1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkDashPathPriv.h"
9 #include "SkPathMeasure.h"
10 #include "SkStrokeRec.h"
11
is_even(int x)12 static inline int is_even(int x) {
13 return !(x & 1);
14 }
15
find_first_interval(const SkScalar intervals[],SkScalar phase,int32_t * index,int count)16 static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
17 int32_t* index, int count) {
18 for (int i = 0; i < count; ++i) {
19 SkScalar gap = intervals[i];
20 if (phase > gap || (phase == gap && gap)) {
21 phase -= gap;
22 } else {
23 *index = i;
24 return gap - phase;
25 }
26 }
27 // If we get here, phase "appears" to be larger than our length. This
28 // shouldn't happen with perfect precision, but we can accumulate errors
29 // during the initial length computation (rounding can make our sum be too
30 // big or too small. In that event, we just have to eat the error here.
31 *index = 0;
32 return intervals[0];
33 }
34
CalcDashParameters(SkScalar phase,const SkScalar intervals[],int32_t count,SkScalar * initialDashLength,int32_t * initialDashIndex,SkScalar * intervalLength,SkScalar * adjustedPhase)35 void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
36 SkScalar* initialDashLength, int32_t* initialDashIndex,
37 SkScalar* intervalLength, SkScalar* adjustedPhase) {
38 SkScalar len = 0;
39 for (int i = 0; i < count; i++) {
40 len += intervals[i];
41 }
42 *intervalLength = len;
43 // Adjust phase to be between 0 and len, "flipping" phase if negative.
44 // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
45 if (adjustedPhase) {
46 if (phase < 0) {
47 phase = -phase;
48 if (phase > len) {
49 phase = SkScalarMod(phase, len);
50 }
51 phase = len - phase;
52
53 // Due to finite precision, it's possible that phase == len,
54 // even after the subtract (if len >>> phase), so fix that here.
55 // This fixes http://crbug.com/124652 .
56 SkASSERT(phase <= len);
57 if (phase == len) {
58 phase = 0;
59 }
60 } else if (phase >= len) {
61 phase = SkScalarMod(phase, len);
62 }
63 *adjustedPhase = phase;
64 }
65 SkASSERT(phase >= 0 && phase < len);
66
67 *initialDashLength = find_first_interval(intervals, phase,
68 initialDashIndex, count);
69
70 SkASSERT(*initialDashLength >= 0);
71 SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
72 }
73
outset_for_stroke(SkRect * rect,const SkStrokeRec & rec)74 static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
75 SkScalar radius = SkScalarHalf(rec.getWidth());
76 if (0 == radius) {
77 radius = SK_Scalar1; // hairlines
78 }
79 if (SkPaint::kMiter_Join == rec.getJoin()) {
80 radius *= rec.getMiter();
81 }
82 rect->outset(radius, radius);
83 }
84
85 // Only handles lines for now. If returns true, dstPath is the new (smaller)
86 // path. If returns false, then dstPath parameter is ignored.
cull_path(const SkPath & srcPath,const SkStrokeRec & rec,const SkRect * cullRect,SkScalar intervalLength,SkPath * dstPath)87 static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
88 const SkRect* cullRect, SkScalar intervalLength,
89 SkPath* dstPath) {
90 if (nullptr == cullRect) {
91 return false;
92 }
93
94 SkPoint pts[2];
95 if (!srcPath.isLine(pts)) {
96 return false;
97 }
98
99 SkRect bounds = *cullRect;
100 outset_for_stroke(&bounds, rec);
101
102 SkScalar dx = pts[1].x() - pts[0].x();
103 SkScalar dy = pts[1].y() - pts[0].y();
104
105 // just do horizontal lines for now (lazy)
106 if (dy) {
107 return false;
108 }
109
110 SkScalar minX = pts[0].fX;
111 SkScalar maxX = pts[1].fX;
112
113 if (dx < 0) {
114 SkTSwap(minX, maxX);
115 }
116
117 SkASSERT(minX <= maxX);
118 if (maxX < bounds.fLeft || minX > bounds.fRight) {
119 return false;
120 }
121
122 // Now we actually perform the chop, removing the excess to the left and
123 // right of the bounds (keeping our new line "in phase" with the dash,
124 // hence the (mod intervalLength).
