1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread.h"
18
19 #if !defined(__APPLE__)
20 #include <sched.h>
21 #endif
22
23 #include <pthread.h>
24 #include <signal.h>
25 #include <sys/resource.h>
26 #include <sys/time.h>
27
28 #include <algorithm>
29 #include <bitset>
30 #include <cerrno>
31 #include <iostream>
32 #include <list>
33 #include <sstream>
34
35 #include "android-base/stringprintf.h"
36
37 #include "arch/context-inl.h"
38 #include "arch/context.h"
39 #include "art_field-inl.h"
40 #include "art_method-inl.h"
41 #include "base/bit_utils.h"
42 #include "base/memory_tool.h"
43 #include "base/mutex.h"
44 #include "base/systrace.h"
45 #include "base/timing_logger.h"
46 #include "base/to_str.h"
47 #include "class_linker-inl.h"
48 #include "debugger.h"
49 #include "dex_file-inl.h"
50 #include "dex_file_annotations.h"
51 #include "entrypoints/entrypoint_utils.h"
52 #include "entrypoints/quick/quick_alloc_entrypoints.h"
53 #include "gc/accounting/card_table-inl.h"
54 #include "gc/accounting/heap_bitmap-inl.h"
55 #include "gc/allocator/rosalloc.h"
56 #include "gc/heap.h"
57 #include "gc/space/space-inl.h"
58 #include "gc_root.h"
59 #include "handle_scope-inl.h"
60 #include "indirect_reference_table-inl.h"
61 #include "interpreter/interpreter.h"
62 #include "interpreter/shadow_frame.h"
63 #include "java_frame_root_info.h"
64 #include "java_vm_ext.h"
65 #include "jni_internal.h"
66 #include "mirror/class-inl.h"
67 #include "mirror/class_loader.h"
68 #include "mirror/object_array-inl.h"
69 #include "mirror/stack_trace_element.h"
70 #include "monitor.h"
71 #include "native_stack_dump.h"
72 #include "nativehelper/ScopedLocalRef.h"
73 #include "nativehelper/ScopedUtfChars.h"
74 #include "nth_caller_visitor.h"
75 #include "oat_quick_method_header.h"
76 #include "obj_ptr-inl.h"
77 #include "object_lock.h"
78 #include "quick/quick_method_frame_info.h"
79 #include "quick_exception_handler.h"
80 #include "read_barrier-inl.h"
81 #include "reflection.h"
82 #include "runtime.h"
83 #include "runtime_callbacks.h"
84 #include "scoped_thread_state_change-inl.h"
85 #include "stack.h"
86 #include "stack_map.h"
87 #include "thread-inl.h"
88 #include "thread_list.h"
89 #include "utils.h"
90 #include "verifier/method_verifier.h"
91 #include "verify_object.h"
92 #include "well_known_classes.h"
93
94 #if ART_USE_FUTEXES
95 #include "linux/futex.h"
96 #include "sys/syscall.h"
97 #ifndef SYS_futex
98 #define SYS_futex __NR_futex
99 #endif
100 #endif // ART_USE_FUTEXES
101
102 namespace art {
103
104 using android::base::StringAppendV;
105 using android::base::StringPrintf;
106
107 extern "C" NO_RETURN void artDeoptimize(Thread* self);
108
109 bool Thread::is_started_ = false;
110 pthread_key_t Thread::pthread_key_self_;
111 ConditionVariable* Thread::resume_cond_ = nullptr;
112 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
113 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
114 Thread* Thread::jit_sensitive_thread_ = nullptr;
115
116 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
117
118 // For implicit overflow checks we reserve an extra piece of memory at the bottom
119 // of the stack (lowest memory). The higher portion of the memory
120 // is protected against reads and the lower is available for use while
121 // throwing the StackOverflow exception.
122 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
123
124 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
125
InitCardTable()126 void Thread::InitCardTable() {
127 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
128 }
129
UnimplementedEntryPoint()130 static void UnimplementedEntryPoint() {
131 UNIMPLEMENTED(FATAL);
132 }
133
134 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
135 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
136
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)137 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
138 CHECK(kUseReadBarrier);
139 tls32_.is_gc_marking = is_marking;
140 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
141 ResetQuickAllocEntryPointsForThread(is_marking);
142 }
143
InitTlsEntryPoints()144 void Thread::InitTlsEntryPoints() {
145 // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
146 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
147 uintptr_t* end = reinterpret_cast<uintptr_t*>(
148 reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
149 for (uintptr_t* it = begin; it != end; ++it) {
150 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
151 }
152 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
153 }
154
ResetQuickAllocEntryPointsForThread(bool is_marking)155 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
156 if (kUseReadBarrier && kRuntimeISA != kX86_64) {
157 // Allocation entrypoint switching is currently only implemented for X86_64.
158 is_marking = true;
159 }
160 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
161 }
162
163 class DeoptimizationContextRecord {
164 public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationContextRecord * link)165 DeoptimizationContextRecord(const JValue& ret_val,
166 bool is_reference,
167 bool from_code,
168 ObjPtr<mirror::Throwable> pending_exception,
169 DeoptimizationContextRecord* link)
170 : ret_val_(ret_val),
171 is_reference_(is_reference),
172 from_code_(from_code),
173 pending_exception_(pending_exception.Ptr()),
174 link_(link) {}
175
GetReturnValue() const176 JValue GetReturnValue() const { return ret_val_; }
IsReference() const177 bool IsReference() const { return is_reference_; }
GetFromCode() const178 bool GetFromCode() const { return from_code_; }
GetPendingException() const179 ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
GetLink() const180 DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()181 mirror::Object** GetReturnValueAsGCRoot() {
182 DCHECK(is_reference_);
183 return ret_val_.GetGCRoot();
184 }
GetPendingExceptionAsGCRoot()185 mirror::Object** GetPendingExceptionAsGCRoot() {
186 return reinterpret_cast<mirror::Object**>(&pending_exception_);
187 }
188
189 private:
190 // The value returned by the method at the top of the stack before deoptimization.
191 JValue ret_val_;
192
193 // Indicates whether the returned value is a reference. If so, the GC will visit it.
194 const bool is_reference_;
195
196 // Whether the context was created from an explicit deoptimization in the code.
197 const bool from_code_;
198
199 // The exception that was pending before deoptimization (or null if there was no pending
200 // exception).
201 mirror::Throwable* pending_exception_;
202
203 // A link to the previous DeoptimizationContextRecord.
204 DeoptimizationContextRecord* const link_;
205
206 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
207 };
208
209 class StackedShadowFrameRecord {
210 public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)211 StackedShadowFrameRecord(ShadowFrame* shadow_frame,
212 StackedShadowFrameType type,
213 StackedShadowFrameRecord* link)
214 : shadow_frame_(shadow_frame),
215 type_(type),
216 link_(link) {}
217
GetShadowFrame() const218 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const219 StackedShadowFrameType GetType() const { return type_; }
GetLink() const220 StackedShadowFrameRecord* GetLink() const { return link_; }
221
222 private:
223 ShadowFrame* const shadow_frame_;
224 const StackedShadowFrameType type_;
225 StackedShadowFrameRecord* const link_;
226
227 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
228 };
229
PushDeoptimizationContext(const JValue & return_value,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> exception)230 void Thread::PushDeoptimizationContext(const JValue& return_value,
231 bool is_reference,
232 bool from_code,
233 ObjPtr<mirror::Throwable> exception) {
234 DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
235 return_value,
236 is_reference,
237 from_code,
238 exception,
239 tlsPtr_.deoptimization_context_stack);
240 tlsPtr_.deoptimization_context_stack = record;
241 }
242
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code)243 void Thread::PopDeoptimizationContext(JValue* result,
244 ObjPtr<mirror::Throwable>* exception,
245 bool* from_code) {
246 AssertHasDeoptimizationContext();
247 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
248 tlsPtr_.deoptimization_context_stack = record->GetLink();
249 result->SetJ(record->GetReturnValue().GetJ());
250 *exception = record->GetPendingException();
251 *from_code = record->GetFromCode();
252 delete record;
253 }
254
AssertHasDeoptimizationContext()255 void Thread::AssertHasDeoptimizationContext() {
256 CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
257 << "No deoptimization context for thread " << *this;
258 }
259
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)260 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
261 StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
262 sf, type, tlsPtr_.stacked_shadow_frame_record);
263 tlsPtr_.stacked_shadow_frame_record = record;
264 }
265
PopStackedShadowFrame(StackedShadowFrameType type,bool must_be_present)266 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
267 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
268 if (must_be_present) {
269 DCHECK(record != nullptr);
270 } else {
271 if (record == nullptr || record->GetType() != type) {
272 return nullptr;
273 }
274 }
275 tlsPtr_.stacked_shadow_frame_record = record->GetLink();
276 ShadowFrame* shadow_frame = record->GetShadowFrame();
277 delete record;
278 return shadow_frame;
279 }
280
281 class FrameIdToShadowFrame {
282 public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)283 static FrameIdToShadowFrame* Create(size_t frame_id,
284 ShadowFrame* shadow_frame,
285 FrameIdToShadowFrame* next,
286 size_t num_vregs) {
287 // Append a bool array at the end to keep track of what vregs are updated by the debugger.
288 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
289 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
290 }
291
Delete(FrameIdToShadowFrame * f)292 static void Delete(FrameIdToShadowFrame* f) {
293 uint8_t* memory = reinterpret_cast<uint8_t*>(f);
294 delete[] memory;
295 }
296
GetFrameId() const297 size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const298 ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const299 FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)300 void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()301 bool* GetUpdatedVRegFlags() {
302 return updated_vreg_flags_;
303 }
304
305 private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)306 FrameIdToShadowFrame(size_t frame_id,
307 ShadowFrame* shadow_frame,
308 FrameIdToShadowFrame* next)
309 : frame_id_(frame_id),
310 shadow_frame_(shadow_frame),
311 next_(next) {}
312
313 const size_t frame_id_;
314 ShadowFrame* const shadow_frame_;
315 FrameIdToShadowFrame* next_;
316 bool updated_vreg_flags_[0];
317
318 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
319 };
320
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)321 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
322 size_t frame_id) {
323 FrameIdToShadowFrame* found = nullptr;
324 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
325 if (record->GetFrameId() == frame_id) {
326 if (kIsDebugBuild) {
327 // Sanity check we have at most one record for this frame.
328 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
329 found = record;
330 } else {
331 return record;
332 }
333 }
334 }
335 return found;
336 }
337
FindDebuggerShadowFrame(size_t frame_id)338 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
339 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
340 tlsPtr_.frame_id_to_shadow_frame, frame_id);
341 if (record != nullptr) {
342 return record->GetShadowFrame();
343 }
344 return nullptr;
345 }
346
347 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)348 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
349 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
350 tlsPtr_.frame_id_to_shadow_frame, frame_id);
351 CHECK(record != nullptr);
352 return record->GetUpdatedVRegFlags();
353 }
354
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)355 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
356 uint32_t num_vregs,
357 ArtMethod* method,
358 uint32_t dex_pc) {
359 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
360 if (shadow_frame != nullptr) {
361 return shadow_frame;
362 }
363 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
364 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
365 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
366 shadow_frame,
367 tlsPtr_.frame_id_to_shadow_frame,
368 num_vregs);
369 for (uint32_t i = 0; i < num_vregs; i++) {
370 // Do this to clear all references for root visitors.
371 shadow_frame->SetVRegReference(i, nullptr);
372 // This flag will be changed to true if the debugger modifies the value.
373 record->GetUpdatedVRegFlags()[i] = false;
374 }
375 tlsPtr_.frame_id_to_shadow_frame = record;
376 return shadow_frame;
377 }
378
RemoveDebuggerShadowFrameMapping(size_t frame_id)379 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
380 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
381 if (head->GetFrameId() == frame_id) {
382 tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
383 FrameIdToShadowFrame::Delete(head);
384 return;
385 }
386 FrameIdToShadowFrame* prev = head;
387 for (FrameIdToShadowFrame* record = head->GetNext();
388 record != nullptr;
389 prev = record, record = record->GetNext()) {
390 if (record->GetFrameId() == frame_id) {
391 prev->SetNext(record->GetNext());
392 FrameIdToShadowFrame::Delete(record);
393 return;
394 }
395 }
396 LOG(FATAL) << "No shadow frame for frame " << frame_id;
397 UNREACHABLE();
398 }
399
InitTid()400 void Thread::InitTid() {
401 tls32_.tid = ::art::GetTid();
402 }
403
InitAfterFork()404 void Thread::InitAfterFork() {
405 // One thread (us) survived the fork, but we have a new tid so we need to
406 // update the value stashed in this Thread*.
407 InitTid();
408 }
409
CreateCallback(void * arg)410 void* Thread::CreateCallback(void* arg) {
411 Thread* self = reinterpret_cast<Thread*>(arg);
412 Runtime* runtime = Runtime::Current();
413 if (runtime == nullptr) {
414 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
415 return nullptr;
416 }
417 {
418 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
419 // after self->Init().
420 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
421 // Check that if we got here we cannot be shutting down (as shutdown should never have started
422 // while threads are being born).
423 CHECK(!runtime->IsShuttingDownLocked());
424 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
425 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
426 // the runtime in such a case. In case this ever changes, we need to make sure here to
427 // delete the tmp_jni_env, as we own it at this point.
428 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
429 self->tlsPtr_.tmp_jni_env = nullptr;
430 Runtime::Current()->EndThreadBirth();
431 }
432 {
433 ScopedObjectAccess soa(self);
434 self->InitStringEntryPoints();
435
436 // Copy peer into self, deleting global reference when done.
437 CHECK(self->tlsPtr_.jpeer != nullptr);
438 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
439 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
440 self->tlsPtr_.jpeer = nullptr;
441 self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
442
443 ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
444 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
445
446 runtime->GetRuntimeCallbacks()->ThreadStart(self);
447
448 // Invoke the 'run' method of our java.lang.Thread.
449 ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
450 jmethodID mid = WellKnownClasses::java_lang_Thread_run;
451 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
452 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
453 }
454 // Detach and delete self.
455 Runtime::Current()->GetThreadList()->Unregister(self);
456
457 return nullptr;
458 }
459
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)460 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
461 ObjPtr<mirror::Object> thread_peer) {
462 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
463 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
464 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
465 // to stop it from going away.
466 if (kIsDebugBuild) {
467 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
468 if (result != nullptr && !result->IsSuspended()) {
469 Locks::thread_list_lock_->AssertHeld(soa.Self());
470 }
471 }
472 return result;
473 }
474
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)475 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
476 jobject java_thread) {
477 return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
478 }
479
FixStackSize(size_t stack_size)480 static size_t FixStackSize(size_t stack_size) {
481 // A stack size of zero means "use the default".
482 if (stack_size == 0) {
483 stack_size = Runtime::Current()->GetDefaultStackSize();
484 }
485
486 // Dalvik used the bionic pthread default stack size for native threads,
487 // so include that here to support apps that expect large native stacks.
