1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/video_coding/session_info.h"
12
13 #include "webrtc/base/logging.h"
14 #include "webrtc/modules/video_coding/packet.h"
15
16 namespace webrtc {
17
18 namespace {
19
BufferToUWord16(const uint8_t * dataBuffer)20 uint16_t BufferToUWord16(const uint8_t* dataBuffer) {
21 return (dataBuffer[0] << 8) | dataBuffer[1];
22 }
23
24 } // namespace
25
VCMSessionInfo()26 VCMSessionInfo::VCMSessionInfo()
27 : session_nack_(false),
28 complete_(false),
29 decodable_(false),
30 frame_type_(kVideoFrameDelta),
31 packets_(),
32 empty_seq_num_low_(-1),
33 empty_seq_num_high_(-1),
34 first_packet_seq_num_(-1),
35 last_packet_seq_num_(-1) {}
36
UpdateDataPointers(const uint8_t * old_base_ptr,const uint8_t * new_base_ptr)37 void VCMSessionInfo::UpdateDataPointers(const uint8_t* old_base_ptr,
38 const uint8_t* new_base_ptr) {
39 for (PacketIterator it = packets_.begin(); it != packets_.end(); ++it)
40 if ((*it).dataPtr != NULL) {
41 assert(old_base_ptr != NULL && new_base_ptr != NULL);
42 (*it).dataPtr = new_base_ptr + ((*it).dataPtr - old_base_ptr);
43 }
44 }
45
LowSequenceNumber() const46 int VCMSessionInfo::LowSequenceNumber() const {
47 if (packets_.empty())
48 return empty_seq_num_low_;
49 return packets_.front().seqNum;
50 }
51
HighSequenceNumber() const52 int VCMSessionInfo::HighSequenceNumber() const {
53 if (packets_.empty())
54 return empty_seq_num_high_;
55 if (empty_seq_num_high_ == -1)
56 return packets_.back().seqNum;
57 return LatestSequenceNumber(packets_.back().seqNum, empty_seq_num_high_);
58 }
59
PictureId() const60 int VCMSessionInfo::PictureId() const {
61 if (packets_.empty())
62 return kNoPictureId;
63 if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp8) {
64 return packets_.front().codecSpecificHeader.codecHeader.VP8.pictureId;
65 } else if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp9) {
66 return packets_.front().codecSpecificHeader.codecHeader.VP9.picture_id;
67 } else {
68 return kNoPictureId;
69 }
70 }
71
TemporalId() const72 int VCMSessionInfo::TemporalId() const {
73 if (packets_.empty())
74 return kNoTemporalIdx;
75 if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp8) {
76 return packets_.front().codecSpecificHeader.codecHeader.VP8.temporalIdx;
77 } else if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp9) {
78 return packets_.front().codecSpecificHeader.codecHeader.VP9.temporal_idx;
79 } else {
80 return kNoTemporalIdx;
81 }
82 }
83
LayerSync() const84 bool VCMSessionInfo::LayerSync() const {
85 if (packets_.empty())
86 return false;
87 if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp8) {
88 return packets_.front().codecSpecificHeader.codecHeader.VP8.layerSync;
89 } else if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp9) {
90 return packets_.front()
91 .codecSpecificHeader.codecHeader.VP9.temporal_up_switch;
92 } else {
93 return false;
94 }
95 }
96
Tl0PicId() const97 int VCMSessionInfo::Tl0PicId() const {
98 if (packets_.empty())