125
126 if (minX < bounds.fLeft) {
127 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
128 intervalLength);
129 }
130 if (maxX > bounds.fRight) {
131 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
132 intervalLength);
133 }
134
135 SkASSERT(maxX >= minX);
136 if (dx < 0) {
137 SkTSwap(minX, maxX);
138 }
139 pts[0].fX = minX;
140 pts[1].fX = maxX;
141
142 dstPath->moveTo(pts[0]);
143 dstPath->lineTo(pts[1]);
144 return true;
145 }
146
147 class SpecialLineRec {
148 public:
init(const SkPath & src,SkPath * dst,SkStrokeRec * rec,int intervalCount,SkScalar intervalLength)149 bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
150 int intervalCount, SkScalar intervalLength) {
151 if (rec->isHairlineStyle() || !src.isLine(fPts)) {
152 return false;
153 }
154
155 // can relax this in the future, if we handle square and round caps
156 if (SkPaint::kButt_Cap != rec->getCap()) {
157 return false;
158 }
159
160 SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
161
162 fTangent = fPts[1] - fPts[0];
163 if (fTangent.isZero()) {
164 return false;
165 }
166
167 fPathLength = pathLength;
168 fTangent.scale(SkScalarInvert(pathLength));
169 fTangent.rotateCCW(&fNormal);
170 fNormal.scale(SkScalarHalf(rec->getWidth()));
171
172 // now estimate how many quads will be added to the path
173 // resulting segments = pathLen * intervalCount / intervalLen
174 // resulting points = 4 * segments
175
176 SkScalar ptCount = pathLength * intervalCount / (float)intervalLength;
177 ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
178 int n = SkScalarCeilToInt(ptCount) << 2;
179 dst->incReserve(n);
180
181 // we will take care of the stroking
182 rec->setFillStyle();
183 return true;
184 }
185
addSegment(SkScalar d0,SkScalar d1,SkPath * path) const186 void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
187 SkASSERT(d0 <= fPathLength);
188 // clamp the segment to our length
189 if (d1 > fPathLength) {
190 d1 = fPathLength;
191 }
192
193 SkScalar x0 = fPts[0].fX + fTangent.fX * d0;
194 SkScalar x1 = fPts[0].fX + fTangent.fX * d1;
195 SkScalar y0 = fPts[0].fY + fTangent.fY * d0;
196 SkScalar y1 = fPts[0].fY + fTangent.fY * d1;
197
198 SkPoint pts[4];
199 pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
200 pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
201 pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
202 pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
203
204 path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
205 }
206
207 private:
208 SkPoint fPts[2];
209 SkVector fTangent;
210 SkVector fNormal;
211 SkScalar fPathLength;
212 };
213
214
InternalFilter(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkScalar aIntervals[],int32_t count,SkScalar initialDashLength,int32_t initialDashIndex,SkScalar intervalLength,StrokeRecApplication strokeRecApplication)215 bool SkDashPath::InternalFilter(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
216 const SkRect* cullRect, const SkScalar aIntervals[],
217 int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
218 SkScalar intervalLength,
219 StrokeRecApplication strokeRecApplication) {
220
221 // we do nothing if the src wants to be filled
222 SkStrokeRec::Style style = rec->getStyle();
223 if (SkStrokeRec::kFill_Style == style || SkStrokeRec::kStrokeAndFill_Style == style) {
224 return false;
225 }
226
227 const SkScalar* intervals = aIntervals;
228 SkScalar dashCount = 0;
229 int segCount = 0;
230
231 SkPath cullPathStorage;
232 const SkPath* srcPtr = &src;
233 if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
234 srcPtr = &cullPathStorage;
235 }
236
237 SpecialLineRec lineRec;
238 bool specialLine = (StrokeRecApplication::kAllow == strokeRecApplication) &&
239 lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
240
241 SkPathMeasure meas(*srcPtr, false, rec->getResScale());
242
243 do {
244 bool skipFirstSegment = meas.isClosed();
245 bool addedSegment = false;
246 SkScalar length = meas.getLength();
247 int index = initialDashIndex;
248
249 // Since the path length / dash length ratio may be arbitrarily large, we can exert
250 // significant memory pressure while attempting to build the filtered path. To avoid this,
251 // we simply give up dashing beyond a certain threshold.
