and BytecodeArray objects) statistics.
1328   void CollectCodeStatistics();
1329 
1330   // ===========================================================================
1331   // GC statistics. ============================================================
1332   // ===========================================================================
1333 
1334   // Returns the maximum amount of memory reserved for the heap.
MaxReserved()1335   size_t MaxReserved() {
1336     return 2 * max_semi_space_size_ + max_old_generation_size_;
1337   }
MaxSemiSpaceSize()1338   size_t MaxSemiSpaceSize() { return max_semi_space_size_; }
InitialSemiSpaceSize()1339   size_t InitialSemiSpaceSize() { return initial_semispace_size_; }
MaxOldGenerationSize()1340   size_t MaxOldGenerationSize() { return max_old_generation_size_; }
MaxExecutableSize()1341   size_t MaxExecutableSize() { return max_executable_size_; }
1342 
1343   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
1344   // more spaces are needed until it reaches the limit.
1345   size_t Capacity();
1346 
1347   // Returns the capacity of the old generation.
1348   size_t OldGenerationCapacity();
1349 
1350   // Returns the amount of memory currently committed for the heap.
1351   size_t CommittedMemory();
1352 
1353   // Returns the amount of memory currently committed for the old space.
1354   size_t CommittedOldGenerationMemory();
1355 
1356   // Returns the amount of executable memory currently committed for the heap.
1357   size_t CommittedMemoryExecutable();
1358 
1359   // Returns the amount of phyical memory currently committed for the heap.
1360   size_t CommittedPhysicalMemory();
1361 
1362   // Returns the maximum amount of memory ever committed for the heap.
MaximumCommittedMemory()1363   size_t MaximumCommittedMemory() { return maximum_committed_; }
1364 
1365   // Updates the maximum committed memory for the heap. Should be called
1366   // whenever a space grows.
1367   void UpdateMaximumCommitted();
1368 
1369   // Returns the available bytes in space w/o growing.
1370   // Heap doesn't guarantee that it can allocate an object that requires
1371   // all available bytes. Check MaxHeapObjectSize() instead.
1372   size_t Available();
1373 
1374   // Returns of size of all objects residing in the heap.
1375   size_t SizeOfObjects();
1376 
1377   void UpdateSurvivalStatistics(int start_new_space_size);
1378 
IncrementPromotedObjectsSize(size_t object_size)1379   inline void IncrementPromotedObjectsSize(size_t object_size) {
1380     promoted_objects_size_ += object_size;
1381   }
promoted_objects_size()1382   inline size_t promoted_objects_size() { return promoted_objects_size_; }
1383 
IncrementSemiSpaceCopiedObjectSize(size_t object_size)1384   inline void IncrementSemiSpaceCopiedObjectSize(size_t object_size) {
1385     semi_space_copied_object_size_ += object_size;
1386   }
semi_space_copied_object_size()1387   inline size_t semi_space_copied_object_size() {
1388     return semi_space_copied_object_size_;
1389   }
1390 
SurvivedNewSpaceObjectSize()1391   inline size_t SurvivedNewSpaceObjectSize() {
1392     return promoted_objects_size_ + semi_space_copied_object_size_;
1393   }
1394 
IncrementNodesDiedInNewSpace()1395   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
1396 
IncrementNodesCopiedInNewSpace()1397   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
1398 
IncrementNodesPromoted()1399   inline void IncrementNodesPromoted() { nodes_promoted_++; }
1400 
IncrementYoungSurvivorsCounter(size_t survived)1401   inline void IncrementYoungSurvivorsCounter(size_t survived) {
1402     survived_last_scavenge_ = survived;
1403     survived_since_last_expansion_ += survived;
1404   }
1405 
PromotedTotalSize()1406   inline uint64_t PromotedTotalSize() {
1407     return PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
1408   }
1409 
1410   inline void UpdateNewSpaceAllocationCounter();
1411 
1412   inline size_t NewSpaceAllocationCounter();
1413 
1414   // This should be used only for testing.
set_new_space_allocation_counter(size_t new_value)1415   void set_new_space_allocation_counter(size_t new_value) {
1416     new_space_allocation_counter_ = new_value;
1417   }
1418 
UpdateOldGenerationAllocationCounter()1419   void UpdateOldGenerationAllocationCounter() {
1420     old_generation_allocation_counter_at_last_gc_ =
1421         OldGenerationAllocationCounter();
1422   }
1423 
OldGenerationAllocationCounter()1424   size_t OldGenerationAllocationCounter() {
1425     return old_generation_allocation_counter_at_last_gc_ +
1426            PromotedSinceLastGC();
1427   }
1428 
1429   // This should be used only for testing.
set_old_generation_allocation_counter_at_last_gc(size_t new_value)1430   void set_old_generation_allocation_counter_at_last_gc(size_t new_value) {
1431     old_generation_allocation_counter_at_last_gc_ = new_value;
1432   }
1433 
PromotedSinceLastGC()1434   size_t PromotedSinceLastGC() {
1435     return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
1436   }
1437 
gc_count()1438   int gc_count() const { return gc_count_; }
1439 
1440   // Returns the size of objects residing in non new spaces.
1441   size_t PromotedSpaceSizeOfObjects();
1442 
1443   // ===========================================================================
1444   // Prologue/epilogue callback methods.========================================
1445   // ===========================================================================
1446 
1447   void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
1448                              GCType gc_type_filter, bool pass_isolate = true);
1449   void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
1450 
1451   void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
1452                              GCType gc_type_filter, bool pass_isolate = true);
1453   void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
1454 
1455   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
1456   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
1457 
1458   // ===========================================================================
1459   // Allocation methods. =======================================================
1460   // ===========================================================================
1461 
1462   // Creates a filler object and returns a heap object immediately after it.
1463   MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
1464                                                 int filler_size);
1465 
1466   // Creates a filler object if needed for alignment and returns a heap object
1467   // immediately after it. If any space is left after the returned object,
1468   // another filler object is created so the over allocated memory is iterable.
1469   MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
1470                                               int object_size,
1471                                               int allocation_size,
1472                                               AllocationAlignment alignment);
1473 
1474   // ===========================================================================
1475   // ArrayBuffer tracking. =====================================================
1476   // ===========================================================================
1477 
1478   // TODO(gc): API usability: encapsulate mutation of JSArrayBuffer::is_external
1479   // in the registration/unregistration APIs. Consider dropping the "New" from
1480   // "RegisterNewArrayBuffer" because one can re-register a previously
1481   // unregistered buffer, too, and the name is confusing.