488 stack_size += 1 * MB;
489
490 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
491 if (stack_size < PTHREAD_STACK_MIN) {
492 stack_size = PTHREAD_STACK_MIN;
493 }
494
495 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
496 // It's likely that callers are trying to ensure they have at least a certain amount of
497 // stack space, so we should add our reserved space on top of what they requested, rather
498 // than implicitly take it away from them.
499 stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
500 } else {
501 // If we are going to use implicit stack checks, allocate space for the protected
502 // region at the bottom of the stack.
503 stack_size += Thread::kStackOverflowImplicitCheckSize +
504 GetStackOverflowReservedBytes(kRuntimeISA);
505 }
506
507 // Some systems require the stack size to be a multiple of the system page size, so round up.
508 stack_size = RoundUp(stack_size, kPageSize);
509
510 return stack_size;
511 }
512
513 // Return the nearest page-aligned address below the current stack top.
514 NO_INLINE
FindStackTop()515 static uint8_t* FindStackTop() {
516 return reinterpret_cast<uint8_t*>(
517 AlignDown(__builtin_frame_address(0), kPageSize));
518 }
519
520 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
521 // overflow is detected. It is located right below the stack_begin_.
522 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()523 void Thread::InstallImplicitProtection() {
524 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
525 // Page containing current top of stack.
526 uint8_t* stack_top = FindStackTop();
527
528 // Try to directly protect the stack.
529 VLOG(threads) << "installing stack protected region at " << std::hex <<
530 static_cast<void*>(pregion) << " to " <<
531 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
532 if (ProtectStack(/* fatal_on_error */ false)) {
533 // Tell the kernel that we won't be needing these pages any more.
534 // NB. madvise will probably write zeroes into the memory (on linux it does).
535 uint32_t unwanted_size = stack_top - pregion - kPageSize;
536 madvise(pregion, unwanted_size, MADV_DONTNEED);
537 return;
538 }
539
540 // There is a little complexity here that deserves a special mention. On some
541 // architectures, the stack is created using a VM_GROWSDOWN flag
542 // to prevent memory being allocated when it's not needed. This flag makes the
543 // kernel only allocate memory for the stack by growing down in memory. Because we
544 // want to put an mprotected region far away from that at the stack top, we need
545 // to make sure the pages for the stack are mapped in before we call mprotect.
546 //
547 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
548 // with a non-mapped stack (usually only the main thread).
549 //
550 // We map in the stack by reading every page from the stack bottom (highest address)
551 // to the stack top. (We then madvise this away.) This must be done by reading from the
552 // current stack pointer downwards.
553 //
554 // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
555 // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
556 // thus have to move the stack pointer. We do this portably by using a recursive function with a
557 // large stack frame size.
558
559 // (Defensively) first remove the protection on the protected region as we'll want to read
560 // and write it. Ignore errors.
561 UnprotectStack();
562
563 VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
564 static_cast<void*>(pregion);
565
566 struct RecurseDownStack {
567 // This function has an intentionally large stack size.
568 #pragma GCC diagnostic push
569 #pragma GCC diagnostic ignored "-Wframe-larger-than="
570 NO_INLINE
571 static void Touch(uintptr_t target) {
572 volatile size_t zero = 0;
573 // Use a large local volatile array to ensure a large frame size. Do not use anything close
574 // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
575 // there is no pragma support for this.
576 // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
577 constexpr size_t kAsanMultiplier =
578 #ifdef ADDRESS_SANITIZER
579 2u;
580 #else
581 1u;
582 #endif
583 volatile char space[kPageSize - (kAsanMultiplier * 256)];
584 char sink ATTRIBUTE_UNUSED = space[zero];
585 if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
586 Touch(target);
587 }
588 zero *= 2; // Try to avoid tail recursion.
589 }
590 #pragma GCC diagnostic pop
591 };
592 RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
593
594 VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
595 static_cast<void*>(pregion) << " to " <<
596 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
597
598 // Protect the bottom of the stack to prevent read/write to it.
599 ProtectStack(/* fatal_on_error */ true);
600
601 // Tell the kernel that we won't be needing these pages any more.
602 // NB. madvise will probably write zeroes into the memory (on linux it does).
603 uint32_t unwanted_size = stack_top - pregion - kPageSize;
604 madvise(pregion, unwanted_size, MADV_DONTNEED);
605 }
606
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)607 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
608 CHECK(java_peer != nullptr);
609 Thread* self = static_cast<JNIEnvExt*>(env)->self;
610
611 if (VLOG_IS_ON(threads)) {
612 ScopedObjectAccess soa(env);
613
614 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
615 ObjPtr<mirror::String> java_name =
616 f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
617 std::string thread_name;
618 if (java_name != nullptr) {
619 thread_name = java_name->ToModifiedUtf8();
620 } else {
621 thread_name = "(Unnamed)";
622 }
623
624 VLOG(threads) << "Creating native thread for " << thread_name;
625 self->Dump(LOG_STREAM(INFO));
626 }
627
628 Runtime* runtime = Runtime::Current();
629
630 // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
631 bool thread_start_during_shutdown = false;
632 {
633 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
634 if (runtime->IsShuttingDownLocked()) {
635 thread_start_during_shutdown = true;
636 } else {
637 runtime->StartThreadBirth();
638 }
639 }
640 if (thread_start_during_shutdown) {
641 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
642 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
643 return;
644 }
645
646 Thread* child_thread = new Thread(is_daemon);
647 // Use global JNI ref to hold peer live while child thread starts.
648 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
649 stack_size = FixStackSize(stack_size);
650
651 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
652 // assign it.
653 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
654 reinterpret_cast<jlong>(child_thread));
655
656 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
657 // do not have a good way to report this on the child's side.
658 std::string error_msg;
659 std::unique_ptr<JNIEnvExt> child_jni_env_ext(
660 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
661
662 int pthread_create_result = 0;
663 if (child_jni_env_ext.get() != nullptr) {
664 pthread_t new_pthread;
665 pthread_attr_t attr;
666 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
667 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
668 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
669 "PTHREAD_CREATE_DETACHED");
670 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
671 pthread_create_result = pthread_create(&new_pthread,
672 &attr,
673 Thread::CreateCallback,
674 child_thread);
675 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
676
677 if (pthread_create_result == 0) {
678 // pthread_create started the new thread. The child is now responsible for managing the
679 // JNIEnvExt we created.
680 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
681 // between the threads.
682 child_jni_env_ext.release();
683 return;
684 }
685 }
686
687 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
688 {
689 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
690 runtime->EndThreadBirth();
691 }
692 // Manually delete the global reference since Thread::Init will not have been run.
693 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
694 child_thread->tlsPtr_.jpeer = nullptr;
695 delete child_thread;
696 child_thread = nullptr;
697 // TODO: remove from thread group?
698 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
699 {
700 std::string msg(child_jni_env_ext.get() == nullptr ?
701 StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
702 StringPrintf("pthread_create (%s stack) failed: %s",
703 PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
704 ScopedObjectAccess soa(env);
705 soa.Self()->ThrowOutOfMemoryError(msg.c_str());
706 }
707 }
708
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)709 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
710 // This function does all the initialization that must be run by the native thread it applies to.
711 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
712 // we can handshake with the corresponding native thread when it's ready.) Check this native
713 // thread hasn't been through here already...
714 CHECK(Thread::Current() == nullptr);
715
716 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
717 // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
718 tlsPtr_.pthread_self = pthread_self();
719 CHECK(is_started_);
720
721 SetUpAlternateSignalStack();
722 if (!InitStackHwm()) {
723 return false;
724 }
725 InitCpu();
726 InitTlsEntryPoints();
727 RemoveSuspendTrigger();
728 InitCardTable();
729 InitTid();
730 interpreter::InitInterpreterTls(this);
731
732 #ifdef ART_TARGET_ANDROID
733 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
734 #else
735 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
736 #endif
737 DCHECK_EQ(Thread::Current(), this);
738
739 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
740
741 if (jni_env_ext != nullptr) {
742 DCHECK_EQ(jni_env_ext->vm, java_vm);
743 DCHECK_EQ(jni_env_ext->self, this);
744 tlsPtr_.jni_env = jni_env_ext;
745 } else {
746 std::string error_msg;
747 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
748 if (tlsPtr_.jni_env == nullptr) {
749 LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
750 return false;
751 }
752 }
753
754 thread_list->Register(this);
755 return true;
756 }
757
758 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action)759 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
760 Runtime* runtime = Runtime::Current();
761 if (runtime == nullptr) {
762 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
763 return nullptr;
764 }
765 Thread* self;
766 {
767 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
768 if (runtime->IsShuttingDownLocked()) {
769 LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
770 return nullptr;
771 } else {
772 Runtime::Current()->StartThreadBirth();
773 self = new Thread(as_daemon);
774 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
775 Runtime::Current()->EndThreadBirth();
776 if (!init_success) {
777 delete self;
778 return nullptr;
779 }
780 }
781 }
782
783 self->InitStringEntryPoints();
784
785 CHECK_NE(self->GetState(), kRunnable);
786 self->SetState(kNative);
787
788 // Run the action that is acting on the peer.
789 if (!peer_action(self)) {
790 runtime->GetThreadList()->Unregister(self);
791 // Unregister deletes self, no need to do this here.
792 return nullptr;
793 }
794
795 if (VLOG_IS_ON(threads)) {
796 if (thread_name != nullptr) {
797 VLOG(threads) << "Attaching thread " << thread_name;
798 } else {
799 VLOG(threads) << "Attaching unnamed thread.";
800 }
801 ScopedObjectAccess soa(self);
802 self->Dump(LOG_STREAM(INFO));
803 }
804
805 {
806 ScopedObjectAccess soa(self);
807 runtime->GetRuntimeCallbacks()->ThreadStart(self);
808 }
809
810 return self;
811 }
812
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer)813 Thread* Thread::Attach(const char* thread_name,
814 bool as_daemon,
815 jobject thread_group,
816 bool create_peer) {
817 auto create_peer_action = [&](Thread* self) {
818 // If we're the main thread, ClassLinker won't be created until after we're attached,
819 // so that thread needs a two-stage attach. Regular threads don't need this hack.
820 // In the compiler, all threads need this hack, because no-one's going to be getting
821 // a native peer!
822 if (create_peer) {
823 self->CreatePeer(thread_name, as_daemon, thread_group);
824 if (self->IsExceptionPending()) {
825 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
826 {
827 ScopedObjectAccess soa(self);
828 LOG(ERROR) << "Exception creating thread peer:";
829 LOG(ERROR) << self->GetException()->Dump();
830 self->ClearException();
831 }
832 return false;
833 }
834 } else {
835 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
836 if (thread_name != nullptr) {
837 self->tlsPtr_.name->assign(thread_name);
838 ::art::SetThreadName(thread_name);
839 } else if (self->GetJniEnv()->check_jni) {
840 LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
841 }
842 }
843 return true;
844 };
845 return Attach(thread_name, as_daemon, create_peer_action);
846 }
847
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)848 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
849 auto set_peer_action = [&](Thread* self) {
850 // Install the given peer.
851 {
852 DCHECK(self == Thread::Current());
853 ScopedObjectAccess soa(self);
854 self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
855 }
856 self->GetJniEnv()->SetLongField(thread_peer,
857 WellKnownClasses::java_lang_Thread_nativePeer,
858 reinterpret_cast<jlong>(self));
859 return true;
860 };
861 return Attach(thread_name, as_daemon, set_peer_action);
862 }
863
CreatePeer(const char * name,bool as_daemon,jobject thread_group)864 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
865 Runtime* runtime = Runtime::Current();
866 CHECK(runtime->IsStarted());
867 JNIEnv* env = tlsPtr_.jni_env;
868
869 if (thread_group == nullptr) {
870 thread_group = runtime->GetMainThreadGroup();
871 }
872 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
873 // Add missing null check in case of OOM b/18297817
874 if (name != nullptr && thread_name.get() == nullptr) {
875 CHECK(IsExceptionPending());
876 return;
877 }
878 jint thread_priority = GetNativePriority();
879 jboolean thread_is_daemon = as_daemon;
880
881 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
882 if (peer.get() == nullptr) {
883 CHECK(IsExceptionPending());
884 return;
885 }
886 {
887 ScopedObjectAccess soa(this);
888 tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
889 }
890 env->CallNonvirtualVoidMethod(peer.get(),
891 WellKnownClasses::java_lang_Thread,
892 WellKnownClasses::java_lang_Thread_init,
893 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
894 if (IsExceptionPending()) {
895 return;
896 }
897
898 Thread* self = this;
899 DCHECK_EQ(self, Thread::Current());
900 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
901 reinterpret_cast<jlong>(self));
902
903 ScopedObjectAccess soa(self);
904 StackHandleScope<1> hs(self);
905 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
906 if (peer_thread_name == nullptr) {
907 // The Thread constructor should have set the Thread.name to a
908 // non-null value. However, because we can run without code
909 // available (in the compiler, in tests), we manually assign the
910 // fields the constructor should have set.
911 if (runtime->IsActiveTransaction()) {
912 InitPeer<true>(soa,
913 tlsPtr_.opeer,
914 thread_is_daemon,
915 thread_group,
916 thread_name.get(),
917 thread_priority);
918 } else {
919 InitPeer<false>(soa,
920 tlsPtr_.opeer,
921 thread_is_daemon,
922 thread_group,
923 thread_name.get(),
924 thread_priority);
925 }
926 peer_thread_name.Assign(GetThreadName());
927 }
928 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
929 if (peer_thread_name != nullptr) {
930 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
931 }
932 }
933
CreateCompileTimePeer(JNIEnv * env,const char * name,bool as_daemon,jobject thread_group)934 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
935 const char* name,
936 bool as_daemon,
937 jobject thread_group) {
938 Runtime* runtime = Runtime::Current();
939 CHECK(!runtime->IsStarted());
940
941 if (thread_group == nullptr) {
942 thread_group = runtime->GetMainThreadGroup();
943 }
944 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
945 // Add missing null check in case of OOM b/18297817
946 if (name != nullptr && thread_name.get() == nullptr) {
947 CHECK(Thread::Current()->IsExceptionPending());
948 return nullptr;
949 }
950 jint thread_priority = GetNativePriority();
951 jboolean thread_is_daemon = as_daemon;
952
953 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
954 if (peer.get() == nullptr) {
955 CHECK(Thread::Current()->IsExceptionPending());
956 return nullptr;
957 }
958
959 // We cannot call Thread.init, as it will recursively ask for currentThread.
960
961 // The Thread constructor should have set the Thread.name to a
962 // non-null value. However, because we can run without code
963 // available (in the compiler, in tests), we manually assign the
964 // fields the constructor should have set.