252 //
253 // The original bug report (http://crbug.com/165432) is based on a path yielding more than
254 // 90 million dash segments and crashing the memory allocator. A limit of 1 million
255 // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
256 // maximum dash memory overhead at roughly 17MB per path.
257 dashCount += length * (count >> 1) / intervalLength;
258 if (dashCount > kMaxDashCount) {
259 dst->reset();
260 return false;
261 }
262
263 // Using double precision to avoid looping indefinitely due to single precision rounding
264 // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
265 double distance = 0;
266 double dlen = initialDashLength;
267
268 while (distance < length) {
269 SkASSERT(dlen >= 0);
270 addedSegment = false;
271 if (is_even(index) && !skipFirstSegment) {
272 addedSegment = true;
273 ++segCount;
274
275 if (specialLine) {
276 lineRec.addSegment(SkDoubleToScalar(distance),
277 SkDoubleToScalar(distance + dlen),
278 dst);
279 } else {
280 meas.getSegment(SkDoubleToScalar(distance),
281 SkDoubleToScalar(distance + dlen),
282 dst, true);
283 }
284 }
285 distance += dlen;
286
287 // clear this so we only respect it the first time around
288 skipFirstSegment = false;
289
290 // wrap around our intervals array if necessary
291 index += 1;
292 SkASSERT(index <= count);
293 if (index == count) {
294 index = 0;
295 }
296
297 // fetch our next dlen
298 dlen = intervals[index];
299 }
300
301 // extend if we ended on a segment and we need to join up with the (skipped) initial segment
302 if (meas.isClosed() && is_even(initialDashIndex) &&
303 initialDashLength >= 0) {
304 meas.getSegment(0, initialDashLength, dst, !addedSegment);
305 ++segCount;
306 }
307 } while (meas.nextContour());
308
309 if (segCount > 1) {
310 dst->setConvexity(SkPath::kConcave_Convexity);
311 }
312
313 return true;
314 }
315
FilterDashPath(SkPath * dst,const SkPath & src,SkStrokeRec * rec,const SkRect * cullRect,const SkPathEffect::DashInfo & info)316 bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
317 const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
318 if (!ValidDashPath(info.fPhase, info.fIntervals, info.fCount)) {
319 return false;
320 }
321 SkScalar initialDashLength = 0;
322 int32_t initialDashIndex = 0;
323 SkScalar intervalLength = 0;
324 CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
325 &initialDashLength, &initialDashIndex, &intervalLength);
326 return InternalFilter(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
327 initialDashIndex, intervalLength);
328 }
329
ValidDashPath(SkScalar phase,const SkScalar intervals[],int32_t count)330 bool SkDashPath::ValidDashPath(SkScalar phase, const SkScalar intervals[], int32_t count) {
331 if (count < 2 || !SkIsAlign2(count)) {
332 return false;
333 }
334 SkScalar length = 0;
335 for (int i = 0; i < count; i++) {
336 if (intervals[i] < 0) {
337 return false;
338 }
339 length += intervals[i];
340 }
341 // watch out for values that might make us go out of bounds
342 return length > 0 && SkScalarIsFinite(phase) && SkScalarIsFinite(length);
343 }
344