1482   void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
1483   void UnregisterArrayBuffer(JSArrayBuffer* buffer);
1484 
1485   // ===========================================================================
1486   // Allocation site tracking. =================================================
1487   // ===========================================================================
1488 
1489   // Updates the AllocationSite of a given {object}. If the global prenuring
1490   // storage is passed as {pretenuring_feedback} the memento found count on
1491   // the corresponding allocation site is immediately updated and an entry
1492   // in the hash map is created. Otherwise the entry (including a the count
1493   // value) is cached on the local pretenuring feedback.
1494   template <UpdateAllocationSiteMode mode>
1495   inline void UpdateAllocationSite(HeapObject* object,
1496                                    base::HashMap* pretenuring_feedback);
1497 
1498   // Removes an entry from the global pretenuring storage.
1499   inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
1500 
1501   // Merges local pretenuring feedback into the global one. Note that this
1502   // method needs to be called after evacuation, as allocation sites may be
1503   // evacuated and this method resolves forward pointers accordingly.
1504   void MergeAllocationSitePretenuringFeedback(
1505       const base::HashMap& local_pretenuring_feedback);
1506 
1507 // =============================================================================
1508 
1509 #ifdef VERIFY_HEAP
1510   // Verify the heap is in its normal state before or after a GC.
1511   void Verify();
1512 #endif
1513 
1514 #ifdef DEBUG
set_allocation_timeout(int timeout)1515   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
1516 
1517   void Print();
1518   void PrintHandles();
1519 
1520   // Report heap statistics.
1521   void ReportHeapStatistics(const char* title);
1522   void ReportCodeStatistics(const char* title);
1523 #endif
1524 
1525   static const char* GarbageCollectionReasonToString(
1526       GarbageCollectionReason gc_reason);
1527 
1528  private:
1529   class SkipStoreBufferScope;
1530   class PretenuringScope;
1531 
1532   // External strings table is a place where all external strings are
1533   // registered.  We need to keep track of such strings to properly
1534   // finalize them.
1535   class ExternalStringTable {
1536    public:
1537     // Registers an external string.
1538     inline void AddString(String* string);
1539 
1540     inline void IterateAll(ObjectVisitor* v);
1541     inline void IterateNewSpaceStrings(ObjectVisitor* v);
1542     inline void PromoteAllNewSpaceStrings();
1543 
1544     // Restores internal invariant and gets rid of collected strings. Must be
1545     // called after each Iterate*() that modified the strings.
1546     void CleanUpAll();
1547     void CleanUpNewSpaceStrings();
1548 
1549     // Destroys all allocated memory.
1550     void TearDown();
1551 
1552    private:
ExternalStringTable(Heap * heap)1553     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
1554 
1555     inline void Verify();
1556 
1557     inline void AddOldString(String* string);
1558 
1559     // Notifies the table that only a prefix of the new list is valid.
1560     inline void ShrinkNewStrings(int position);
1561 
1562     // To speed up scavenge collections new space string are kept
1563     // separate from old space strings.
1564     List<Object*> new_space_strings_;
1565     List<Object*> old_space_strings_;
1566 
1567     Heap* heap_;
1568 
1569     friend class Heap;
1570 
1571     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
1572   };
1573 
1574   struct StrongRootsList;
1575 
1576   struct StringTypeTable {
1577     InstanceType type;
1578     int size;
1579     RootListIndex index;
1580   };
1581 
1582   struct ConstantStringTable {
1583     const char* contents;
1584     RootListIndex index;
1585   };
1586 
1587   struct StructTable {
1588     InstanceType type;
1589     int size;
1590     RootListIndex index;
1591   };
1592 
1593   struct GCCallbackPair {
GCCallbackPairGCCallbackPair1594     GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
1595                    bool pass_isolate)
1596         : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {}
1597 
1598     bool operator==(const GCCallbackPair& other) const {
1599       return other.callback == callback;
1600     }
1601 
1602     v8::Isolate::GCCallback callback;
1603     GCType gc_type;
1604     bool pass_isolate;
1605   };
1606 
1607   typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
1608                                                         Object** pointer);
1609 
1610   static const int kInitialStringTableSize = 2048;
1611   static const int kInitialEvalCacheSize = 64;
1612   static const int kInitialNumberStringCacheSize = 256;
1613 
1614   static const int kRememberedUnmappedPages = 128;
1615 
1616   static const StringTypeTable string_type_table[];
1617   static const ConstantStringTable constant_string_table[];
1618   static const StructTable struct_table[];
1619 
1620   static const int kYoungSurvivalRateHighThreshold = 90;
1621   static const int kYoungSurvivalRateAllowedDeviation = 15;
1622   static const int kOldSurvivalRateLowThreshold = 10;
1623 
1624   static const int kMaxMarkCompactsInIdleRound = 7;
1625   static const int kIdleScavengeThreshold = 5;
1626 
1627   static const int kInitialFeedbackCapacity = 256;
1628 
1629   Heap();
1630 
1631   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
1632       Heap* heap, Object** pointer);
1633 
1634   // Selects the proper allocation space based on the pretenuring decision.
SelectSpace(PretenureFlag pretenure)1635   static AllocationSpace SelectSpace(PretenureFlag pretenure) {
1636     return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
1637   }
1638 
1639 #define ROOT_ACCESSOR(type, name, camel_name) \
1640   inline void set_##name(type* value);
ROOT_LIST(ROOT_ACCESSOR)1641   ROOT_LIST(ROOT_ACCESSOR)
1642 #undef ROOT_ACCESSOR
1643 
1644   StoreBuffer* store_buffer() { return store_buffer_; }
1645 
set_current_gc_flags(int flags)1646   void set_current_gc_flags(int flags) {
1647     current_gc_flags_ = flags;
1648     DCHECK(!ShouldFinalizeIncrementalMarking() ||
1649            !ShouldAbortIncrementalMarking());
1650   }
1651 
ShouldReduceMemory()1652   inline bool ShouldReduceMemory() const {
1653     return current_gc_flags_ & kReduceMemoryFootprintMask;
1654   }
1655 
ShouldAbortIncrementalMarking()1656   inline bool ShouldAbortIncrementalMarking() const {
1657     return current_gc_flags_ & kAbortIncrementalMarkingMask;
1658   }
1659 
ShouldFinalizeIncrementalMarking()1660   inline bool ShouldFinalizeIncrementalMarking() const {
1661     return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
1662   }
1663 
1664   void PreprocessStackTraces();
1665 
1666   // Checks whether a global GC is necessary
1667   GarbageCollector SelectGarbageCollector(AllocationSpace space,
1668                                           const char** reason);
1669 
1670   // Make sure there is a filler value behind the top of the new space
1671   // so that the GC does not confuse some unintialized/stale memory
1672   // with the allocation memento of the object at the top
1673   void EnsureFillerObjectAtTop();
1674 
1675   // Ensure that we have swept all spaces in such a way that we can iterate
1676   // over all objects.  May cause a GC.