965 ScopedObjectAccessUnchecked soa(Thread::Current());
966 if (runtime->IsActiveTransaction()) {
967 InitPeer<true>(soa,
968 soa.Decode<mirror::Object>(peer.get()),
969 thread_is_daemon,
970 thread_group,
971 thread_name.get(),
972 thread_priority);
973 } else {
974 InitPeer<false>(soa,
975 soa.Decode<mirror::Object>(peer.get()),
976 thread_is_daemon,
977 thread_group,
978 thread_name.get(),
979 thread_priority);
980 }
981
982 return peer.release();
983 }
984
985 template<bool kTransactionActive>
InitPeer(ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> peer,jboolean thread_is_daemon,jobject thread_group,jobject thread_name,jint thread_priority)986 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
987 ObjPtr<mirror::Object> peer,
988 jboolean thread_is_daemon,
989 jobject thread_group,
990 jobject thread_name,
991 jint thread_priority) {
992 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
993 SetBoolean<kTransactionActive>(peer, thread_is_daemon);
994 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
995 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
996 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
997 SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
998 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
999 SetInt<kTransactionActive>(peer, thread_priority);
1000 }
1001
SetThreadName(const char * name)1002 void Thread::SetThreadName(const char* name) {
1003 tlsPtr_.name->assign(name);
1004 ::art::SetThreadName(name);
1005 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1006 }
1007
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1008 static void GetThreadStack(pthread_t thread,
1009 void** stack_base,
1010 size_t* stack_size,
1011 size_t* guard_size) {
1012 #if defined(__APPLE__)
1013 *stack_size = pthread_get_stacksize_np(thread);
1014 void* stack_addr = pthread_get_stackaddr_np(thread);
1015
1016 // Check whether stack_addr is the base or end of the stack.
1017 // (On Mac OS 10.7, it's the end.)
1018 int stack_variable;
1019 if (stack_addr > &stack_variable) {
1020 *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1021 } else {
1022 *stack_base = stack_addr;
1023 }
1024
1025 // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1026 pthread_attr_t attributes;
1027 CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1028 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1029 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1030 #else
1031 pthread_attr_t attributes;
1032 CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1033 CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1034 CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1035 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1036
1037 #if defined(__GLIBC__)
1038 // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1039 // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1040 // will be broken because we'll die long before we get close to 2GB.
1041 bool is_main_thread = (::art::GetTid() == getpid());
1042 if (is_main_thread) {
1043 rlimit stack_limit;
1044 if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1045 PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1046 }
1047 if (stack_limit.rlim_cur == RLIM_INFINITY) {
1048 size_t old_stack_size = *stack_size;
1049
1050 // Use the kernel default limit as our size, and adjust the base to match.
1051 *stack_size = 8 * MB;
1052 *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1053
1054 VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1055 << " to " << PrettySize(*stack_size)
1056 << " with base " << *stack_base;
1057 }
1058 }
1059 #endif
1060
1061 #endif
1062 }
1063
InitStackHwm()1064 bool Thread::InitStackHwm() {
1065 void* read_stack_base;
1066 size_t read_stack_size;
1067 size_t read_guard_size;
1068 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1069
1070 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1071 tlsPtr_.stack_size = read_stack_size;
1072
1073 // The minimum stack size we can cope with is the overflow reserved bytes (typically
1074 // 8K) + the protected region size (4K) + another page (4K). Typically this will
1075 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
1076 // between 8K and 12K.
1077 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1078 + 4 * KB;
1079 if (read_stack_size <= min_stack) {
1080 // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1081 LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1082 __LINE__,
1083 ::android::base::ERROR,
1084 "Attempt to attach a thread with a too-small stack");
1085 return false;
1086 }
1087
1088 // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1089 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1090 read_stack_base,
1091 PrettySize(read_stack_size).c_str(),
1092 PrettySize(read_guard_size).c_str());
1093
1094 // Set stack_end_ to the bottom of the stack saving space of stack overflows
1095
1096 Runtime* runtime = Runtime::Current();
1097 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1098
1099 // Valgrind on arm doesn't give the right values here. Do not install the guard page, and
1100 // effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
1101 // stack_begin to 0.
1102 const bool valgrind_on_arm =
1103 (kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
1104 kMemoryToolIsValgrind &&
1105 RUNNING_ON_MEMORY_TOOL != 0;
1106 if (valgrind_on_arm) {
1107 tlsPtr_.stack_begin = nullptr;
1108 }
1109
1110 ResetDefaultStackEnd();
1111
1112 // Install the protected region if we are doing implicit overflow checks.
1113 if (implicit_stack_check && !valgrind_on_arm) {
1114 // The thread might have protected region at the bottom. We need
1115 // to install our own region so we need to move the limits
1116 // of the stack to make room for it.
1117
1118 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1119 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1120 tlsPtr_.stack_size -= read_guard_size;
1121
1122 InstallImplicitProtection();
1123 }
1124
1125 // Sanity check.
1126 CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1127
1128 return true;
1129 }
1130
ShortDump(std::ostream & os) const1131 void Thread::ShortDump(std::ostream& os) const {
1132 os << "Thread[";
1133 if (GetThreadId() != 0) {
1134 // If we're in kStarting, we won't have a thin lock id or tid yet.
1135 os << GetThreadId()
1136 << ",tid=" << GetTid() << ',';
1137 }
1138 os << GetState()
1139 << ",Thread*=" << this
1140 << ",peer=" << tlsPtr_.opeer
1141 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
1142 << "]";
1143 }
1144
Dump(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1145 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
1146 bool force_dump_stack) const {
1147 DumpState(os);
1148 DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
1149 }
1150
GetThreadName() const1151 mirror::String* Thread::GetThreadName() const {
1152 ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
1153 if (tlsPtr_.opeer == nullptr) {
1154 return nullptr;
1155 }
1156 ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
1157 return name == nullptr ? nullptr : name->AsString();
1158 }
1159
GetThreadName(std::string & name) const1160 void Thread::GetThreadName(std::string& name) const {
1161 name.assign(*tlsPtr_.name);
1162 }
1163
GetCpuMicroTime() const1164 uint64_t Thread::GetCpuMicroTime() const {
1165 #if defined(__linux__)
1166 clockid_t cpu_clock_id;
1167 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1168 timespec now;
1169 clock_gettime(cpu_clock_id, &now);
1170 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
1171 #else // __APPLE__
1172 UNIMPLEMENTED(WARNING);
1173 return -1;
1174 #endif
1175 }
1176
1177 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1178 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1179 LOG(ERROR) << *thread << " suspend count already zero.";
1180 Locks::thread_suspend_count_lock_->Unlock(self);
1181 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1182 Locks::mutator_lock_->SharedTryLock(self);
1183 if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1184 LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1185 }
1186 }
1187 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1188 Locks::thread_list_lock_->TryLock(self);
1189 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1190 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1191 }
1192 }
1193 std::ostringstream ss;
1194 Runtime::Current()->GetThreadList()->Dump(ss);
1195 LOG(FATAL) << ss.str();
1196 }
1197
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1198 bool Thread::ModifySuspendCountInternal(Thread* self,
1199 int delta,
1200 AtomicInteger* suspend_barrier,
1201 SuspendReason reason) {
1202 if (kIsDebugBuild) {
1203 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
1204 << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
1205 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
1206 Locks::thread_suspend_count_lock_->AssertHeld(self);
1207 if (this != self && !IsSuspended()) {
1208 Locks::thread_list_lock_->AssertHeld(self);
1209 }
1210 }
1211 // User code suspensions need to be checked more closely since they originate from code outside of
1212 // the runtime's control.
1213 if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1214 Locks::user_code_suspension_lock_->AssertHeld(self);
1215 if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1216 LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1217 return false;
1218 }
1219 }
1220 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1221 UnsafeLogFatalForSuspendCount(self, this);
1222 return false;
1223 }
1224
1225 if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1226 // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1227 // deadlock. b/31683379.
1228 return false;
1229 }
1230
1231 uint16_t flags = kSuspendRequest;
1232 if (delta > 0 && suspend_barrier != nullptr) {
1233 uint32_t available_barrier = kMaxSuspendBarriers;
1234 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1235 if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1236 available_barrier = i;
1237 break;
1238 }
1239 }
1240 if (available_barrier == kMaxSuspendBarriers) {
1241 // No barrier spaces available, we can't add another.
1242 return false;
1243 }
1244 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1245 flags |= kActiveSuspendBarrier;
1246 }
1247
1248 tls32_.suspend_count += delta;
1249 switch (reason) {
1250 case SuspendReason::kForDebugger:
1251 tls32_.debug_suspend_count += delta;
1252 break;
1253 case SuspendReason::kForUserCode:
1254 tls32_.user_code_suspend_count += delta;
1255 break;
1256 case SuspendReason::kInternal:
1257 break;
1258 }
1259
1260 if (tls32_.suspend_count == 0) {
1261 AtomicClearFlag(kSuspendRequest);
1262 } else {
1263 // Two bits might be set simultaneously.
1264 tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
1265 TriggerSuspend();
1266 }
1267 return true;
1268 }
1269
PassActiveSuspendBarriers(Thread * self)1270 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1271 // Grab the suspend_count lock and copy the current set of
1272 // barriers. Then clear the list and the flag. The ModifySuspendCount
1273 // function requires the lock so we prevent a race between setting
1274 // the kActiveSuspendBarrier flag and clearing it.
1275 AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1276 {
1277 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1278 if (!ReadFlag(kActiveSuspendBarrier)) {
1279 // quick exit test: the barriers have already been claimed - this is
1280 // possible as there may be a race to claim and it doesn't matter
1281 // who wins.
1282 // All of the callers of this function (except the SuspendAllInternal)
1283 // will first test the kActiveSuspendBarrier flag without lock. Here
1284 // double-check whether the barrier has been passed with the
1285 // suspend_count lock.
1286 return false;
1287 }
1288
1289 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1290 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1291 tlsPtr_.active_suspend_barriers[i] = nullptr;
1292 }
1293 AtomicClearFlag(kActiveSuspendBarrier);
1294 }
1295
1296 uint32_t barrier_count = 0;
1297 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1298 AtomicInteger* pending_threads = pass_barriers[i];
1299 if (pending_threads != nullptr) {
1300 bool done = false;
1301 do {
1302 int32_t cur_val = pending_threads->LoadRelaxed();
1303 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1304 // Reduce value by 1.
1305 done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
1306 #if ART_USE_FUTEXES
1307 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
1308 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
1309 }
1310 #endif
1311 } while (!done);
1312 ++barrier_count;
1313 }
1314 }
1315 CHECK_GT(barrier_count, 0U);
1316 return true;
1317 }
1318
ClearSuspendBarrier(AtomicInteger * target)1319 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1320 CHECK(ReadFlag(kActiveSuspendBarrier));
1321 bool clear_flag = true;
1322 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1323 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1324 if (ptr == target) {
1325 tlsPtr_.active_suspend_barriers[i] = nullptr;
1326 } else if (ptr != nullptr) {
1327 clear_flag = false;
1328 }
1329 }
1330 if (LIKELY(clear_flag)) {
1331 AtomicClearFlag(kActiveSuspendBarrier);
1332 }
1333 }
1334
RunCheckpointFunction()1335 void Thread::RunCheckpointFunction() {
1336 bool done = false;
1337 do {
1338 // Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
1339 // copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
1340 // to prevent a race between setting the kCheckpointRequest flag and clearing it.
1341 Closure* checkpoint = nullptr;
1342 {
1343 MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1344 if (tlsPtr_.checkpoint_function != nullptr) {
1345 checkpoint = tlsPtr_.checkpoint_function;
1346 if (!checkpoint_overflow_.empty()) {
1347 // Overflow list not empty, copy the first one out and continue.
1348 tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1349 checkpoint_overflow_.pop_front();
1350 } else {
1351 // No overflow checkpoints, this means that we are on the last pending checkpoint.
1352 tlsPtr_.checkpoint_function = nullptr;
1353 AtomicClearFlag(kCheckpointRequest);
1354 done = true;
1355 }
1356 } else {
1357 LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
1358 }
1359 }
1360
1361 // Outside the lock, run the checkpoint functions that we collected.
1362 ScopedTrace trace("Run checkpoint function");
1363 DCHECK(checkpoint != nullptr);
1364 checkpoint->Run(this);
1365 } while (!done);
1366 }
1367
RunEmptyCheckpoint()1368 void Thread::RunEmptyCheckpoint() {
1369 DCHECK_EQ(Thread::Current(), this);
1370 AtomicClearFlag(kEmptyCheckpointRequest);
1371 Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1372 }
1373
RequestCheckpoint(Closure * function)1374 bool Thread::RequestCheckpoint(Closure* function) {
1375 union StateAndFlags old_state_and_flags;
1376 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1377 if (old_state_and_flags.as_struct.state != kRunnable) {
1378 return false; // Fail, thread is suspended and so can't run a checkpoint.
1379 }
1380
1381 // We must be runnable to request a checkpoint.
1382 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1383 union StateAndFlags new_state_and_flags;
1384 new_state_and_flags.as_int = old_state_and_flags.as_int;
1385 new_state_and_flags.as_struct.flags |= kCheckpointRequest;
1386 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1387 old_state_and_flags.as_int, new_state_and_flags.as_int);
1388 if (success) {
1389 // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1390 if (tlsPtr_.checkpoint_function == nullptr) {
1391 tlsPtr_.checkpoint_function = function;
1392 } else {
1393 checkpoint_overflow_.push_back(function);
1394 }
1395 CHECK_EQ(ReadFlag(kCheckpointRequest), true);
1396 TriggerSuspend();
1397 }
1398 return success;
1399 }
1400
RequestEmptyCheckpoint()1401 bool Thread::RequestEmptyCheckpoint() {
1402 union StateAndFlags old_state_and_flags;
1403 old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
1404 if (old_state_and_flags.as_struct.state != kRunnable) {
1405 // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1406 // heap access (eg. the read barrier).
1407 return false;
1408 }
1409
1410 // We must be runnable to request a checkpoint.
1411 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
1412 union StateAndFlags new_state_and_flags;
1413 new_state_and_flags.as_int = old_state_and_flags.as_int;
1414 new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
1415 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
1416 old_state_and_flags.as_int, new_state_and_flags.as_int);
1417 if (success) {
1418 TriggerSuspend();
1419 }
1420 return success;
1421 }
1422
1423 class BarrierClosure : public Closure {
1424 public:
BarrierClosure(Closure * wrapped)1425 explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1426
Run(Thread * self)1427 void Run(Thread* self) OVERRIDE {
1428 wrapped_->Run(self);
1429 barrier_.Pass(self);
1430 }
1431
Wait(Thread * self)1432 void Wait(Thread* self) {
1433 barrier_.Increment(self, 1);
1434 }
1435
1436 private:
1437 Closure* wrapped_;
1438 Barrier barrier_;
1439 };
1440
RequestSynchronousCheckpoint(Closure * function)1441 bool Thread::RequestSynchronousCheckpoint(Closure* function) {
1442 if (this == Thread::Current()) {
1443 // Asked to run on this thread. Just run.