99 return kNoTl0PicIdx;
100 if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp8) {
101 return packets_.front().codecSpecificHeader.codecHeader.VP8.tl0PicIdx;
102 } else if (packets_.front().codecSpecificHeader.codec == kRtpVideoVp9) {
103 return packets_.front().codecSpecificHeader.codecHeader.VP9.tl0_pic_idx;
104 } else {
105 return kNoTl0PicIdx;
106 }
107 }
108
NonReference() const109 bool VCMSessionInfo::NonReference() const {
110 if (packets_.empty() ||
111 packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
112 return false;
113 return packets_.front().codecSpecificHeader.codecHeader.VP8.nonReference;
114 }
115
SetGofInfo(const GofInfoVP9 & gof_info,size_t idx)116 void VCMSessionInfo::SetGofInfo(const GofInfoVP9& gof_info, size_t idx) {
117 if (packets_.empty() ||
118 packets_.front().codecSpecificHeader.codec != kRtpVideoVp9 ||
119 packets_.front().codecSpecificHeader.codecHeader.VP9.flexible_mode) {
120 return;
121 }
122 packets_.front().codecSpecificHeader.codecHeader.VP9.temporal_idx =
123 gof_info.temporal_idx[idx];
124 packets_.front().codecSpecificHeader.codecHeader.VP9.temporal_up_switch =
125 gof_info.temporal_up_switch[idx];
126 packets_.front().codecSpecificHeader.codecHeader.VP9.num_ref_pics =
127 gof_info.num_ref_pics[idx];
128 for (uint8_t i = 0; i < gof_info.num_ref_pics[idx]; ++i) {
129 packets_.front().codecSpecificHeader.codecHeader.VP9.pid_diff[i] =
130 gof_info.pid_diff[idx][i];
131 }
132 }
133
Reset()134 void VCMSessionInfo::Reset() {
135 session_nack_ = false;
136 complete_ = false;
137 decodable_ = false;
138 frame_type_ = kVideoFrameDelta;
139 packets_.clear();
140 empty_seq_num_low_ = -1;
141 empty_seq_num_high_ = -1;
142 first_packet_seq_num_ = -1;
143 last_packet_seq_num_ = -1;
144 }
145
SessionLength() const146 size_t VCMSessionInfo::SessionLength() const {
147 size_t length = 0;
148 for (PacketIteratorConst it = packets_.begin(); it != packets_.end(); ++it)
149 length += (*it).sizeBytes;
150 return length;
151 }
152
NumPackets() const153 int VCMSessionInfo::NumPackets() const {
154 return packets_.size();
155 }
156
InsertBuffer(uint8_t * frame_buffer,PacketIterator packet_it)157 size_t VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
158 PacketIterator packet_it) {
159 VCMPacket& packet = *packet_it;
160 PacketIterator it;
161
162 // Calculate the offset into the frame buffer for this packet.
163 size_t offset = 0;
164 for (it = packets_.begin(); it != packet_it; ++it)
165 offset += (*it).sizeBytes;
166
167 // Set the data pointer to pointing to the start of this packet in the
168 // frame buffer.
169 const uint8_t* packet_buffer = packet.dataPtr;
170 packet.dataPtr = frame_buffer + offset;
171
172 // We handle H.264 STAP-A packets in a special way as we need to remove the
173 // two length bytes between each NAL unit, and potentially add start codes.
174 // TODO(pbos): Remove H264 parsing from this step and use a fragmentation
175 // header supplied by the H264 depacketizer.