1677   void MakeHeapIterable();
1678 
1679   // Performs garbage collection operation.
1680   // Returns whether there is a chance that another major GC could
1681   // collect more garbage.
1682   bool CollectGarbage(
1683       GarbageCollector collector, GarbageCollectionReason gc_reason,
1684       const char* collector_reason,
1685       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1686 
1687   // Performs garbage collection
1688   // Returns whether there is a chance another major GC could
1689   // collect more garbage.
1690   bool PerformGarbageCollection(
1691       GarbageCollector collector,
1692       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
1693 
1694   inline void UpdateOldSpaceLimits();
1695 
1696   // Initializes a JSObject based on its map.
1697   void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
1698                                  Map* map);
1699 
1700   // Initializes JSObject body starting at given offset.
1701   void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset);
1702 
1703   void InitializeAllocationMemento(AllocationMemento* memento,
1704                                    AllocationSite* allocation_site);
1705 
1706   bool CreateInitialMaps();
1707   void CreateInitialObjects();
1708 
1709   // These five Create*EntryStub functions are here and forced to not be inlined
1710   // because of a gcc-4.4 bug that assigns wrong vtable entries.
1711   NO_INLINE(void CreateJSEntryStub());
1712   NO_INLINE(void CreateJSConstructEntryStub());
1713 
1714   void CreateFixedStubs();
1715 
1716   HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
1717 
1718   // Commits from space if it is uncommitted.
1719   void EnsureFromSpaceIsCommitted();
1720 
1721   // Uncommit unused semi space.
1722   bool UncommitFromSpace();
1723 
1724   // Fill in bogus values in from space
1725   void ZapFromSpace();
1726 
1727   // Deopts all code that contains allocation instruction which are tenured or
1728   // not tenured. Moreover it clears the pretenuring allocation site statistics.
1729   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
1730 
1731   // Evaluates local pretenuring for the old space and calls
1732   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
1733   // the old space.
1734   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
1735 
1736   // Record statistics before and after garbage collection.
1737   void ReportStatisticsBeforeGC();
1738   void ReportStatisticsAfterGC();
1739 
1740   // Creates and installs the full-sized number string cache.
1741   int FullSizeNumberStringCacheLength();
1742   // Flush the number to string cache.
1743   void FlushNumberStringCache();
1744 
1745   void ConfigureInitialOldGenerationSize();
1746 
1747   bool HasLowYoungGenerationAllocationRate();
1748   bool HasLowOldGenerationAllocationRate();
1749   double YoungGenerationMutatorUtilization();
1750   double OldGenerationMutatorUtilization();
1751 
1752   void ReduceNewSpaceSize();
1753 
1754   GCIdleTimeHeapState ComputeHeapState();
1755 
1756   bool PerformIdleTimeAction(GCIdleTimeAction action,
1757                              GCIdleTimeHeapState heap_state,
1758                              double deadline_in_ms);
1759 
1760   void IdleNotificationEpilogue(GCIdleTimeAction action,
1761                                 GCIdleTimeHeapState heap_state, double start_ms,
1762                                 double deadline_in_ms);
1763 
1764   inline void UpdateAllocationsHash(HeapObject* object);
1765   inline void UpdateAllocationsHash(uint32_t value);
1766   void PrintAlloctionsHash();
1767 
1768   void AddToRingBuffer(const char* string);
1769   void GetFromRingBuffer(char* buffer);
1770 
1771   void CompactRetainedMaps(ArrayList* retained_maps);
1772 
1773   void CollectGarbageOnMemoryPressure();
1774 
1775   void InvokeOutOfMemoryCallback();
1776 
1777   void ComputeFastPromotionMode(double survival_rate);
1778 
1779   // Attempt to over-approximate the weak closure by marking object groups and
1780   // implicit references from global handles, but don't atomically complete
1781   // marking. If we continue to mark incrementally, we might have marked
1782   // objects that die later.
1783   void FinalizeIncrementalMarking(GarbageCollectionReason gc_reason);
1784 
1785   // Returns the timer used for a given GC type.
1786   // - GCScavenger: young generation GC
1787   // - GCCompactor: full GC
1788   // - GCFinalzeMC: finalization of incremental full GC
1789   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
1790   // memory reduction
1791   HistogramTimer* GCTypeTimer(GarbageCollector collector);
1792 
1793   // ===========================================================================
1794   // Pretenuring. ==============================================================
1795   // ===========================================================================
1796 
1797   // Pretenuring decisions are made based on feedback collected during new space
1798   // evacuation. Note that between feedback collection and calling this method
1799   // object in old space must not move.
1800   void ProcessPretenuringFeedback();
1801 
1802   // ===========================================================================
1803   // Actual GC. ================================================================
1804   // ===========================================================================
1805 
1806   // Code that should be run before and after each GC.  Includes some
1807   // reporting/verification activities when compiled with DEBUG set.
1808   void GarbageCollectionPrologue();
1809   void GarbageCollectionEpilogue();
1810 
1811   // Performs a major collection in the whole heap.
1812   void MarkCompact();
1813   // Performs a minor collection of just the young generation.
1814   void MinorMarkCompact();
1815 
1816   // Code to be run before and after mark-compact.
1817   void MarkCompactPrologue();
1818   void MarkCompactEpilogue();
1819 
1820   // Performs a minor collection in new generation.
1821   void Scavenge();
1822   void EvacuateYoungGeneration();
1823 
1824   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
1825 
1826   void UpdateNewSpaceReferencesInExternalStringTable(
1827       ExternalStringTableUpdaterCallback updater_func);
1828 
1829   void UpdateReferencesInExternalStringTable(
1830       ExternalStringTableUpdaterCallback updater_func);
1831 
1832   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
1833   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
1834   void ProcessNativeContexts(WeakObjectRetainer* retainer);
1835   void ProcessAllocationSites(WeakObjectRetainer* retainer);
1836   void ProcessWeakListRoots(WeakObjectRetainer* retainer);
1837 
1838   // ===========================================================================
1839   // GC statistics. ============================================================
1840   // ===========================================================================
1841 
OldGenerationSpaceAvailable()1842   inline size_t OldGenerationSpaceAvailable() {
1843     if (old_generation_allocation_limit_ <= PromotedTotalSize()) return 0;
1844     return old_generation_allocation_limit_ -
1845            static_cast<size_t>(PromotedTotalSize());
1846   }
1847 
1848   // We allow incremental marking to overshoot the allocation limit for
1849   // performace reasons. If the overshoot is too large then we are more
1850   // eager to finalize incremental marking.
