• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22 
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27 
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34 
35 #include "android-base/stringprintf.h"
36 
37 #include "arch/context-inl.h"
38 #include "arch/context.h"
39 #include "art_field-inl.h"
40 #include "art_method-inl.h"
41 #include "base/bit_utils.h"
42 #include "base/memory_tool.h"
43 #include "base/mutex.h"
44 #include "base/systrace.h"
45 #include "base/timing_logger.h"
46 #include "base/to_str.h"
47 #include "class_linker-inl.h"
48 #include "debugger.h"
49 #include "dex_file-inl.h"
50 #include "dex_file_annotations.h"
51 #include "entrypoints/entrypoint_utils.h"
52 #include "entrypoints/quick/quick_alloc_entrypoints.h"
53 #include "gc/accounting/card_table-inl.h"
54 #include "gc/accounting/heap_bitmap-inl.h"
55 #include "gc/allocator/rosalloc.h"
56 #include "gc/heap.h"
57 #include "gc/space/space-inl.h"
58 #include "gc_root.h"
59 #include "handle_scope-inl.h"
60 #include "indirect_reference_table-inl.h"
61 #include "interpreter/interpreter.h"
62 #include "interpreter/shadow_frame.h"
63 #include "java_frame_root_info.h"
64 #include "java_vm_ext.h"
65 #include "jni_internal.h"
66 #include "mirror/class-inl.h"
67 #include "mirror/class_loader.h"
68 #include "mirror/object_array-inl.h"
69 #include "mirror/stack_trace_element.h"
70 #include "monitor.h"
71 #include "native_stack_dump.h"
72 #include "nativehelper/ScopedLocalRef.h"
73 #include "nativehelper/ScopedUtfChars.h"
74 #include "nth_caller_visitor.h"
75 #include "oat_quick_method_header.h"
76 #include "obj_ptr-inl.h"
77 #include "object_lock.h"
78 #include "quick/quick_method_frame_info.h"
79 #include "quick_exception_handler.h"
80 #include "read_barrier-inl.h"
81 #include "reflection.h"
82 #include "runtime.h"
83 #include "runtime_callbacks.h"
84 #include "scoped_thread_state_change-inl.h"
85 #include "stack.h"
86 #include "stack_map.h"
87 #include "thread-inl.h"
88 #include "thread_list.h"
89 #include "utils.h"
90 #include "verifier/method_verifier.h"
91 #include "verify_object.h"
92 #include "well_known_classes.h"
93 
94 #if ART_USE_FUTEXES
95 #include "linux/futex.h"
96 #include "sys/syscall.h"
97 #ifndef SYS_futex
98 #define SYS_futex __NR_futex
99 #endif
100 #endif  // ART_USE_FUTEXES
101 
102 namespace art {
103 
104 using android::base::StringAppendV;
105 using android::base::StringPrintf;
106 
107 extern "C" NO_RETURN void artDeoptimize(Thread* self);
108 
109 bool Thread::is_started_ = false;
110 pthread_key_t Thread::pthread_key_self_;
111 ConditionVariable* Thread::resume_cond_ = nullptr;
112 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
113 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
114 Thread* Thread::jit_sensitive_thread_ = nullptr;
115 
116 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
117 
118 // For implicit overflow checks we reserve an extra piece of memory at the bottom
119 // of the stack (lowest memory).  The higher portion of the memory
120 // is protected against reads and the lower is available for use while
121 // throwing the StackOverflow exception.
122 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
123 
124 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
125 
InitCardTable()126 void Thread::InitCardTable() {
127   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
128 }
129 
UnimplementedEntryPoint()130 static void UnimplementedEntryPoint() {
131   UNIMPLEMENTED(FATAL);
132 }
133 
134 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
135 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
136 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)137 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
138   CHECK(kUseReadBarrier);
139   tls32_.is_gc_marking = is_marking;
140   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
141   ResetQuickAllocEntryPointsForThread(is_marking);
142 }
143 
InitTlsEntryPoints()144 void Thread::InitTlsEntryPoints() {
145   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
146   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
147   uintptr_t* end = reinterpret_cast<uintptr_t*>(
148       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
149   for (uintptr_t* it = begin; it != end; ++it) {
150     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
151   }
152   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
153 }
154 
ResetQuickAllocEntryPointsForThread(bool is_marking)155 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
156   if (kUseReadBarrier && kRuntimeISA != kX86_64) {
157     // Allocation entrypoint switching is currently only implemented for X86_64.
158     is_marking = true;
159   }
160   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
161 }
162 
163 class DeoptimizationContextRecord {
164  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationContextRecord * link)165   DeoptimizationContextRecord(const JValue& ret_val,
166                               bool is_reference,
167                               bool from_code,
168                               ObjPtr<mirror::Throwable> pending_exception,
169                               DeoptimizationContextRecord* link)
170       : ret_val_(ret_val),
171         is_reference_(is_reference),
172         from_code_(from_code),
173         pending_exception_(pending_exception.Ptr()),
174         link_(link) {}
175 
GetReturnValue() const176   JValue GetReturnValue() const { return ret_val_; }
IsReference() const177   bool IsReference() const { return is_reference_; }
GetFromCode() const178   bool GetFromCode() const { return from_code_; }
GetPendingException() const179   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const180   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()181   mirror::Object** GetReturnValueAsGCRoot() {
182     DCHECK(is_reference_);
183     return ret_val_.GetGCRoot();
184   }
GetPendingExceptionAsGCRoot()185   mirror::Object** GetPendingExceptionAsGCRoot() {
186     return reinterpret_cast<mirror::Object**>(&pending_exception_);
187   }
188 
189  private:
190   // The value returned by the method at the top of the stack before deoptimization.
191   JValue ret_val_;
192 
193   // Indicates whether the returned value is a reference. If so, the GC will visit it.
194   const bool is_reference_;
195 
196   // Whether the context was created from an explicit deoptimization in the code.
197   const bool from_code_;
198 
199   // The exception that was pending before deoptimization (or null if there was no pending
200   // exception).
201   mirror::Throwable* pending_exception_;
202 
203   // A link to the previous DeoptimizationContextRecord.
204   DeoptimizationContextRecord* const link_;
205 
206   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
207 };
208 
209 class StackedShadowFrameRecord {
210  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)211   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
212                            StackedShadowFrameType type,
213                            StackedShadowFrameRecord* link)
214       : shadow_frame_(shadow_frame),
215         type_(type),
216         link_(link) {}
217 
GetShadowFrame() const218   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const219   StackedShadowFrameType GetType() const { return type_; }
GetLink() const220   StackedShadowFrameRecord* GetLink() const { return link_; }
221 
222  private:
223   ShadowFrame* const shadow_frame_;
224   const StackedShadowFrameType type_;
225   StackedShadowFrameRecord* const link_;
226 
227   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
228 };
229 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> exception)230 void Thread::PushDeoptimizationContext(const JValue& return_value,
231                                        bool is_reference,
232                                        bool from_code,
233                                        ObjPtr<mirror::Throwable> exception) {
234   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
235       return_value,
236       is_reference,
237       from_code,
238       exception,
239       tlsPtr_.deoptimization_context_stack);
240   tlsPtr_.deoptimization_context_stack = record;
241 }
242 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code)243 void Thread::PopDeoptimizationContext(JValue* result,
244                                       ObjPtr<mirror::Throwable>* exception,
245                                       bool* from_code) {
246   AssertHasDeoptimizationContext();
247   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
248   tlsPtr_.deoptimization_context_stack = record->GetLink();
249   result->SetJ(record->GetReturnValue().GetJ());
250   *exception = record->GetPendingException();
251   *from_code = record->GetFromCode();
252   delete record;
253 }
254 
AssertHasDeoptimizationContext()255 void Thread::AssertHasDeoptimizationContext() {
256   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
257       << "No deoptimization context for thread " << *this;
258 }
259 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)260 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
261   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
262       sf, type, tlsPtr_.stacked_shadow_frame_record);
263   tlsPtr_.stacked_shadow_frame_record = record;
264 }
265 
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)266 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
267   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
268   if (must_be_present) {
269     DCHECK(record != nullptr);
270   } else {
271     if (record == nullptr || record->GetType() != type) {
272       return nullptr;
273     }
274   }
275   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
276   ShadowFrame* shadow_frame = record->GetShadowFrame();
277   delete record;
278   return shadow_frame;
279 }
280 
281 class FrameIdToShadowFrame {
282  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)283   static FrameIdToShadowFrame* Create(size_t frame_id,
284                                       ShadowFrame* shadow_frame,
285                                       FrameIdToShadowFrame* next,
286                                       size_t num_vregs) {
287     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
288     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
289     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
290   }
291 
Delete(FrameIdToShadowFrame * f)292   static void Delete(FrameIdToShadowFrame* f) {
293     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
294     delete[] memory;
295   }
296 
GetFrameId() const297   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const298   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const299   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)300   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()301   bool* GetUpdatedVRegFlags() {
302     return updated_vreg_flags_;
303   }
304 
305  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)306   FrameIdToShadowFrame(size_t frame_id,
307                        ShadowFrame* shadow_frame,
308                        FrameIdToShadowFrame* next)
309       : frame_id_(frame_id),
310         shadow_frame_(shadow_frame),
311         next_(next) {}
312 
313   const size_t frame_id_;
314   ShadowFrame* const shadow_frame_;
315   FrameIdToShadowFrame* next_;
316   bool updated_vreg_flags_[0];
317 
318   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
319 };
320 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)321 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
322                                                       size_t frame_id) {
323   FrameIdToShadowFrame* found = nullptr;
324   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
325     if (record->GetFrameId() == frame_id) {
326       if (kIsDebugBuild) {
327         // Sanity check we have at most one record for this frame.
328         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
329         found = record;
330       } else {
331         return record;
332       }
333     }
334   }
335   return found;
336 }
337 
FindDebuggerShadowFrame(size_t frame_id)338 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
339   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
340       tlsPtr_.frame_id_to_shadow_frame, frame_id);
341   if (record != nullptr) {
342     return record->GetShadowFrame();
343   }
344   return nullptr;
345 }
346 
347 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)348 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
349   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
350       tlsPtr_.frame_id_to_shadow_frame, frame_id);
351   CHECK(record != nullptr);
352   return record->GetUpdatedVRegFlags();
353 }
354 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)355 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
356                                                      uint32_t num_vregs,
357                                                      ArtMethod* method,
358                                                      uint32_t dex_pc) {
359   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
360   if (shadow_frame != nullptr) {
361     return shadow_frame;
362   }
363   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
364   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
365   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
366                                                               shadow_frame,
367                                                               tlsPtr_.frame_id_to_shadow_frame,
368                                                               num_vregs);
369   for (uint32_t i = 0; i < num_vregs; i++) {
370     // Do this to clear all references for root visitors.
371     shadow_frame->SetVRegReference(i, nullptr);
372     // This flag will be changed to true if the debugger modifies the value.
373     record->GetUpdatedVRegFlags()[i] = false;
374   }
375   tlsPtr_.frame_id_to_shadow_frame = record;
376   return shadow_frame;
377 }
378 
RemoveDebuggerShadowFrameMapping(size_t frame_id)379 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
380   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
381   if (head->GetFrameId() == frame_id) {
382     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
383     FrameIdToShadowFrame::Delete(head);
384     return;
385   }
386   FrameIdToShadowFrame* prev = head;
387   for (FrameIdToShadowFrame* record = head->GetNext();
388        record != nullptr;
389        prev = record, record = record->GetNext()) {
390     if (record->GetFrameId() == frame_id) {
391       prev->SetNext(record->GetNext());
392       FrameIdToShadowFrame::Delete(record);
393       return;
394     }
395   }
396   LOG(FATAL) << "No shadow frame for frame " << frame_id;
397   UNREACHABLE();
398 }
399 
InitTid()400 void Thread::InitTid() {
401   tls32_.tid = ::art::GetTid();
402 }
403 
InitAfterFork()404 void Thread::InitAfterFork() {
405   // One thread (us) survived the fork, but we have a new tid so we need to
406   // update the value stashed in this Thread*.
407   InitTid();
408 }
409 
CreateCallback(void * arg)410 void* Thread::CreateCallback(void* arg) {
411   Thread* self = reinterpret_cast<Thread*>(arg);
412   Runtime* runtime = Runtime::Current();
413   if (runtime == nullptr) {
414     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
415     return nullptr;
416   }
417   {
418     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
419     //       after self->Init().
420     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
421     // Check that if we got here we cannot be shutting down (as shutdown should never have started
422     // while threads are being born).
423     CHECK(!runtime->IsShuttingDownLocked());
424     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
425     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
426     //       the runtime in such a case. In case this ever changes, we need to make sure here to
427     //       delete the tmp_jni_env, as we own it at this point.
428     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
429     self->tlsPtr_.tmp_jni_env = nullptr;
430     Runtime::Current()->EndThreadBirth();
431   }
432   {
433     ScopedObjectAccess soa(self);
434     self->InitStringEntryPoints();
435 
436     // Copy peer into self, deleting global reference when done.
437     CHECK(self->tlsPtr_.jpeer != nullptr);
438     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
439     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
440     self->tlsPtr_.jpeer = nullptr;
441     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
442 
443     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
444     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
445 
446     runtime->GetRuntimeCallbacks()->ThreadStart(self);
447 
448     // Invoke the 'run' method of our java.lang.Thread.
449     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
450     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
451     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
452     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
453   }
454   // Detach and delete self.
455   Runtime::Current()->GetThreadList()->Unregister(self);
456 
457   return nullptr;
458 }
459 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)460 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
461                                   ObjPtr<mirror::Object> thread_peer) {
462   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
463   Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
464   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
465   // to stop it from going away.
466   if (kIsDebugBuild) {
467     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
468     if (result != nullptr && !result->IsSuspended()) {
469       Locks::thread_list_lock_->AssertHeld(soa.Self());
470     }
471   }
472   return result;
473 }
474 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)475 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
476                                   jobject java_thread) {
477   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
478 }
479 
FixStackSize(size_t stack_size)480 static size_t FixStackSize(size_t stack_size) {
481   // A stack size of zero means "use the default".
