1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/InstVisitor.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
31
32 #define DEBUG_TYPE "instcombine"
33
34 namespace llvm {
35 class CallSite;
36 class DataLayout;
37 class DominatorTree;
38 class TargetLibraryInfo;
39 class DbgDeclareInst;
40 class MemIntrinsic;
41 class MemSetInst;
42
43 /// \brief Assign a complexity or rank value to LLVM Values.
44 ///
45 /// This routine maps IR values to various complexity ranks:
46 /// 0 -> undef
47 /// 1 -> Constants
48 /// 2 -> Other non-instructions
49 /// 3 -> Arguments
50 /// 3 -> Unary operations
51 /// 4 -> Other instructions
getComplexity(Value * V)52 static inline unsigned getComplexity(Value *V) {
53 if (isa<Instruction>(V)) {
54 if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
55 BinaryOperator::isNot(V))
56 return 3;
57 return 4;
58 }
59 if (isa<Argument>(V))
60 return 3;
61 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
62 }
63
64 /// \brief Add one to a Constant
AddOne(Constant * C)65 static inline Constant *AddOne(Constant *C) {
66 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
67 }
68 /// \brief Subtract one from a Constant
SubOne(Constant * C)69 static inline Constant *SubOne(Constant *C) {
70 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
71 }
72
73 /// \brief Return true if the specified value is free to invert (apply ~ to).
74 /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
75 /// is true, work under the assumption that the caller intends to remove all
76 /// uses of V and only keep uses of ~V.
77 ///
IsFreeToInvert(Value * V,bool WillInvertAllUses)78 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
79 // ~(~(X)) -> X.
80 if (BinaryOperator::isNot(V))
81 return true;
82
83 // Constants can be considered to be not'ed values.
84 if (isa<ConstantInt>(V))
85 return true;
86
87 // Compares can be inverted if all of their uses are being modified to use the
88 // ~V.
89 if (isa<CmpInst>(V))
90 return WillInvertAllUses;
91
92 // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
93 // - Constant) - A` if we are willing to invert all of the uses.
94 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
95 if (BO->getOpcode() == Instruction::Add ||
96 BO->getOpcode() == Instruction::Sub)
97 if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
98 return WillInvertAllUses;
99
100 return false;
101 }
102
103
104 /// \brief Specific patterns of overflow check idioms that we match.
105 enum OverflowCheckFlavor {
106 OCF_UNSIGNED_ADD,
107 OCF_SIGNED_ADD,
108 OCF_UNSIGNED_SUB,
109 OCF_SIGNED_SUB,
110 OCF_UNSIGNED_MUL,
111 OCF_SIGNED_MUL,
112
113 OCF_INVALID
114 };
115
116 /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
117 /// intrinsic.
118 static inline OverflowCheckFlavor
IntrinsicIDToOverflowCheckFlavor(unsigned ID)119 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
120 switch (ID) {
121 default:
122 return OCF_INVALID;
123 case Intrinsic::uadd_with_overflow:
124 return OCF_UNSIGNED_ADD;
125 case Intrinsic::sadd_with_overflow:
126 return OCF_SIGNED_ADD;
127 case Intrinsic::usub_with_overflow:
128 return OCF_UNSIGNED_SUB;
129 case Intrinsic::ssub_with_overflow:
130 return OCF_SIGNED_SUB;
131 case Intrinsic::umul_with_overflow:
132 return OCF_UNSIGNED_MUL;
133 case Intrinsic::smul_with_overflow:
134 return OCF_SIGNED_MUL;
135 }
136 }
137
138 /// \brief An IRBuilder inserter that adds new instructions to the instcombine
139 /// worklist.
140 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
141 : public IRBuilderDefaultInserter {
142 InstCombineWorklist &Worklist;
143 AssumptionCache *AC;
144
145 public:
InstCombineIRInserter(InstCombineWorklist & WL,AssumptionCache * AC)146 InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
147 : Worklist(WL), AC(AC) {}
148
InsertHelper(Instruction * I,const Twine & Name,BasicBlock * BB,BasicBlock::iterator InsertPt)149 void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
150 BasicBlock::iterator InsertPt) const {
151 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
152 Worklist.Add(I);
153
154 using namespace llvm::PatternMatch;
155 if (match(I, m_Intrinsic<Intrinsic::assume>()))
156 AC->registerAssumption(cast<CallInst>(I));
157 }
158 };
159
160 /// \brief The core instruction combiner logic.