AllocationLimitOvershotByLargeMargin()1851   inline bool AllocationLimitOvershotByLargeMargin() {
1852     // This guards against too eager finalization in small heaps.
1853     // The number is chosen based on v8.browsing_mobile on Nexus 7v2.
1854     size_t kMarginForSmallHeaps = 32u * MB;
1855     if (old_generation_allocation_limit_ >= PromotedTotalSize()) return false;
1856     uint64_t overshoot = PromotedTotalSize() - old_generation_allocation_limit_;
1857     // Overshoot margin is 50% of allocation limit or half-way to the max heap
1858     // with special handling of small heaps.
1859     uint64_t margin =
1860         Min(Max(old_generation_allocation_limit_ / 2, kMarginForSmallHeaps),
1861             (max_old_generation_size_ - old_generation_allocation_limit_) / 2);
1862     return overshoot >= margin;
1863   }
1864 
1865   void UpdateTotalGCTime(double duration);
1866 
MaximumSizeScavenge()1867   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
1868 
1869   // ===========================================================================
1870   // Growing strategy. =========================================================
1871   // ===========================================================================
1872 
1873   // For some webpages RAIL mode does not switch from PERFORMANCE_LOAD.
1874   // This constant limits the effect of load RAIL mode on GC.
1875   // The value is arbitrary and chosen as the largest load time observed in
1876   // v8 browsing benchmarks.
1877   static const int kMaxLoadTimeMs = 7000;
1878 
1879   bool ShouldOptimizeForLoadTime();
1880 
1881   // Decrease the allocation limit if the new limit based on the given
1882   // parameters is lower than the current limit.
1883   void DampenOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed,
1884                                           double mutator_speed);
1885 
1886   // Calculates the allocation limit based on a given growing factor and a
1887   // given old generation size.
1888   size_t CalculateOldGenerationAllocationLimit(double factor,
1889                                                size_t old_gen_size);
1890 
1891   // Sets the allocation limit to trigger the next full garbage collection.
1892   void SetOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed,
1893                                        double mutator_speed);
1894 
1895   size_t MinimumAllocationLimitGrowingStep();
1896 
old_generation_allocation_limit()1897   size_t old_generation_allocation_limit() const {
1898     return old_generation_allocation_limit_;
1899   }
1900 
always_allocate()1901   bool always_allocate() { return always_allocate_scope_count_.Value() != 0; }
1902 
CanExpandOldGeneration(size_t size)1903   bool CanExpandOldGeneration(size_t size) {
1904     if (force_oom_) return false;
1905     return (OldGenerationCapacity() + size) < MaxOldGenerationSize();
1906   }
1907 
IsCloseToOutOfMemory(size_t slack)1908   bool IsCloseToOutOfMemory(size_t slack) {
1909     return OldGenerationCapacity() + slack >= MaxOldGenerationSize();
1910   }
1911 
1912   bool ShouldExpandOldGenerationOnSlowAllocation();
1913 
1914   enum class IncrementalMarkingLimit { kNoLimit, kSoftLimit, kHardLimit };
1915   IncrementalMarkingLimit IncrementalMarkingLimitReached();
1916 
1917   // ===========================================================================
1918   // Idle notification. ========================================================
1919   // ===========================================================================
1920 
1921   bool RecentIdleNotificationHappened();
1922   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
1923 
1924   // ===========================================================================
1925   // HeapIterator helpers. =====================================================
1926   // ===========================================================================
1927 
heap_iterator_start()1928   void heap_iterator_start() { heap_iterator_depth_++; }
1929 
heap_iterator_end()1930   void heap_iterator_end() { heap_iterator_depth_--; }
1931 
in_heap_iterator()1932   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
1933 
1934   // ===========================================================================
1935   // Allocation methods. =======================================================
1936   // ===========================================================================
1937 
1938   // Returns a deep copy of the JavaScript object.
1939   // Properties and elements are copied too.
1940   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
1941   MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
1942                                                 AllocationSite* site = NULL);
1943 
1944   // Allocates a JS Map in the heap.
1945   MUST_USE_RESULT AllocationResult
1946   AllocateMap(InstanceType instance_type, int instance_size,
1947               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
1948 
1949   // Allocates and initializes a new JavaScript object based on a
1950   // constructor.
1951   // If allocation_site is non-null, then a memento is emitted after the object
1952   // that points to the site.
1953   MUST_USE_RESULT AllocationResult AllocateJSObject(
1954       JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
1955       AllocationSite* allocation_site = NULL);
1956 
1957   // Allocates and initializes a new JavaScript object based on a map.
1958   // Passing an allocation site means that a memento will be created that
1959   // points to the site.
1960   MUST_USE_RESULT AllocationResult
1961   AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
1962                           AllocationSite* allocation_site = NULL);
1963 
1964   // Allocates a HeapNumber from value.
1965   MUST_USE_RESULT AllocationResult AllocateHeapNumber(
1966       MutableMode mode = IMMUTABLE, PretenureFlag pretenure = NOT_TENURED);
1967 
1968   // Allocates a byte array of the specified length
1969   MUST_USE_RESULT AllocationResult
1970   AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
1971 
1972   // Allocates a bytecode array with given contents.
1973   MUST_USE_RESULT AllocationResult
1974   AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size,
1975                         int parameter_count, FixedArray* constant_pool);
1976 
1977   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
1978 
1979   MUST_USE_RESULT AllocationResult
1980   CopyBytecodeArray(BytecodeArray* bytecode_array);
1981 
1982   // Allocates a fixed array initialized with undefined values
1983   MUST_USE_RESULT AllocationResult
1984   AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
1985 
1986   // Allocate an uninitialized object.  The memory is non-executable if the
1987   // hardware and OS allow.  This is the single choke-point for allocations
1988   // performed by the runtime and should not be bypassed (to extend this to
1989   // inlined allocations, use the Heap::DisableInlineAllocation() support).