176 const size_t kH264NALHeaderLengthInBytes = 1;
177 const size_t kLengthFieldLength = 2;
178 if (packet.codecSpecificHeader.codec == kRtpVideoH264 &&
179 packet.codecSpecificHeader.codecHeader.H264.packetization_type ==
180 kH264StapA) {
181 size_t required_length = 0;
182 const uint8_t* nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
183 while (nalu_ptr < packet_buffer + packet.sizeBytes) {
184 size_t length = BufferToUWord16(nalu_ptr);
185 required_length +=
186 length + (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
187 nalu_ptr += kLengthFieldLength + length;
188 }
189 ShiftSubsequentPackets(packet_it, required_length);
190 nalu_ptr = packet_buffer + kH264NALHeaderLengthInBytes;
191 uint8_t* frame_buffer_ptr = frame_buffer + offset;
192 while (nalu_ptr < packet_buffer + packet.sizeBytes) {
193 size_t length = BufferToUWord16(nalu_ptr);
194 nalu_ptr += kLengthFieldLength;
195 frame_buffer_ptr += Insert(nalu_ptr, length, packet.insertStartCode,
196 const_cast<uint8_t*>(frame_buffer_ptr));
197 nalu_ptr += length;
198 }
199 packet.sizeBytes = required_length;
200 return packet.sizeBytes;
201 }
202 ShiftSubsequentPackets(
203 packet_it, packet.sizeBytes +
204 (packet.insertStartCode ? kH264StartCodeLengthBytes : 0));
205
206 packet.sizeBytes =
207 Insert(packet_buffer, packet.sizeBytes, packet.insertStartCode,
208 const_cast<uint8_t*>(packet.dataPtr));
209 return packet.sizeBytes;
210 }
211
Insert(const uint8_t * buffer,size_t length,bool insert_start_code,uint8_t * frame_buffer)212 size_t VCMSessionInfo::Insert(const uint8_t* buffer,
213 size_t length,
214 bool insert_start_code,
215 uint8_t* frame_buffer) {
216 if (insert_start_code) {
217 const unsigned char startCode[] = {0, 0, 0, 1};
218 memcpy(frame_buffer, startCode, kH264StartCodeLengthBytes);
219 }
220 memcpy(frame_buffer + (insert_start_code ? kH264StartCodeLengthBytes : 0),
221 buffer, length);
222 length += (insert_start_code ? kH264StartCodeLengthBytes : 0);
223
224 return length;
225 }
226
ShiftSubsequentPackets(PacketIterator it,int steps_to_shift)227 void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
228 int steps_to_shift) {
229 ++it;
230 if (it == packets_.end())
231 return;
232 uint8_t* first_packet_ptr = const_cast<uint8_t*>((*it).dataPtr);
233 int shift_length = 0;
234 // Calculate the total move length and move the data pointers in advance.
235 for (; it != packets_.end(); ++it) {
236 shift_length += (*it).sizeBytes;
237 if ((*it).dataPtr != NULL)
238 (*it).dataPtr += steps_to_shift;
239 }
240 memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
241 }
242
UpdateCompleteSession()243 void VCMSessionInfo::UpdateCompleteSession() {
244 if (HaveFirstPacket() && HaveLastPacket()) {
245 // Do we have all the packets in this session?
246 bool complete_session = true;
247 PacketIterator it = packets_.begin();
248 PacketIterator prev_it = it;
249 ++it;
250 for (; it != packets_.end(); ++it) {
251 if (!InSequence(it, prev_it)) {
252 complete_session = false;
253 break;
254 }
255 prev_it = it;
256 }
257 complete_ = complete_session;
258 }
259 }
260
UpdateDecodableSession(const FrameData & frame_data)261 void VCMSessionInfo::UpdateDecodableSession(const FrameData& frame_data) {
262 // Irrelevant if session is already complete or decodable
263 if (complete_ || decodable_)
264 return;
265 // TODO(agalusza): Account for bursty loss.
266 // TODO(agalusza): Refine these values to better approximate optimal ones.
267 // Do not decode frames if the RTT is lower than this.
268 const int64_t kRttThreshold = 100;
269 // Do not decode frames if the number of packets is between these two
270 // thresholds.
271 const float kLowPacketPercentageThreshold = 0.2f;
272 const float kHighPacketPercentageThreshold = 0.8f;
273 if (frame_data.rtt_ms < kRttThreshold || frame_type_ == kVideoFrameKey ||
274 !HaveFirstPacket() ||
275 (NumPackets() <= kHighPacketPercentageThreshold *
276 frame_data.rolling_average_packets_per_frame &&
277 NumPackets() > kLowPacketPercentageThreshold *
278 frame_data.rolling_average_packets_per_frame))
279 return;
280
281 decodable_ = true;
282 }
283
complete() const284 bool VCMSessionInfo::complete() const {
285 return complete_;
286 }
287
decodable() const288 bool VCMSessionInfo::decodable() const {
289 return decodable_;
290 }
291
292 // Find the end of the NAL unit which the packet pointed to by |packet_it|
293 // belongs to. Returns an iterator to the last packet of the frame if the end
294 // of the NAL unit wasn't found.