161 ///
162 /// This class provides both the logic to recursively visit instructions and
163 /// combine them, as well as the pass infrastructure for running this as part
164 /// of the LLVM pass pipeline.
165 class LLVM_LIBRARY_VISIBILITY InstCombiner
166 : public InstVisitor<InstCombiner, Instruction *> {
167 // FIXME: These members shouldn't be public.
168 public:
169 /// \brief A worklist of the instructions that need to be simplified.
170 InstCombineWorklist &Worklist;
171
172 /// \brief An IRBuilder that automatically inserts new instructions into the
173 /// worklist.
174 typedef IRBuilder<TargetFolder, InstCombineIRInserter> BuilderTy;
175 BuilderTy *Builder;
176
177 private:
178 // Mode in which we are running the combiner.
179 const bool MinimizeSize;
180 /// Enable combines that trigger rarely but are costly in compiletime.
181 const bool ExpensiveCombines;
182
183 AliasAnalysis *AA;
184
185 // Required analyses.
186 // FIXME: These can never be null and should be references.
187 AssumptionCache *AC;
188 TargetLibraryInfo *TLI;
189 DominatorTree *DT;
190 const DataLayout &DL;
191
192 // Optional analyses. When non-null, these can both be used to do better
193 // combining and will be updated to reflect any changes.
194 LoopInfo *LI;
195
196 bool MadeIRChange;
197
198 public:
InstCombiner(InstCombineWorklist & Worklist,BuilderTy * Builder,bool MinimizeSize,bool ExpensiveCombines,AliasAnalysis * AA,AssumptionCache * AC,TargetLibraryInfo * TLI,DominatorTree * DT,const DataLayout & DL,LoopInfo * LI)199 InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
200 bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
201 AssumptionCache *AC, TargetLibraryInfo *TLI,
202 DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
203 : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
204 ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
205 DL(DL), LI(LI), MadeIRChange(false) {}
206
207 /// \brief Run the combiner over the entire worklist until it is empty.
208 ///
209 /// \returns true if the IR is changed.
210 bool run();
211
getAssumptionCache()212 AssumptionCache *getAssumptionCache() const { return AC; }
213
getDataLayout()214 const DataLayout &getDataLayout() const { return DL; }
215
getDominatorTree()216 DominatorTree *getDominatorTree() const { return DT; }
217
getLoopInfo()218 LoopInfo *getLoopInfo() const { return LI; }
219
getTargetLibraryInfo()220 TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
221
222 // Visitation implementation - Implement instruction combining for different
223 // instruction types. The semantics are as follows:
224 // Return Value:
225 // null - No change was made
226 // I - Change was made, I is still valid, I may be dead though
227 // otherwise - Change was made, replace I with returned instruction
228 //
229 Instruction *visitAdd(BinaryOperator &I);
230 Instruction *visitFAdd(BinaryOperator &I);
231 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
232 Instruction *visitSub(BinaryOperator &I);
233 Instruction *visitFSub(BinaryOperator &I);
234 Instruction *visitMul(BinaryOperator &I);
235 Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
236 Instruction *InsertBefore);
237 Instruction *visitFMul(BinaryOperator &I);
238 Instruction *visitURem(BinaryOperator &I);
239 Instruction *visitSRem(BinaryOperator &I);
240 Instruction *visitFRem(BinaryOperator &I);
241 bool SimplifyDivRemOfSelect(BinaryOperator &I);
242 Instruction *commonRemTransforms(BinaryOperator &I);
243 Instruction *commonIRemTransforms(BinaryOperator &I);
244 Instruction *commonDivTransforms(BinaryOperator &I);
245 Instruction *commonIDivTransforms(BinaryOperator &I);
246 Instruction *visitUDiv(BinaryOperator &I);
247 Instruction *visitSDiv(BinaryOperator &I);
248 Instruction *visitFDiv(BinaryOperator &I);
249 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
250 Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
251 Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
252 Instruction *visitAnd(BinaryOperator &I);
253 Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
254 Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
