• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the classes used to generate code from scalar expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
16 
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
19 #include "llvm/Analysis/TargetFolder.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/ValueHandle.h"
22 #include <set>
23 
24 namespace llvm {
25   class TargetTransformInfo;
26 
27   /// Return true if the given expression is safe to expand in the sense that
28   /// all materialized values are safe to speculate.
29   bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
30 
31   /// This class uses information about analyze scalars to
32   /// rewrite expressions in canonical form.
33   ///
34   /// Clients should create an instance of this class when rewriting is needed,
35   /// and destroy it when finished to allow the release of the associated
36   /// memory.
37   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
38     ScalarEvolution &SE;
39     const DataLayout &DL;
40 
41     // New instructions receive a name to identifies them with the current pass.
42     const char* IVName;
43 
44     // InsertedExpressions caches Values for reuse, so must track RAUW.
45     std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
46       InsertedExpressions;
47     // InsertedValues only flags inserted instructions so needs no RAUW.
48     std::set<AssertingVH<Value> > InsertedValues;
49     std::set<AssertingVH<Value> > InsertedPostIncValues;
50 
51     /// A memoization of the "relevant" loop for a given SCEV.
52     DenseMap<const SCEV *, const Loop *> RelevantLoops;
53 
54     /// \brief Addrecs referring to any of the given loops are expanded
55     /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
56     /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
57     /// as opposed to a new phi starting at 1. This is only supported in
58     /// non-canonical mode.
59     PostIncLoopSet PostIncLoops;
60 
61     /// \brief When this is non-null, addrecs expanded in the loop it indicates
62     /// should be inserted with increments at IVIncInsertPos.
63     const Loop *IVIncInsertLoop;
64 
65     /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
66     /// increment at this position.
67     Instruction *IVIncInsertPos;
68 
69     /// \brief Phis that complete an IV chain. Reuse
70     std::set<AssertingVH<PHINode> > ChainedPhis;
71 
72     /// \brief When true, expressions are expanded in "canonical" form. In
73     /// particular, addrecs are expanded as arithmetic based on a canonical
74     /// induction variable. When false, expression are expanded in a more
75     /// literal form.
76     bool CanonicalMode;
77 
78     /// \brief When invoked from LSR, the expander is in "strength reduction"
79     /// mode. The only difference is that phi's are only reused if they are
80     /// already in "expanded" form.
81     bool LSRMode;
82 
83     typedef IRBuilder<TargetFolder> BuilderType;
84     BuilderType Builder;
85 
86     // RAII object that stores the current insertion point and restores it when
87     // the object is destroyed. This includes the debug location.  Duplicated
88     // from InsertPointGuard to add SetInsertPoint() which is used to updated
89     // InsertPointGuards stack when insert points are moved during SCEV
90     // expansion.
91     class SCEVInsertPointGuard {
92       IRBuilderBase &Builder;
93       AssertingVH<BasicBlock> Block;
94       BasicBlock::iterator Point;
95       DebugLoc DbgLoc;
96       SCEVExpander *SE;
97 
98       SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
99       SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
100 
101     public:
SCEVInsertPointGuard(IRBuilderBase & B,SCEVExpander * SE)102       SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
103           : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
104             DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
105         SE->InsertPointGuards.push_back(this);
106       }
107 
~SCEVInsertPointGuard()108       ~SCEVInsertPointGuard() {
109         // These guards should always created/destroyed in FIFO order since they
110         // are used to guard lexically scoped blocks of code in
111         // ScalarEvolutionExpander.
112         assert(SE->InsertPointGuards.back() == this);
113         SE->InsertPointGuards.pop_back();
114         Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
115         Builder.SetCurrentDebugLocation(DbgLoc);
116       }
117 
GetInsertPoint()118       BasicBlock::iterator GetInsertPoint() const { return Point; }
SetInsertPoint(BasicBlock::iterator I)119       void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
120     };
121 
122     /// Stack of pointers to saved insert points, used to keep insert points
123     /// consistent when instructions are moved.