482   if (stack_size == 0) {
483     stack_size = Runtime::Current()->GetDefaultStackSize();
484   }
485 
486   // Dalvik used the bionic pthread default stack size for native threads,
487   // so include that here to support apps that expect large native stacks.
488   stack_size += 1 * MB;
489 
490   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
491   if (stack_size < PTHREAD_STACK_MIN) {
492     stack_size = PTHREAD_STACK_MIN;
493   }
494 
495   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
496     // It's likely that callers are trying to ensure they have at least a certain amount of
497     // stack space, so we should add our reserved space on top of what they requested, rather
498     // than implicitly take it away from them.
499     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
500   } else {
501     // If we are going to use implicit stack checks, allocate space for the protected
502     // region at the bottom of the stack.
503     stack_size += Thread::kStackOverflowImplicitCheckSize +
504         GetStackOverflowReservedBytes(kRuntimeISA);
505   }
506 
507   // Some systems require the stack size to be a multiple of the system page size, so round up.
508   stack_size = RoundUp(stack_size, kPageSize);
509 
510   return stack_size;
511 }
512 
513 // Return the nearest page-aligned address below the current stack top.
514 NO_INLINE
FindStackTop()515 static uint8_t* FindStackTop() {
516   return reinterpret_cast<uint8_t*>(
517       AlignDown(__builtin_frame_address(0), kPageSize));
518 }
519 
520 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
521 // overflow is detected.  It is located right below the stack_begin_.
522 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()523 void Thread::InstallImplicitProtection() {
524   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
525   // Page containing current top of stack.
526   uint8_t* stack_top = FindStackTop();
527 
528   // Try to directly protect the stack.
529   VLOG(threads) << "installing stack protected region at " << std::hex <<
530         static_cast<void*>(pregion) << " to " <<
531         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
532   if (ProtectStack(/* fatal_on_error */ false)) {
533     // Tell the kernel that we won't be needing these pages any more.
534     // NB. madvise will probably write zeroes into the memory (on linux it does).
535     uint32_t unwanted_size = stack_top - pregion - kPageSize;
536     madvise(pregion, unwanted_size, MADV_DONTNEED);
537     return;
538   }
539 
540   // There is a little complexity here that deserves a special mention.  On some
541   // architectures, the stack is created using a VM_GROWSDOWN flag
542   // to prevent memory being allocated when it's not needed.  This flag makes the
543   // kernel only allocate memory for the stack by growing down in memory.  Because we
544   // want to put an mprotected region far away from that at the stack top, we need
545   // to make sure the pages for the stack are mapped in before we call mprotect.
546   //
547   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
548   // with a non-mapped stack (usually only the main thread).
549   //
550   // We map in the stack by reading every page from the stack bottom (highest address)
551   // to the stack top. (We then madvise this away.) This must be done by reading from the
552   // current stack pointer downwards.
553   //
554   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
555   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
556   // thus have to move the stack pointer. We do this portably by using a recursive function with a
557   // large stack frame size.
558 
559   // (Defensively) first remove the protection on the protected region as we'll want to read
560   // and write it. Ignore errors.
561   UnprotectStack();
562 
563   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
564       static_cast<void*>(pregion);
565 
566   struct RecurseDownStack {
567     // This function has an intentionally large stack size.
568 #pragma GCC diagnostic push
569 #pragma GCC diagnostic ignored "-Wframe-larger-than="
570     NO_INLINE
571     static void Touch(uintptr_t target) {
572       volatile size_t zero = 0;
573       // Use a large local volatile array to ensure a large frame size. Do not use anything close
574       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
575       // there is no pragma support for this.
576       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
577       constexpr size_t kAsanMultiplier =
578 #ifdef ADDRESS_SANITIZER
579           2u;
580 #else
581           1u;
582 #endif
583       volatile char space[kPageSize - (kAsanMultiplier * 256)];
584       char sink ATTRIBUTE_UNUSED = space[zero];
585       if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
586         Touch(target);
587       }
588       zero *= 2;  // Try to avoid tail recursion.
589     }
590 #pragma GCC diagnostic pop
591   };
592   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
593 
594   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
595       static_cast<void*>(pregion) << " to " <<
596       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
597 
598   // Protect the bottom of the stack to prevent read/write to it.
599   ProtectStack(/* fatal_on_error */ true);
600 
601   // Tell the kernel that we won't be needing these pages any more.
602   // NB. madvise will probably write zeroes into the memory (on linux it does).
603   uint32_t unwanted_size = stack_top - pregion - kPageSize;
604   madvise(pregion, unwanted_size, MADV_DONTNEED);
605 }
606 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)607 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
608   CHECK(java_peer != nullptr);
609   Thread* self = static_cast<JNIEnvExt*>(env)->self;
610 
611   if (VLOG_IS_ON(threads)) {
612     ScopedObjectAccess soa(env);
613 
614     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
615     ObjPtr<mirror::String> java_name =
616         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
617     std::string thread_name;
618     if (java_name != nullptr) {
619       thread_name = java_name->ToModifiedUtf8();
620     } else {
621       thread_name = "(Unnamed)";
622     }
623 
624     VLOG(threads) << "Creating native thread for " << thread_name;
625     self->Dump(LOG_STREAM(INFO));
626   }
627 
628   Runtime* runtime = Runtime::Current();
629 
630   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
631   bool thread_start_during_shutdown = false;
632   {
633     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
634     if (runtime->IsShuttingDownLocked()) {
635       thread_start_during_shutdown = true;
636     } else {
637       runtime->StartThreadBirth();
638     }
639   }
640   if (thread_start_during_shutdown) {
641     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
642     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
643     return;
644   }
645 
646   Thread* child_thread = new Thread(is_daemon);
647   // Use global JNI ref to hold peer live while child thread starts.
648   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
649   stack_size = FixStackSize(stack_size);
650 
651   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
652   // assign it.
653   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
654                     reinterpret_cast<jlong>(child_thread));
655 
656   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
657   // do not have a good way to report this on the child's side.
658   std::string error_msg;
659   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
660       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
661 
662   int pthread_create_result = 0;
663   if (child_jni_env_ext.get() != nullptr) {
664     pthread_t new_pthread;
665     pthread_attr_t attr;
666     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
667     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
668     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
669                        "PTHREAD_CREATE_DETACHED");
670     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
671     pthread_create_result = pthread_create(&new_pthread,
672                                            &attr,
673                                            Thread::CreateCallback,
674                                            child_thread);
675     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
676 
677     if (pthread_create_result == 0) {
678       // pthread_create started the new thread. The child is now responsible for managing the
679       // JNIEnvExt we created.
680       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
681       //       between the threads.
682       child_jni_env_ext.release();
683       return;
684     }
685   }
686 
687   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
688   {
689     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
690     runtime->EndThreadBirth();
691   }
692   // Manually delete the global reference since Thread::Init will not have been run.
693   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
694   child_thread->tlsPtr_.jpeer = nullptr;
695   delete child_thread;
696   child_thread = nullptr;
697   // TODO: remove from thread group?
698   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
699   {
700     std::string msg(child_jni_env_ext.get() == nullptr ?
701         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
702         StringPrintf("pthread_create (%s stack) failed: %s",
703                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
704     ScopedObjectAccess soa(env);
705     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
706   }
707 }
708 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)709 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
710   // This function does all the initialization that must be run by the native thread it applies to.
711   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
712   // we can handshake with the corresponding native thread when it's ready.) Check this native
713   // thread hasn't been through here already...
714   CHECK(Thread::Current() == nullptr);
715 
716   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
717   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
718   tlsPtr_.pthread_self = pthread_self();
719   CHECK(is_started_);
720 
721   SetUpAlternateSignalStack();
722   if (!InitStackHwm()) {
723     return false;
724   }
725   InitCpu();
726   InitTlsEntryPoints();
727   RemoveSuspendTrigger();
728   InitCardTable();
729   InitTid();
730   interpreter::InitInterpreterTls(this);
731 
732 #ifdef ART_TARGET_ANDROID
733   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
734 #else
735   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
736 #endif
737   DCHECK_EQ(Thread::Current(), this);
738 
739   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
740 
741   if (jni_env_ext != nullptr) {
742     DCHECK_EQ(jni_env_ext->vm, java_vm);
743     DCHECK_EQ(jni_env_ext->self, this);
744     tlsPtr_.jni_env = jni_env_ext;
745   } else {
746     std::string error_msg;
747     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
748     if (tlsPtr_.jni_env == nullptr) {
749       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
750       return false;
751     }
752   }
753 
754   thread_list->Register(this);
755   return true;
756 }
757 
758 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)759 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
760   Runtime* runtime = Runtime::Current();
761   if (runtime == nullptr) {
762     LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
763     return nullptr;
764   }
765   Thread* self;
766   {
767     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
768     if (runtime->IsShuttingDownLocked()) {
769       LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
770       return nullptr;
771     } else {
772       Runtime::Current()->StartThreadBirth();
773       self = new Thread(as_daemon);
774       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
775       Runtime::Current()->EndThreadBirth();
776       if (!init_success) {
777         delete self;
778         return nullptr;
779       }
780     }
781   }
782 
783   self->InitStringEntryPoints();
784 
785   CHECK_NE(self->GetState(), kRunnable);
786   self->SetState(kNative);
787 
788   // Run the action that is acting on the peer.
789   if (!peer_action(self)) {
790     runtime->GetThreadList()->Unregister(self);
791     // Unregister deletes self, no need to do this here.
792     return nullptr;
793   }
794 
795   if (VLOG_IS_ON(threads)) {
796     if (thread_name != nullptr) {
797       VLOG(threads) << "Attaching thread " << thread_name;
798     } else {
799       VLOG(threads) << "Attaching unnamed thread.";
800     }
801     ScopedObjectAccess soa(self);
802     self->Dump(LOG_STREAM(INFO));
803   }
804 
805   {
806     ScopedObjectAccess soa(self);
807     runtime->GetRuntimeCallbacks()->ThreadStart(self);
808   }
809 
810   return self;
811 }
812 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)813 Thread* Thread::Attach(const char* thread_name,
814                        bool as_daemon,
815                        jobject thread_group,
816                        bool create_peer) {
817   auto create_peer_action = [&](Thread* self) {
818     // If we're the main thread, ClassLinker won't be created until after we're attached,
819     // so that thread needs a two-stage attach. Regular threads don't need this hack.
820     // In the compiler, all threads need this hack, because no-one's going to be getting
821     // a native peer!
822     if (create_peer) {
823       self->CreatePeer(thread_name, as_daemon, thread_group);
824       if (self->IsExceptionPending()) {
825         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
826         {
827           ScopedObjectAccess soa(self);
828           LOG(ERROR) << "Exception creating thread peer:";
829           LOG(ERROR) << self->GetException()->Dump();
830           self->ClearException();
831         }
832         return false;
833       }
834     } else {
835       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
836       if (thread_name != nullptr) {
837         self->tlsPtr_.name->assign(thread_name);
838         ::art::SetThreadName(thread_name);
839       } else if (self->GetJniEnv()->check_jni) {
840         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
841       }
842     }
843     return true;
844   };
845   return Attach(thread_name, as_daemon, create_peer_action);
846 }
847 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)848 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
849   auto set_peer_action = [&](Thread* self) {
850     // Install the given peer.
851     {
852       DCHECK(self == Thread::Current());
853       ScopedObjectAccess soa(self);
854       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
855     }
856     self->GetJniEnv()->SetLongField(thread_peer,
857                                     WellKnownClasses::java_lang_Thread_nativePeer,
858                                     reinterpret_cast<jlong>(self));
859     return true;
860   };
861   return Attach(thread_name, as_daemon, set_peer_action);
862 }
863 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)864 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
865   Runtime* runtime = Runtime::Current();
866   CHECK(runtime->IsStarted());
867   JNIEnv* env = tlsPtr_.jni_env;
868 
869   if (thread_group == nullptr) {
870     thread_group = runtime->GetMainThreadGroup();
871   }
872   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
873   // Add missing null check in case of OOM b/18297817
874   if (name != nullptr && thread_name.get() == nullptr) {
875     CHECK(IsExceptionPending());
876     return;
877   }
878   jint thread_priority = GetNativePriority();
879   jboolean thread_is_daemon = as_daemon;
880 
881   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
882   if (peer.get() == nullptr) {
883     CHECK(IsExceptionPending());
884     return;
885   }
886   {
887     ScopedObjectAccess soa(this);
888     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
889   }
890   env->CallNonvirtualVoidMethod(peer.get(),
891                                 WellKnownClasses::java_lang_Thread,
892                                 WellKnownClasses::java_lang_Thread_init,
893                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
894   if (IsExceptionPending()) {
895     return;
896   }
897 
898   Thread* self = this;
899   DCHECK_EQ(self, Thread::Current());
900   env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
901                     reinterpret_cast<jlong>(self));
902 
903   ScopedObjectAccess soa(self);
904   StackHandleScope<1> hs(self);
905   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
906   if (peer_thread_name == nullptr) {
907     // The Thread constructor should have set the Thread.name to a
908     // non-null value. However, because we can run without code
909     // available (in the compiler, in tests), we manually assign the
910     // fields the constructor should have set.
911     if (runtime->IsActiveTransaction()) {
912       InitPeer<true>(soa,
913                      tlsPtr_.opeer,
914                      thread_is_daemon,
915                      thread_group,
916                      thread_name.get(),
917                      thread_priority);
918     } else {
919       InitPeer<false>(soa,
920                       tlsPtr_.opeer,
921                       thread_is_daemon,
922                       thread_group,
923                       thread_name.get(),
924                       thread_priority);
925     }
926     peer_thread_name.Assign(GetThreadName());
927   }
928   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
929   if (peer_thread_name != nullptr) {
930     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
931   }
932 }
933 
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)934 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
935                                       const char* name,
936                                       bool as_daemon,
937                                       jobject thread_group) {
938   Runtime* runtime = Runtime::Current();
939   CHECK(!runtime->IsStarted());
940 
941   if (thread_group == nullptr) {
942     thread_group = runtime->GetMainThreadGroup();
943   }
944   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
945   // Add missing null check in case of OOM b/18297817
946   if (name != nullptr && thread_name.get() == nullptr) {
947     CHECK(Thread::Current()->IsExceptionPending());
948     return nullptr;
949   }
950   jint thread_priority = GetNativePriority();
951   jboolean thread_is_daemon = as_daemon;
952 
953   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
954   if (peer.get() == nullptr) {
955     CHECK(Thread::Current()->IsExceptionPending());
956     return nullptr;
957   }
958 
959   // We cannot call Thread.init, as it will recursively ask for currentThread.