1990   MUST_USE_RESULT inline AllocationResult AllocateRaw(
1991       int size_in_bytes, AllocationSpace space,
1992       AllocationAlignment aligment = kWordAligned);
1993 
1994   // Allocates a heap object based on the map.
1995   MUST_USE_RESULT AllocationResult
1996       Allocate(Map* map, AllocationSpace space,
1997                AllocationSite* allocation_site = NULL);
1998 
1999   // Allocates a partial map for bootstrapping.
2000   MUST_USE_RESULT AllocationResult
2001       AllocatePartialMap(InstanceType instance_type, int instance_size);
2002 
2003   // Allocate a block of memory in the given space (filled with a filler).
2004   // Used as a fall-back for generated code when the space is full.
2005   MUST_USE_RESULT AllocationResult
2006       AllocateFillerObject(int size, bool double_align, AllocationSpace space);
2007 
2008   // Allocate an uninitialized fixed array.
2009   MUST_USE_RESULT AllocationResult
2010       AllocateRawFixedArray(int length, PretenureFlag pretenure);
2011 
2012   // Allocate an uninitialized fixed double array.
2013   MUST_USE_RESULT AllocationResult
2014       AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
2015 
2016   // Allocate an initialized fixed array with the given filler value.
2017   MUST_USE_RESULT AllocationResult
2018       AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
2019                                    Object* filler);
2020 
2021   // Allocate and partially initializes a String.  There are two String
2022   // encodings: one-byte and two-byte.  These functions allocate a string of
2023   // the given length and set its map and length fields.  The characters of
2024   // the string are uninitialized.
2025   MUST_USE_RESULT AllocationResult
2026       AllocateRawOneByteString(int length, PretenureFlag pretenure);
2027   MUST_USE_RESULT AllocationResult
2028       AllocateRawTwoByteString(int length, PretenureFlag pretenure);
2029 
2030   // Allocates an internalized string in old space based on the character
2031   // stream.
2032   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
2033       Vector<const char> str, int chars, uint32_t hash_field);
2034 
2035   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
2036       Vector<const uint8_t> str, uint32_t hash_field);
2037 
2038   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
2039       Vector<const uc16> str, uint32_t hash_field);
2040 
2041   template <bool is_one_byte, typename T>
2042   MUST_USE_RESULT AllocationResult
2043       AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
2044 
2045   template <typename T>
2046   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
2047       T t, int chars, uint32_t hash_field);
2048 
2049   // Allocates an uninitialized fixed array. It must be filled by the caller.
2050   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
2051 
2052   // Make a copy of src and return it.
2053   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
2054 
2055   // Make a copy of src, also grow the copy, and return the copy.
2056   MUST_USE_RESULT AllocationResult
2057   CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure);
2058 
2059   // Make a copy of src, also grow the copy, and return the copy.
2060   MUST_USE_RESULT AllocationResult CopyFixedArrayUpTo(FixedArray* src,
2061                                                       int new_len,
2062                                                       PretenureFlag pretenure);
2063 
2064   // Make a copy of src, set the map, and return the copy.
2065   MUST_USE_RESULT AllocationResult
2066       CopyFixedArrayWithMap(FixedArray* src, Map* map);
2067 
2068   // Make a copy of src and return it.
2069   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
2070       FixedDoubleArray* src);
2071 
2072   // Computes a single character string where the character has code.
2073   // A cache is used for one-byte (Latin1) codes.
2074   MUST_USE_RESULT AllocationResult
2075       LookupSingleCharacterStringFromCode(uint16_t code);
2076 
2077   // Allocate a symbol in old space.
2078   MUST_USE_RESULT AllocationResult AllocateSymbol();
2079 
2080   // Allocates an external array of the specified length and type.
2081   MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer(
2082       int length, ExternalArrayType array_type, void* external_pointer,
2083       PretenureFlag pretenure);
2084 
2085   // Allocates a fixed typed array of the specified length and type.
2086   MUST_USE_RESULT AllocationResult
2087   AllocateFixedTypedArray(int length, ExternalArrayType array_type,
2088                           bool initialize, PretenureFlag pretenure);
2089 
2090   // Make a copy of src and return it.
2091   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
2092 
2093   // Make a copy of src, set the map, and return the copy.
2094   MUST_USE_RESULT AllocationResult
2095       CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
2096 
2097   // Allocates a fixed double array with uninitialized values. Returns
2098   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
2099       int length, PretenureFlag pretenure = NOT_TENURED);
2100 
2101   // Allocate empty fixed array.
2102   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
2103 
2104   // Allocate empty scope info.
2105   MUST_USE_RESULT AllocationResult AllocateEmptyScopeInfo();
2106 
2107   // Allocate empty fixed typed array of given type.
2108   MUST_USE_RESULT AllocationResult
2109       AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
2110 
2111   // Allocate a tenured simple cell.
2112   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
2113 
2114   // Allocate a tenured JS global property cell initialized with the hole.
2115   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
2116 
2117   MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
2118 
2119   MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity);
2120 
2121   // Allocates a new utility object in the old generation.
2122   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
2123 
2124   // Allocates a new foreign object.
2125   MUST_USE_RESULT AllocationResult
2126       AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
2127 
2128   MUST_USE_RESULT AllocationResult
2129       AllocateCode(int object_size, bool immovable);
2130 
2131   // ===========================================================================
2132 
set_force_oom(bool value)2133   void set_force_oom(bool value) { force_oom_ = value; }
2134 
2135   // The amount of external memory registered through the API.
2136   int64_t external_memory_;
2137 
2138   // The limit when to trigger memory pressure from the API.
2139   int64_t external_memory_limit_;
2140 
2141   // Caches the amount of external memory registered at the last MC.
2142   int64_t external_memory_at_last_mark_compact_;
2143 
2144   // The amount of memory that has been freed concurrently.
2145   base::AtomicNumber<intptr_t> external_memory_concurrently_freed_;
2146 
2147   // This can be calculated directly from a pointer to the heap; however, it is
2148   // more expedient to get at the isolate directly from within Heap methods.
2149   Isolate* isolate_;
2150 
2151   Object* roots_[kRootListLength];
2152 
2153   size_t code_range_size_;
2154   size_t max_semi_space_size_;
2155   size_t initial_semispace_size_;
2156   size_t max_old_generation_size_;
2157   size_t initial_max_old_generation_size_;
2158   size_t initial_old_generation_size_;
2159   bool old_generation_size_configured_;
2160   size_t max_executable_size_;
2161   size_t maximum_committed_;
2162 
2163   // For keeping track of how much data has survived
2164   // scavenge since last new space expansion.