124     SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
125 
126 #ifndef NDEBUG
127     const char *DebugType;
128 #endif
129 
130     friend struct SCEVVisitor<SCEVExpander, Value*>;
131 
132   public:
133     /// \brief Construct a SCEVExpander in "canonical" mode.
134     explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
135                           const char *name)
136         : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
137           IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
138           Builder(se.getContext(), TargetFolder(DL)) {
139 #ifndef NDEBUG
140       DebugType = "";
141 #endif
142     }
143 
144     ~SCEVExpander() {
145       // Make sure the insert point guard stack is consistent.
146       assert(InsertPointGuards.empty());
147     }
148 
149 #ifndef NDEBUG
150     void setDebugType(const char* s) { DebugType = s; }
151 #endif
152 
153     /// \brief Erase the contents of the InsertedExpressions map so that users
154     /// trying to expand the same expression into multiple BasicBlocks or
155     /// different places within the same BasicBlock can do so.
156     void clear() {
157       InsertedExpressions.clear();
158       InsertedValues.clear();
159       InsertedPostIncValues.clear();
160       ChainedPhis.clear();
161     }
162 
163     /// \brief Return true for expressions that may incur non-trivial cost to
164     /// evaluate at runtime.
165     ///
166     /// At is an optional parameter which specifies point in code where user is
167     /// going to expand this expression. Sometimes this knowledge can lead to a
168     /// more accurate cost estimation.
169     bool isHighCostExpansion(const SCEV *Expr, Loop *L,
170                              const Instruction *At = nullptr) {
171       SmallPtrSet<const SCEV *, 8> Processed;
172       return isHighCostExpansionHelper(Expr, L, At, Processed);
173     }
174 
175     /// \brief This method returns the canonical induction variable of the
176     /// specified type for the specified loop (inserting one if there is none).
177     /// A canonical induction variable starts at zero and steps by one on each
178     /// iteration.
179     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
180 
181     /// \brief Return the induction variable increment's IV operand.
182     Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
183                                  bool allowScale);
184 
185     /// \brief Utility for hoisting an IV increment.
186     bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
187 
188     /// \brief replace congruent phis with their most canonical
189     /// representative. Return the number of phis eliminated.
190     unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
191                                  SmallVectorImpl<WeakVH> &DeadInsts,
192                                  const TargetTransformInfo *TTI = nullptr);
193 
194     /// \brief Insert code to directly compute the specified SCEV expression
195     /// into the program.  The inserted code is inserted into the specified
196     /// block.
197     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
198 
199     /// \brief Generates a code sequence that evaluates this predicate.
200     /// The inserted instructions will be at position \p Loc.
201     /// The result will be of type i1 and will have a value of 0 when the
202     /// predicate is false and 1 otherwise.
203     Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
204 
205     /// \brief A specialized variant of expandCodeForPredicate, handling the
206     /// case when we are expanding code for a SCEVEqualPredicate.
207     Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
208                                 Instruction *Loc);
209 
210     /// \brief Generates code that evaluates if the \p AR expression will
211     /// overflow.
212     Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
213                                  bool Signed);
214 
215     /// \brief A specialized variant of expandCodeForPredicate, handling the
216     /// case when we are expanding code for a SCEVWrapPredicate.
217     Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
218 
219     /// \brief A specialized variant of expandCodeForPredicate, handling the
220     /// case when we are expanding code for a SCEVUnionPredicate.
221     Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
222                                 Instruction *Loc);
223 
224     /// \brief Set the current IV increment loop and position.
225     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
226       assert(!CanonicalMode &&
227              "IV increment positions are not supported in CanonicalMode");
228       IVIncInsertLoop = L;
229       IVIncInsertPos = Pos;
230     }
231 
232     /// \brief Enable post-inc expansion for addrecs referring to the given
233     /// loops. Post-inc expansion is only supported in non-canonical mode.
234     void setPostInc(const PostIncLoopSet &L) {
235       assert(!CanonicalMode &&
236              "Post-inc expansion is not supported in CanonicalMode");
237       PostIncLoops = L;
238     }
239 
240     /// \brief Disable all post-inc expansion.
241     void clearPostInc() {
242       PostIncLoops.clear();
243 
244       // When we change the post-inc loop set, cached expansions may no
245       // longer be valid.