960 
961   // The Thread constructor should have set the Thread.name to a
962   // non-null value. However, because we can run without code
963   // available (in the compiler, in tests), we manually assign the
964   // fields the constructor should have set.
965   ScopedObjectAccessUnchecked soa(Thread::Current());
966   if (runtime->IsActiveTransaction()) {
967     InitPeer<true>(soa,
968                    soa.Decode<mirror::Object>(peer.get()),
969                    thread_is_daemon,
970                    thread_group,
971                    thread_name.get(),
972                    thread_priority);
973   } else {
974     InitPeer<false>(soa,
975                     soa.Decode<mirror::Object>(peer.get()),
976                     thread_is_daemon,
977                     thread_group,
978                     thread_name.get(),
979                     thread_priority);
980   }
981 
982   return peer.release();
983 }
984 
985 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)986 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
987                       ObjPtr<mirror::Object> peer,
988                       jboolean thread_is_daemon,
989                       jobject thread_group,
990                       jobject thread_name,
991                       jint thread_priority) {
992   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
993       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
994   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
995       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
996   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
997       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
998   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
999       SetInt<kTransactionActive>(peer, thread_priority);
1000 }
1001 
SetThreadName(const char * name)1002 void Thread::SetThreadName(const char* name) {
1003   tlsPtr_.name->assign(name);
1004   ::art::SetThreadName(name);
1005   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1006 }
1007 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1008 static void GetThreadStack(pthread_t thread,
1009                            void** stack_base,
1010                            size_t* stack_size,
1011                            size_t* guard_size) {
1012 #if defined(__APPLE__)
1013   *stack_size = pthread_get_stacksize_np(thread);
1014   void* stack_addr = pthread_get_stackaddr_np(thread);
1015 
1016   // Check whether stack_addr is the base or end of the stack.
1017   // (On Mac OS 10.7, it's the end.)
1018   int stack_variable;
1019   if (stack_addr > &stack_variable) {
1020     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1021   } else {
1022     *stack_base = stack_addr;
1023   }
1024 
1025   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1026   pthread_attr_t attributes;
1027   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1028   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1029   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1030 #else
1031   pthread_attr_t attributes;
1032   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1033   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1034   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1035   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1036 
1037 #if defined(__GLIBC__)
1038   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1039   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1040   // will be broken because we'll die long before we get close to 2GB.
1041   bool is_main_thread = (::art::GetTid() == getpid());
1042   if (is_main_thread) {
1043     rlimit stack_limit;
1044     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1045       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1046     }
1047     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1048       size_t old_stack_size = *stack_size;
1049 
1050       // Use the kernel default limit as our size, and adjust the base to match.
1051       *stack_size = 8 * MB;
1052       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1053 
1054       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1055                     << " to " << PrettySize(*stack_size)
1056                     << " with base " << *stack_base;
1057     }
1058   }
1059 #endif
1060 
1061 #endif
1062 }
1063 
InitStackHwm()1064 bool Thread::InitStackHwm() {
1065   void* read_stack_base;
1066   size_t read_stack_size;
1067   size_t read_guard_size;
1068   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1069 
1070   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1071   tlsPtr_.stack_size = read_stack_size;
1072 
1073   // The minimum stack size we can cope with is the overflow reserved bytes (typically
1074   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1075   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1076   // between 8K and 12K.
1077   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1078     + 4 * KB;
1079   if (read_stack_size <= min_stack) {
1080     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1081     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1082                                __LINE__,
1083                                ::android::base::ERROR,
1084                                "Attempt to attach a thread with a too-small stack");
1085     return false;
1086   }
1087 
1088   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1089   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1090                                 read_stack_base,
1091                                 PrettySize(read_stack_size).c_str(),
1092                                 PrettySize(read_guard_size).c_str());
1093 
1094   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1095 
1096   Runtime* runtime = Runtime::Current();
1097   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1098 
1099   // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1100   // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1101   // stack_begin to 0.
1102   const bool valgrind_on_arm =
1103       (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
1104       kMemoryToolIsValgrind &&
1105       RUNNING_ON_MEMORY_TOOL != 0;
1106   if (valgrind_on_arm) {
1107     tlsPtr_.stack_begin = nullptr;
1108   }
1109 
1110   ResetDefaultStackEnd();
1111 
1112   // Install the protected region if we are doing implicit overflow checks.
1113   if (implicit_stack_check && !valgrind_on_arm) {
1114     // The thread might have protected region at the bottom.  We need
1115     // to install our own region so we need to move the limits
1116     // of the stack to make room for it.
1117 
1118     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1119     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1120     tlsPtr_.stack_size -= read_guard_size;
1121 
1122     InstallImplicitProtection();
1123   }
1124 
1125   // Sanity check.
1126   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1127 
1128   return true;
1129 }
1130 
ShortDump(std::ostream & os) const1131 void Thread::ShortDump(std::ostream& os) const {
1132   os << "Thread[";
1133   if (GetThreadId() != 0) {
1134     // If we're in kStarting, we won't have a thin lock id or tid yet.
1135     os << GetThreadId()
1136        << ",tid=" << GetTid() << ',';
1137   }
1138   os << GetState()
1139      << ",Thread*=" << this
1140      << ",peer=" << tlsPtr_.opeer
1141      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1142      << "]";
1143 }
1144 
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1145 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1146                   bool force_dump_stack) const {
1147   DumpState(os);
1148   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1149 }
1150 
GetThreadName() const1151 mirror::String* Thread::GetThreadName() const {
1152   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1153   if (tlsPtr_.opeer == nullptr) {
1154     return nullptr;
1155   }
1156   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1157   return name == nullptr ? nullptr : name->AsString();
1158 }
1159 
GetThreadName(std::string & name) const1160 void Thread::GetThreadName(std::string& name) const {
1161   name.assign(*tlsPtr_.name);
1162 }
1163 
GetCpuMicroTime() const1164 uint64_t Thread::GetCpuMicroTime() const {
1165 #if defined(__linux__)
1166   clockid_t cpu_clock_id;
1167   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1168   timespec now;
1169   clock_gettime(cpu_clock_id, &now);
1170   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1171 #else  // __APPLE__
1172   UNIMPLEMENTED(WARNING);
1173   return -1;
1174 #endif
1175 }
1176 
1177 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1178 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1179   LOG(ERROR) << *thread << " suspend count already zero.";
1180   Locks::thread_suspend_count_lock_->Unlock(self);
1181   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1182     Locks::mutator_lock_->SharedTryLock(self);
1183     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1184       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1185     }
1186   }
1187   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1188     Locks::thread_list_lock_->TryLock(self);
1189     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1190       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1191     }
1192   }
1193   std::ostringstream ss;
1194   Runtime::Current()->GetThreadList()->Dump(ss);
1195   LOG(FATAL) << ss.str();
1196 }
1197 
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1198 bool Thread::ModifySuspendCountInternal(Thread* self,
1199                                         int delta,
1200                                         AtomicInteger* suspend_barrier,
1201                                         SuspendReason reason) {
1202   if (kIsDebugBuild) {
1203     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1204           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1205     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1206     Locks::thread_suspend_count_lock_->AssertHeld(self);
1207     if (this != self && !IsSuspended()) {
1208       Locks::thread_list_lock_->AssertHeld(self);
1209     }
1210   }
1211   // User code suspensions need to be checked more closely since they originate from code outside of
1212   // the runtime's control.
1213   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1214     Locks::user_code_suspension_lock_->AssertHeld(self);
1215     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1216       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1217       return false;
1218     }
1219   }
1220   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1221     UnsafeLogFatalForSuspendCount(self, this);
1222     return false;
1223   }
1224 
1225   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1226     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1227     // deadlock. b/31683379.
1228     return false;
1229   }
1230 
1231   uint16_t flags = kSuspendRequest;
1232   if (delta > 0 && suspend_barrier != nullptr) {
1233     uint32_t available_barrier = kMaxSuspendBarriers;
1234     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1235       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1236         available_barrier = i;
1237         break;
1238       }
1239     }
1240     if (available_barrier == kMaxSuspendBarriers) {
1241       // No barrier spaces available, we can't add another.
1242       return false;
1243     }
1244     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1245     flags |= kActiveSuspendBarrier;
1246   }
1247 
1248   tls32_.suspend_count += delta;
1249   switch (reason) {
1250     case SuspendReason::kForDebugger:
1251       tls32_.debug_suspend_count += delta;
1252       break;
1253     case SuspendReason::kForUserCode:
1254       tls32_.user_code_suspend_count += delta;
1255       break;
1256     case SuspendReason::kInternal:
1257       break;
1258   }
1259 
1260   if (tls32_.suspend_count == 0) {
1261     AtomicClearFlag(kSuspendRequest);
1262   } else {
1263     // Two bits might be set simultaneously.
1264     tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1265     TriggerSuspend();
1266   }
1267   return true;
1268 }
1269 
PassActiveSuspendBarriers(Thread * self)1270 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1271   // Grab the suspend_count lock and copy the current set of
1272   // barriers. Then clear the list and the flag. The ModifySuspendCount
1273   // function requires the lock so we prevent a race between setting
1274   // the kActiveSuspendBarrier flag and clearing it.
1275   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1276   {
1277     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1278     if (!ReadFlag(kActiveSuspendBarrier)) {
1279       // quick exit test: the barriers have already been claimed - this is
1280       // possible as there may be a race to claim and it doesn't matter
1281       // who wins.
1282       // All of the callers of this function (except the SuspendAllInternal)
1283       // will first test the kActiveSuspendBarrier flag without lock. Here
1284       // double-check whether the barrier has been passed with the
1285       // suspend_count lock.
1286       return false;
1287     }
1288 
1289     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1290       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1291       tlsPtr_.active_suspend_barriers[i] = nullptr;
1292     }
1293     AtomicClearFlag(kActiveSuspendBarrier);
1294   }
1295 
1296   uint32_t barrier_count = 0;
1297   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1298     AtomicInteger* pending_threads = pass_barriers[i];
1299     if (pending_threads != nullptr) {
1300       bool done = false;
1301       do {
1302         int32_t cur_val = pending_threads->LoadRelaxed();
1303         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1304         // Reduce value by 1.
1305         done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1306 #if ART_USE_FUTEXES
1307         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1308           futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1309         }
1310 #endif
1311       } while (!done);
1312       ++barrier_count;
1313     }
1314   }
1315   CHECK_GT(barrier_count, 0U);
1316   return true;
1317 }
1318 
ClearSuspendBarrier(AtomicInteger * target)1319 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1320   CHECK(ReadFlag(kActiveSuspendBarrier));
1321   bool clear_flag = true;
1322   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1323     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1324     if (ptr == target) {
1325       tlsPtr_.active_suspend_barriers[i] = nullptr;
1326     } else if (ptr != nullptr) {
1327       clear_flag = false;
1328     }
1329   }
1330   if (LIKELY(clear_flag)) {
1331     AtomicClearFlag(kActiveSuspendBarrier);
1332   }
1333 }
1334 
RunCheckpointFunction()1335 void Thread::RunCheckpointFunction() {
1336   bool done = false;
1337   do {
1338     // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1339     // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1340     // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1341     Closure* checkpoint = nullptr;
1342     {
1343       MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1344       if (tlsPtr_.checkpoint_function != nullptr) {
1345         checkpoint = tlsPtr_.checkpoint_function;
1346         if (!checkpoint_overflow_.empty()) {
1347           // Overflow list not empty, copy the first one out and continue.
1348           tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1349           checkpoint_overflow_.pop_front();
1350         } else {
1351           // No overflow checkpoints, this means that we are on the last pending checkpoint.
1352           tlsPtr_.checkpoint_function = nullptr;
1353           AtomicClearFlag(kCheckpointRequest);
1354           done = true;
1355         }
1356       } else {
1357         LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1358       }
1359     }
1360 
1361     // Outside the lock, run the checkpoint functions that we collected.
1362     ScopedTrace trace("Run checkpoint function");
1363     DCHECK(checkpoint != nullptr);
1364     checkpoint->Run(this);
1365   } while (!done);
1366 }
1367 
RunEmptyCheckpoint()1368 void Thread::RunEmptyCheckpoint() {
1369   DCHECK_EQ(Thread::Current(), this);
1370   AtomicClearFlag(kEmptyCheckpointRequest);
1371   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1372 }
1373 
RequestCheckpoint(Closure * function)1374 bool Thread::RequestCheckpoint(Closure* function) {
1375   union StateAndFlags old_state_and_flags;
1376   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1377   if (old_state_and_flags.as_struct.state != kRunnable) {
1378     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1379   }
1380 
1381   // We must be runnable to request a checkpoint.
1382   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1383   union StateAndFlags new_state_and_flags;
1384   new_state_and_flags.as_int = old_state_and_flags.as_int;
1385   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1386   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1387       old_state_and_flags.as_int, new_state_and_flags.as_int);
1388   if (success) {
1389     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1390     if (tlsPtr_.checkpoint_function == nullptr) {
1391       tlsPtr_.checkpoint_function = function;
1392     } else {
1393       checkpoint_overflow_.push_back(function);
1394     }
1395     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1396     TriggerSuspend();
1397   }
1398   return success;
1399 }
1400 
RequestEmptyCheckpoint()1401 bool Thread::RequestEmptyCheckpoint() {
1402   union StateAndFlags old_state_and_flags;
1403   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1404   if (old_state_and_flags.as_struct.state != kRunnable) {
1405     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1406     // heap access (eg. the read barrier).
1407     return false;
1408   }
1409 
1410   // We must be runnable to request a checkpoint.