255 Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
256 Value *B, Value *C);
257 Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
258 Value *B, Value *C);
259 Instruction *visitOr(BinaryOperator &I);
260 Instruction *visitXor(BinaryOperator &I);
261 Instruction *visitShl(BinaryOperator &I);
262 Instruction *visitAShr(BinaryOperator &I);
263 Instruction *visitLShr(BinaryOperator &I);
264 Instruction *commonShiftTransforms(BinaryOperator &I);
265 Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
266 Constant *RHSC);
267 Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
268 GlobalVariable *GV, CmpInst &ICI,
269 ConstantInt *AndCst = nullptr);
270 Instruction *visitFCmpInst(FCmpInst &I);
271 Instruction *visitICmpInst(ICmpInst &I);
272 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
273 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
274 ConstantInt *RHS);
275 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
276 ConstantInt *DivRHS);
277 Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
278 ConstantInt *DivRHS);
279 Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
280 ConstantInt *CI1, ConstantInt *CI2);
281 Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
282 ConstantInt *CI1, ConstantInt *CI2);
283 Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
284 ICmpInst::Predicate Pred);
285 Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
286 ICmpInst::Predicate Cond, Instruction &I);
287 Instruction *FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca, Value *Other);
288 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
289 BinaryOperator &I);
290 Instruction *commonCastTransforms(CastInst &CI);
291 Instruction *commonPointerCastTransforms(CastInst &CI);
292 Instruction *visitTrunc(TruncInst &CI);
293 Instruction *visitZExt(ZExtInst &CI);
294 Instruction *visitSExt(SExtInst &CI);
295 Instruction *visitFPTrunc(FPTruncInst &CI);
296 Instruction *visitFPExt(CastInst &CI);
297 Instruction *visitFPToUI(FPToUIInst &FI);
298 Instruction *visitFPToSI(FPToSIInst &FI);
299 Instruction *visitUIToFP(CastInst &CI);
300 Instruction *visitSIToFP(CastInst &CI);
301 Instruction *visitPtrToInt(PtrToIntInst &CI);
302 Instruction *visitIntToPtr(IntToPtrInst &CI);
303 Instruction *visitBitCast(BitCastInst &CI);
304 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
305 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
306 Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
307 Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
308 Value *A, Value *B, Instruction &Outer,
309 SelectPatternFlavor SPF2, Value *C);
310 Instruction *FoldItoFPtoI(Instruction &FI);
311 Instruction *visitSelectInst(SelectInst &SI);
312 Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
313 Instruction *visitCallInst(CallInst &CI);
314 Instruction *visitInvokeInst(InvokeInst &II);
315
316 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
317 Instruction *visitPHINode(PHINode &PN);
318 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
319 Instruction *visitAllocaInst(AllocaInst &AI);
320 Instruction *visitAllocSite(Instruction &FI);
321 Instruction *visitFree(CallInst &FI);
322 Instruction *visitLoadInst(LoadInst &LI);
323 Instruction *visitStoreInst(StoreInst &SI);
324 Instruction *visitBranchInst(BranchInst &BI);
325 Instruction *visitSwitchInst(SwitchInst &SI);
326 Instruction *visitReturnInst(ReturnInst &RI);
327 Instruction *visitInsertValueInst(InsertValueInst &IV);
328 Instruction *visitInsertElementInst(InsertElementInst &IE);
329 Instruction *visitExtractElementInst(ExtractElementInst &EI);
330 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
331 Instruction *visitExtractValueInst(ExtractValueInst &EV);
332 Instruction *visitLandingPadInst(LandingPadInst &LI);
333 Instruction *visitVAStartInst(VAStartInst &I);
334 Instruction *visitVACopyInst(VACopyInst &I);
335
336 // visitInstruction - Specify what to return for unhandled instructions...
visitInstruction(Instruction & I)337 Instruction *visitInstruction(Instruction &I) { return nullptr; }
338
339 // True when DB dominates all uses of DI execpt UI.