1444 function->Run(this);
1445 return true;
1446 }
1447 Thread* self = Thread::Current();
1448
1449 // The current thread is not this thread.
1450
1451 if (GetState() == ThreadState::kTerminated) {
1452 return false;
1453 }
1454
1455 // Note: we're holding the thread-list lock. The thread cannot die at this point.
1456 struct ScopedThreadListLockUnlock {
1457 explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1458 : self_thread(self_in) {
1459 Locks::thread_list_lock_->AssertHeld(self_thread);
1460 Locks::thread_list_lock_->Unlock(self_thread);
1461 }
1462
1463 ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1464 Locks::thread_list_lock_->AssertNotHeld(self_thread);
1465 Locks::thread_list_lock_->Lock(self_thread);
1466 }
1467
1468 Thread* self_thread;
1469 };
1470
1471 for (;;) {
1472 // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1473 // suspend-count lock for too long.
1474 if (GetState() == ThreadState::kRunnable) {
1475 BarrierClosure barrier_closure(function);
1476 bool installed = false;
1477 {
1478 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1479 installed = RequestCheckpoint(&barrier_closure);
1480 }
1481 if (installed) {
1482 // Relinquish the thread-list lock, temporarily. We should not wait holding any locks.
1483 ScopedThreadListLockUnlock stllu(self);
1484 ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1485 barrier_closure.Wait(self);
1486 return true;
1487 }
1488 // Fall-through.
1489 }
1490
1491 // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1492 // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1493 // certain situations.
1494 {
1495 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1496
1497 if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1498 // Just retry the loop.
1499 sched_yield();
1500 continue;
1501 }
1502 }
1503
1504 {
1505 ScopedThreadListLockUnlock stllu(self);
1506 {
1507 ScopedThreadSuspension sts(self, ThreadState::kWaiting);
1508 while (GetState() == ThreadState::kRunnable) {
1509 // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1510 // moves us to suspended.
1511 sched_yield();
1512 }
1513 }
1514
1515 function->Run(this);
1516 }
1517
1518 {
1519 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1520
1521 DCHECK_NE(GetState(), ThreadState::kRunnable);
1522 bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1523 DCHECK(updated);
1524 }
1525
1526 {
1527 // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1528 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1529 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1530 Thread::resume_cond_->Broadcast(self);
1531 }
1532
1533 return true; // We're done, break out of the loop.
1534 }
1535 }
1536
GetFlipFunction()1537 Closure* Thread::GetFlipFunction() {
1538 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1539 Closure* func;
1540 do {
1541 func = atomic_func->LoadRelaxed();
1542 if (func == nullptr) {
1543 return nullptr;
1544 }
1545 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
1546 DCHECK(func != nullptr);
1547 return func;
1548 }
1549
SetFlipFunction(Closure * function)1550 void Thread::SetFlipFunction(Closure* function) {
1551 CHECK(function != nullptr);
1552 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
1553 atomic_func->StoreSequentiallyConsistent(function);
1554 }
1555
FullSuspendCheck()1556 void Thread::FullSuspendCheck() {
1557 ScopedTrace trace(__FUNCTION__);
1558 VLOG(threads) << this << " self-suspending";
1559 // Make thread appear suspended to other threads, release mutator_lock_.
1560 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1561 ScopedThreadSuspension(this, kSuspended);
1562 VLOG(threads) << this << " self-reviving";
1563 }
1564
GetSchedulerGroupName(pid_t tid)1565 static std::string GetSchedulerGroupName(pid_t tid) {
1566 // /proc/<pid>/cgroup looks like this:
1567 // 2:devices:/
1568 // 1:cpuacct,cpu:/
1569 // We want the third field from the line whose second field contains the "cpu" token.
1570 std::string cgroup_file;
1571 if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1572 return "";
1573 }
1574 std::vector<std::string> cgroup_lines;
1575 Split(cgroup_file, '\n', &cgroup_lines);
1576 for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1577 std::vector<std::string> cgroup_fields;
1578 Split(cgroup_lines[i], ':', &cgroup_fields);
1579 std::vector<std::string> cgroups;
1580 Split(cgroup_fields[1], ',', &cgroups);
1581 for (size_t j = 0; j < cgroups.size(); ++j) {
1582 if (cgroups[j] == "cpu") {
1583 return cgroup_fields[2].substr(1); // Skip the leading slash.
1584 }
1585 }
1586 }
1587 return "";
1588 }
1589
1590
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1591 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1592 std::string group_name;
1593 int priority;
1594 bool is_daemon = false;
1595 Thread* self = Thread::Current();
1596
1597 // If flip_function is not null, it means we have run a checkpoint
1598 // before the thread wakes up to execute the flip function and the
1599 // thread roots haven't been forwarded. So the following access to
1600 // the roots (opeer or methods in the frames) would be bad. Run it
1601 // here. TODO: clean up.
1602 if (thread != nullptr) {
1603 ScopedObjectAccessUnchecked soa(self);
1604 Thread* this_thread = const_cast<Thread*>(thread);
1605 Closure* flip_func = this_thread->GetFlipFunction();
1606 if (flip_func != nullptr) {
1607 flip_func->Run(this_thread);
1608 }
1609 }
1610
1611 // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1612 // cause ScopedObjectAccessUnchecked to deadlock.
1613 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1614 ScopedObjectAccessUnchecked soa(self);
1615 priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
1616 ->GetInt(thread->tlsPtr_.opeer);
1617 is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
1618 ->GetBoolean(thread->tlsPtr_.opeer);
1619
1620 ObjPtr<mirror::Object> thread_group =
1621 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
1622 ->GetObject(thread->tlsPtr_.opeer);
1623
1624 if (thread_group != nullptr) {
1625 ArtField* group_name_field =
1626 jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
1627 ObjPtr<mirror::String> group_name_string =
1628 group_name_field->GetObject(thread_group)->AsString();
1629 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
1630 }
1631 } else {
1632 priority = GetNativePriority();
1633 }
1634
1635 std::string scheduler_group_name(GetSchedulerGroupName(tid));
1636 if (scheduler_group_name.empty()) {
1637 scheduler_group_name = "default";
1638 }
1639
1640 if (thread != nullptr) {
1641 os << '"' << *thread->tlsPtr_.name << '"';
1642 if (is_daemon) {
1643 os << " daemon";
1644 }
1645 os << " prio=" << priority
1646 << " tid=" << thread->GetThreadId()
1647 << " " << thread->GetState();
1648 if (thread->IsStillStarting()) {
1649 os << " (still starting up)";
1650 }
1651 os << "\n";
1652 } else {
1653 os << '"' << ::art::GetThreadName(tid) << '"'
1654 << " prio=" << priority
1655 << " (not attached)\n";
1656 }
1657
1658 if (thread != nullptr) {
1659 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1660 os << " | group=\"" << group_name << "\""
1661 << " sCount=" << thread->tls32_.suspend_count
1662 << " dsCount=" << thread->tls32_.debug_suspend_count
1663 << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
1664 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
1665 << " self=" << reinterpret_cast<const void*>(thread) << "\n";
1666 }
1667
1668 os << " | sysTid=" << tid
1669 << " nice=" << getpriority(PRIO_PROCESS, tid)
1670 << " cgrp=" << scheduler_group_name;
1671 if (thread != nullptr) {
1672 int policy;
1673 sched_param sp;
1674 #if !defined(__APPLE__)
1675 // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
1676 policy = sched_getscheduler(tid);
1677 if (policy == -1) {
1678 PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
1679 }
1680 int sched_getparam_result = sched_getparam(tid, &sp);
1681 if (sched_getparam_result == -1) {
1682 PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
1683 sp.sched_priority = -1;
1684 }
1685 #else
1686 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
1687 __FUNCTION__);
1688 #endif
1689 os << " sched=" << policy << "/" << sp.sched_priority
1690 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
1691 }
1692 os << "\n";
1693
1694 // Grab the scheduler stats for this thread.
1695 std::string scheduler_stats;
1696 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
1697 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
1698 } else {
1699 scheduler_stats = "0 0 0";
1700 }
1701
1702 char native_thread_state = '?';
1703 int utime = 0;
1704 int stime = 0;
1705 int task_cpu = 0;
1706 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
1707
1708 os << " | state=" << native_thread_state
1709 << " schedstat=( " << scheduler_stats << " )"
1710 << " utm=" << utime
1711 << " stm=" << stime
1712 << " core=" << task_cpu
1713 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
1714 if (thread != nullptr) {
1715 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
1716 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
1717 << PrettySize(thread->tlsPtr_.stack_size) << "\n";
1718 // Dump the held mutexes.
1719 os << " | held mutexes=";
1720 for (size_t i = 0; i < kLockLevelCount; ++i) {
1721 if (i != kMonitorLock) {
1722 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
1723 if (mutex != nullptr) {
1724 os << " \"" << mutex->GetName() << "\"";
1725 if (mutex->IsReaderWriterMutex()) {
1726 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
1727 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
1728 os << "(exclusive held)";
1729 } else {
1730 os << "(shared held)";
1731 }
1732 }
1733 }
1734 }
1735 }
1736 os << "\n";
1737 }
1738 }
1739
DumpState(std::ostream & os) const1740 void Thread::DumpState(std::ostream& os) const {
1741 Thread::DumpState(os, this, GetTid());
1742 }
1743
1744 struct StackDumpVisitor : public StackVisitor {
StackDumpVisitorart::StackDumpVisitor1745 StackDumpVisitor(std::ostream& os_in,
1746 Thread* thread_in,
1747 Context* context,
1748 bool can_allocate_in,
1749 bool check_suspended = true,
1750 bool dump_locks_in = true)
1751 REQUIRES_SHARED(Locks::mutator_lock_)
1752 : StackVisitor(thread_in,
1753 context,
1754 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
1755 check_suspended),
1756 os(os_in),
1757 can_allocate(can_allocate_in),
1758 last_method(nullptr),
1759 last_line_number(0),
1760 repetition_count(0),
1761 frame_count(0),
1762 dump_locks(dump_locks_in) {}
1763
~StackDumpVisitorart::StackDumpVisitor1764 virtual ~StackDumpVisitor() {
1765 if (frame_count == 0) {
1766 os << " (no managed stack frames)\n";
1767 }
1768 }
1769
VisitFrameart::StackDumpVisitor1770 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
1771 ArtMethod* m = GetMethod();
1772 if (m->IsRuntimeMethod()) {
1773 return true;
1774 }
1775 m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1776 const int kMaxRepetition = 3;
1777 ObjPtr<mirror::Class> c = m->GetDeclaringClass();
1778 ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
1779 int line_number = -1;
1780 if (dex_cache != nullptr) { // be tolerant of bad input
1781 const DexFile* dex_file = dex_cache->GetDexFile();
1782 line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
1783 }
1784 if (line_number == last_line_number && last_method == m) {
1785 ++repetition_count;
1786 } else {
1787 if (repetition_count >= kMaxRepetition) {
1788 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
1789 }
1790 repetition_count = 0;
1791 last_line_number = line_number;
1792 last_method = m;
1793 }
1794 if (repetition_count < kMaxRepetition) {
1795 os << " at " << m->PrettyMethod(false);
1796 if (m->IsNative()) {
1797 os << "(Native method)";
1798 } else {
1799 const char* source_file(m->GetDeclaringClassSourceFile());
1800 os << "(" << (source_file != nullptr ? source_file : "unavailable")
1801 << ":" << line_number << ")";
1802 }
1803 os << "\n";
1804 if (frame_count == 0) {
1805 Monitor::DescribeWait(os, GetThread());
1806 }
1807 if (can_allocate && dump_locks) {
1808 // Visit locks, but do not abort on errors. This would trigger a nested abort.
1809 // Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
1810 // RegTypeCache::RegTypeCache due to thread_list_lock.
1811 Monitor::VisitLocks(this, DumpLockedObject, &os, false);
1812 }
1813 }
1814
1815 ++frame_count;
1816 return true;
1817 }
1818
DumpLockedObjectart::StackDumpVisitor1819 static void DumpLockedObject(mirror::Object* o, void* context)
1820 REQUIRES_SHARED(Locks::mutator_lock_) {
1821 std::ostream& os = *reinterpret_cast<std::ostream*>(context);
1822 os << " - locked ";
1823 if (o == nullptr) {
1824 os << "an unknown object";
1825 } else {
1826 if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
1827 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
1828 // may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
1829 // IdentityHashCode call below will crash. So explicitly mark/forward it here.
1830 o = ReadBarrier::Mark(o);
1831 }
1832 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
1833 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
1834 // Getting the identity hashcode here would result in lock inflation and suspension of the
1835 // current thread, which isn't safe if this is the only runnable thread.
1836 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
1837 o->PrettyTypeOf().c_str());
1838 } else {
1839 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
1840 // we get the pretty type beofre we call IdentityHashCode.
1841 const std::string pretty_type(o->PrettyTypeOf());
1842 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
1843 }
1844 }
1845 os << "\n";
1846 }
1847
1848 std::ostream& os;
1849 const bool can_allocate;
1850 ArtMethod* last_method;
1851 int last_line_number;
1852 int repetition_count;
1853 int frame_count;
1854 const bool dump_locks;
1855 };
1856
ShouldShowNativeStack(const Thread * thread)1857 static bool ShouldShowNativeStack(const Thread* thread)
1858 REQUIRES_SHARED(Locks::mutator_lock_) {
1859 ThreadState state = thread->GetState();
1860
1861 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
1862 if (state > kWaiting && state < kStarting) {
1863 return true;
1864 }
1865
1866 // In an Object.wait variant or Thread.sleep? That's not interesting.
1867 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1868 return false;
1869 }
1870
1871 // Threads with no managed stack frames should be shown.
1872 const ManagedStack* managed_stack = thread->GetManagedStack();
1873 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
1874 managed_stack->GetTopShadowFrame() == nullptr)) {
1875 return true;
1876 }
1877
1878 // In some other native method? That's interesting.
1879 // We don't just check kNative because native methods will be in state kSuspended if they're
1880 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1881 // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1882 ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1883 return current_method != nullptr && current_method->IsNative();
1884 }
1885
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const1886 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
1887 // If flip_function is not null, it means we have run a checkpoint
1888 // before the thread wakes up to execute the flip function and the
1889 // thread roots haven't been forwarded. So the following access to
1890 // the roots (locks or methods in the frames) would be bad. Run it
1891 // here. TODO: clean up.
1892 {
1893 Thread* this_thread = const_cast<Thread*>(this);
1894 Closure* flip_func = this_thread->GetFlipFunction();
1895 if (flip_func != nullptr) {
1896 flip_func->Run(this_thread);
1897 }
1898 }
1899
1900 // Dumping the Java stack involves the verifier for locks. The verifier operates under the
1901 // assumption that there is no exception pending on entry. Thus, stash any pending exception.
1902 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
1903 // thread.