FindNaluEnd(PacketIterator packet_it) const295 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNaluEnd(
296 PacketIterator packet_it) const {
297 if ((*packet_it).completeNALU == kNaluEnd ||
298 (*packet_it).completeNALU == kNaluComplete) {
299 return packet_it;
300 }
301 // Find the end of the NAL unit.
302 for (; packet_it != packets_.end(); ++packet_it) {
303 if (((*packet_it).completeNALU == kNaluComplete &&
304 (*packet_it).sizeBytes > 0) ||
305 // Found next NALU.
306 (*packet_it).completeNALU == kNaluStart)
307 return --packet_it;
308 if ((*packet_it).completeNALU == kNaluEnd)
309 return packet_it;
310 }
311 // The end wasn't found.
312 return --packet_it;
313 }
314
DeletePacketData(PacketIterator start,PacketIterator end)315 size_t VCMSessionInfo::DeletePacketData(PacketIterator start,
316 PacketIterator end) {
317 size_t bytes_to_delete = 0; // The number of bytes to delete.
318 PacketIterator packet_after_end = end;
319 ++packet_after_end;
320
321 // Get the number of bytes to delete.
322 // Clear the size of these packets.
323 for (PacketIterator it = start; it != packet_after_end; ++it) {
324 bytes_to_delete += (*it).sizeBytes;
325 (*it).sizeBytes = 0;
326 (*it).dataPtr = NULL;
327 }
328 if (bytes_to_delete > 0)
329 ShiftSubsequentPackets(end, -static_cast<int>(bytes_to_delete));
330 return bytes_to_delete;
331 }
332
BuildVP8FragmentationHeader(uint8_t * frame_buffer,size_t frame_buffer_length,RTPFragmentationHeader * fragmentation)333 size_t VCMSessionInfo::BuildVP8FragmentationHeader(
334 uint8_t* frame_buffer,
335 size_t frame_buffer_length,
336 RTPFragmentationHeader* fragmentation) {
337 size_t new_length = 0;
338 // Allocate space for max number of partitions
339 fragmentation->VerifyAndAllocateFragmentationHeader(kMaxVP8Partitions);
340 fragmentation->fragmentationVectorSize = 0;
341 memset(fragmentation->fragmentationLength, 0,
342 kMaxVP8Partitions * sizeof(size_t));
343 if (packets_.empty())
344 return new_length;
345 PacketIterator it = FindNextPartitionBeginning(packets_.begin());
346 while (it != packets_.end()) {
347 const int partition_id =
348 (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
349 PacketIterator partition_end = FindPartitionEnd(it);
350 fragmentation->fragmentationOffset[partition_id] =
351 (*it).dataPtr - frame_buffer;
352 assert(fragmentation->fragmentationOffset[partition_id] <
353 frame_buffer_length);
354 fragmentation->fragmentationLength[partition_id] =
355 (*partition_end).dataPtr + (*partition_end).sizeBytes - (*it).dataPtr;
356 assert(fragmentation->fragmentationLength[partition_id] <=
357 frame_buffer_length);
358 new_length += fragmentation->fragmentationLength[partition_id];
359 ++partition_end;
360 it = FindNextPartitionBeginning(partition_end);
361 if (partition_id + 1 > fragmentation->fragmentationVectorSize)
362 fragmentation->fragmentationVectorSize = partition_id + 1;
363 }
364 // Set all empty fragments to start where the previous fragment ends,
365 // and have zero length.