340 // UI must be in the same block as DI.
341 // The routine checks that the DI parent and DB are different.
342 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
343 const BasicBlock *DB) const;
344
345 // Replace select with select operand SIOpd in SI-ICmp sequence when possible
346 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
347 const unsigned SIOpd);
348
349 private:
350 bool ShouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
351 bool ShouldChangeType(Type *From, Type *To) const;
352 Value *dyn_castNegVal(Value *V) const;
353 Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
354 Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
355 SmallVectorImpl<Value *> &NewIndices);
356 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
357
358 /// \brief Classify whether a cast is worth optimizing.
359 ///
360 /// Returns true if the cast from "V to Ty" actually results in any code
361 /// being generated and is interesting to optimize out. If the cast can be
362 /// eliminated by some other simple transformation, we prefer to do the
363 /// simplification first.
364 bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
365 Type *Ty);
366
367 /// \brief Try to optimize a sequence of instructions checking if an operation
368 /// on LHS and RHS overflows.
369 ///
370 /// If this overflow check is done via one of the overflow check intrinsics,
371 /// then CtxI has to be the call instruction calling that intrinsic. If this
372 /// overflow check is done by arithmetic followed by a compare, then CtxI has
373 /// to be the arithmetic instruction.
374 ///
375 /// If a simplification is possible, stores the simplified result of the
376 /// operation in OperationResult and result of the overflow check in
377 /// OverflowResult, and return true. If no simplification is possible,
378 /// returns false.
379 bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
380 Instruction &CtxI, Value *&OperationResult,
381 Constant *&OverflowResult);
382
383 Instruction *visitCallSite(CallSite CS);
384 Instruction *tryOptimizeCall(CallInst *CI);
385 bool transformConstExprCastCall(CallSite CS);
386 Instruction *transformCallThroughTrampoline(CallSite CS,
387 IntrinsicInst *Tramp);
388 Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
389 bool DoXform = true);
390 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
391 bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
392 bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
393 bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
394 bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
395 Value *EmitGEPOffset(User *GEP);
396 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
397 Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
398 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
399
400 public:
401 /// \brief Inserts an instruction \p New before instruction \p Old
402 ///
403 /// Also adds the new instruction to the worklist and returns \p New so that
404 /// it is suitable for use as the return from the visitation patterns.
InsertNewInstBefore(Instruction * New,Instruction & Old)405 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
406 assert(New && !New->getParent() &&
407 "New instruction already inserted into a basic block!");
408 BasicBlock *BB = Old.getParent();
409 BB->getInstList().insert(Old.getIterator(), New); // Insert inst
410 Worklist.Add(New);
411 return New;
412 }
413
414 /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
InsertNewInstWith(Instruction * New,Instruction & Old)415 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
416 New->setDebugLoc(Old.getDebugLoc());
417 return InsertNewInstBefore(New, Old);
418 }
419
420 /// \brief A combiner-aware RAUW-like routine.
421 ///
422 /// This method is to be used when an instruction is found to be dead,
423 /// replaceable with another preexisting expression. Here we add all uses of
424 /// I to the worklist, replace all uses of I with the new value, then return
425 /// I, so that the inst combiner will know that I was modified.
replaceInstUsesWith(Instruction & I,Value * V)426 Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
427 // If there are no uses to replace, then we return nullptr to indicate that
428 // no changes were made to the program.
429 if (I.use_empty()) return nullptr;
430
431 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
432
433 // If we are replacing the instruction with itself, this must be in a
434 // segment of unreachable code, so just clobber the instruction.
435 if (&I == V)
436 V = UndefValue::get(I.getType());
437
438 DEBUG(dbgs() << "IC: Replacing " << I << "\n"
439 << " with " << *V << '\n');
440
441 I.replaceAllUsesWith(V);
442 return &I;
443 }
444
445 /// Creates a result tuple for an overflow intrinsic \p II with a given
446 /// \p Result and a constant \p Overflow value.
CreateOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)447 Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
448 Constant *Overflow) {
449 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
450 StructType *ST = cast<StructType>(II->getType());
451 Constant *Struct = ConstantStruct::get(ST, V);
452 return InsertValueInst::Create(Struct, Result, 0);
453 }
454
455 /// \brief Combiner aware instruction erasure.
456 ///
457 /// When dealing with an instruction that has side effects or produces a void
458 /// value, we can't rely on DCE to delete the instruction. Instead, visit
459 /// methods should return the value returned by this function.
eraseInstFromFunction(Instruction & I)460 Instruction *eraseInstFromFunction(Instruction &I) {
461 DEBUG(dbgs() << "IC: ERASE " << I << '\n');
462
463 assert(I.use_empty() && "Cannot erase instruction that is used!");
464 // Make sure that we reprocess all operands now that we reduced their
465 // use counts.
466 if (I.getNumOperands() < 8) {
467 for (Use &Operand : I.operands())
468 if (auto *Inst = dyn_cast<Instruction>(Operand))
469 Worklist.Add(Inst);
470 }
471 Worklist.Remove(&I);
472 I.eraseFromParent();
473 MadeIRChange = true;
474 return nullptr; // Don't do anything with FI
475 }
476
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,unsigned Depth,Instruction * CxtI)477 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
478 unsigned Depth, Instruction *CxtI) const {
479 return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
480 DT);
481 }
482
483 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
484 Instruction *CxtI = nullptr) const {
485 return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
486 }
487 unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
488 Instruction *CxtI = nullptr) const {
489 return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
490 }
491 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
492 unsigned Depth = 0, Instruction *CxtI = nullptr) const {
493 return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
494 DT);
495 }
computeOverflowForUnsignedMul(Value * LHS,Value * RHS,const Instruction * CxtI)496 OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
497 const Instruction *CxtI) {
498 return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
499 }
computeOverflowForUnsignedAdd(Value * LHS,Value * RHS,const Instruction * CxtI)500 OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
501 const Instruction *CxtI) {
502 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
503 }
504
505 private:
506 /// \brief Performs a few simplifications for operators which are associative
507 /// or commutative.
508 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
509
510 /// \brief Tries to simplify binary operations which some other binary
511 /// operation distributes over.
512 ///
513 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
514 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
515 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
516 /// value, or null if it didn't simplify.
517 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
518
519 /// \brief Attempts to replace V with a simpler value based on the demanded
520 /// bits.
521 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
522 APInt &KnownOne, unsigned Depth,
523 Instruction *CxtI);
524 bool SimplifyDemandedBits(Use &U, const APInt &DemandedMask, APInt &KnownZero,
525 APInt &KnownOne, unsigned Depth = 0);
526 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
527 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
528 Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
529 const APInt &DemandedMask, APInt &KnownZero,
530 APInt &KnownOne);
531
532 /// \brief Tries to simplify operands to an integer instruction based on its
533 /// demanded bits.
534 bool SimplifyDemandedInstructionBits(Instruction &Inst);
535
536 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
537 APInt &UndefElts, unsigned Depth = 0);
538
539 Value *SimplifyVectorOp(BinaryOperator &Inst);
540 Value *SimplifyBSwap(BinaryOperator &Inst);
541
542 // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
543 // which has a PHI node as operand #0, see if we can fold the instruction
544 // into the PHI (which is only possible if all operands to the PHI are
545 // constants).
546 //
547 Instruction *FoldOpIntoPhi(Instruction &I);
548
549 /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
550 /// its operands.
551 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
552 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
553 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
554 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
555 Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
556
557 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
558 ConstantInt *AndRHS, BinaryOperator &TheAnd);
559
560 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
561 bool isSub, Instruction &I);
562 Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
563 bool Inside);
564 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
565 Instruction *MatchBSwap(BinaryOperator &I);
566 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
567 Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
568 Instruction *SimplifyMemSet(MemSetInst *MI);
569
570 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
571
572 /// \brief Returns a value X such that Val = X * Scale, or null if none.
573 ///
574 /// If the multiplication is known not to overflow then NoSignedWrap is set.
575 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
576 };
577
578 } // end namespace llvm.
579
580 #undef DEBUG_TYPE
581
582 #endif
583