1411   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1412   union StateAndFlags new_state_and_flags;
1413   new_state_and_flags.as_int = old_state_and_flags.as_int;
1414   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1415   bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1416       old_state_and_flags.as_int, new_state_and_flags.as_int);
1417   if (success) {
1418     TriggerSuspend();
1419   }
1420   return success;
1421 }
1422 
1423 class BarrierClosure : public Closure {
1424  public:
BarrierClosure(Closure * wrapped)1425   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1426 
Run(Thread * self)1427   void Run(Thread* self) OVERRIDE {
1428     wrapped_->Run(self);
1429     barrier_.Pass(self);
1430   }
1431 
Wait(Thread * self)1432   void Wait(Thread* self) {
1433     barrier_.Increment(self, 1);
1434   }
1435 
1436  private:
1437   Closure* wrapped_;
1438   Barrier barrier_;
1439 };
1440 
RequestSynchronousCheckpoint(Closure * function)1441 bool Thread::RequestSynchronousCheckpoint(Closure* function) {
1442   if (this == Thread::Current()) {
1443     // Asked to run on this thread. Just run.
1444     function->Run(this);
1445     return true;
1446   }
1447   Thread* self = Thread::Current();
1448 
1449   // The current thread is not this thread.
1450 
1451   if (GetState() == ThreadState::kTerminated) {
1452     return false;
1453   }
1454 
1455   // Note: we're holding the thread-list lock. The thread cannot die at this point.
1456   struct ScopedThreadListLockUnlock {
1457     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1458         : self_thread(self_in) {
1459       Locks::thread_list_lock_->AssertHeld(self_thread);
1460       Locks::thread_list_lock_->Unlock(self_thread);
1461     }
1462 
1463     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1464       Locks::thread_list_lock_->AssertNotHeld(self_thread);
1465       Locks::thread_list_lock_->Lock(self_thread);
1466     }
1467 
1468     Thread* self_thread;
1469   };
1470 
1471   for (;;) {
1472     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1473     // suspend-count lock for too long.
1474     if (GetState() == ThreadState::kRunnable) {
1475       BarrierClosure barrier_closure(function);
1476       bool installed = false;
1477       {
1478         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1479         installed = RequestCheckpoint(&barrier_closure);
1480       }
1481       if (installed) {
1482         // Relinquish the thread-list lock, temporarily. We should not wait holding any locks.
1483         ScopedThreadListLockUnlock stllu(self);
1484         ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1485         barrier_closure.Wait(self);
1486         return true;
1487       }
1488       // Fall-through.
1489     }
1490 
1491     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1492     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1493     //       certain situations.
1494     {
1495       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1496 
1497       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1498         // Just retry the loop.
1499         sched_yield();
1500         continue;
1501       }
1502     }
1503 
1504     {
1505       ScopedThreadListLockUnlock stllu(self);
1506       {
1507         ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1508         while (GetState() == ThreadState::kRunnable) {
1509           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1510           // moves us to suspended.
1511           sched_yield();
1512         }
1513       }
1514 
1515       function->Run(this);
1516     }
1517 
1518     {
1519       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1520 
1521       DCHECK_NE(GetState(), ThreadState::kRunnable);
1522       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1523       DCHECK(updated);
1524     }
1525 
1526     {
1527       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1528       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1529       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1530       Thread::resume_cond_->Broadcast(self);
1531     }
1532 
1533     return true;  // We're done, break out of the loop.
1534   }
1535 }
1536 
GetFlipFunction()1537 Closure* Thread::GetFlipFunction() {
1538   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1539   Closure* func;
1540   do {
1541     func = atomic_func->LoadRelaxed();
1542     if (func == nullptr) {
1543       return nullptr;
1544     }
1545   } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1546   DCHECK(func != nullptr);
1547   return func;
1548 }
1549 
SetFlipFunction(Closure * function)1550 void Thread::SetFlipFunction(Closure* function) {
1551   CHECK(function != nullptr);
1552   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1553   atomic_func->StoreSequentiallyConsistent(function);
1554 }
1555 
FullSuspendCheck()1556 void Thread::FullSuspendCheck() {
1557   ScopedTrace trace(__FUNCTION__);
1558   VLOG(threads) << this << " self-suspending";
1559   // Make thread appear suspended to other threads, release mutator_lock_.
1560   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1561   ScopedThreadSuspension(this, kSuspended);
1562   VLOG(threads) << this << " self-reviving";
1563 }
1564 
GetSchedulerGroupName(pid_t tid)1565 static std::string GetSchedulerGroupName(pid_t tid) {
1566   // /proc/<pid>/cgroup looks like this:
1567   // 2:devices:/
1568   // 1:cpuacct,cpu:/
1569   // We want the third field from the line whose second field contains the "cpu" token.
1570   std::string cgroup_file;
1571   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1572     return "";
1573   }
1574   std::vector<std::string> cgroup_lines;
1575   Split(cgroup_file, '\n', &cgroup_lines);
1576   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1577     std::vector<std::string> cgroup_fields;
1578     Split(cgroup_lines[i], ':', &cgroup_fields);
1579     std::vector<std::string> cgroups;
1580     Split(cgroup_fields[1], ',', &cgroups);
1581     for (size_t j = 0; j < cgroups.size(); ++j) {
1582       if (cgroups[j] == "cpu") {
1583         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1584       }
1585     }
1586   }
1587   return "";
1588 }
1589 
1590 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1591 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1592   std::string group_name;
1593   int priority;
1594   bool is_daemon = false;
1595   Thread* self = Thread::Current();
1596 
1597   // If flip_function is not null, it means we have run a checkpoint
1598   // before the thread wakes up to execute the flip function and the
1599   // thread roots haven't been forwarded.  So the following access to
1600   // the roots (opeer or methods in the frames) would be bad. Run it
1601   // here. TODO: clean up.
1602   if (thread != nullptr) {
1603     ScopedObjectAccessUnchecked soa(self);
1604     Thread* this_thread = const_cast<Thread*>(thread);
1605     Closure* flip_func = this_thread->GetFlipFunction();
1606     if (flip_func != nullptr) {
1607       flip_func->Run(this_thread);
1608     }
1609   }
1610 
1611   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1612   // cause ScopedObjectAccessUnchecked to deadlock.
1613   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1614     ScopedObjectAccessUnchecked soa(self);
1615     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1616         ->GetInt(thread->tlsPtr_.opeer);
1617     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1618         ->GetBoolean(thread->tlsPtr_.opeer);
1619 
1620     ObjPtr<mirror::Object> thread_group =
1621         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1622             ->GetObject(thread->tlsPtr_.opeer);
1623 
1624     if (thread_group != nullptr) {
1625       ArtField* group_name_field =
1626           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1627       ObjPtr<mirror::String> group_name_string =
1628           group_name_field->GetObject(thread_group)->AsString();
1629       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1630     }
1631   } else {
1632     priority = GetNativePriority();
1633   }
1634 
1635   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1636   if (scheduler_group_name.empty()) {
1637     scheduler_group_name = "default";
1638   }
1639 
1640   if (thread != nullptr) {
1641     os << '"' << *thread->tlsPtr_.name << '"';
1642     if (is_daemon) {
1643       os << " daemon";
1644     }
1645     os << " prio=" << priority
1646        << " tid=" << thread->GetThreadId()
1647        << " " << thread->GetState();
1648     if (thread->IsStillStarting()) {
1649       os << " (still starting up)";
1650     }
1651     os << "\n";
1652   } else {
1653     os << '"' << ::art::GetThreadName(tid) << '"'
1654        << " prio=" << priority
1655        << " (not attached)\n";
1656   }
1657 
1658   if (thread != nullptr) {
1659     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1660     os << "  | group=\"" << group_name << "\""
1661        << " sCount=" << thread->tls32_.suspend_count
1662        << " dsCount=" << thread->tls32_.debug_suspend_count
1663        << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1664        << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1665        << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1666   }
1667 
1668   os << "  | sysTid=" << tid
1669      << " nice=" << getpriority(PRIO_PROCESS, tid)
1670      << " cgrp=" << scheduler_group_name;
1671   if (thread != nullptr) {
1672     int policy;
1673     sched_param sp;
1674 #if !defined(__APPLE__)
1675     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1676     policy = sched_getscheduler(tid);
1677     if (policy == -1) {
1678       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1679     }
1680     int sched_getparam_result = sched_getparam(tid, &sp);
1681     if (sched_getparam_result == -1) {
1682       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1683       sp.sched_priority = -1;
1684     }
1685 #else
1686     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1687                        __FUNCTION__);
1688 #endif
1689     os << " sched=" << policy << "/" << sp.sched_priority
1690        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1691   }
1692   os << "\n";
1693 
1694   // Grab the scheduler stats for this thread.
1695   std::string scheduler_stats;
1696   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1697     scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
1698   } else {
1699     scheduler_stats = "0 0 0";
1700   }
1701 
1702   char native_thread_state = '?';
1703   int utime = 0;
1704   int stime = 0;
1705   int task_cpu = 0;
1706   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1707 
1708   os << "  | state=" << native_thread_state
1709      << " schedstat=( " << scheduler_stats << " )"
1710      << " utm=" << utime
1711      << " stm=" << stime
1712      << " core=" << task_cpu
1713      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1714   if (thread != nullptr) {
1715     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1716         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1717         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1718     // Dump the held mutexes.
1719     os << "  | held mutexes=";
1720     for (size_t i = 0; i < kLockLevelCount; ++i) {
1721       if (i != kMonitorLock) {
1722         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1723         if (mutex != nullptr) {
1724           os << " \"" << mutex->GetName() << "\"";
1725           if (mutex->IsReaderWriterMutex()) {
1726             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1727             if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1728               os << "(exclusive held)";
1729             } else {
1730               os << "(shared held)";
1731             }
1732           }
1733         }
1734       }
1735     }
1736     os << "\n";
1737   }
1738 }
1739 
DumpState(std::ostream & os) const1740 void Thread::DumpState(std::ostream& os) const {
1741   Thread::DumpState(os, this, GetTid());
1742 }
1743 
1744 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1745   StackDumpVisitor(std::ostream& os_in,
1746                    Thread* thread_in,
1747                    Context* context,
1748                    bool can_allocate_in,
1749                    bool check_suspended = true,
1750                    bool dump_locks_in = true)
1751       REQUIRES_SHARED(Locks::mutator_lock_)
1752       : StackVisitor(thread_in,
1753                      context,
1754                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
1755                      check_suspended),
1756         os(os_in),
1757         can_allocate(can_allocate_in),
1758         last_method(nullptr),
1759         last_line_number(0),
1760         repetition_count(0),
1761         frame_count(0),
1762         dump_locks(dump_locks_in) {}
1763 
~StackDumpVisitorart::StackDumpVisitor1764   virtual ~StackDumpVisitor() {
1765     if (frame_count == 0) {
1766       os << "  (no managed stack frames)\n";
1767     }
1768   }
1769 
VisitFrameart::StackDumpVisitor1770   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1771     ArtMethod* m = GetMethod();
1772     if (m->IsRuntimeMethod()) {
1773       return true;
1774     }
1775     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1776     const int kMaxRepetition = 3;
1777     ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1778     ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1779     int line_number = -1;
1780     if (dex_cache != nullptr) {  // be tolerant of bad input
1781       const DexFile* dex_file = dex_cache->GetDexFile();
1782       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1783     }
1784     if (line_number == last_line_number && last_method == m) {
1785       ++repetition_count;
1786     } else {
1787       if (repetition_count >= kMaxRepetition) {
1788         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1789       }
1790       repetition_count = 0;
1791       last_line_number = line_number;
1792       last_method = m;
1793     }
1794     if (repetition_count < kMaxRepetition) {
1795       os << "  at " << m->PrettyMethod(false);
1796       if (m->IsNative()) {
1797         os << "(Native method)";
1798       } else {
1799         const char* source_file(m->GetDeclaringClassSourceFile());
1800         os << "(" << (source_file != nullptr ? source_file : "unavailable")
1801            << ":" << line_number << ")";
1802       }
1803       os << "\n";
1804       if (frame_count == 0) {
1805         Monitor::DescribeWait(os, GetThread());
1806       }
1807       if (can_allocate && dump_locks) {
1808         // Visit locks, but do not abort on errors. This would trigger a nested abort.
1809         // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
1810         // RegTypeCache::RegTypeCache due to thread_list_lock.
1811         Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1812       }
1813     }
1814 
1815     ++frame_count;
1816     return true;
1817   }
1818 
DumpLockedObjectart::StackDumpVisitor1819   static void DumpLockedObject(mirror::Object* o, void* context)
1820       REQUIRES_SHARED(Locks::mutator_lock_) {
1821     std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1822     os << "  - locked ";
1823     if (o == nullptr) {
1824       os << "an unknown object";
1825     } else {
1826       if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1827         // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1828         // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1829         // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1830         o = ReadBarrier::Mark(o);
1831       }
1832       if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1833           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1834         // Getting the identity hashcode here would result in lock inflation and suspension of the
1835         // current thread, which isn't safe if this is the only runnable thread.
1836         os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1837                            o->PrettyTypeOf().c_str());
1838       } else {
1839         // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1840         // we get the pretty type beofre we call IdentityHashCode.
1841         const std::string pretty_type(o->PrettyTypeOf());
1842         os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1843       }
1844     }
1845     os << "\n";
1846   }
1847 
1848   std::ostream& os;
1849   const bool can_allocate;
1850   ArtMethod* last_method;
1851   int last_line_number;
1852   int repetition_count;
1853   int frame_count;
1854   const bool dump_locks;
1855 };
1856 
ShouldShowNativeStack(const Thread * thread)1857 static bool ShouldShowNativeStack(const Thread* thread)
1858     REQUIRES_SHARED(Locks::mutator_lock_) {
1859   ThreadState state = thread->GetState();
1860 
1861   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1862   if (state > kWaiting && state < kStarting) {
1863     return true;
1864   }
1865 
1866   // In an Object.wait variant or Thread.sleep? That's not interesting.
1867   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1868     return false;
1869   }
1870 
1871   // Threads with no managed stack frames should be shown.
1872   const ManagedStack* managed_stack = thread->GetManagedStack();
1873   if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1874       managed_stack->GetTopShadowFrame() == nullptr)) {
1875     return true;
1876   }
1877 
1878   // In some other native method? That's interesting.