2165   size_t survived_since_last_expansion_;
2166 
2167   // ... and since the last scavenge.
2168   size_t survived_last_scavenge_;
2169 
2170   // This is not the depth of nested AlwaysAllocateScope's but rather a single
2171   // count, as scopes can be acquired from multiple tasks (read: threads).
2172   base::AtomicNumber<size_t> always_allocate_scope_count_;
2173 
2174   // Stores the memory pressure level that set by MemoryPressureNotification
2175   // and reset by a mark-compact garbage collection.
2176   base::AtomicValue<MemoryPressureLevel> memory_pressure_level_;
2177 
2178   v8::debug::OutOfMemoryCallback out_of_memory_callback_;
2179   void* out_of_memory_callback_data_;
2180 
2181   // For keeping track of context disposals.
2182   int contexts_disposed_;
2183 
2184   // The length of the retained_maps array at the time of context disposal.
2185   // This separates maps in the retained_maps array that were created before
2186   // and after context disposal.
2187   int number_of_disposed_maps_;
2188 
2189   int global_ic_age_;
2190 
2191   NewSpace* new_space_;
2192   OldSpace* old_space_;
2193   OldSpace* code_space_;
2194   MapSpace* map_space_;
2195   LargeObjectSpace* lo_space_;
2196   // Map from the space id to the space.
2197   Space* space_[LAST_SPACE + 1];
2198   HeapState gc_state_;
2199   int gc_post_processing_depth_;
2200   Address new_space_top_after_last_gc_;
2201 
2202   // Returns the amount of external memory registered since last global gc.
2203   uint64_t PromotedExternalMemorySize();
2204 
2205   // How many "runtime allocations" happened.
2206   uint32_t allocations_count_;
2207 
2208   // Running hash over allocations performed.
2209   uint32_t raw_allocations_hash_;
2210 
2211   // How many mark-sweep collections happened.
2212   unsigned int ms_count_;
2213 
2214   // How many gc happened.
2215   unsigned int gc_count_;
2216 
2217   // For post mortem debugging.
2218   int remembered_unmapped_pages_index_;
2219   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
2220 
2221 #ifdef DEBUG
2222   // If the --gc-interval flag is set to a positive value, this
2223   // variable holds the value indicating the number of allocations
2224   // remain until the next failure and garbage collection.
2225   int allocation_timeout_;
2226 #endif  // DEBUG
2227 
2228   // Limit that triggers a global GC on the next (normally caused) GC.  This
2229   // is checked when we have already decided to do a GC to help determine
2230   // which collector to invoke, before expanding a paged space in the old
2231   // generation and on every allocation in large object space.
2232   size_t old_generation_allocation_limit_;
2233 
2234   // Indicates that inline bump-pointer allocation has been globally disabled
2235   // for all spaces. This is used to disable allocations in generated code.
2236   bool inline_allocation_disabled_;
2237 
2238   // Weak list heads, threaded through the objects.
2239   // List heads are initialized lazily and contain the undefined_value at start.
2240   Object* native_contexts_list_;
2241   Object* allocation_sites_list_;
2242 
2243   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
2244   // marking. It is initialized during marking, destroyed after marking and
2245   // contains Smi(0) while marking is not active.
2246   Object* encountered_weak_collections_;
2247 
2248   Object* encountered_weak_cells_;
2249 
2250   Object* encountered_transition_arrays_;
2251 
2252   List<GCCallbackPair> gc_epilogue_callbacks_;
2253   List<GCCallbackPair> gc_prologue_callbacks_;
2254 
2255   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
2256 
2257   GCTracer* tracer_;
2258 
2259   size_t promoted_objects_size_;
2260   double promotion_ratio_;
2261   double promotion_rate_;
2262   size_t semi_space_copied_object_size_;
2263   size_t previous_semi_space_copied_object_size_;
2264   double semi_space_copied_rate_;
2265   int nodes_died_in_new_space_;
2266   int nodes_copied_in_new_space_;
2267   int nodes_promoted_;
2268 
2269   // This is the pretenuring trigger for allocation sites that are in maybe
2270   // tenure state. When we switched to the maximum new space size we deoptimize
2271   // the code that belongs to the allocation site and derive the lifetime
2272   // of the allocation site.
2273   unsigned int maximum_size_scavenges_;
2274 
2275   // Total time spent in GC.
2276   double total_gc_time_ms_;
2277 
2278   // Last time an idle notification happened.
2279   double last_idle_notification_time_;
2280 
2281   // Last time a garbage collection happened.
2282   double last_gc_time_;
2283 
2284   Scavenger* scavenge_collector_;
2285 
2286   MarkCompactCollector* mark_compact_collector_;
2287 
2288   MemoryAllocator* memory_allocator_;
2289 
2290   StoreBuffer* store_buffer_;
2291 
2292   IncrementalMarking* incremental_marking_;
2293 
2294   GCIdleTimeHandler* gc_idle_time_handler_;
2295 
2296   MemoryReducer* memory_reducer_;
2297 
2298   ObjectStats* live_object_stats_;
2299   ObjectStats* dead_object_stats_;
2300 
2301   ScavengeJob* scavenge_job_;
2302 
2303   AllocationObserver* idle_scavenge_observer_;
2304 
2305   // This counter is increased before each GC and never reset.
2306   // To account for the bytes allocated since the last GC, use the
2307   // NewSpaceAllocationCounter() function.
2308   size_t new_space_allocation_counter_;
2309 
2310   // This counter is increased before each GC and never reset. To
2311   // account for the bytes allocated since the last GC, use the
2312   // OldGenerationAllocationCounter() function.
2313   size_t old_generation_allocation_counter_at_last_gc_;
2314 
2315   // The size of objects in old generation after the last MarkCompact GC.
2316   size_t old_generation_size_at_last_gc_;
2317 
2318   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
2319   // this variable holds the number of garbage collections since the last
2320   // deoptimization triggered by garbage collection.
2321   int gcs_since_last_deopt_;
2322 
2323   // The feedback storage is used to store allocation sites (keys) and how often
2324   // they have been visited (values) by finding a memento behind an object. The
2325   // storage is only alive temporary during a GC. The invariant is that all
2326   // pointers in this map are already fixed, i.e., they do not point to
2327   // forwarding pointers.
2328   base::HashMap* global_pretenuring_feedback_;
2329 
2330   char trace_ring_buffer_[kTraceRingBufferSize];
2331   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
2332   // full then the data is from ring_buffer_end_ to the end of the buffer and
2333   // from 0 to ring_buffer_end_.