366 if (fragmentation->fragmentationLength[0] == 0)
367 fragmentation->fragmentationOffset[0] = 0;
368 for (int i = 1; i < fragmentation->fragmentationVectorSize; ++i) {
369 if (fragmentation->fragmentationLength[i] == 0)
370 fragmentation->fragmentationOffset[i] =
371 fragmentation->fragmentationOffset[i - 1] +
372 fragmentation->fragmentationLength[i - 1];
373 assert(i == 0 ||
374 fragmentation->fragmentationOffset[i] >=
375 fragmentation->fragmentationOffset[i - 1]);
376 }
377 assert(new_length <= frame_buffer_length);
378 return new_length;
379 }
380
FindNextPartitionBeginning(PacketIterator it) const381 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNextPartitionBeginning(
382 PacketIterator it) const {
383 while (it != packets_.end()) {
384 if ((*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition) {
385 return it;
386 }
387 ++it;
388 }
389 return it;
390 }
391
FindPartitionEnd(PacketIterator it) const392 VCMSessionInfo::PacketIterator VCMSessionInfo::FindPartitionEnd(
393 PacketIterator it) const {
394 assert((*it).codec == kVideoCodecVP8);
395 PacketIterator prev_it = it;
396 const int partition_id =
397 (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
398 while (it != packets_.end()) {
399 bool beginning =
400 (*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition;
401 int current_partition_id =
402 (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
403 bool packet_loss_found = (!beginning && !InSequence(it, prev_it));
404 if (packet_loss_found ||
405 (beginning && current_partition_id != partition_id)) {
406 // Missing packet, the previous packet was the last in sequence.
407 return prev_it;
408 }
409 prev_it = it;
410 ++it;
411 }
412 return prev_it;
413 }
414
InSequence(const PacketIterator & packet_it,const PacketIterator & prev_packet_it)415 bool VCMSessionInfo::InSequence(const PacketIterator& packet_it,
416 const PacketIterator& prev_packet_it) {
417 // If the two iterators are pointing to the same packet they are considered
418 // to be in sequence.
419 return (packet_it == prev_packet_it ||
420 (static_cast<uint16_t>((*prev_packet_it).seqNum + 1) ==
421 (*packet_it).seqNum));
422 }
423
MakeDecodable()424 size_t VCMSessionInfo::MakeDecodable() {
425 size_t return_length = 0;
426 if (packets_.empty()) {
427 return 0;
428 }
429 PacketIterator it = packets_.begin();
430 // Make sure we remove the first NAL unit if it's not decodable.
431 if ((*it).completeNALU == kNaluIncomplete || (*it).completeNALU == kNaluEnd) {
432 PacketIterator nalu_end = FindNaluEnd(it);
433 return_length += DeletePacketData(it, nalu_end);
434 it = nalu_end;
435 }
436 PacketIterator prev_it = it;
437 // Take care of the rest of the NAL units.
438 for (; it != packets_.end(); ++it) {
439 bool start_of_nalu = ((*it).completeNALU == kNaluStart ||
440 (*it).completeNALU == kNaluComplete);
441 if (!start_of_nalu && !InSequence(it, prev_it)) {
442 // Found a sequence number gap due to packet loss.
443 PacketIterator nalu_end = FindNaluEnd(it);
444 return_length += DeletePacketData(it, nalu_end);
445 it = nalu_end;
446 }
447 prev_it = it;
448 }
449 return return_length;
450 }
451
SetNotDecodableIfIncomplete()452 void VCMSessionInfo::SetNotDecodableIfIncomplete() {
453 // We don't need to check for completeness first because the two are
454 // orthogonal. If complete_ is true, decodable_ is irrelevant.
455 decodable_ = false;
456 }
457
HaveFirstPacket() const458 bool VCMSessionInfo::HaveFirstPacket() const {
459 return !packets_.empty() && (first_packet_seq_num_ != -1);
460 }
461
HaveLastPacket() const462 bool VCMSessionInfo::HaveLastPacket() const {
463 return !packets_.empty() && (last_packet_seq_num_ != -1);
464 }
465
session_nack() const466 bool VCMSessionInfo::session_nack() const {
467 return session_nack_;
468 }
469
InsertPacket(const VCMPacket & packet,uint8_t * frame_buffer,VCMDecodeErrorMode decode_error_mode,const FrameData & frame_data)470 int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
471 uint8_t* frame_buffer,
472 VCMDecodeErrorMode decode_error_mode,
473 const FrameData& frame_data) {
474 if (packet.frameType == kEmptyFrame) {
475 // Update sequence number of an empty packet.
476 // Only media packets are inserted into the packet list.