1879   // We don't just check kNative because native methods will be in state kSuspended if they're
1880   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1881   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1882   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1883   return current_method != nullptr && current_method->IsNative();
1884 }
1885 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1886 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1887   // If flip_function is not null, it means we have run a checkpoint
1888   // before the thread wakes up to execute the flip function and the
1889   // thread roots haven't been forwarded.  So the following access to
1890   // the roots (locks or methods in the frames) would be bad. Run it
1891   // here. TODO: clean up.
1892   {
1893     Thread* this_thread = const_cast<Thread*>(this);
1894     Closure* flip_func = this_thread->GetFlipFunction();
1895     if (flip_func != nullptr) {
1896       flip_func->Run(this_thread);
1897     }
1898   }
1899 
1900   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1901   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1902   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1903   // thread.
1904   StackHandleScope<1> scope(Thread::Current());
1905   Handle<mirror::Throwable> exc;
1906   bool have_exception = false;
1907   if (IsExceptionPending()) {
1908     exc = scope.NewHandle(GetException());
1909     const_cast<Thread*>(this)->ClearException();
1910     have_exception = true;
1911   }
1912 
1913   std::unique_ptr<Context> context(Context::Create());
1914   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1915                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1916   dumper.WalkStack();
1917 
1918   if (have_exception) {
1919     const_cast<Thread*>(this)->SetException(exc.Get());
1920   }
1921 }
1922 
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1923 void Thread::DumpStack(std::ostream& os,
1924                        bool dump_native_stack,
1925                        BacktraceMap* backtrace_map,
1926                        bool force_dump_stack) const {
1927   // TODO: we call this code when dying but may not have suspended the thread ourself. The
1928   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1929   //       the race with the thread_suspend_count_lock_).
1930   bool dump_for_abort = (gAborting > 0);
1931   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1932   if (!kIsDebugBuild) {
1933     // We always want to dump the stack for an abort, however, there is no point dumping another
1934     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1935     safe_to_dump = (safe_to_dump || dump_for_abort);
1936   }
1937   if (safe_to_dump || force_dump_stack) {
1938     // If we're currently in native code, dump that stack before dumping the managed stack.
1939     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1940       DumpKernelStack(os, GetTid(), "  kernel: ", false);
1941       ArtMethod* method =
1942           GetCurrentMethod(nullptr,
1943                            /*check_suspended*/ !force_dump_stack,
1944                            /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1945       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
1946     }
1947     DumpJavaStack(os,
1948                   /*check_suspended*/ !force_dump_stack,
1949                   /*dump_locks*/ !force_dump_stack);
1950   } else {
1951     os << "Not able to dump stack of thread that isn't suspended";
1952   }
1953 }
1954 
ThreadExitCallback(void * arg)1955 void Thread::ThreadExitCallback(void* arg) {
1956   Thread* self = reinterpret_cast<Thread*>(arg);
1957   if (self->tls32_.thread_exit_check_count == 0) {
1958     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1959         "going to use a pthread_key_create destructor?): " << *self;
1960     CHECK(is_started_);
1961 #ifdef ART_TARGET_ANDROID
1962     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1963 #else
1964     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1965 #endif
1966     self->tls32_.thread_exit_check_count = 1;
1967   } else {
1968     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1969   }
1970 }
1971 
Startup()1972 void Thread::Startup() {
1973   CHECK(!is_started_);
1974   is_started_ = true;
1975   {
1976     // MutexLock to keep annotalysis happy.
1977     //
1978     // Note we use null for the thread because Thread::Current can
1979     // return garbage since (is_started_ == true) and
1980     // Thread::pthread_key_self_ is not yet initialized.
1981     // This was seen on glibc.
1982     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1983     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1984                                          *Locks::thread_suspend_count_lock_);
1985   }
1986 
1987   // Allocate a TLS slot.
1988   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1989                      "self key");
1990 
1991   // Double-check the TLS slot allocation.
1992   if (pthread_getspecific(pthread_key_self_) != nullptr) {
1993     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1994   }
1995 }
1996 
FinishStartup()1997 void Thread::FinishStartup() {
1998   Runtime* runtime = Runtime::Current();
1999   CHECK(runtime->IsStarted());
2000 
2001   // Finish attaching the main thread.
2002   ScopedObjectAccess soa(Thread::Current());
2003   Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2004   Thread::Current()->AssertNoPendingException();
2005 
2006   Runtime::Current()->GetClassLinker()->RunRootClinits();
2007 
2008   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2009   // threads, this is done in Thread.start() on the Java side.
2010   {
2011     // This is only ever done once. There's no benefit in caching the method.
2012     jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
2013                                                         "add",
2014                                                         "(Ljava/lang/Thread;)V");
2015     CHECK(thread_group_add != nullptr);
2016     ScopedLocalRef<jobject> thread_jobject(
2017         soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2018     soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
2019                                         WellKnownClasses::java_lang_ThreadGroup,
2020                                         thread_group_add,
2021                                         thread_jobject.get());
2022     Thread::Current()->AssertNoPendingException();
2023   }
2024 }
2025 
Shutdown()2026 void Thread::Shutdown() {
2027   CHECK(is_started_);
2028   is_started_ = false;
2029   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2030   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2031   if (resume_cond_ != nullptr) {
2032     delete resume_cond_;
2033     resume_cond_ = nullptr;
2034   }
2035 }
2036 
Thread(bool daemon)2037 Thread::Thread(bool daemon)
2038     : tls32_(daemon),
2039       wait_monitor_(nullptr),
2040       custom_tls_(nullptr),
2041       can_call_into_java_(true) {
2042   wait_mutex_ = new Mutex("a thread wait mutex");
2043   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2044   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2045   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2046 
2047   static_assert((sizeof(Thread) % 4) == 0U,
2048                 "art::Thread has a size which is not a multiple of 4.");
2049   tls32_.state_and_flags.as_struct.flags = 0;
2050   tls32_.state_and_flags.as_struct.state = kNative;
2051   tls32_.interrupted.StoreRelaxed(false);
2052   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2053   std::fill(tlsPtr_.rosalloc_runs,
2054             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2055             gc::allocator::RosAlloc::GetDedicatedFullRun());
2056   tlsPtr_.checkpoint_function = nullptr;
2057   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2058     tlsPtr_.active_suspend_barriers[i] = nullptr;
2059   }
2060   tlsPtr_.flip_function = nullptr;
2061   tlsPtr_.thread_local_mark_stack = nullptr;
2062   tls32_.is_transitioning_to_runnable = false;
2063 }
2064 
IsStillStarting() const2065 bool Thread::IsStillStarting() const {
2066   // You might think you can check whether the state is kStarting, but for much of thread startup,
2067   // the thread is in kNative; it might also be in kVmWait.
2068   // You might think you can check whether the peer is null, but the peer is actually created and
2069   // assigned fairly early on, and needs to be.
2070   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2071   // this thread _ever_ entered kRunnable".
2072   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2073       (*tlsPtr_.name == kThreadNameDuringStartup);
2074 }
2075 
AssertPendingException() const2076 void Thread::AssertPendingException() const {
2077   CHECK(IsExceptionPending()) << "Pending exception expected.";
2078 }
2079 
AssertPendingOOMException() const2080 void Thread::AssertPendingOOMException() const {
2081   AssertPendingException();
2082   auto* e = GetException();
2083   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2084       << e->Dump();
2085 }
2086 
AssertNoPendingException() const2087 void Thread::AssertNoPendingException() const {
2088   if (UNLIKELY(IsExceptionPending())) {
2089     ScopedObjectAccess soa(Thread::Current());
2090     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2091   }
2092 }
2093 
AssertNoPendingExceptionForNewException(const char * msg) const2094 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2095   if (UNLIKELY(IsExceptionPending())) {
2096     ScopedObjectAccess soa(Thread::Current());
2097     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2098         << GetException()->Dump();
2099   }
2100 }
2101 
2102 class MonitorExitVisitor : public SingleRootVisitor {
2103  public:
MonitorExitVisitor(Thread * self)2104   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2105 
2106   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2107   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2108       OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2109     if (self_->HoldsLock(entered_monitor)) {
2110       LOG(WARNING) << "Calling MonitorExit on object "
2111                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2112                    << " left locked by native thread "
2113                    << *Thread::Current() << " which is detaching";
2114       entered_monitor->MonitorExit(self_);
2115     }
2116   }
2117 
2118  private:
2119   Thread* const self_;
2120 };
2121 
Destroy()2122 void Thread::Destroy() {
2123   Thread* self = this;
2124   DCHECK_EQ(self, Thread::Current());
2125 
2126   if (tlsPtr_.jni_env != nullptr) {
2127     {
2128       ScopedObjectAccess soa(self);
2129       MonitorExitVisitor visitor(self);
2130       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2131       tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2132     }
2133     // Release locally held global references which releasing may require the mutator lock.
2134     if (tlsPtr_.jpeer != nullptr) {
2135       // If pthread_create fails we don't have a jni env here.
2136       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2137       tlsPtr_.jpeer = nullptr;
2138     }
2139     if (tlsPtr_.class_loader_override != nullptr) {
2140       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2141       tlsPtr_.class_loader_override = nullptr;
2142     }
2143   }
2144 
2145   if (tlsPtr_.opeer != nullptr) {
2146     ScopedObjectAccess soa(self);
2147     // We may need to call user-supplied managed code, do this before final clean-up.
2148     HandleUncaughtExceptions(soa);
2149     Runtime* runtime = Runtime::Current();
2150     if (runtime != nullptr) {
2151       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2152     }
2153     RemoveFromThreadGroup(soa);
2154 
2155     // this.nativePeer = 0;
2156     if (Runtime::Current()->IsActiveTransaction()) {
2157       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2158           ->SetLong<true>(tlsPtr_.opeer, 0);
2159     } else {
2160       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2161           ->SetLong<false>(tlsPtr_.opeer, 0);
2162     }
2163 
2164     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2165     // who is waiting.
2166     ObjPtr<mirror::Object> lock =
2167         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2168     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2169     if (lock != nullptr) {
2170       StackHandleScope<1> hs(self);
2171       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2172       ObjectLock<mirror::Object> locker(self, h_obj);
2173       locker.NotifyAll();
2174     }
2175     tlsPtr_.opeer = nullptr;
2176   }
2177 
2178   {
2179     ScopedObjectAccess soa(self);
2180     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2181     if (kUseReadBarrier) {
2182       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2183     }
2184   }
2185 }
2186 
~Thread()2187 Thread::~Thread() {
2188   CHECK(tlsPtr_.class_loader_override == nullptr);
2189   CHECK(tlsPtr_.jpeer == nullptr);
2190   CHECK(tlsPtr_.opeer == nullptr);
2191   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2192   if (initialized) {
2193     delete tlsPtr_.jni_env;
2194     tlsPtr_.jni_env = nullptr;
2195   }
2196   CHECK_NE(GetState(), kRunnable);
2197   CHECK(!ReadFlag(kCheckpointRequest));
2198   CHECK(!ReadFlag(kEmptyCheckpointRequest));
2199   CHECK(tlsPtr_.checkpoint_function == nullptr);
2200   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2201   CHECK(tlsPtr_.flip_function == nullptr);
2202   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2203 
2204   // Make sure we processed all deoptimization requests.
2205   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2206   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2207       "Not all deoptimized frames have been consumed by the debugger.";
2208 
2209   // We may be deleting a still born thread.
2210   SetStateUnsafe(kTerminated);
2211 
2212   delete wait_cond_;
2213   delete wait_mutex_;
2214 
2215   if (tlsPtr_.long_jump_context != nullptr) {
2216     delete tlsPtr_.long_jump_context;
2217   }
2218 
2219   if (initialized) {
2220     CleanupCpu();
2221   }
2222 
2223   if (tlsPtr_.single_step_control != nullptr) {
2224     delete tlsPtr_.single_step_control;
2225   }
2226   delete tlsPtr_.instrumentation_stack;
2227   delete tlsPtr_.name;
2228   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2229 
2230   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2231 
2232   TearDownAlternateSignalStack();
2233 }
2234 
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2235 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2236   if (!IsExceptionPending()) {
2237     return;
2238   }
2239   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2240   ScopedThreadStateChange tsc(this, kNative);
2241 
2242   // Get and clear the exception.
2243   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2244   tlsPtr_.jni_env->ExceptionClear();
2245 
2246   // Call the Thread instance's dispatchUncaughtException(Throwable)
2247   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2248       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2249       exception.get());
2250 
2251   // If the dispatchUncaughtException threw, clear that exception too.
2252   tlsPtr_.jni_env->ExceptionClear();
2253 }
2254 
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2255 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2256   // this.group.removeThread(this);
2257   // group can be null if we're in the compiler or a test.
2258   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2259       ->GetObject(tlsPtr_.opeer);
2260   if (ogroup != nullptr) {
2261     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2262     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2263     ScopedThreadStateChange tsc(soa.Self(), kNative);
2264     tlsPtr_.jni_env->CallVoidMethod(group.get(),
2265                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
2266                                     peer.get());
2267   }
2268 }
2269 
HandleScopeContains(jobject obj) const2270 bool Thread::HandleScopeContains(jobject obj) const {
2271   StackReference<mirror::Object>* hs_entry =
2272       reinterpret_cast<StackReference<mirror::Object>*>(obj);
2273   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2274     if (cur->Contains(hs_entry)) {
2275       return true;
2276     }
2277   }
2278   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2279   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2280 }
2281 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2282 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2283   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2284       visitor, RootInfo(kRootNativeStack, thread_id));
2285   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2286     cur->VisitRoots(buffered_visitor);
2287   }
2288 }
2289 
DecodeJObject(jobject obj) const2290 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2291   if (obj == nullptr) {
2292     return nullptr;
2293   }
2294   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2295   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2296   ObjPtr<mirror::Object> result;
2297   bool expect_null = false;
2298   // The "kinds" below are sorted by the frequency we expect to encounter them.
2299   if (kind == kLocal) {
2300     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
2301     // Local references do not need a read barrier.
2302     result = locals.Get<kWithoutReadBarrier>(ref);
2303   } else if (kind == kHandleScopeOrInvalid) {
2304     // TODO: make stack indirect reference table lookup more efficient.
2305     // Check if this is a local reference in the handle scope.
2306     if (LIKELY(HandleScopeContains(obj))) {
2307       // Read from handle scope.