2334   bool ring_buffer_full_;
2335   size_t ring_buffer_end_;
2336 
2337   // Shared state read by the scavenge collector and set by ScavengeObject.
2338   PromotionQueue promotion_queue_;
2339 
2340   // Flag is set when the heap has been configured.  The heap can be repeatedly
2341   // configured through the API until it is set up.
2342   bool configured_;
2343 
2344   // Currently set GC flags that are respected by all GC components.
2345   int current_gc_flags_;
2346 
2347   // Currently set GC callback flags that are used to pass information between
2348   // the embedder and V8's GC.
2349   GCCallbackFlags current_gc_callback_flags_;
2350 
2351   ExternalStringTable external_string_table_;
2352 
2353   base::Mutex relocation_mutex_;
2354 
2355   int gc_callbacks_depth_;
2356 
2357   bool deserialization_complete_;
2358 
2359   StrongRootsList* strong_roots_list_;
2360 
2361   // The depth of HeapIterator nestings.
2362   int heap_iterator_depth_;
2363 
2364   LocalEmbedderHeapTracer* local_embedder_heap_tracer_;
2365 
2366   bool fast_promotion_mode_;
2367 
2368   // Used for testing purposes.
2369   bool force_oom_;
2370   bool delay_sweeper_tasks_for_testing_;
2371 
2372   HeapObject* pending_layout_change_object_;
2373 
2374   // Classes in "heap" can be friends.
2375   friend class AlwaysAllocateScope;
2376   friend class GCCallbacksScope;
2377   friend class GCTracer;
2378   friend class HeapIterator;
2379   friend class IdleScavengeObserver;
2380   friend class IncrementalMarking;
2381   friend class IncrementalMarkingJob;
2382   friend class LargeObjectSpace;
2383   friend class MarkCompactCollector;
2384   friend class MarkCompactMarkingVisitor;
2385   friend class NewSpace;
2386   friend class ObjectStatsCollector;
2387   friend class Page;
2388   friend class PagedSpace;
2389   friend class Scavenger;
2390   friend class StoreBuffer;
2391   friend class TestMemoryAllocatorScope;
2392 
2393   // The allocator interface.
2394   friend class Factory;
2395 
2396   // The Isolate constructs us.
2397   friend class Isolate;
2398 
2399   // Used in cctest.
2400   friend class HeapTester;
2401 
2402   DISALLOW_COPY_AND_ASSIGN(Heap);
2403 };
2404 
2405 
2406 class HeapStats {
2407  public:
2408   static const int kStartMarker = 0xDECADE00;
2409   static const int kEndMarker = 0xDECADE01;
2410 
2411   intptr_t* start_marker;                  //  0
2412   size_t* new_space_size;                  //  1
2413   size_t* new_space_capacity;              //  2
2414   size_t* old_space_size;                  //  3
2415   size_t* old_space_capacity;              //  4
2416   size_t* code_space_size;                 //  5
2417   size_t* code_space_capacity;             //  6
2418   size_t* map_space_size;                  //  7
2419   size_t* map_space_capacity;              //  8
2420   size_t* lo_space_size;                   //  9
2421   size_t* global_handle_count;             // 10
2422   size_t* weak_global_handle_count;        // 11
2423   size_t* pending_global_handle_count;     // 12
2424   size_t* near_death_global_handle_count;  // 13
2425   size_t* free_global_handle_count;        // 14
2426   size_t* memory_allocator_size;           // 15
2427   size_t* memory_allocator_capacity;       // 16
2428   size_t* malloced_memory;                 // 17
2429   size_t* malloced_peak_memory;            // 18
2430   size_t* objects_per_type;                // 19
2431   size_t* size_per_type;                   // 20
2432   int* os_error;                           // 21
2433   char* last_few_messages;                 // 22
2434   char* js_stacktrace;                     // 23
2435   intptr_t* end_marker;                    // 24
2436 };
2437 
2438 
2439 class AlwaysAllocateScope {
2440  public:
2441   explicit inline AlwaysAllocateScope(Isolate* isolate);
2442   inline ~AlwaysAllocateScope();
2443 
2444  private:
2445   Heap* heap_;
2446 };
2447 
2448 
2449 // Visitor class to verify interior pointers in spaces that do not contain
2450 // or care about intergenerational references. All heap object pointers have to
2451 // point into the heap to a location that has a map pointer at its first word.
2452 // Caveat: Heap::Contains is an approximation because it can return true for
2453 // objects in a heap space but above the allocation pointer.
2454 class VerifyPointersVisitor : public ObjectVisitor {
2455  public:
2456   inline void VisitPointers(Object** start, Object** end) override;
2457 };
2458 
2459 
2460 // Verify that all objects are Smis.
2461 class VerifySmisVisitor : public ObjectVisitor {
2462  public:
2463   inline void VisitPointers(Object** start, Object** end) override;
2464 };
2465 
2466 
2467 // Space iterator for iterating over all spaces of the heap.  Returns each space
2468 // in turn, and null when it is done.
2469 class AllSpaces BASE_EMBEDDED {
2470  public:
AllSpaces(Heap * heap)2471   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
2472   Space* next();
2473 
2474  private:
2475   Heap* heap_;
2476   int counter_;
2477 };
2478 
2479 
2480 // Space iterator for iterating over all old spaces of the heap: Old space
2481 // and code space.  Returns each space in turn, and null when it is done.
2482 class V8_EXPORT_PRIVATE OldSpaces BASE_EMBEDDED {
2483  public:
OldSpaces(Heap * heap)2484   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2485   OldSpace* next();
2486 
2487  private:
2488   Heap* heap_;
2489   int counter_;
2490 };
2491 
2492 
2493 // Space iterator for iterating over all the paged spaces of the heap: Map
2494 // space, old space, code space and cell space.  Returns
2495 // each space in turn, and null when it is done.
2496 class PagedSpaces BASE_EMBEDDED {
2497  public:
PagedSpaces(Heap * heap)2498   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
2499   PagedSpace* next();
2500 
2501  private:
2502   Heap* heap_;
2503   int counter_;
2504 };
2505 
2506 
2507 class SpaceIterator : public Malloced {
2508  public:
2509   explicit SpaceIterator(Heap* heap);
2510   virtual ~SpaceIterator();
2511 
2512   bool has_next();
2513   Space* next();
2514 
2515  private:
2516   Heap* heap_;
2517   int current_space_;         // from enum AllocationSpace.