477 InformOfEmptyPacket(packet.seqNum);
478 return 0;
479 }
480
481 if (packets_.size() == kMaxPacketsInSession) {
482 LOG(LS_ERROR) << "Max number of packets per frame has been reached.";
483 return -1;
484 }
485
486 // Find the position of this packet in the packet list in sequence number
487 // order and insert it. Loop over the list in reverse order.
488 ReversePacketIterator rit = packets_.rbegin();
489 for (; rit != packets_.rend(); ++rit)
490 if (LatestSequenceNumber(packet.seqNum, (*rit).seqNum) == packet.seqNum)
491 break;
492
493 // Check for duplicate packets.
494 if (rit != packets_.rend() && (*rit).seqNum == packet.seqNum &&
495 (*rit).sizeBytes > 0)
496 return -2;
497
498 if (packet.codec == kVideoCodecH264) {
499 frame_type_ = packet.frameType;
500 if (packet.isFirstPacket &&
501 (first_packet_seq_num_ == -1 ||
502 IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum))) {
503 first_packet_seq_num_ = packet.seqNum;
504 }
505 if (packet.markerBit &&
506 (last_packet_seq_num_ == -1 ||
507 IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_))) {
508 last_packet_seq_num_ = packet.seqNum;
509 }
510 } else {
511 // Only insert media packets between first and last packets (when
512 // available).
513 // Placing check here, as to properly account for duplicate packets.
514 // Check if this is first packet (only valid for some codecs)
515 // Should only be set for one packet per session.
516 if (packet.isFirstPacket && first_packet_seq_num_ == -1) {
517 // The first packet in a frame signals the frame type.
518 frame_type_ = packet.frameType;
519 // Store the sequence number for the first packet.
520 first_packet_seq_num_ = static_cast<int>(packet.seqNum);
521 } else if (first_packet_seq_num_ != -1 &&
522 IsNewerSequenceNumber(first_packet_seq_num_, packet.seqNum)) {
523 LOG(LS_WARNING) << "Received packet with a sequence number which is out "
524 "of frame boundaries";
525 return -3;
526 } else if (frame_type_ == kEmptyFrame && packet.frameType != kEmptyFrame) {
527 // Update the frame type with the type of the first media packet.
528 // TODO(mikhal): Can this trigger?
529 frame_type_ = packet.frameType;
530 }
531
532 // Track the marker bit, should only be set for one packet per session.
533 if (packet.markerBit && last_packet_seq_num_ == -1) {
534 last_packet_seq_num_ = static_cast<int>(packet.seqNum);
535 } else if (last_packet_seq_num_ != -1 &&
536 IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_)) {
537 LOG(LS_WARNING) << "Received packet with a sequence number which is out "
538 "of frame boundaries";
539 return -3;
540 }
541 }
542
543 // The insert operation invalidates the iterator |rit|.
544 PacketIterator packet_list_it = packets_.insert(rit.base(), packet);
545
546 size_t returnLength = InsertBuffer(frame_buffer, packet_list_it);
547 UpdateCompleteSession();
548 if (decode_error_mode == kWithErrors)
549 decodable_ = true;
550 else if (decode_error_mode == kSelectiveErrors)
551 UpdateDecodableSession(frame_data);
552 return static_cast<int>(returnLength);
553 }
554
InformOfEmptyPacket(uint16_t seq_num)555 void VCMSessionInfo::InformOfEmptyPacket(uint16_t seq_num) {
556 // Empty packets may be FEC or filler packets. They are sequential and
557 // follow the data packets, therefore, we should only keep track of the high
558 // and low sequence numbers and may assume that the packets in between are
559 // empty packets belonging to the same frame (timestamp).
560 if (empty_seq_num_high_ == -1)
561 empty_seq_num_high_ = seq_num;
562 else
563 empty_seq_num_high_ = LatestSequenceNumber(seq_num, empty_seq_num_high_);
564 if (empty_seq_num_low_ == -1 ||
565 IsNewerSequenceNumber(empty_seq_num_low_, seq_num))
566 empty_seq_num_low_ = seq_num;
567 }
568
569 } // namespace webrtc
570