1904 StackHandleScope<1> scope(Thread::Current());
1905 Handle<mirror::Throwable> exc;
1906 bool have_exception = false;
1907 if (IsExceptionPending()) {
1908 exc = scope.NewHandle(GetException());
1909 const_cast<Thread*>(this)->ClearException();
1910 have_exception = true;
1911 }
1912
1913 std::unique_ptr<Context> context(Context::Create());
1914 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1915 !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
1916 dumper.WalkStack();
1917
1918 if (have_exception) {
1919 const_cast<Thread*>(this)->SetException(exc.Get());
1920 }
1921 }
1922
DumpStack(std::ostream & os,bool dump_native_stack,BacktraceMap * backtrace_map,bool force_dump_stack) const1923 void Thread::DumpStack(std::ostream& os,
1924 bool dump_native_stack,
1925 BacktraceMap* backtrace_map,
1926 bool force_dump_stack) const {
1927 // TODO: we call this code when dying but may not have suspended the thread ourself. The
1928 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1929 // the race with the thread_suspend_count_lock_).
1930 bool dump_for_abort = (gAborting > 0);
1931 bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1932 if (!kIsDebugBuild) {
1933 // We always want to dump the stack for an abort, however, there is no point dumping another
1934 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1935 safe_to_dump = (safe_to_dump || dump_for_abort);
1936 }
1937 if (safe_to_dump || force_dump_stack) {
1938 // If we're currently in native code, dump that stack before dumping the managed stack.
1939 if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
1940 DumpKernelStack(os, GetTid(), " kernel: ", false);
1941 ArtMethod* method =
1942 GetCurrentMethod(nullptr,
1943 /*check_suspended*/ !force_dump_stack,
1944 /*abort_on_error*/ !(dump_for_abort || force_dump_stack));
1945 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
1946 }
1947 DumpJavaStack(os,
1948 /*check_suspended*/ !force_dump_stack,
1949 /*dump_locks*/ !force_dump_stack);
1950 } else {
1951 os << "Not able to dump stack of thread that isn't suspended";
1952 }
1953 }
1954
ThreadExitCallback(void * arg)1955 void Thread::ThreadExitCallback(void* arg) {
1956 Thread* self = reinterpret_cast<Thread*>(arg);
1957 if (self->tls32_.thread_exit_check_count == 0) {
1958 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1959 "going to use a pthread_key_create destructor?): " << *self;
1960 CHECK(is_started_);
1961 #ifdef ART_TARGET_ANDROID
1962 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
1963 #else
1964 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1965 #endif
1966 self->tls32_.thread_exit_check_count = 1;
1967 } else {
1968 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1969 }
1970 }
1971
Startup()1972 void Thread::Startup() {
1973 CHECK(!is_started_);
1974 is_started_ = true;
1975 {
1976 // MutexLock to keep annotalysis happy.
1977 //
1978 // Note we use null for the thread because Thread::Current can
1979 // return garbage since (is_started_ == true) and
1980 // Thread::pthread_key_self_ is not yet initialized.
1981 // This was seen on glibc.
1982 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1983 resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1984 *Locks::thread_suspend_count_lock_);
1985 }
1986
1987 // Allocate a TLS slot.
1988 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
1989 "self key");
1990
1991 // Double-check the TLS slot allocation.
1992 if (pthread_getspecific(pthread_key_self_) != nullptr) {
1993 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1994 }
1995 }
1996
FinishStartup()1997 void Thread::FinishStartup() {
1998 Runtime* runtime = Runtime::Current();
1999 CHECK(runtime->IsStarted());
2000
2001 // Finish attaching the main thread.
2002 ScopedObjectAccess soa(Thread::Current());
2003 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2004 Thread::Current()->AssertNoPendingException();
2005
2006 Runtime::Current()->GetClassLinker()->RunRootClinits();
2007
2008 // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2009 // threads, this is done in Thread.start() on the Java side.
2010 {
2011 // This is only ever done once. There's no benefit in caching the method.
2012 jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
2013 "add",
2014 "(Ljava/lang/Thread;)V");
2015 CHECK(thread_group_add != nullptr);
2016 ScopedLocalRef<jobject> thread_jobject(
2017 soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
2018 soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
2019 WellKnownClasses::java_lang_ThreadGroup,
2020 thread_group_add,
2021 thread_jobject.get());
2022 Thread::Current()->AssertNoPendingException();
2023 }
2024 }
2025
Shutdown()2026 void Thread::Shutdown() {
2027 CHECK(is_started_);
2028 is_started_ = false;
2029 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2030 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2031 if (resume_cond_ != nullptr) {
2032 delete resume_cond_;
2033 resume_cond_ = nullptr;
2034 }
2035 }
2036
Thread(bool daemon)2037 Thread::Thread(bool daemon)
2038 : tls32_(daemon),
2039 wait_monitor_(nullptr),
2040 custom_tls_(nullptr),
2041 can_call_into_java_(true) {
2042 wait_mutex_ = new Mutex("a thread wait mutex");
2043 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2044 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
2045 tlsPtr_.name = new std::string(kThreadNameDuringStartup);
2046
2047 static_assert((sizeof(Thread) % 4) == 0U,
2048 "art::Thread has a size which is not a multiple of 4.");
2049 tls32_.state_and_flags.as_struct.flags = 0;
2050 tls32_.state_and_flags.as_struct.state = kNative;
2051 tls32_.interrupted.StoreRelaxed(false);
2052 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2053 std::fill(tlsPtr_.rosalloc_runs,
2054 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2055 gc::allocator::RosAlloc::GetDedicatedFullRun());
2056 tlsPtr_.checkpoint_function = nullptr;
2057 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2058 tlsPtr_.active_suspend_barriers[i] = nullptr;
2059 }
2060 tlsPtr_.flip_function = nullptr;
2061 tlsPtr_.thread_local_mark_stack = nullptr;
2062 tls32_.is_transitioning_to_runnable = false;
2063 }
2064
IsStillStarting() const2065 bool Thread::IsStillStarting() const {
2066 // You might think you can check whether the state is kStarting, but for much of thread startup,
2067 // the thread is in kNative; it might also be in kVmWait.
2068 // You might think you can check whether the peer is null, but the peer is actually created and
2069 // assigned fairly early on, and needs to be.
2070 // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2071 // this thread _ever_ entered kRunnable".
2072 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2073 (*tlsPtr_.name == kThreadNameDuringStartup);
2074 }
2075
AssertPendingException() const2076 void Thread::AssertPendingException() const {
2077 CHECK(IsExceptionPending()) << "Pending exception expected.";
2078 }
2079
AssertPendingOOMException() const2080 void Thread::AssertPendingOOMException() const {
2081 AssertPendingException();
2082 auto* e = GetException();
2083 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
2084 << e->Dump();
2085 }
2086
AssertNoPendingException() const2087 void Thread::AssertNoPendingException() const {
2088 if (UNLIKELY(IsExceptionPending())) {
2089 ScopedObjectAccess soa(Thread::Current());
2090 LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2091 }
2092 }
2093
AssertNoPendingExceptionForNewException(const char * msg) const2094 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2095 if (UNLIKELY(IsExceptionPending())) {
2096 ScopedObjectAccess soa(Thread::Current());
2097 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2098 << GetException()->Dump();
2099 }
2100 }
2101
2102 class MonitorExitVisitor : public SingleRootVisitor {
2103 public:
MonitorExitVisitor(Thread * self)2104 explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2105
2106 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2107 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2108 OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
2109 if (self_->HoldsLock(entered_monitor)) {
2110 LOG(WARNING) << "Calling MonitorExit on object "
2111 << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2112 << " left locked by native thread "
2113 << *Thread::Current() << " which is detaching";
2114 entered_monitor->MonitorExit(self_);
2115 }
2116 }
2117
2118 private:
2119 Thread* const self_;
2120 };
2121
Destroy()2122 void Thread::Destroy() {
2123 Thread* self = this;
2124 DCHECK_EQ(self, Thread::Current());
2125
2126 if (tlsPtr_.jni_env != nullptr) {
2127 {
2128 ScopedObjectAccess soa(self);
2129 MonitorExitVisitor visitor(self);
2130 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2131 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2132 }
2133 // Release locally held global references which releasing may require the mutator lock.
2134 if (tlsPtr_.jpeer != nullptr) {
2135 // If pthread_create fails we don't have a jni env here.
2136 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2137 tlsPtr_.jpeer = nullptr;
2138 }
2139 if (tlsPtr_.class_loader_override != nullptr) {
2140 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2141 tlsPtr_.class_loader_override = nullptr;
2142 }
2143 }
2144
2145 if (tlsPtr_.opeer != nullptr) {
2146 ScopedObjectAccess soa(self);
2147 // We may need to call user-supplied managed code, do this before final clean-up.
2148 HandleUncaughtExceptions(soa);
2149 Runtime* runtime = Runtime::Current();
2150 if (runtime != nullptr) {
2151 runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2152 }
2153 RemoveFromThreadGroup(soa);
2154
2155 // this.nativePeer = 0;
2156 if (Runtime::Current()->IsActiveTransaction()) {
2157 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2158 ->SetLong<true>(tlsPtr_.opeer, 0);
2159 } else {
2160 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
2161 ->SetLong<false>(tlsPtr_.opeer, 0);
2162 }
2163
2164 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2165 // who is waiting.
2166 ObjPtr<mirror::Object> lock =
2167 jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
2168 // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2169 if (lock != nullptr) {
2170 StackHandleScope<1> hs(self);
2171 Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2172 ObjectLock<mirror::Object> locker(self, h_obj);
2173 locker.NotifyAll();
2174 }
2175 tlsPtr_.opeer = nullptr;
2176 }
2177
2178 {
2179 ScopedObjectAccess soa(self);
2180 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2181 if (kUseReadBarrier) {
2182 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2183 }
2184 }
2185 }
2186
~Thread()2187 Thread::~Thread() {
2188 CHECK(tlsPtr_.class_loader_override == nullptr);
2189 CHECK(tlsPtr_.jpeer == nullptr);
2190 CHECK(tlsPtr_.opeer == nullptr);
2191 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
2192 if (initialized) {
2193 delete tlsPtr_.jni_env;
2194 tlsPtr_.jni_env = nullptr;
2195 }
2196 CHECK_NE(GetState(), kRunnable);
2197 CHECK(!ReadFlag(kCheckpointRequest));
2198 CHECK(!ReadFlag(kEmptyCheckpointRequest));
2199 CHECK(tlsPtr_.checkpoint_function == nullptr);
2200 CHECK_EQ(checkpoint_overflow_.size(), 0u);
2201 CHECK(tlsPtr_.flip_function == nullptr);
2202 CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2203
2204 // Make sure we processed all deoptimization requests.
2205 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2206 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2207 "Not all deoptimized frames have been consumed by the debugger.";
2208
2209 // We may be deleting a still born thread.
2210 SetStateUnsafe(kTerminated);
2211
2212 delete wait_cond_;
2213 delete wait_mutex_;
2214
2215 if (tlsPtr_.long_jump_context != nullptr) {
2216 delete tlsPtr_.long_jump_context;
2217 }
2218
2219 if (initialized) {
2220 CleanupCpu();
2221 }
2222
2223 if (tlsPtr_.single_step_control != nullptr) {
2224 delete tlsPtr_.single_step_control;
2225 }
2226 delete tlsPtr_.instrumentation_stack;
2227 delete tlsPtr_.name;
2228 delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2229
2230 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2231
2232 TearDownAlternateSignalStack();
2233 }
2234
HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable & soa)2235 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
2236 if (!IsExceptionPending()) {
2237 return;
2238 }
2239 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2240 ScopedThreadStateChange tsc(this, kNative);
2241
2242 // Get and clear the exception.
2243 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
2244 tlsPtr_.jni_env->ExceptionClear();
2245
2246 // Call the Thread instance's dispatchUncaughtException(Throwable)
2247 tlsPtr_.jni_env->CallVoidMethod(peer.get(),
2248 WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
2249 exception.get());
2250
2251 // If the dispatchUncaughtException threw, clear that exception too.
2252 tlsPtr_.jni_env->ExceptionClear();
2253 }
2254
RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable & soa)2255 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
2256 // this.group.removeThread(this);
2257 // group can be null if we're in the compiler or a test.
2258 ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
2259 ->GetObject(tlsPtr_.opeer);
2260 if (ogroup != nullptr) {
2261 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
2262 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
2263 ScopedThreadStateChange tsc(soa.Self(), kNative);
2264 tlsPtr_.jni_env->CallVoidMethod(group.get(),
2265 WellKnownClasses::java_lang_ThreadGroup_removeThread,
2266 peer.get());
2267 }
2268 }
2269
HandleScopeContains(jobject obj) const2270 bool Thread::HandleScopeContains(jobject obj) const {
2271 StackReference<mirror::Object>* hs_entry =
2272 reinterpret_cast<StackReference<mirror::Object>*>(obj);
2273 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
2274 if (cur->Contains(hs_entry)) {
2275 return true;
2276 }
2277 }
2278 // JNI code invoked from portable code uses shadow frames rather than the handle scope.
2279 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
2280 }
2281
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2282 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2283 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2284 visitor, RootInfo(kRootNativeStack, thread_id));
2285 for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2286 cur->VisitRoots(buffered_visitor);
2287 }
2288 }
2289
DecodeJObject(jobject obj) const2290 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
2291 if (obj == nullptr) {
2292 return nullptr;
2293 }
2294 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2295 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2296 ObjPtr<mirror::Object> result;
2297 bool expect_null = false;
2298 // The "kinds" below are sorted by the frequency we expect to encounter them.
2299 if (kind == kLocal) {
2300 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
2301 // Local references do not need a read barrier.
2302 result = locals.Get<kWithoutReadBarrier>(ref);
2303 } else if (kind == kHandleScopeOrInvalid) {
2304 // TODO: make stack indirect reference table lookup more efficient.
2305 // Check if this is a local reference in the handle scope.
2306 if (LIKELY(HandleScopeContains(obj))) {
2307 // Read from handle scope.
2308 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
2309 VerifyObject(result);
2310 } else {
2311 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
2312 expect_null = true;
2313 result = nullptr;
2314 }
2315 } else if (kind == kGlobal) {
2316 result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
2317 } else {
2318 DCHECK_EQ(kind, kWeakGlobal);
2319 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2320 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2321 // This is a special case where it's okay to return null.
2322 expect_null = true;
2323 result = nullptr;
2324 }
2325 }
2326
2327 if (UNLIKELY(!expect_null && result == nullptr)) {
2328 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
2329 ToStr<IndirectRefKind>(kind).c_str(), obj);
2330 }
2331 return result;
2332 }
2333
IsJWeakCleared(jweak obj) const2334 bool Thread::IsJWeakCleared(jweak obj) const {
2335 CHECK(obj != nullptr);
2336 IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2337 IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2338 CHECK_EQ(kind, kWeakGlobal);
2339 return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2340 }
2341
2342 // Implements java.lang.Thread.interrupted.