2308       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2309       VerifyObject(result);
2310     } else {
2311       tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2312       expect_null = true;
2313       result = nullptr;
2314     }
2315   } else if (kind == kGlobal) {
2316     result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
2317   } else {
2318     DCHECK_EQ(kind, kWeakGlobal);
2319     result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2320     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2321       // This is a special case where it's okay to return null.
2322       expect_null = true;
2323       result = nullptr;
2324     }
2325   }
2326 
2327   if (UNLIKELY(!expect_null && result == nullptr)) {
2328     tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
2329                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
2330   }
2331   return result;
2332 }
2333 
IsJWeakCleared(jweak obj) const2334 bool Thread::IsJWeakCleared(jweak obj) const {
2335   CHECK(obj != nullptr);
2336   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2337   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2338   CHECK_EQ(kind, kWeakGlobal);
2339   return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2340 }
2341 
2342 // Implements java.lang.Thread.interrupted.
Interrupted()2343 bool Thread::Interrupted() {
2344   DCHECK_EQ(Thread::Current(), this);
2345   // No other thread can concurrently reset the interrupted flag.
2346   bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2347   if (interrupted) {
2348     tls32_.interrupted.StoreSequentiallyConsistent(false);
2349   }
2350   return interrupted;
2351 }
2352 
2353 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2354 bool Thread::IsInterrupted() {
2355   return tls32_.interrupted.LoadSequentiallyConsistent();
2356 }
2357 
Interrupt(Thread * self)2358 void Thread::Interrupt(Thread* self) {
2359   MutexLock mu(self, *wait_mutex_);
2360   if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2361     return;
2362   }
2363   tls32_.interrupted.StoreSequentiallyConsistent(true);
2364   NotifyLocked(self);
2365 }
2366 
Notify()2367 void Thread::Notify() {
2368   Thread* self = Thread::Current();
2369   MutexLock mu(self, *wait_mutex_);
2370   NotifyLocked(self);
2371 }
2372 
NotifyLocked(Thread * self)2373 void Thread::NotifyLocked(Thread* self) {
2374   if (wait_monitor_ != nullptr) {
2375     wait_cond_->Signal(self);
2376   }
2377 }
2378 
SetClassLoaderOverride(jobject class_loader_override)2379 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2380   if (tlsPtr_.class_loader_override != nullptr) {
2381     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2382   }
2383   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2384 }
2385 
2386 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2387 
2388 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2389 class FetchStackTraceVisitor : public StackVisitor {
2390  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2391   explicit FetchStackTraceVisitor(Thread* thread,
2392                                   ArtMethodDexPcPair* saved_frames = nullptr,
2393                                   size_t max_saved_frames = 0)
2394       REQUIRES_SHARED(Locks::mutator_lock_)
2395       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2396         saved_frames_(saved_frames),
2397         max_saved_frames_(max_saved_frames) {}
2398 
VisitFrame()2399   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2400     // We want to skip frames up to and including the exception's constructor.
2401     // Note we also skip the frame if it doesn't have a method (namely the callee
2402     // save frame)
2403     ArtMethod* m = GetMethod();
2404     if (skipping_ && !m->IsRuntimeMethod() &&
2405         !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2406       skipping_ = false;
2407     }
2408     if (!skipping_) {
2409       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2410         if (depth_ < max_saved_frames_) {
2411           saved_frames_[depth_].first = m;
2412           saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
2413         }
2414         ++depth_;
2415       }
2416     } else {
2417       ++skip_depth_;
2418     }
2419     return true;
2420   }
2421 
GetDepth() const2422   uint32_t GetDepth() const {
2423     return depth_;
2424   }
2425 
GetSkipDepth() const2426   uint32_t GetSkipDepth() const {
2427     return skip_depth_;
2428   }
2429 
2430  private:
2431   uint32_t depth_ = 0;
2432   uint32_t skip_depth_ = 0;
2433   bool skipping_ = true;
2434   ArtMethodDexPcPair* saved_frames_;
2435   const size_t max_saved_frames_;
2436 
2437   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2438 };
2439 
2440 template<bool kTransactionActive>
2441 class BuildInternalStackTraceVisitor : public StackVisitor {
2442  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2443   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2444       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2445         self_(self),
2446         skip_depth_(skip_depth),
2447         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2448 
Init(int depth)2449   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2450     // Allocate method trace as an object array where the first element is a pointer array that
2451     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2452     // class of the ArtMethod pointers.
2453     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2454     StackHandleScope<1> hs(self_);
2455     ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2456     // The first element is the methods and dex pc array, the other elements are declaring classes
2457     // for the methods to ensure classes in the stack trace don't get unloaded.
2458     Handle<mirror::ObjectArray<mirror::Object>> trace(
2459         hs.NewHandle(
2460             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2461     if (trace == nullptr) {
2462       // Acquire uninterruptible_ in all paths.
2463       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2464       self_->AssertPendingOOMException();
2465       return false;
2466     }
2467     ObjPtr<mirror::PointerArray> methods_and_pcs =
2468         class_linker->AllocPointerArray(self_, depth * 2);
2469     const char* last_no_suspend_cause =
2470         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2471     if (methods_and_pcs == nullptr) {
2472       self_->AssertPendingOOMException();
2473       return false;
2474     }
2475     trace->Set(0, methods_and_pcs);
2476     trace_ = trace.Get();
2477     // If We are called from native, use non-transactional mode.
2478     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2479     return true;
2480   }
2481 
RELEASE(Roles::uninterruptible_)2482   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2483     self_->EndAssertNoThreadSuspension(nullptr);
2484   }
2485 
VisitFrame()2486   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2487     if (trace_ == nullptr) {
2488       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2489     }
2490     if (skip_depth_ > 0) {
2491       skip_depth_--;
2492       return true;
2493     }
2494     ArtMethod* m = GetMethod();
2495     if (m->IsRuntimeMethod()) {
2496       return true;  // Ignore runtime frames (in particular callee save).
2497     }
2498     AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
2499     return true;
2500   }
2501 
AddFrame(ArtMethod * method,uint32_t dex_pc)2502   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2503     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2504     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2505     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2506         trace_methods_and_pcs->GetLength() / 2 + count_,
2507         dex_pc,
2508         pointer_size_);
2509     // Save the declaring class of the method to ensure that the declaring classes of the methods
2510     // do not get unloaded while the stack trace is live.
2511     trace_->Set(count_ + 1, method->GetDeclaringClass());
2512     ++count_;
2513   }
2514 
GetTraceMethodsAndPCs() const2515   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2516     return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2517   }
2518 
GetInternalStackTrace() const2519   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2520     return trace_;
2521   }
2522 
2523  private:
2524   Thread* const self_;
2525   // How many more frames to skip.
2526   int32_t skip_depth_;
2527   // Current position down stack trace.
2528   uint32_t count_ = 0;
2529   // An object array where the first element is a pointer array that contains the ArtMethod
2530   // pointers on the stack and dex PCs. The rest of the elements are the declaring
2531   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2532   // the i'th frame.
2533   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2534   // For cross compilation.
2535   const PointerSize pointer_size_;
2536 
2537   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2538 };
2539 
2540 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2541 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2542   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2543   constexpr size_t kMaxSavedFrames = 256;
2544   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2545   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2546                                        &saved_frames[0],
2547                                        kMaxSavedFrames);
2548   count_visitor.WalkStack();
2549   const uint32_t depth = count_visitor.GetDepth();
2550   const uint32_t skip_depth = count_visitor.GetSkipDepth();
2551 
2552   // Build internal stack trace.
2553   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2554                                                                          const_cast<Thread*>(this),
2555                                                                          skip_depth);
2556   if (!build_trace_visitor.Init(depth)) {
2557     return nullptr;  // Allocation failed.
2558   }
2559   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2560   // than doing the stack walk twice.
2561   if (depth < kMaxSavedFrames) {
2562     for (size_t i = 0; i < depth; ++i) {
2563       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2564     }
2565   } else {
2566     build_trace_visitor.WalkStack();
2567   }
2568 
2569   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2570   if (kIsDebugBuild) {
2571     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2572     // Second half of trace_methods is dex PCs.
2573     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2574       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2575           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2576       CHECK(method != nullptr);
2577     }
2578   }
2579   return soa.AddLocalReference<jobject>(trace);
2580 }
2581 template jobject Thread::CreateInternalStackTrace<false>(
2582     const ScopedObjectAccessAlreadyRunnable& soa) const;
2583 template jobject Thread::CreateInternalStackTrace<true>(
2584     const ScopedObjectAccessAlreadyRunnable& soa) const;
2585 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2586 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2587   // Only count the depth since we do not pass a stack frame array as an argument.
2588   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2589   count_visitor.WalkStack();
2590   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2591 }
2592 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2593 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2594     const ScopedObjectAccessAlreadyRunnable& soa,
2595     jobject internal,
2596     jobjectArray output_array,
2597     int* stack_depth) {
2598   // Decode the internal stack trace into the depth, method trace and PC trace.
2599   // Subtract one for the methods and PC trace.
2600   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2601   DCHECK_GE(depth, 0);
2602 
2603   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2604 
2605   jobjectArray result;
2606 
2607   if (output_array != nullptr) {
2608     // Reuse the array we were given.
2609     result = output_array;
2610     // ...adjusting the number of frames we'll write to not exceed the array length.
2611     const int32_t traces_length =
2612         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2613     depth = std::min(depth, traces_length);
2614   } else {
2615     // Create java_trace array and place in local reference table
2616     mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2617         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2618     if (java_traces == nullptr) {
2619       return nullptr;
2620     }
2621     result = soa.AddLocalReference<jobjectArray>(java_traces);
2622   }
2623 
2624   if (stack_depth != nullptr) {
2625     *stack_depth = depth;
2626   }
2627 
2628   for (int32_t i = 0; i < depth; ++i) {
2629     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2630         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2631     // Methods and dex PC trace is element 0.
2632     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2633     ObjPtr<mirror::PointerArray> const method_trace =
2634         ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2635     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2636     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2637     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2638         i + method_trace->GetLength() / 2, kRuntimePointerSize);
2639     int32_t line_number;
2640     StackHandleScope<3> hs(soa.Self());
2641     auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2642     auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2643     if (method->IsProxyMethod()) {
2644       line_number = -1;
2645       class_name_object.Assign(method->GetDeclaringClass()->GetName());
2646       // source_name_object intentionally left null for proxy methods
2647     } else {
2648       line_number = method->GetLineNumFromDexPC(dex_pc);
2649       // Allocate element, potentially triggering GC
2650       // TODO: reuse class_name_object via Class::name_?
2651       const char* descriptor = method->GetDeclaringClassDescriptor();
2652       CHECK(descriptor != nullptr);
2653       std::string class_name(PrettyDescriptor(descriptor));
2654       class_name_object.Assign(
2655           mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2656       if (class_name_object == nullptr) {
2657         soa.Self()->AssertPendingOOMException();
2658         return nullptr;
2659       }
2660       const char* source_file = method->GetDeclaringClassSourceFile();
2661       if (line_number == -1) {
2662         // Make the line_number field of StackTraceElement hold the dex pc.
2663         // source_name_object is intentionally left null if we failed to map the dex pc to
2664         // a line number (most probably because there is no debug info). See b/30183883.
2665         line_number = dex_pc;
2666       } else {
2667         if (source_file != nullptr) {
2668           source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2669           if (source_name_object == nullptr) {
2670             soa.Self()->AssertPendingOOMException();
2671             return nullptr;
2672           }
2673         }
2674       }
2675     }
2676     const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2677     CHECK(method_name != nullptr);
2678     Handle<mirror::String> method_name_object(
2679         hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2680     if (method_name_object == nullptr) {
2681       return nullptr;
2682     }
2683     ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
2684                                                                              class_name_object,
2685                                                                              method_name_object,
2686                                                                              source_name_object,
2687                                                                              line_number);
2688     if (obj == nullptr) {
2689       return nullptr;
2690     }
2691     // We are called from native: use non-transactional mode.
2692     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2693   }
2694   return result;
2695 }
2696 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2697 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2698   va_list args;
2699   va_start(args, fmt);
2700   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2701   va_end(args);
2702 }
2703 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2704 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2705                                 const char* fmt, va_list ap) {
2706   std::string msg;
2707   StringAppendV(&msg, fmt, ap);
2708   ThrowNewException(exception_class_descriptor, msg.c_str());
2709 }
2710 
ThrowNewException(const char * exception_class_descriptor,const char * msg)2711 void Thread::ThrowNewException(const char* exception_class_descriptor,
2712                                const char* msg) {
2713   // Callers should either clear or call ThrowNewWrappedException.
2714   AssertNoPendingExceptionForNewException(msg);
2715   ThrowNewWrappedException(exception_class_descriptor, msg);
2716 }
2717 
GetCurrentClassLoader(Thread * self)2718 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2719     REQUIRES_SHARED(Locks::mutator_lock_) {
2720   ArtMethod* method = self->GetCurrentMethod(nullptr);
2721   return method != nullptr
2722       ? method->GetDeclaringClass()->GetClassLoader()
2723       : nullptr;
2724 }
2725 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2726 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2727                                       const char* msg) {
2728   DCHECK_EQ(this, Thread::Current());
2729   ScopedObjectAccessUnchecked soa(this);
2730   StackHandleScope<3> hs(soa.Self());
2731   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2732   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2733   ClearException();
2734   Runtime* runtime = Runtime::Current();
2735   auto* cl = runtime->GetClassLinker();
2736   Handle<mirror::Class> exception_class(
2737       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2738   if (UNLIKELY(exception_class == nullptr)) {
2739     CHECK(IsExceptionPending());
2740     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2741     return;
2742   }
2743 
2744   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2745                                                              true))) {
2746     DCHECK(IsExceptionPending());
2747     return;
2748   }
2749   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2750   Handle<mirror::Throwable> exception(
2751       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
2752 
2753   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2754   if (exception == nullptr) {
2755     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2756     return;
2757   }
2758 
2759   // Choose an appropriate constructor and set up the arguments.
2760   const char* signature;
2761   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2762   if (msg != nullptr) {
2763     // Ensure we remember this and the method over the String allocation.