2518 };
2519 
2520 
2521 // A HeapIterator provides iteration over the whole heap. It
2522 // aggregates the specific iterators for the different spaces as
2523 // these can only iterate over one space only.
2524 //
2525 // HeapIterator ensures there is no allocation during its lifetime
2526 // (using an embedded DisallowHeapAllocation instance).
2527 //
2528 // HeapIterator can skip free list nodes (that is, de-allocated heap
2529 // objects that still remain in the heap). As implementation of free
2530 // nodes filtering uses GC marks, it can't be used during MS/MC GC
2531 // phases. Also, it is forbidden to interrupt iteration in this mode,
2532 // as this will leave heap objects marked (and thus, unusable).
2533 class HeapIterator BASE_EMBEDDED {
2534  public:
2535   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
2536 
2537   explicit HeapIterator(Heap* heap,
2538                         HeapObjectsFiltering filtering = kNoFiltering);
2539   ~HeapIterator();
2540 
2541   HeapObject* next();
2542 
2543  private:
2544   HeapObject* NextObject();
2545 
2546   DisallowHeapAllocation no_heap_allocation_;
2547 
2548   Heap* heap_;
2549   HeapObjectsFiltering filtering_;
2550   HeapObjectsFilter* filter_;
2551   // Space iterator for iterating all the spaces.
2552   SpaceIterator* space_iterator_;
2553   // Object iterator for the space currently being iterated.
2554   std::unique_ptr<ObjectIterator> object_iterator_;
2555 };
2556 
2557 // Abstract base class for checking whether a weak object should be retained.
2558 class WeakObjectRetainer {
2559  public:
~WeakObjectRetainer()2560   virtual ~WeakObjectRetainer() {}
2561 
2562   // Return whether this object should be retained. If NULL is returned the
2563   // object has no references. Otherwise the address of the retained object
2564   // should be returned as in some GC situations the object has been moved.
2565   virtual Object* RetainAs(Object* object) = 0;
2566 };
2567 
2568 
2569 #ifdef DEBUG
2570 // Helper class for tracing paths to a search target Object from all roots.
2571 // The TracePathFrom() method can be used to trace paths from a specific
2572 // object to the search target object.
2573 class PathTracer : public ObjectVisitor {
2574  public:
2575   enum WhatToFind {
2576     FIND_ALL,   // Will find all matches.
2577     FIND_FIRST  // Will stop the search after first match.
2578   };
2579 
2580   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
2581   static const int kMarkTag = 2;
2582 
2583   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
2584   // after the first match.  If FIND_ALL is specified, then tracing will be
2585   // done for all matches.
PathTracer(Object * search_target,WhatToFind what_to_find,VisitMode visit_mode)2586   PathTracer(Object* search_target, WhatToFind what_to_find,
2587              VisitMode visit_mode)
2588       : search_target_(search_target),
2589         found_target_(false),
2590         found_target_in_trace_(false),
2591         what_to_find_(what_to_find),
2592         visit_mode_(visit_mode),
2593         object_stack_(20),
2594         no_allocation() {}
2595 
2596   void VisitPointers(Object** start, Object** end) override;
2597 
2598   void Reset();
2599   void TracePathFrom(Object** root);
2600 
found()2601   bool found() const { return found_target_; }
2602 
2603   static Object* const kAnyGlobalObject;
2604 
2605  protected:
2606   class MarkVisitor;
2607   class UnmarkVisitor;
2608 
2609   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
2610   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
2611   virtual void ProcessResults();
2612 
2613   Object* search_target_;
2614   bool found_target_;
2615   bool found_target_in_trace_;
2616   WhatToFind what_to_find_;
2617   VisitMode visit_mode_;
2618   List<Object*> object_stack_;
2619 
2620   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
2621 
2622  private:
2623   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
2624 };
2625 #endif  // DEBUG
2626 
2627 // -----------------------------------------------------------------------------
2628 // Allows observation of allocations.
2629 class AllocationObserver {
2630  public:
AllocationObserver(intptr_t step_size)2631   explicit AllocationObserver(intptr_t step_size)
2632       : step_size_(step_size), bytes_to_next_step_(step_size) {
2633     DCHECK(step_size >= kPointerSize);
2634   }
~AllocationObserver()2635   virtual ~AllocationObserver() {}
2636 
2637   // Called each time the observed space does an allocation step. This may be
2638   // more frequently than the step_size we are monitoring (e.g. when there are
2639   // multiple observers, or when page or space boundary is encountered.)
AllocationStep(int bytes_allocated,Address soon_object,size_t size)2640   void AllocationStep(int bytes_allocated, Address soon_object, size_t size) {
2641     bytes_to_next_step_ -= bytes_allocated;
2642     if (bytes_to_next_step_ <= 0) {
2643       Step(static_cast<int>(step_size_ - bytes_to_next_step_), soon_object,
2644            size);
2645       step_size_ = GetNextStepSize();
2646       bytes_to_next_step_ = step_size_;
2647     }
2648   }
2649 
2650  protected:
step_size()2651   intptr_t step_size() const { return step_size_; }
bytes_to_next_step()2652   intptr_t bytes_to_next_step() const { return bytes_to_next_step_; }
2653 
2654   // Pure virtual method provided by the subclasses that gets called when at
2655   // least step_size bytes have been allocated. soon_object is the address just
2656   // allocated (but not yet initialized.) size is the size of the object as
2657   // requested (i.e. w/o the alignment fillers). Some complexities to be aware
2658   // of:
2659   // 1) soon_object will be nullptr in cases where we end up observing an
2660   //    allocation that happens to be a filler space (e.g. page boundaries.)
2661   // 2) size is the requested size at the time of allocation. Right-trimming
2662   //    may change the object size dynamically.
2663   // 3) soon_object may actually be the first object in an allocation-folding
2664   //    group. In such a case size is the size of the group rather than the
2665   //    first object.
2666   virtual void Step(int bytes_allocated, Address soon_object, size_t size) = 0;
2667 
2668   // Subclasses can override this method to make step size dynamic.
GetNextStepSize()2669   virtual intptr_t GetNextStepSize() { return step_size_; }
2670 
2671   intptr_t step_size_;
2672   intptr_t bytes_to_next_step_;
2673 
2674  private:
2675   friend class LargeObjectSpace;
2676   friend class NewSpace;
2677   friend class PagedSpace;
2678   DISALLOW_COPY_AND_ASSIGN(AllocationObserver);
2679 };
2680 
2681 }  // namespace internal
2682 }  // namespace v8
2683 
2684 #endif  // V8_HEAP_HEAP_H_
2685