Interrupted()2343 bool Thread::Interrupted() {
2344 DCHECK_EQ(Thread::Current(), this);
2345 // No other thread can concurrently reset the interrupted flag.
2346 bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
2347 if (interrupted) {
2348 tls32_.interrupted.StoreSequentiallyConsistent(false);
2349 }
2350 return interrupted;
2351 }
2352
2353 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2354 bool Thread::IsInterrupted() {
2355 return tls32_.interrupted.LoadSequentiallyConsistent();
2356 }
2357
Interrupt(Thread * self)2358 void Thread::Interrupt(Thread* self) {
2359 MutexLock mu(self, *wait_mutex_);
2360 if (tls32_.interrupted.LoadSequentiallyConsistent()) {
2361 return;
2362 }
2363 tls32_.interrupted.StoreSequentiallyConsistent(true);
2364 NotifyLocked(self);
2365 }
2366
Notify()2367 void Thread::Notify() {
2368 Thread* self = Thread::Current();
2369 MutexLock mu(self, *wait_mutex_);
2370 NotifyLocked(self);
2371 }
2372
NotifyLocked(Thread * self)2373 void Thread::NotifyLocked(Thread* self) {
2374 if (wait_monitor_ != nullptr) {
2375 wait_cond_->Signal(self);
2376 }
2377 }
2378
SetClassLoaderOverride(jobject class_loader_override)2379 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2380 if (tlsPtr_.class_loader_override != nullptr) {
2381 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2382 }
2383 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2384 }
2385
2386 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2387
2388 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2389 class FetchStackTraceVisitor : public StackVisitor {
2390 public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2391 explicit FetchStackTraceVisitor(Thread* thread,
2392 ArtMethodDexPcPair* saved_frames = nullptr,
2393 size_t max_saved_frames = 0)
2394 REQUIRES_SHARED(Locks::mutator_lock_)
2395 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2396 saved_frames_(saved_frames),
2397 max_saved_frames_(max_saved_frames) {}
2398
VisitFrame()2399 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2400 // We want to skip frames up to and including the exception's constructor.
2401 // Note we also skip the frame if it doesn't have a method (namely the callee
2402 // save frame)
2403 ArtMethod* m = GetMethod();
2404 if (skipping_ && !m->IsRuntimeMethod() &&
2405 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
2406 skipping_ = false;
2407 }
2408 if (!skipping_) {
2409 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
2410 if (depth_ < max_saved_frames_) {
2411 saved_frames_[depth_].first = m;
2412 saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
2413 }
2414 ++depth_;
2415 }
2416 } else {
2417 ++skip_depth_;
2418 }
2419 return true;
2420 }
2421
GetDepth() const2422 uint32_t GetDepth() const {
2423 return depth_;
2424 }
2425
GetSkipDepth() const2426 uint32_t GetSkipDepth() const {
2427 return skip_depth_;
2428 }
2429
2430 private:
2431 uint32_t depth_ = 0;
2432 uint32_t skip_depth_ = 0;
2433 bool skipping_ = true;
2434 ArtMethodDexPcPair* saved_frames_;
2435 const size_t max_saved_frames_;
2436
2437 DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2438 };
2439
2440 template<bool kTransactionActive>
2441 class BuildInternalStackTraceVisitor : public StackVisitor {
2442 public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,int skip_depth)2443 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
2444 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2445 self_(self),
2446 skip_depth_(skip_depth),
2447 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2448
Init(int depth)2449 bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2450 // Allocate method trace as an object array where the first element is a pointer array that
2451 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2452 // class of the ArtMethod pointers.
2453 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2454 StackHandleScope<1> hs(self_);
2455 ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
2456 // The first element is the methods and dex pc array, the other elements are declaring classes
2457 // for the methods to ensure classes in the stack trace don't get unloaded.
2458 Handle<mirror::ObjectArray<mirror::Object>> trace(
2459 hs.NewHandle(
2460 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
2461 if (trace == nullptr) {
2462 // Acquire uninterruptible_ in all paths.
2463 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2464 self_->AssertPendingOOMException();
2465 return false;
2466 }
2467 ObjPtr<mirror::PointerArray> methods_and_pcs =
2468 class_linker->AllocPointerArray(self_, depth * 2);
2469 const char* last_no_suspend_cause =
2470 self_->StartAssertNoThreadSuspension("Building internal stack trace");
2471 if (methods_and_pcs == nullptr) {
2472 self_->AssertPendingOOMException();
2473 return false;
2474 }
2475 trace->Set(0, methods_and_pcs);
2476 trace_ = trace.Get();
2477 // If We are called from native, use non-transactional mode.
2478 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2479 return true;
2480 }
2481
RELEASE(Roles::uninterruptible_)2482 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2483 self_->EndAssertNoThreadSuspension(nullptr);
2484 }
2485
VisitFrame()2486 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
2487 if (trace_ == nullptr) {
2488 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2489 }
2490 if (skip_depth_ > 0) {
2491 skip_depth_--;
2492 return true;
2493 }
2494 ArtMethod* m = GetMethod();
2495 if (m->IsRuntimeMethod()) {
2496 return true; // Ignore runtime frames (in particular callee save).
2497 }
2498 AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
2499 return true;
2500 }
2501
AddFrame(ArtMethod * method,uint32_t dex_pc)2502 void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2503 ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
2504 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
2505 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
2506 trace_methods_and_pcs->GetLength() / 2 + count_,
2507 dex_pc,
2508 pointer_size_);
2509 // Save the declaring class of the method to ensure that the declaring classes of the methods
2510 // do not get unloaded while the stack trace is live.
2511 trace_->Set(count_ + 1, method->GetDeclaringClass());
2512 ++count_;
2513 }
2514
GetTraceMethodsAndPCs() const2515 ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
2516 return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
2517 }
2518
GetInternalStackTrace() const2519 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
2520 return trace_;
2521 }
2522
2523 private:
2524 Thread* const self_;
2525 // How many more frames to skip.
2526 int32_t skip_depth_;
2527 // Current position down stack trace.
2528 uint32_t count_ = 0;
2529 // An object array where the first element is a pointer array that contains the ArtMethod
2530 // pointers on the stack and dex PCs. The rest of the elements are the declaring
2531 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
2532 // the i'th frame.
2533 mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
2534 // For cross compilation.
2535 const PointerSize pointer_size_;
2536
2537 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
2538 };
2539
2540 template<bool kTransactionActive>
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const2541 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
2542 // Compute depth of stack, save frames if possible to avoid needing to recompute many.
2543 constexpr size_t kMaxSavedFrames = 256;
2544 std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
2545 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
2546 &saved_frames[0],
2547 kMaxSavedFrames);
2548 count_visitor.WalkStack();
2549 const uint32_t depth = count_visitor.GetDepth();
2550 const uint32_t skip_depth = count_visitor.GetSkipDepth();
2551
2552 // Build internal stack trace.
2553 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
2554 const_cast<Thread*>(this),
2555 skip_depth);
2556 if (!build_trace_visitor.Init(depth)) {
2557 return nullptr; // Allocation failed.
2558 }
2559 // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
2560 // than doing the stack walk twice.
2561 if (depth < kMaxSavedFrames) {
2562 for (size_t i = 0; i < depth; ++i) {
2563 build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
2564 }
2565 } else {
2566 build_trace_visitor.WalkStack();
2567 }
2568
2569 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
2570 if (kIsDebugBuild) {
2571 ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
2572 // Second half of trace_methods is dex PCs.
2573 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
2574 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
2575 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2576 CHECK(method != nullptr);
2577 }
2578 }
2579 return soa.AddLocalReference<jobject>(trace);
2580 }
2581 template jobject Thread::CreateInternalStackTrace<false>(
2582 const ScopedObjectAccessAlreadyRunnable& soa) const;
2583 template jobject Thread::CreateInternalStackTrace<true>(
2584 const ScopedObjectAccessAlreadyRunnable& soa) const;
2585
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const2586 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
2587 // Only count the depth since we do not pass a stack frame array as an argument.
2588 FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
2589 count_visitor.WalkStack();
2590 return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
2591 }
2592
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)2593 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
2594 const ScopedObjectAccessAlreadyRunnable& soa,
2595 jobject internal,
2596 jobjectArray output_array,
2597 int* stack_depth) {
2598 // Decode the internal stack trace into the depth, method trace and PC trace.
2599 // Subtract one for the methods and PC trace.
2600 int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
2601 DCHECK_GE(depth, 0);
2602
2603 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
2604
2605 jobjectArray result;
2606
2607 if (output_array != nullptr) {
2608 // Reuse the array we were given.
2609 result = output_array;
2610 // ...adjusting the number of frames we'll write to not exceed the array length.
2611 const int32_t traces_length =
2612 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
2613 depth = std::min(depth, traces_length);
2614 } else {
2615 // Create java_trace array and place in local reference table
2616 mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
2617 class_linker->AllocStackTraceElementArray(soa.Self(), depth);
2618 if (java_traces == nullptr) {
2619 return nullptr;
2620 }
2621 result = soa.AddLocalReference<jobjectArray>(java_traces);
2622 }
2623
2624 if (stack_depth != nullptr) {
2625 *stack_depth = depth;
2626 }
2627
2628 for (int32_t i = 0; i < depth; ++i) {
2629 ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
2630 soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
2631 // Methods and dex PC trace is element 0.
2632 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
2633 ObjPtr<mirror::PointerArray> const method_trace =
2634 ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
2635 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
2636 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
2637 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
2638 i + method_trace->GetLength() / 2, kRuntimePointerSize);
2639 int32_t line_number;
2640 StackHandleScope<3> hs(soa.Self());
2641 auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
2642 auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
2643 if (method->IsProxyMethod()) {
2644 line_number = -1;
2645 class_name_object.Assign(method->GetDeclaringClass()->GetName());
2646 // source_name_object intentionally left null for proxy methods
2647 } else {
2648 line_number = method->GetLineNumFromDexPC(dex_pc);
2649 // Allocate element, potentially triggering GC
2650 // TODO: reuse class_name_object via Class::name_?
2651 const char* descriptor = method->GetDeclaringClassDescriptor();
2652 CHECK(descriptor != nullptr);
2653 std::string class_name(PrettyDescriptor(descriptor));
2654 class_name_object.Assign(
2655 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
2656 if (class_name_object == nullptr) {
2657 soa.Self()->AssertPendingOOMException();
2658 return nullptr;
2659 }
2660 const char* source_file = method->GetDeclaringClassSourceFile();
2661 if (line_number == -1) {
2662 // Make the line_number field of StackTraceElement hold the dex pc.
2663 // source_name_object is intentionally left null if we failed to map the dex pc to
2664 // a line number (most probably because there is no debug info). See b/30183883.
2665 line_number = dex_pc;
2666 } else {
2667 if (source_file != nullptr) {
2668 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
2669 if (source_name_object == nullptr) {
2670 soa.Self()->AssertPendingOOMException();
2671 return nullptr;
2672 }
2673 }
2674 }
2675 }
2676 const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
2677 CHECK(method_name != nullptr);
2678 Handle<mirror::String> method_name_object(
2679 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
2680 if (method_name_object == nullptr) {
2681 return nullptr;
2682 }
2683 ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
2684 class_name_object,
2685 method_name_object,
2686 source_name_object,
2687 line_number);
2688 if (obj == nullptr) {
2689 return nullptr;
2690 }
2691 // We are called from native: use non-transactional mode.
2692 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
2693 }
2694 return result;
2695 }
2696
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)2697 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
2698 va_list args;
2699 va_start(args, fmt);
2700 ThrowNewExceptionV(exception_class_descriptor, fmt, args);
2701 va_end(args);
2702 }
2703
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)2704 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
2705 const char* fmt, va_list ap) {
2706 std::string msg;
2707 StringAppendV(&msg, fmt, ap);
2708 ThrowNewException(exception_class_descriptor, msg.c_str());
2709 }
2710
ThrowNewException(const char * exception_class_descriptor,const char * msg)2711 void Thread::ThrowNewException(const char* exception_class_descriptor,
2712 const char* msg) {
2713 // Callers should either clear or call ThrowNewWrappedException.
2714 AssertNoPendingExceptionForNewException(msg);
2715 ThrowNewWrappedException(exception_class_descriptor, msg);
2716 }
2717
GetCurrentClassLoader(Thread * self)2718 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
2719 REQUIRES_SHARED(Locks::mutator_lock_) {
2720 ArtMethod* method = self->GetCurrentMethod(nullptr);
2721 return method != nullptr
2722 ? method->GetDeclaringClass()->GetClassLoader()
2723 : nullptr;
2724 }
2725
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)2726 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
2727 const char* msg) {
2728 DCHECK_EQ(this, Thread::Current());
2729 ScopedObjectAccessUnchecked soa(this);
2730 StackHandleScope<3> hs(soa.Self());
2731 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
2732 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
2733 ClearException();
2734 Runtime* runtime = Runtime::Current();
2735 auto* cl = runtime->GetClassLinker();
2736 Handle<mirror::Class> exception_class(
2737 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
2738 if (UNLIKELY(exception_class == nullptr)) {
2739 CHECK(IsExceptionPending());
2740 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
2741 return;
2742 }
2743
2744 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
2745 true))) {
2746 DCHECK(IsExceptionPending());
2747 return;
2748 }
2749 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
2750 Handle<mirror::Throwable> exception(
2751 hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
2752
2753 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
2754 if (exception == nullptr) {
2755 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2756 return;
2757 }
2758
2759 // Choose an appropriate constructor and set up the arguments.
2760 const char* signature;
2761 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
2762 if (msg != nullptr) {
2763 // Ensure we remember this and the method over the String allocation.
2764 msg_string.reset(
2765 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
2766 if (UNLIKELY(msg_string.get() == nullptr)) {
2767 CHECK(IsExceptionPending()); // OOME.
2768 return;
2769 }
2770 if (cause.get() == nullptr) {
2771 signature = "(Ljava/lang/String;)V";
2772 } else {
2773 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
2774 }
2775 } else {
2776 if (cause.get() == nullptr) {
2777 signature = "()V";
2778 } else {
2779 signature = "(Ljava/lang/Throwable;)V";
2780 }
2781 }
2782 ArtMethod* exception_init_method =
2783 exception_class->FindConstructor(signature, cl->GetImagePointerSize());
2784
2785 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
2786 << PrettyDescriptor(exception_class_descriptor);
2787
2788 if (UNLIKELY(!runtime->IsStarted())) {
2789 // Something is trying to throw an exception without a started runtime, which is the common
2790 // case in the compiler. We won't be able to invoke the constructor of the exception, so set
2791 // the exception fields directly.