2764     msg_string.reset(
2765         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2766     if (UNLIKELY(msg_string.get() == nullptr)) {
2767       CHECK(IsExceptionPending());  // OOME.
2768       return;
2769     }
2770     if (cause.get() == nullptr) {
2771       signature = "(Ljava/lang/String;)V";
2772     } else {
2773       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2774     }
2775   } else {
2776     if (cause.get() == nullptr) {
2777       signature = "()V";
2778     } else {
2779       signature = "(Ljava/lang/Throwable;)V";
2780     }
2781   }
2782   ArtMethod* exception_init_method =
2783       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
2784 
2785   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2786       << PrettyDescriptor(exception_class_descriptor);
2787 
2788   if (UNLIKELY(!runtime->IsStarted())) {
2789     // Something is trying to throw an exception without a started runtime, which is the common
2790     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2791     // the exception fields directly.
2792     if (msg != nullptr) {
2793       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
2794     }
2795     if (cause.get() != nullptr) {
2796       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
2797     }
2798     ScopedLocalRef<jobject> trace(GetJniEnv(),
2799                                   Runtime::Current()->IsActiveTransaction()
2800                                       ? CreateInternalStackTrace<true>(soa)
2801                                       : CreateInternalStackTrace<false>(soa));
2802     if (trace.get() != nullptr) {
2803       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
2804     }
2805     SetException(exception.Get());
2806   } else {
2807     jvalue jv_args[2];
2808     size_t i = 0;
2809 
2810     if (msg != nullptr) {
2811       jv_args[i].l = msg_string.get();
2812       ++i;
2813     }
2814     if (cause.get() != nullptr) {
2815       jv_args[i].l = cause.get();
2816       ++i;
2817     }
2818     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2819     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
2820     if (LIKELY(!IsExceptionPending())) {
2821       SetException(exception.Get());
2822     }
2823   }
2824 }
2825 
ThrowOutOfMemoryError(const char * msg)2826 void Thread::ThrowOutOfMemoryError(const char* msg) {
2827   LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2828       msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2829   if (!tls32_.throwing_OutOfMemoryError) {
2830     tls32_.throwing_OutOfMemoryError = true;
2831     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2832     tls32_.throwing_OutOfMemoryError = false;
2833   } else {
2834     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
2835     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2836   }
2837 }
2838 
CurrentFromGdb()2839 Thread* Thread::CurrentFromGdb() {
2840   return Thread::Current();
2841 }
2842 
DumpFromGdb() const2843 void Thread::DumpFromGdb() const {
2844   std::ostringstream ss;
2845   Dump(ss);
2846   std::string str(ss.str());
2847   // log to stderr for debugging command line processes
2848   std::cerr << str;
2849 #ifdef ART_TARGET_ANDROID
2850   // log to logcat for debugging frameworks processes
2851   LOG(INFO) << str;
2852 #endif
2853 }
2854 
2855 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2856 template
2857 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2858 template
2859 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2860 
2861 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2862 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2863 #define DO_THREAD_OFFSET(x, y) \
2864     if (offset == (x).Uint32Value()) { \
2865       os << (y); \
2866       return; \
2867     }
2868   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2869   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2870   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2871   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2872   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2873   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2874   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2875   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2876   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
2877   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2878   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2879   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2880   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2881 #undef DO_THREAD_OFFSET
2882 
2883 #define JNI_ENTRY_POINT_INFO(x) \
2884     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2885       os << #x; \
2886       return; \
2887     }
2888   JNI_ENTRY_POINT_INFO(pDlsymLookup)
2889 #undef JNI_ENTRY_POINT_INFO
2890 
2891 #define QUICK_ENTRY_POINT_INFO(x) \
2892     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2893       os << #x; \
2894       return; \
2895     }
2896   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2897   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
2898   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
2899   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
2900   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
2901   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2902   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2903   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
2904   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2905   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2906   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2907   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2908   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
2909   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2910   QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2911   QUICK_ENTRY_POINT_INFO(pInitializeType)
2912   QUICK_ENTRY_POINT_INFO(pResolveString)
2913   QUICK_ENTRY_POINT_INFO(pSet8Instance)
2914   QUICK_ENTRY_POINT_INFO(pSet8Static)
2915   QUICK_ENTRY_POINT_INFO(pSet16Instance)
2916   QUICK_ENTRY_POINT_INFO(pSet16Static)
2917   QUICK_ENTRY_POINT_INFO(pSet32Instance)
2918   QUICK_ENTRY_POINT_INFO(pSet32Static)
2919   QUICK_ENTRY_POINT_INFO(pSet64Instance)
2920   QUICK_ENTRY_POINT_INFO(pSet64Static)
2921   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2922   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2923   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2924   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2925   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2926   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2927   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2928   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2929   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2930   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2931   QUICK_ENTRY_POINT_INFO(pGet32Instance)
2932   QUICK_ENTRY_POINT_INFO(pGet32Static)
2933   QUICK_ENTRY_POINT_INFO(pGet64Instance)
2934   QUICK_ENTRY_POINT_INFO(pGet64Static)
2935   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2936   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2937   QUICK_ENTRY_POINT_INFO(pAputObject)
2938   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2939   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2940   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2941   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2942   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2943   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2944   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2945   QUICK_ENTRY_POINT_INFO(pLockObject)
2946   QUICK_ENTRY_POINT_INFO(pUnlockObject)
2947   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2948   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2949   QUICK_ENTRY_POINT_INFO(pCmplDouble)
2950   QUICK_ENTRY_POINT_INFO(pCmplFloat)
2951   QUICK_ENTRY_POINT_INFO(pCos)
2952   QUICK_ENTRY_POINT_INFO(pSin)
2953   QUICK_ENTRY_POINT_INFO(pAcos)
2954   QUICK_ENTRY_POINT_INFO(pAsin)
2955   QUICK_ENTRY_POINT_INFO(pAtan)
2956   QUICK_ENTRY_POINT_INFO(pAtan2)
2957   QUICK_ENTRY_POINT_INFO(pCbrt)
2958   QUICK_ENTRY_POINT_INFO(pCosh)
2959   QUICK_ENTRY_POINT_INFO(pExp)
2960   QUICK_ENTRY_POINT_INFO(pExpm1)
2961   QUICK_ENTRY_POINT_INFO(pHypot)
2962   QUICK_ENTRY_POINT_INFO(pLog)
2963   QUICK_ENTRY_POINT_INFO(pLog10)
2964   QUICK_ENTRY_POINT_INFO(pNextAfter)
2965   QUICK_ENTRY_POINT_INFO(pSinh)
2966   QUICK_ENTRY_POINT_INFO(pTan)
2967   QUICK_ENTRY_POINT_INFO(pTanh)
2968   QUICK_ENTRY_POINT_INFO(pFmod)
2969   QUICK_ENTRY_POINT_INFO(pL2d)
2970   QUICK_ENTRY_POINT_INFO(pFmodf)
2971   QUICK_ENTRY_POINT_INFO(pL2f)
2972   QUICK_ENTRY_POINT_INFO(pD2iz)
2973   QUICK_ENTRY_POINT_INFO(pF2iz)
2974   QUICK_ENTRY_POINT_INFO(pIdivmod)
2975   QUICK_ENTRY_POINT_INFO(pD2l)
2976   QUICK_ENTRY_POINT_INFO(pF2l)
2977   QUICK_ENTRY_POINT_INFO(pLdiv)
2978   QUICK_ENTRY_POINT_INFO(pLmod)
2979   QUICK_ENTRY_POINT_INFO(pLmul)
2980   QUICK_ENTRY_POINT_INFO(pShlLong)
2981   QUICK_ENTRY_POINT_INFO(pShrLong)
2982   QUICK_ENTRY_POINT_INFO(pUshrLong)
2983   QUICK_ENTRY_POINT_INFO(pIndexOf)
2984   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2985   QUICK_ENTRY_POINT_INFO(pMemcpy)
2986   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2987   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2988   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2989   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2990   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2991   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2992   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2993   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2994   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
2995   QUICK_ENTRY_POINT_INFO(pTestSuspend)
2996   QUICK_ENTRY_POINT_INFO(pDeliverException)
2997   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2998   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2999   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3000   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3001   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3002   QUICK_ENTRY_POINT_INFO(pA64Load)
3003   QUICK_ENTRY_POINT_INFO(pA64Store)
3004   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3005   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3006   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3007   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3008   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3009   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3010   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3011   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3012   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3013   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3014   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3015   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3016   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3017   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3018   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3019   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3020   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3021   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3022   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3023   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3024   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3025   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3026   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3027   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3028   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3029   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3030   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3031   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3032   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3033   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3034   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3035   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3036   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3037   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3038   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3039   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3040   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3041   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3042   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3043   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3044   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3045   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3046   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3047   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3048   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3049   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3050   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3051   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3052   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3053 
3054   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3055   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3056 #undef QUICK_ENTRY_POINT_INFO
3057 
3058   os << offset;
3059 }
3060 
QuickDeliverException()3061 void Thread::QuickDeliverException() {
3062   // Get exception from thread.
3063   ObjPtr<mirror::Throwable> exception = GetException();
3064   CHECK(exception != nullptr);
3065   if (exception == GetDeoptimizationException()) {
3066     artDeoptimize(this);
3067     UNREACHABLE();
3068   }
3069 
3070   // This is a real exception: let the instrumentation know about it.
3071   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3072   if (instrumentation->HasExceptionCaughtListeners() &&
3073       IsExceptionThrownByCurrentMethod(exception)) {
3074     // Instrumentation may cause GC so keep the exception object safe.
3075     StackHandleScope<1> hs(this);
3076     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3077     instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
3078   }
3079   // Does instrumentation need to deoptimize the stack?
3080   // Note: we do this *after* reporting the exception to instrumentation in case it
3081   // now requires deoptimization. It may happen if a debugger is attached and requests
3082   // new events (single-step, breakpoint, ...) when the exception is reported.
3083   if (Dbg::IsForcedInterpreterNeededForException(this)) {
3084     NthCallerVisitor visitor(this, 0, false);
3085     visitor.WalkStack();
3086     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3087       // Save the exception into the deoptimization context so it can be restored
3088       // before entering the interpreter.
3089       PushDeoptimizationContext(
3090           JValue(), /*is_reference */ false, /* from_code */ false, exception);
3091       artDeoptimize(this);
3092       UNREACHABLE();
3093     } else {
3094       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3095                    << visitor.caller->PrettyMethod();
3096     }
3097   }
3098 
3099   // Don't leave exception visible while we try to find the handler, which may cause class
3100   // resolution.
3101   ClearException();
3102   QuickExceptionHandler exception_handler(this, false);
3103   exception_handler.FindCatch(exception);
3104   exception_handler.UpdateInstrumentationStack();
3105   exception_handler.DoLongJump();
3106 }
3107 
GetLongJumpContext()3108 Context* Thread::GetLongJumpContext() {
3109   Context* result = tlsPtr_.long_jump_context;
3110   if (result == nullptr) {
3111     result = Context::Create();
3112   } else {
3113     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3114     result->Reset();
3115   }
3116   return result;
3117 }
3118 
3119 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3120 //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3121 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3122   CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3123       REQUIRES_SHARED(Locks::mutator_lock_)
3124       : StackVisitor(thread,
3125                      context,
3126                      StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3127                      check_suspended),
3128         this_object_(nullptr),
3129         method_(nullptr),
3130         dex_pc_(0),
3131         abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3132   bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3133     ArtMethod* m = GetMethod();
3134     if (m->IsRuntimeMethod()) {
3135       // Continue if this is a runtime method.
3136       return true;
3137     }
3138     if (context_ != nullptr) {
3139       this_object_ = GetThisObject();
3140     }
3141     method_ = m;
3142     dex_pc_ = GetDexPc(abort_on_error_);
3143     return false;
3144   }
3145   ObjPtr<mirror::Object> this_object_;
3146   ArtMethod* method_;
3147   uint32_t dex_pc_;
3148   const bool abort_on_error_;
3149 };
3150 
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3151 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3152                                     bool check_suspended,
3153                                     bool abort_on_error) const {
3154   CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3155                                nullptr,
3156                                check_suspended,
3157                                abort_on_error);
3158   visitor.WalkStack(false);
3159   if (dex_pc != nullptr) {
3160     *dex_pc = visitor.dex_pc_;
3161   }
3162   return visitor.method_;
3163 }
3164 
HoldsLock(ObjPtr<mirror::Object> object) const3165 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3166   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3167 }
3168 
3169 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3170 template <typename RootVisitor, bool kPrecise = false>
3171 class ReferenceMapVisitor : public StackVisitor {
3172  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3173   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3174       REQUIRES_SHARED(Locks::mutator_lock_)
3175         // We are visiting the references in compiled frames, so we do not need
3176         // to know the inlined frames.
3177       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3178         visitor_(visitor) {}
3179 
VisitFrame()3180   bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3181     if (false) {
3182       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3183                 << StringPrintf("@ PC:%04x", GetDexPc());
3184     }
3185     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3186     if (shadow_frame != nullptr) {
3187       VisitShadowFrame(shadow_frame);
3188     } else {
3189       VisitQuickFrame();
3190     }
3191     return true;
3192   }
3193 
VisitShadowFrame(ShadowFrame * shadow_frame)3194   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3195     ArtMethod* m = shadow_frame->GetMethod();
3196     VisitDeclaringClass(m);
3197     DCHECK(m != nullptr);
3198     size_t num_regs = shadow_frame->NumberOfVRegs();
3199     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3200     // handle scope for JNI or References for interpreter.
3201     for (size_t reg = 0; reg < num_regs; ++reg) {
3202       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3203       if (ref != nullptr) {
3204         mirror::Object* new_ref = ref;
3205         visitor_(&new_ref, reg, this);
3206         if (new_ref != ref) {
3207           shadow_frame->SetVRegReference(reg, new_ref);
3208         }
3209       }
3210     }
3211     // Mark lock count map required for structured locking checks.
3212     shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
3213   }
3214 
3215  private:
3216   // Visiting the declaring class is necessary so that we don't unload the class of a method that
3217   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3218   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3219   void VisitDeclaringClass(ArtMethod* method)
3220       REQUIRES_SHARED(Locks::mutator_lock_)
3221       NO_THREAD_SAFETY_ANALYSIS {
3222     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3223     // klass can be null for runtime methods.