246       InsertedPostIncValues.clear();
247     }
248 
249     /// \brief Disable the behavior of expanding expressions in canonical form
250     /// rather than in a more literal form. Non-canonical mode is useful for
251     /// late optimization passes.
252     void disableCanonicalMode() { CanonicalMode = false; }
253 
254     void enableLSRMode() { LSRMode = true; }
255 
256     /// \brief Clear the current insertion point. This is useful if the
257     /// instruction that had been serving as the insertion point may have been
258     /// deleted.
259     void clearInsertPoint() {
260       Builder.ClearInsertionPoint();
261     }
262 
263     /// \brief Return true if the specified instruction was inserted by the code
264     /// rewriter.  If so, the client should not modify the instruction.
265     bool isInsertedInstruction(Instruction *I) const {
266       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
267     }
268 
269     void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
270 
271     /// \brief Try to find LLVM IR value for S available at the point At.
272     ///
273     /// L is a hint which tells in which loop to look for the suitable value.
274     /// On success return value which is equivalent to the expanded S at point
275     /// At. Return nullptr if value was not found.
276     ///
277     /// Note that this function does not perform an exhaustive search. I.e if it
278     /// didn't find any value it does not mean that there is no such value.
279     Value *findExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
280 
281   private:
282     LLVMContext &getContext() const { return SE.getContext(); }
283 
284     /// \brief Recursive helper function for isHighCostExpansion.
285     bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
286                                    const Instruction *At,
287                                    SmallPtrSetImpl<const SCEV *> &Processed);
288 
289     /// \brief Insert the specified binary operator, doing a small amount
290     /// of work to avoid inserting an obviously redundant operation.
291     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
292 
293     /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
294     /// existing cast if a suitable one exists, moving an existing cast if a
295     /// suitable one exists but isn't in the right place, or or creating a new
296     /// one.
297     Value *ReuseOrCreateCast(Value *V, Type *Ty,
298                              Instruction::CastOps Op,
299                              BasicBlock::iterator IP);
300 
301     /// \brief Insert a cast of V to the specified type, which must be possible
302     /// with a noop cast, doing what we can to share the casts.
303     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
304 
305     /// \brief Expand a SCEVAddExpr with a pointer type into a GEP
306     /// instead of using ptrtoint+arithmetic+inttoptr.
307     Value *expandAddToGEP(const SCEV *const *op_begin,
308                           const SCEV *const *op_end,
309                           PointerType *PTy, Type *Ty, Value *V);
310 
311     /// \brief Find a previous Value in ExprValueMap for expand.
312     Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
313 
314     Value *expand(const SCEV *S);
315 
316     /// \brief Insert code to directly compute the specified SCEV expression
317     /// into the program.  The inserted code is inserted into the SCEVExpander's
318     /// current insertion point. If a type is specified, the result will be
319     /// expanded to have that type, with a cast if necessary.
320     Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
321 
322     /// \brief Determine the most "relevant" loop for the given SCEV.
323     const Loop *getRelevantLoop(const SCEV *);
324 
325     Value *visitConstant(const SCEVConstant *S) {
326       return S->getValue();
327     }
328 
329     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
330 
331     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
332 
333     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
334 
335     Value *visitAddExpr(const SCEVAddExpr *S);
336 
337     Value *visitMulExpr(const SCEVMulExpr *S);
338 
339     Value *visitUDivExpr(const SCEVUDivExpr *S);
340 
341     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
342 
343     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
344 
345     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
346 
347     Value *visitUnknown(const SCEVUnknown *S) {
348       return S->getValue();
349     }
350 
351     void rememberInstruction(Value *I);
352 
353     bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
354 
355     bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
356 
357     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
358     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
359                                        const Loop *L,
360                                        Type *ExpandTy,
361                                        Type *IntTy,
362                                        Type *&TruncTy,
363                                        bool &InvertStep);
364     Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
365                        Type *ExpandTy, Type *IntTy, bool useSubtract);
366 
367     void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
368                         Instruction *Pos, PHINode *LoopPhi);
369 
370     void fixupInsertPoints(Instruction *I);
371   };
372 }
373 
374 #endif
375