2792 if (msg != nullptr) {
2793 exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
2794 }
2795 if (cause.get() != nullptr) {
2796 exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
2797 }
2798 ScopedLocalRef<jobject> trace(GetJniEnv(),
2799 Runtime::Current()->IsActiveTransaction()
2800 ? CreateInternalStackTrace<true>(soa)
2801 : CreateInternalStackTrace<false>(soa));
2802 if (trace.get() != nullptr) {
2803 exception->SetStackState(DecodeJObject(trace.get()).Ptr());
2804 }
2805 SetException(exception.Get());
2806 } else {
2807 jvalue jv_args[2];
2808 size_t i = 0;
2809
2810 if (msg != nullptr) {
2811 jv_args[i].l = msg_string.get();
2812 ++i;
2813 }
2814 if (cause.get() != nullptr) {
2815 jv_args[i].l = cause.get();
2816 ++i;
2817 }
2818 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
2819 InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
2820 if (LIKELY(!IsExceptionPending())) {
2821 SetException(exception.Get());
2822 }
2823 }
2824 }
2825
ThrowOutOfMemoryError(const char * msg)2826 void Thread::ThrowOutOfMemoryError(const char* msg) {
2827 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
2828 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
2829 if (!tls32_.throwing_OutOfMemoryError) {
2830 tls32_.throwing_OutOfMemoryError = true;
2831 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
2832 tls32_.throwing_OutOfMemoryError = false;
2833 } else {
2834 Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
2835 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
2836 }
2837 }
2838
CurrentFromGdb()2839 Thread* Thread::CurrentFromGdb() {
2840 return Thread::Current();
2841 }
2842
DumpFromGdb() const2843 void Thread::DumpFromGdb() const {
2844 std::ostringstream ss;
2845 Dump(ss);
2846 std::string str(ss.str());
2847 // log to stderr for debugging command line processes
2848 std::cerr << str;
2849 #ifdef ART_TARGET_ANDROID
2850 // log to logcat for debugging frameworks processes
2851 LOG(INFO) << str;
2852 #endif
2853 }
2854
2855 // Explicitly instantiate 32 and 64bit thread offset dumping support.
2856 template
2857 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
2858 template
2859 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
2860
2861 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)2862 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
2863 #define DO_THREAD_OFFSET(x, y) \
2864 if (offset == (x).Uint32Value()) { \
2865 os << (y); \
2866 return; \
2867 }
2868 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
2869 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
2870 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
2871 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
2872 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
2873 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
2874 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
2875 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
2876 DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
2877 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
2878 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
2879 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
2880 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
2881 #undef DO_THREAD_OFFSET
2882
2883 #define JNI_ENTRY_POINT_INFO(x) \
2884 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2885 os << #x; \
2886 return; \
2887 }
2888 JNI_ENTRY_POINT_INFO(pDlsymLookup)
2889 #undef JNI_ENTRY_POINT_INFO
2890
2891 #define QUICK_ENTRY_POINT_INFO(x) \
2892 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
2893 os << #x; \
2894 return; \
2895 }
2896 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
2897 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
2898 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
2899 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
2900 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
2901 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
2902 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
2903 QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
2904 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
2905 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
2906 QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
2907 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
2908 QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
2909 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
2910 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
2911 QUICK_ENTRY_POINT_INFO(pInitializeType)
2912 QUICK_ENTRY_POINT_INFO(pResolveString)
2913 QUICK_ENTRY_POINT_INFO(pSet8Instance)
2914 QUICK_ENTRY_POINT_INFO(pSet8Static)
2915 QUICK_ENTRY_POINT_INFO(pSet16Instance)
2916 QUICK_ENTRY_POINT_INFO(pSet16Static)
2917 QUICK_ENTRY_POINT_INFO(pSet32Instance)
2918 QUICK_ENTRY_POINT_INFO(pSet32Static)
2919 QUICK_ENTRY_POINT_INFO(pSet64Instance)
2920 QUICK_ENTRY_POINT_INFO(pSet64Static)
2921 QUICK_ENTRY_POINT_INFO(pSetObjInstance)
2922 QUICK_ENTRY_POINT_INFO(pSetObjStatic)
2923 QUICK_ENTRY_POINT_INFO(pGetByteInstance)
2924 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
2925 QUICK_ENTRY_POINT_INFO(pGetByteStatic)
2926 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
2927 QUICK_ENTRY_POINT_INFO(pGetShortInstance)
2928 QUICK_ENTRY_POINT_INFO(pGetCharInstance)
2929 QUICK_ENTRY_POINT_INFO(pGetShortStatic)
2930 QUICK_ENTRY_POINT_INFO(pGetCharStatic)
2931 QUICK_ENTRY_POINT_INFO(pGet32Instance)
2932 QUICK_ENTRY_POINT_INFO(pGet32Static)
2933 QUICK_ENTRY_POINT_INFO(pGet64Instance)
2934 QUICK_ENTRY_POINT_INFO(pGet64Static)
2935 QUICK_ENTRY_POINT_INFO(pGetObjInstance)
2936 QUICK_ENTRY_POINT_INFO(pGetObjStatic)
2937 QUICK_ENTRY_POINT_INFO(pAputObject)
2938 QUICK_ENTRY_POINT_INFO(pJniMethodStart)
2939 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
2940 QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
2941 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
2942 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
2943 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
2944 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
2945 QUICK_ENTRY_POINT_INFO(pLockObject)
2946 QUICK_ENTRY_POINT_INFO(pUnlockObject)
2947 QUICK_ENTRY_POINT_INFO(pCmpgDouble)
2948 QUICK_ENTRY_POINT_INFO(pCmpgFloat)
2949 QUICK_ENTRY_POINT_INFO(pCmplDouble)
2950 QUICK_ENTRY_POINT_INFO(pCmplFloat)
2951 QUICK_ENTRY_POINT_INFO(pCos)
2952 QUICK_ENTRY_POINT_INFO(pSin)
2953 QUICK_ENTRY_POINT_INFO(pAcos)
2954 QUICK_ENTRY_POINT_INFO(pAsin)
2955 QUICK_ENTRY_POINT_INFO(pAtan)
2956 QUICK_ENTRY_POINT_INFO(pAtan2)
2957 QUICK_ENTRY_POINT_INFO(pCbrt)
2958 QUICK_ENTRY_POINT_INFO(pCosh)
2959 QUICK_ENTRY_POINT_INFO(pExp)
2960 QUICK_ENTRY_POINT_INFO(pExpm1)
2961 QUICK_ENTRY_POINT_INFO(pHypot)
2962 QUICK_ENTRY_POINT_INFO(pLog)
2963 QUICK_ENTRY_POINT_INFO(pLog10)
2964 QUICK_ENTRY_POINT_INFO(pNextAfter)
2965 QUICK_ENTRY_POINT_INFO(pSinh)
2966 QUICK_ENTRY_POINT_INFO(pTan)
2967 QUICK_ENTRY_POINT_INFO(pTanh)
2968 QUICK_ENTRY_POINT_INFO(pFmod)
2969 QUICK_ENTRY_POINT_INFO(pL2d)
2970 QUICK_ENTRY_POINT_INFO(pFmodf)
2971 QUICK_ENTRY_POINT_INFO(pL2f)
2972 QUICK_ENTRY_POINT_INFO(pD2iz)
2973 QUICK_ENTRY_POINT_INFO(pF2iz)
2974 QUICK_ENTRY_POINT_INFO(pIdivmod)
2975 QUICK_ENTRY_POINT_INFO(pD2l)
2976 QUICK_ENTRY_POINT_INFO(pF2l)
2977 QUICK_ENTRY_POINT_INFO(pLdiv)
2978 QUICK_ENTRY_POINT_INFO(pLmod)
2979 QUICK_ENTRY_POINT_INFO(pLmul)
2980 QUICK_ENTRY_POINT_INFO(pShlLong)
2981 QUICK_ENTRY_POINT_INFO(pShrLong)
2982 QUICK_ENTRY_POINT_INFO(pUshrLong)
2983 QUICK_ENTRY_POINT_INFO(pIndexOf)
2984 QUICK_ENTRY_POINT_INFO(pStringCompareTo)
2985 QUICK_ENTRY_POINT_INFO(pMemcpy)
2986 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
2987 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
2988 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
2989 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
2990 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
2991 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
2992 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
2993 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
2994 QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
2995 QUICK_ENTRY_POINT_INFO(pTestSuspend)
2996 QUICK_ENTRY_POINT_INFO(pDeliverException)
2997 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
2998 QUICK_ENTRY_POINT_INFO(pThrowDivZero)
2999 QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3000 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3001 QUICK_ENTRY_POINT_INFO(pDeoptimize)
3002 QUICK_ENTRY_POINT_INFO(pA64Load)
3003 QUICK_ENTRY_POINT_INFO(pA64Store)
3004 QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3005 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3006 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3007 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3008 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3009 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3010 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3011 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3012 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3013 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3014 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3015 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3016 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3017 QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3018 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3019 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3020 QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
3021 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3022 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3023 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3024 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3025 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3026 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3027 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3028 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3029 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3030 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3031 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3032 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3033 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3034 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3035 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3036 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3037 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3038 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3039 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3040 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3041 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3042 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3043 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3044 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3045 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3046 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3047 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3048 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3049 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3050 QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3051 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3052 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3053
3054 QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
3055 QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
3056 #undef QUICK_ENTRY_POINT_INFO
3057
3058 os << offset;
3059 }
3060
QuickDeliverException()3061 void Thread::QuickDeliverException() {
3062 // Get exception from thread.
3063 ObjPtr<mirror::Throwable> exception = GetException();
3064 CHECK(exception != nullptr);
3065 if (exception == GetDeoptimizationException()) {
3066 artDeoptimize(this);
3067 UNREACHABLE();
3068 }
3069
3070 // This is a real exception: let the instrumentation know about it.
3071 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3072 if (instrumentation->HasExceptionCaughtListeners() &&
3073 IsExceptionThrownByCurrentMethod(exception)) {
3074 // Instrumentation may cause GC so keep the exception object safe.
3075 StackHandleScope<1> hs(this);
3076 HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3077 instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
3078 }
3079 // Does instrumentation need to deoptimize the stack?
3080 // Note: we do this *after* reporting the exception to instrumentation in case it
3081 // now requires deoptimization. It may happen if a debugger is attached and requests
3082 // new events (single-step, breakpoint, ...) when the exception is reported.
3083 if (Dbg::IsForcedInterpreterNeededForException(this)) {
3084 NthCallerVisitor visitor(this, 0, false);
3085 visitor.WalkStack();
3086 if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
3087 // Save the exception into the deoptimization context so it can be restored
3088 // before entering the interpreter.
3089 PushDeoptimizationContext(
3090 JValue(), /*is_reference */ false, /* from_code */ false, exception);
3091 artDeoptimize(this);
3092 UNREACHABLE();
3093 } else {
3094 LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3095 << visitor.caller->PrettyMethod();
3096 }
3097 }
3098
3099 // Don't leave exception visible while we try to find the handler, which may cause class
3100 // resolution.
3101 ClearException();
3102 QuickExceptionHandler exception_handler(this, false);
3103 exception_handler.FindCatch(exception);
3104 exception_handler.UpdateInstrumentationStack();
3105 exception_handler.DoLongJump();
3106 }
3107
GetLongJumpContext()3108 Context* Thread::GetLongJumpContext() {
3109 Context* result = tlsPtr_.long_jump_context;
3110 if (result == nullptr) {
3111 result = Context::Create();
3112 } else {
3113 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
3114 result->Reset();
3115 }
3116 return result;
3117 }
3118
3119 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3120 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
3121 struct CurrentMethodVisitor FINAL : public StackVisitor {
CurrentMethodVisitorart::FINAL3122 CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
3123 REQUIRES_SHARED(Locks::mutator_lock_)
3124 : StackVisitor(thread,
3125 context,
3126 StackVisitor::StackWalkKind::kIncludeInlinedFrames,
3127 check_suspended),
3128 this_object_(nullptr),
3129 method_(nullptr),
3130 dex_pc_(0),
3131 abort_on_error_(abort_on_error) {}
VisitFrameart::FINAL3132 bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3133 ArtMethod* m = GetMethod();
3134 if (m->IsRuntimeMethod()) {
3135 // Continue if this is a runtime method.
3136 return true;
3137 }
3138 if (context_ != nullptr) {
3139 this_object_ = GetThisObject();
3140 }
3141 method_ = m;
3142 dex_pc_ = GetDexPc(abort_on_error_);
3143 return false;
3144 }
3145 ObjPtr<mirror::Object> this_object_;
3146 ArtMethod* method_;
3147 uint32_t dex_pc_;
3148 const bool abort_on_error_;
3149 };
3150
GetCurrentMethod(uint32_t * dex_pc,bool check_suspended,bool abort_on_error) const3151 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
3152 bool check_suspended,
3153 bool abort_on_error) const {
3154 CurrentMethodVisitor visitor(const_cast<Thread*>(this),
3155 nullptr,
3156 check_suspended,
3157 abort_on_error);
3158 visitor.WalkStack(false);
3159 if (dex_pc != nullptr) {
3160 *dex_pc = visitor.dex_pc_;
3161 }
3162 return visitor.method_;
3163 }
3164
HoldsLock(ObjPtr<mirror::Object> object) const3165 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
3166 return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
3167 }
3168
3169 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
3170 template <typename RootVisitor, bool kPrecise = false>
3171 class ReferenceMapVisitor : public StackVisitor {
3172 public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)3173 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
3174 REQUIRES_SHARED(Locks::mutator_lock_)
3175 // We are visiting the references in compiled frames, so we do not need
3176 // to know the inlined frames.
3177 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
3178 visitor_(visitor) {}
3179
VisitFrame()3180 bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3181 if (false) {
3182 LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
3183 << StringPrintf("@ PC:%04x", GetDexPc());
3184 }
3185 ShadowFrame* shadow_frame = GetCurrentShadowFrame();
3186 if (shadow_frame != nullptr) {
3187 VisitShadowFrame(shadow_frame);
3188 } else {
3189 VisitQuickFrame();
3190 }
3191 return true;
3192 }
3193
VisitShadowFrame(ShadowFrame * shadow_frame)3194 void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
3195 ArtMethod* m = shadow_frame->GetMethod();
3196 VisitDeclaringClass(m);
3197 DCHECK(m != nullptr);
3198 size_t num_regs = shadow_frame->NumberOfVRegs();
3199 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
3200 // handle scope for JNI or References for interpreter.
3201 for (size_t reg = 0; reg < num_regs; ++reg) {
3202 mirror::Object* ref = shadow_frame->GetVRegReference(reg);
3203 if (ref != nullptr) {
3204 mirror::Object* new_ref = ref;
3205 visitor_(&new_ref, reg, this);
3206 if (new_ref != ref) {
3207 shadow_frame->SetVRegReference(reg, new_ref);
3208 }
3209 }
3210 }
3211 // Mark lock count map required for structured locking checks.
3212 shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
3213 }
3214
3215 private:
3216 // Visiting the declaring class is necessary so that we don't unload the class of a method that
3217 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
3218 // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)3219 void VisitDeclaringClass(ArtMethod* method)
3220 REQUIRES_SHARED(Locks::mutator_lock_)
3221 NO_THREAD_SAFETY_ANALYSIS {
3222 ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
3223 // klass can be null for runtime methods.