3224     if (klass != nullptr) {
3225       if (kVerifyImageObjectsMarked) {
3226         gc::Heap* const heap = Runtime::Current()->GetHeap();
3227         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3228                                                                                 /*fail_ok*/true);
3229         if (space != nullptr && space->IsImageSpace()) {
3230           bool failed = false;
3231           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3232             failed = true;
3233             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3234           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3235             failed = true;
3236             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3237           }
3238           if (failed) {
3239             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3240             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3241             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3242                                      << " klass@" << klass.Ptr();
3243             // Pretty info last in case it crashes.
3244             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3245                        << klass->PrettyClass();
3246           }
3247         }
3248       }
3249       mirror::Object* new_ref = klass.Ptr();
3250       visitor_(&new_ref, -1, this);
3251       if (new_ref != klass) {
3252         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3253       }
3254     }
3255   }
3256 
3257   template <typename T>
3258   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3259   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3260     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3261     DCHECK(cur_quick_frame != nullptr);
3262     ArtMethod* m = *cur_quick_frame;
3263     VisitDeclaringClass(m);
3264 
3265     // Process register map (which native and runtime methods don't have)
3266     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3267       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3268       DCHECK(method_header->IsOptimized());
3269       auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3270           reinterpret_cast<uintptr_t>(cur_quick_frame));
3271       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3272       CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3273       CodeInfoEncoding encoding = code_info.ExtractEncoding();
3274       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3275       DCHECK(map.IsValid());
3276 
3277       T vreg_info(m, code_info, encoding, map, visitor_);
3278 
3279       // Visit stack entries that hold pointers.
3280       const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3281       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3282       for (size_t i = 0; i < number_of_bits; ++i) {
3283         if (stack_mask.LoadBit(i)) {
3284           auto* ref_addr = vreg_base + i;
3285           mirror::Object* ref = ref_addr->AsMirrorPtr();
3286           if (ref != nullptr) {
3287             mirror::Object* new_ref = ref;
3288             vreg_info.VisitStack(&new_ref, i, this);
3289             if (ref != new_ref) {
3290               ref_addr->Assign(new_ref);
3291            }
3292           }
3293         }
3294       }
3295       // Visit callee-save registers that hold pointers.
3296       uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3297       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3298         if (register_mask & (1 << i)) {
3299           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3300           if (kIsDebugBuild && ref_addr == nullptr) {
3301             std::string thread_name;
3302             GetThread()->GetThreadName(thread_name);
3303             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3304             DescribeStack(GetThread());
3305             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3306                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3307           }
3308           if (*ref_addr != nullptr) {
3309             vreg_info.VisitRegister(ref_addr, i, this);
3310           }
3311         }
3312       }
3313     }
3314   }
3315 
VisitQuickFrame()3316   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3317     if (kPrecise) {
3318       VisitQuickFramePrecise();
3319     } else {
3320       VisitQuickFrameNonPrecise();
3321     }
3322   }
3323 
VisitQuickFrameNonPrecise()3324   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3325     struct UndefinedVRegInfo {
3326       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3327                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
3328                         const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3329                         const StackMap& map ATTRIBUTE_UNUSED,
3330                         RootVisitor& _visitor)
3331           : visitor(_visitor) {
3332       }
3333 
3334       ALWAYS_INLINE
3335       void VisitStack(mirror::Object** ref,
3336                       size_t stack_index ATTRIBUTE_UNUSED,
3337                       const StackVisitor* stack_visitor)
3338           REQUIRES_SHARED(Locks::mutator_lock_) {
3339         visitor(ref, -1, stack_visitor);
3340       }
3341 
3342       ALWAYS_INLINE
3343       void VisitRegister(mirror::Object** ref,
3344                          size_t register_index ATTRIBUTE_UNUSED,
3345                          const StackVisitor* stack_visitor)
3346           REQUIRES_SHARED(Locks::mutator_lock_) {
3347         visitor(ref, -1, stack_visitor);
3348       }
3349 
3350       RootVisitor& visitor;
3351     };
3352     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3353   }
3354 
VisitQuickFramePrecise()3355   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3356     struct StackMapVRegInfo {
3357       StackMapVRegInfo(ArtMethod* method,
3358                        const CodeInfo& _code_info,
3359                        const CodeInfoEncoding& _encoding,
3360                        const StackMap& map,
3361                        RootVisitor& _visitor)
3362           : number_of_dex_registers(method->GetCodeItem()->registers_size_),
3363             code_info(_code_info),
3364             encoding(_encoding),
3365             dex_register_map(code_info.GetDexRegisterMapOf(map,
3366                                                            encoding,
3367                                                            number_of_dex_registers)),
3368             visitor(_visitor) {
3369       }
3370 
3371       // TODO: If necessary, we should consider caching a reverse map instead of the linear
3372       //       lookups for each location.
3373       void FindWithType(const size_t index,
3374                         const DexRegisterLocation::Kind kind,
3375                         mirror::Object** ref,
3376                         const StackVisitor* stack_visitor)
3377           REQUIRES_SHARED(Locks::mutator_lock_) {
3378         bool found = false;
3379         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3380           DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3381               dex_reg, number_of_dex_registers, code_info, encoding);
3382           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3383             visitor(ref, dex_reg, stack_visitor);
3384             found = true;
3385           }
3386         }
3387 
3388         if (!found) {
3389           // If nothing found, report with -1.
3390           visitor(ref, -1, stack_visitor);
3391         }
3392       }
3393 
3394       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3395           REQUIRES_SHARED(Locks::mutator_lock_) {
3396         const size_t stack_offset = stack_index * kFrameSlotSize;
3397         FindWithType(stack_offset,
3398                      DexRegisterLocation::Kind::kInStack,
3399                      ref,
3400                      stack_visitor);
3401       }
3402 
3403       void VisitRegister(mirror::Object** ref,
3404                          size_t register_index,
3405                          const StackVisitor* stack_visitor)
3406           REQUIRES_SHARED(Locks::mutator_lock_) {
3407         FindWithType(register_index,
3408                      DexRegisterLocation::Kind::kInRegister,
3409                      ref,
3410                      stack_visitor);
3411       }
3412 
3413       size_t number_of_dex_registers;
3414       const CodeInfo& code_info;
3415       const CodeInfoEncoding& encoding;
3416       DexRegisterMap dex_register_map;
3417       RootVisitor& visitor;
3418     };
3419     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3420   }
3421 
3422   // Visitor for when we visit a root.
3423   RootVisitor& visitor_;
3424 };
3425 
3426 class RootCallbackVisitor {
3427  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3428   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3429 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3430   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3431       REQUIRES_SHARED(Locks::mutator_lock_) {
3432     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3433   }
3434 
3435  private:
3436   RootVisitor* const visitor_;
3437   const uint32_t tid_;
3438 };
3439 
3440 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3441 void Thread::VisitRoots(RootVisitor* visitor) {
3442   const uint32_t thread_id = GetThreadId();
3443   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3444   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3445     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3446                        RootInfo(kRootNativeStack, thread_id));
3447   }
3448   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3449   tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3450   tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3451   HandleScopeVisitRoots(visitor, thread_id);
3452   if (tlsPtr_.debug_invoke_req != nullptr) {
3453     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3454   }
3455   // Visit roots for deoptimization.
3456   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3457     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3458     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3459     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3460          record != nullptr;
3461          record = record->GetLink()) {
3462       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3463            shadow_frame != nullptr;
3464            shadow_frame = shadow_frame->GetLink()) {
3465         mapper.VisitShadowFrame(shadow_frame);
3466       }
3467     }
3468   }
3469   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3470        record != nullptr;
3471        record = record->GetLink()) {
3472     if (record->IsReference()) {
3473       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3474                                   RootInfo(kRootThreadObject, thread_id));
3475     }
3476     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3477                                 RootInfo(kRootThreadObject, thread_id));
3478   }
3479   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3480     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3481     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3482     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3483          record != nullptr;
3484          record = record->GetNext()) {
3485       mapper.VisitShadowFrame(record->GetShadowFrame());
3486     }
3487   }
3488   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3489     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3490   }
3491   // Visit roots on this thread's stack
3492   RuntimeContextType context;
3493   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3494   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3495   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3496   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3497     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3498   }
3499 }
3500 
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3501 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3502   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3503     VisitRoots<true>(visitor);
3504   } else {
3505     VisitRoots<false>(visitor);
3506   }
3507 }
3508 
3509 class VerifyRootVisitor : public SingleRootVisitor {
3510  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3511   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3512       OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3513     VerifyObject(root);
3514   }
3515 };
3516 
VerifyStackImpl()3517 void Thread::VerifyStackImpl() {
3518   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3519     VerifyRootVisitor visitor;
3520     std::unique_ptr<Context> context(Context::Create());
3521     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3522     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3523     mapper.WalkStack();
3524   }
3525 }
3526 
3527 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3528 void Thread::SetStackEndForStackOverflow() {
3529   // During stack overflow we allow use of the full stack.
3530   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3531     // However, we seem to have already extended to use the full stack.
3532     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3533                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3534     DumpStack(LOG_STREAM(ERROR));
3535     LOG(FATAL) << "Recursive stack overflow.";
3536   }
3537 
3538   tlsPtr_.stack_end = tlsPtr_.stack_begin;
3539 
3540   // Remove the stack overflow protection if is it set up.
3541   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3542   if (implicit_stack_check) {
3543     if (!UnprotectStack()) {
3544       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3545     }
3546   }
3547 }
3548 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3549 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3550   DCHECK_LE(start, end);
3551   DCHECK_LE(end, limit);
3552   tlsPtr_.thread_local_start = start;
3553   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
3554   tlsPtr_.thread_local_end = end;
3555   tlsPtr_.thread_local_limit = limit;
3556   tlsPtr_.thread_local_objects = 0;
3557 }
3558 
HasTlab() const3559 bool Thread::HasTlab() const {
3560   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3561   if (has_tlab) {
3562     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3563   } else {
3564     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3565   }
3566   return has_tlab;
3567 }
3568 
operator <<(std::ostream & os,const Thread & thread)3569 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3570   thread.ShortDump(os);
3571   return os;
3572 }
3573 
ProtectStack(bool fatal_on_error)3574 bool Thread::ProtectStack(bool fatal_on_error) {
3575   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3576   VLOG(threads) << "Protecting stack at " << pregion;
3577   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3578     if (fatal_on_error) {
3579       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3580           "Reason: "
3581           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
3582     }
3583     return false;
3584   }
3585   return true;
3586 }
3587 
UnprotectStack()3588 bool Thread::UnprotectStack() {
3589   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3590   VLOG(threads) << "Unprotecting stack at " << pregion;
3591   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3592 }
3593 
ActivateSingleStepControl(SingleStepControl * ssc)3594 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3595   CHECK(Dbg::IsDebuggerActive());
3596   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3597   CHECK(ssc != nullptr);
3598   tlsPtr_.single_step_control = ssc;
3599 }
3600 
DeactivateSingleStepControl()3601 void Thread::DeactivateSingleStepControl() {
3602   CHECK(Dbg::IsDebuggerActive());
3603   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3604   SingleStepControl* ssc = GetSingleStepControl();
3605   tlsPtr_.single_step_control = nullptr;
3606   delete ssc;
3607 }
3608 
SetDebugInvokeReq(DebugInvokeReq * req)3609 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3610   CHECK(Dbg::IsDebuggerActive());
3611   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3612   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3613   CHECK(req != nullptr);
3614   tlsPtr_.debug_invoke_req = req;
3615 }
3616 
ClearDebugInvokeReq()3617 void Thread::ClearDebugInvokeReq() {
3618   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3619   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3620   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3621   tlsPtr_.debug_invoke_req = nullptr;
3622   delete req;
3623 }
3624 
PushVerifier(verifier::MethodVerifier * verifier)3625 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3626   verifier->link_ = tlsPtr_.method_verifier;
3627   tlsPtr_.method_verifier = verifier;
3628 }
3629 
PopVerifier(verifier::MethodVerifier * verifier)3630 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3631   CHECK_EQ(tlsPtr_.method_verifier, verifier);
3632   tlsPtr_.method_verifier = verifier->link_;
3633 }
3634 
NumberOfHeldMutexes() const3635 size_t Thread::NumberOfHeldMutexes() const {
3636   size_t count = 0;
3637   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3638     count += mu != nullptr ? 1 : 0;
3639   }
3640   return count;
3641 }
3642 
DeoptimizeWithDeoptimizationException(JValue * result)3643 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3644   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3645   ClearException();
3646   ShadowFrame* shadow_frame =
3647       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3648   ObjPtr<mirror::Throwable> pending_exception;
3649   bool from_code = false;
3650   PopDeoptimizationContext(result, &pending_exception, &from_code);
3651   SetTopOfStack(nullptr);
3652   SetTopOfShadowStack(shadow_frame);
3653 
3654   // Restore the exception that was pending before deoptimization then interpret the
3655   // deoptimized frames.
3656   if (pending_exception != nullptr) {
3657     SetException(pending_exception);
3658   }
3659   interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3660 }
3661 
SetException(ObjPtr<mirror::Throwable> new_exception)3662 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
3663   CHECK(new_exception != nullptr);
3664   // TODO: DCHECK(!IsExceptionPending());
3665   tlsPtr_.exception = new_exception.Ptr();
3666 }
3667 
IsAotCompiler()3668 bool Thread::IsAotCompiler() {
3669   return Runtime::Current()->IsAotCompiler();
3670 }
3671 
GetPeerFromOtherThread() const3672 mirror::Object* Thread::GetPeerFromOtherThread() const {
3673   DCHECK(tlsPtr_.jpeer == nullptr);
3674   mirror::Object* peer = tlsPtr_.opeer;
3675   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
3676     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
3677     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
3678     // mark/forward it here.
3679     peer = art::ReadBarrier::Mark(peer);
3680   }
3681   return peer;
3682 }
3683 
SetReadBarrierEntrypoints()3684 void Thread::SetReadBarrierEntrypoints() {
3685   // Make sure entrypoints aren't null.
3686   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
3687 }
3688 
3689 }  // namespace art
3690