3224 if (klass != nullptr) {
3225 if (kVerifyImageObjectsMarked) {
3226 gc::Heap* const heap = Runtime::Current()->GetHeap();
3227 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
3228 /*fail_ok*/true);
3229 if (space != nullptr && space->IsImageSpace()) {
3230 bool failed = false;
3231 if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
3232 failed = true;
3233 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
3234 } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
3235 failed = true;
3236 LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
3237 }
3238 if (failed) {
3239 GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3240 space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
3241 LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
3242 << " klass@" << klass.Ptr();
3243 // Pretty info last in case it crashes.
3244 LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
3245 << klass->PrettyClass();
3246 }
3247 }
3248 }
3249 mirror::Object* new_ref = klass.Ptr();
3250 visitor_(&new_ref, -1, this);
3251 if (new_ref != klass) {
3252 method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
3253 }
3254 }
3255 }
3256
3257 template <typename T>
3258 ALWAYS_INLINE
VisitQuickFrameWithVregCallback()3259 inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
3260 ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
3261 DCHECK(cur_quick_frame != nullptr);
3262 ArtMethod* m = *cur_quick_frame;
3263 VisitDeclaringClass(m);
3264
3265 // Process register map (which native and runtime methods don't have)
3266 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
3267 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
3268 DCHECK(method_header->IsOptimized());
3269 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
3270 reinterpret_cast<uintptr_t>(cur_quick_frame));
3271 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
3272 CodeInfo code_info = method_header->GetOptimizedCodeInfo();
3273 CodeInfoEncoding encoding = code_info.ExtractEncoding();
3274 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
3275 DCHECK(map.IsValid());
3276
3277 T vreg_info(m, code_info, encoding, map, visitor_);
3278
3279 // Visit stack entries that hold pointers.
3280 const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
3281 BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
3282 for (size_t i = 0; i < number_of_bits; ++i) {
3283 if (stack_mask.LoadBit(i)) {
3284 auto* ref_addr = vreg_base + i;
3285 mirror::Object* ref = ref_addr->AsMirrorPtr();
3286 if (ref != nullptr) {
3287 mirror::Object* new_ref = ref;
3288 vreg_info.VisitStack(&new_ref, i, this);
3289 if (ref != new_ref) {
3290 ref_addr->Assign(new_ref);
3291 }
3292 }
3293 }
3294 }
3295 // Visit callee-save registers that hold pointers.
3296 uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
3297 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
3298 if (register_mask & (1 << i)) {
3299 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
3300 if (kIsDebugBuild && ref_addr == nullptr) {
3301 std::string thread_name;
3302 GetThread()->GetThreadName(thread_name);
3303 LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
3304 DescribeStack(GetThread());
3305 LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
3306 << "set in register_mask=" << register_mask << " at " << DescribeLocation();
3307 }
3308 if (*ref_addr != nullptr) {
3309 vreg_info.VisitRegister(ref_addr, i, this);
3310 }
3311 }
3312 }
3313 }
3314 }
3315
VisitQuickFrame()3316 void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
3317 if (kPrecise) {
3318 VisitQuickFramePrecise();
3319 } else {
3320 VisitQuickFrameNonPrecise();
3321 }
3322 }
3323
VisitQuickFrameNonPrecise()3324 void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3325 struct UndefinedVRegInfo {
3326 UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
3327 const CodeInfo& code_info ATTRIBUTE_UNUSED,
3328 const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
3329 const StackMap& map ATTRIBUTE_UNUSED,
3330 RootVisitor& _visitor)
3331 : visitor(_visitor) {
3332 }
3333
3334 ALWAYS_INLINE
3335 void VisitStack(mirror::Object** ref,
3336 size_t stack_index ATTRIBUTE_UNUSED,
3337 const StackVisitor* stack_visitor)
3338 REQUIRES_SHARED(Locks::mutator_lock_) {
3339 visitor(ref, -1, stack_visitor);
3340 }
3341
3342 ALWAYS_INLINE
3343 void VisitRegister(mirror::Object** ref,
3344 size_t register_index ATTRIBUTE_UNUSED,
3345 const StackVisitor* stack_visitor)
3346 REQUIRES_SHARED(Locks::mutator_lock_) {
3347 visitor(ref, -1, stack_visitor);
3348 }
3349
3350 RootVisitor& visitor;
3351 };
3352 VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
3353 }
3354
VisitQuickFramePrecise()3355 void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
3356 struct StackMapVRegInfo {
3357 StackMapVRegInfo(ArtMethod* method,
3358 const CodeInfo& _code_info,
3359 const CodeInfoEncoding& _encoding,
3360 const StackMap& map,
3361 RootVisitor& _visitor)
3362 : number_of_dex_registers(method->GetCodeItem()->registers_size_),
3363 code_info(_code_info),
3364 encoding(_encoding),
3365 dex_register_map(code_info.GetDexRegisterMapOf(map,
3366 encoding,
3367 number_of_dex_registers)),
3368 visitor(_visitor) {
3369 }
3370
3371 // TODO: If necessary, we should consider caching a reverse map instead of the linear
3372 // lookups for each location.
3373 void FindWithType(const size_t index,
3374 const DexRegisterLocation::Kind kind,
3375 mirror::Object** ref,
3376 const StackVisitor* stack_visitor)
3377 REQUIRES_SHARED(Locks::mutator_lock_) {
3378 bool found = false;
3379 for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
3380 DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
3381 dex_reg, number_of_dex_registers, code_info, encoding);
3382 if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
3383 visitor(ref, dex_reg, stack_visitor);
3384 found = true;
3385 }
3386 }
3387
3388 if (!found) {
3389 // If nothing found, report with -1.
3390 visitor(ref, -1, stack_visitor);
3391 }
3392 }
3393
3394 void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
3395 REQUIRES_SHARED(Locks::mutator_lock_) {
3396 const size_t stack_offset = stack_index * kFrameSlotSize;
3397 FindWithType(stack_offset,
3398 DexRegisterLocation::Kind::kInStack,
3399 ref,
3400 stack_visitor);
3401 }
3402
3403 void VisitRegister(mirror::Object** ref,
3404 size_t register_index,
3405 const StackVisitor* stack_visitor)
3406 REQUIRES_SHARED(Locks::mutator_lock_) {
3407 FindWithType(register_index,
3408 DexRegisterLocation::Kind::kInRegister,
3409 ref,
3410 stack_visitor);
3411 }
3412
3413 size_t number_of_dex_registers;
3414 const CodeInfo& code_info;
3415 const CodeInfoEncoding& encoding;
3416 DexRegisterMap dex_register_map;
3417 RootVisitor& visitor;
3418 };
3419 VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
3420 }
3421
3422 // Visitor for when we visit a root.
3423 RootVisitor& visitor_;
3424 };
3425
3426 class RootCallbackVisitor {
3427 public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)3428 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
3429
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const3430 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
3431 REQUIRES_SHARED(Locks::mutator_lock_) {
3432 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
3433 }
3434
3435 private:
3436 RootVisitor* const visitor_;
3437 const uint32_t tid_;
3438 };
3439
3440 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)3441 void Thread::VisitRoots(RootVisitor* visitor) {
3442 const uint32_t thread_id = GetThreadId();
3443 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
3444 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
3445 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
3446 RootInfo(kRootNativeStack, thread_id));
3447 }
3448 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
3449 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
3450 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
3451 HandleScopeVisitRoots(visitor, thread_id);
3452 if (tlsPtr_.debug_invoke_req != nullptr) {
3453 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
3454 }
3455 // Visit roots for deoptimization.
3456 if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
3457 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3458 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3459 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
3460 record != nullptr;
3461 record = record->GetLink()) {
3462 for (ShadowFrame* shadow_frame = record->GetShadowFrame();
3463 shadow_frame != nullptr;
3464 shadow_frame = shadow_frame->GetLink()) {
3465 mapper.VisitShadowFrame(shadow_frame);
3466 }
3467 }
3468 }
3469 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
3470 record != nullptr;
3471 record = record->GetLink()) {
3472 if (record->IsReference()) {
3473 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
3474 RootInfo(kRootThreadObject, thread_id));
3475 }
3476 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
3477 RootInfo(kRootThreadObject, thread_id));
3478 }
3479 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
3480 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3481 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
3482 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
3483 record != nullptr;
3484 record = record->GetNext()) {
3485 mapper.VisitShadowFrame(record->GetShadowFrame());
3486 }
3487 }
3488 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
3489 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
3490 }
3491 // Visit roots on this thread's stack
3492 RuntimeContextType context;
3493 RootCallbackVisitor visitor_to_callback(visitor, thread_id);
3494 ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
3495 mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
3496 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
3497 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
3498 }
3499 }
3500
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)3501 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
3502 if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
3503 VisitRoots<true>(visitor);
3504 } else {
3505 VisitRoots<false>(visitor);
3506 }
3507 }
3508
3509 class VerifyRootVisitor : public SingleRootVisitor {
3510 public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)3511 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
3512 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
3513 VerifyObject(root);
3514 }
3515 };
3516
VerifyStackImpl()3517 void Thread::VerifyStackImpl() {
3518 if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
3519 VerifyRootVisitor visitor;
3520 std::unique_ptr<Context> context(Context::Create());
3521 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
3522 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
3523 mapper.WalkStack();
3524 }
3525 }
3526
3527 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()3528 void Thread::SetStackEndForStackOverflow() {
3529 // During stack overflow we allow use of the full stack.
3530 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
3531 // However, we seem to have already extended to use the full stack.
3532 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
3533 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
3534 DumpStack(LOG_STREAM(ERROR));
3535 LOG(FATAL) << "Recursive stack overflow.";
3536 }
3537
3538 tlsPtr_.stack_end = tlsPtr_.stack_begin;
3539
3540 // Remove the stack overflow protection if is it set up.
3541 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
3542 if (implicit_stack_check) {
3543 if (!UnprotectStack()) {
3544 LOG(ERROR) << "Unable to remove stack protection for stack overflow";
3545 }
3546 }
3547 }
3548
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)3549 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
3550 DCHECK_LE(start, end);
3551 DCHECK_LE(end, limit);
3552 tlsPtr_.thread_local_start = start;
3553 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
3554 tlsPtr_.thread_local_end = end;
3555 tlsPtr_.thread_local_limit = limit;
3556 tlsPtr_.thread_local_objects = 0;
3557 }
3558
HasTlab() const3559 bool Thread::HasTlab() const {
3560 bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
3561 if (has_tlab) {
3562 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
3563 } else {
3564 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
3565 }
3566 return has_tlab;
3567 }
3568
operator <<(std::ostream & os,const Thread & thread)3569 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
3570 thread.ShortDump(os);
3571 return os;
3572 }
3573
ProtectStack(bool fatal_on_error)3574 bool Thread::ProtectStack(bool fatal_on_error) {
3575 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3576 VLOG(threads) << "Protecting stack at " << pregion;
3577 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
3578 if (fatal_on_error) {
3579 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
3580 "Reason: "
3581 << strerror(errno) << " size: " << kStackOverflowProtectedSize;
3582 }
3583 return false;
3584 }
3585 return true;
3586 }
3587
UnprotectStack()3588 bool Thread::UnprotectStack() {
3589 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
3590 VLOG(threads) << "Unprotecting stack at " << pregion;
3591 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
3592 }
3593
ActivateSingleStepControl(SingleStepControl * ssc)3594 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
3595 CHECK(Dbg::IsDebuggerActive());
3596 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
3597 CHECK(ssc != nullptr);
3598 tlsPtr_.single_step_control = ssc;
3599 }
3600
DeactivateSingleStepControl()3601 void Thread::DeactivateSingleStepControl() {
3602 CHECK(Dbg::IsDebuggerActive());
3603 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
3604 SingleStepControl* ssc = GetSingleStepControl();
3605 tlsPtr_.single_step_control = nullptr;
3606 delete ssc;
3607 }
3608
SetDebugInvokeReq(DebugInvokeReq * req)3609 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
3610 CHECK(Dbg::IsDebuggerActive());
3611 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
3612 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
3613 CHECK(req != nullptr);
3614 tlsPtr_.debug_invoke_req = req;
3615 }
3616
ClearDebugInvokeReq()3617 void Thread::ClearDebugInvokeReq() {
3618 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
3619 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
3620 DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
3621 tlsPtr_.debug_invoke_req = nullptr;
3622 delete req;
3623 }
3624
PushVerifier(verifier::MethodVerifier * verifier)3625 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
3626 verifier->link_ = tlsPtr_.method_verifier;
3627 tlsPtr_.method_verifier = verifier;
3628 }
3629
PopVerifier(verifier::MethodVerifier * verifier)3630 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
3631 CHECK_EQ(tlsPtr_.method_verifier, verifier);
3632 tlsPtr_.method_verifier = verifier->link_;
3633 }
3634
NumberOfHeldMutexes() const3635 size_t Thread::NumberOfHeldMutexes() const {
3636 size_t count = 0;
3637 for (BaseMutex* mu : tlsPtr_.held_mutexes) {
3638 count += mu != nullptr ? 1 : 0;
3639 }
3640 return count;
3641 }
3642
DeoptimizeWithDeoptimizationException(JValue * result)3643 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
3644 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
3645 ClearException();
3646 ShadowFrame* shadow_frame =
3647 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
3648 ObjPtr<mirror::Throwable> pending_exception;
3649 bool from_code = false;
3650 PopDeoptimizationContext(result, &pending_exception, &from_code);
3651 SetTopOfStack(nullptr);
3652 SetTopOfShadowStack(shadow_frame);
3653
3654 // Restore the exception that was pending before deoptimization then interpret the
3655 // deoptimized frames.
3656 if (pending_exception != nullptr) {
3657 SetException(pending_exception);
3658 }
3659 interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
3660 }
3661
SetException(ObjPtr<mirror::Throwable> new_exception)3662 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
3663 CHECK(new_exception != nullptr);
3664 // TODO: DCHECK(!IsExceptionPending());
3665 tlsPtr_.exception = new_exception.Ptr();
3666 }
3667
IsAotCompiler()3668 bool Thread::IsAotCompiler() {
3669 return Runtime::Current()->IsAotCompiler();
3670 }
3671
GetPeerFromOtherThread() const3672 mirror::Object* Thread::GetPeerFromOtherThread() const {
3673 DCHECK(tlsPtr_.jpeer == nullptr);
3674 mirror::Object* peer = tlsPtr_.opeer;
3675 if (kUseReadBarrier && Current()->GetIsGcMarking()) {
3676 // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
3677 // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
3678 // mark/forward it here.
3679 peer = art::ReadBarrier::Mark(peer);
3680 }
3681 return peer;
3682 }
3683
SetReadBarrierEntrypoints()3684 void Thread::SetReadBarrierEntrypoints() {
3685 // Make sure entrypoints aren't null.
3686 UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
3687 }
3688
3689 } // namespace art
3690